

TEST REPORT

10.6" Tablet PC **Product**

Dragon Touch, KINGPAD, KINGSLIM, Trade mark

AKASO

Model/Type reference X10, X10s, X10 pro, X10 plus, X10

hybrid, X10 mix

Serial Number N/A

Report Number EED32H000941-2

FCC ID S5V-D10X10 Date of Issue Aug. 24, 2015

Test Standards 47 CFR Part 15 Subpart C (2014)

PASS Test result

Prepared for:

Proexpress Distributor LLC 11011 GREENWOOD AVE.N APT 5, SEATTLE, WA 98103, United States

Prepared by:

Centre Testing International (Shenzhen) Corporation Building C, Scientific Innovation Park, Tiegang Reservior, Xixiang, Baoan District, Shenzhen, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested by:

Reviewed by:

Date:

Aug. 24, 2015

Sheek Luo

Lab supervisor

Check No.: 2212824360

Page 2 of 61

2 Version

Version No.	Date	Description	700
00	Aug. 24, 2015	Original	
- 17 mg		20%	

Page 3 of 61

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63 10-2013	
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

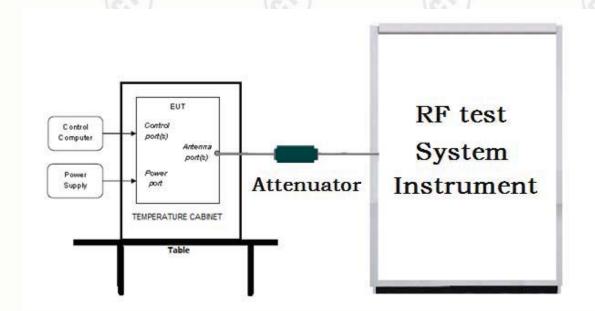
Remark:

All models are same except model name and brand name. Model X10 was selected for test.

Page 4 of 61

4 Content

1 COVER PAGE	1
2 VERSION	2
3 TEST SUMMARY	3
4 CONTENT	4
5 TEST REQUIREMENT	5
5.1 TEST SETUP	5
5.1.1 For Conducted test setup	
5.1.2 For Radiated Emissions test setup	
5.1.3 For Conducted Emissions test setup	6
5.2 Test Environment	
5.3 Test Condition	
6 GENERAL INFORMATION	8
6.1 CLIENT INFORMATION	
6.2 GENERAL DESCRIPTION OF EUT	
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
6.4 DESCRIPTION OF SUPPORT UNITS	
6.5 Test Location	
6.6 Test Facility	
6.7 DEVIATION FROM STANDARDS	10
6.8 ABNORMALITIES FROM STANDARD CONDITIONS	
6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
6.10 Measurement Uncertainty (95% confidence levels, k=2)	
7 EQUIPMENT LIST	12
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	
Appendix A): Conducted Peak Output Power	
Appendix B): 6dB Occupied Bandwidth	
Appendix C): Band-edge for RF Conducted Emissions	
Appendix D): RF Conducted Spurious Emissions	
Appendix E): Power Spectral Density	
Appendix F) Antenna Requirement	
Appendix G) AC Power Line Conducted Emission	
PHOTOGRAPHS OF TEST SETUP	
PHOTOGRAPHS OF FUT CONSTRUCTIONAL DETAILS	54 56
EDVIVORACIO UCICUI GUNO INUGUNAL DE LAUO	70



Report No.: EED32H000941-2 Page 5 of 61

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

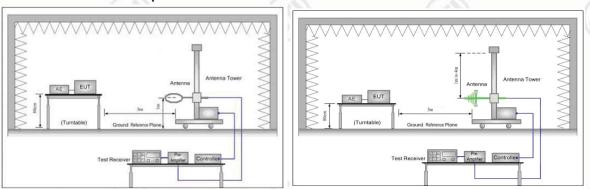


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

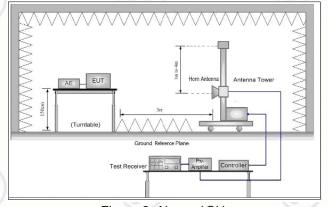
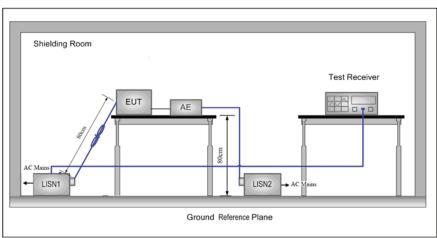


Figure 3. Above 1GHz



5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

5.2 Test Environment

Operating Environment:				
Temperature:	25.0 °C			
Humidity:	53 % RH			
Atmospheric Pressure:	995mbar			

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
rest wode	I X/TX	Low(L)	Middle(M)	High(H)	
902 11h/a/a/UT20\	2412MHz ~2462 MHz	Channel 1	Channel 6	Channel11	
802.11b/g/n(HT20)	24 12MHZ ~2462 MHZ	2412MHz	2437MHz	2462MHz	
802.11n(HT40)	2422MHz ~2452 MHz	Channel 1	Channel 4	Channel7	
		2422MHz	2437MHz	2452MHz	
Transmitting mode:	Keep the EUT in transdata rate. duty cycle >98%	smitting mode with	all kind of modulati	on and all kind of	

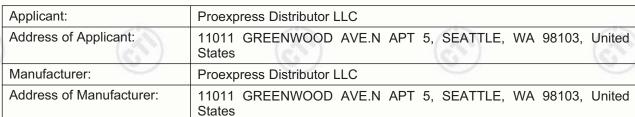
Page 7 of 61

Test mode:

Pre-scan under all rate at lowest channel 1

Mode		802.	11b			_			
Data Rate	1Mbps	2Mbps	5.5Mbps	11Mbps					
EIRP(dBm)	8.23	8.44	8.45	8.61		18		_	12
Mode	57		(0)	802.	.11g	(0,)			(6)
Data Rate	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	541	Mbps
EIRP(dBm)	8.48	7.84	7.71	7.23	6.87	6.56	6.11	5	.98
Mode		(3)		802.1	1n (HT20)		12		
Data Rate	6.5Mbps	13Mbps	19.5Mbps	s 26Mbp	s 39Mbps	52Mbp	s 58.5MI	ops	65Mbps
EIRP(dBm)	8.55	8.45	8.32	7.98	6.88	6.58	6.24	1	6.11
Mode				802.1	1n (HT40)	-			
Data Rate	13.5Mbps	27Mbps	40.5Mbps	s 54Mbp	s 81Mbps	108Mbp	s 121.5M	bps	135Mbps
EIRP(dBm)	7.73	7.45	7.33	6.87	6.46	6.11	5.98	}	5.67

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n (HT20); 13.5Mbps of rate is the worst case of 802.11n (HT40).



6 General Information

6.1 Client Information

6.2 General Description of EUT

1.6.26.7	18.4	140.4
Product Name:	10.6" Tablet PC	
Model No.(EUT):	X10, X10s, X10 pro, X10 plus, X10 hybrid, X10 mix	
Trade mark:	Dragon Touch, KINGPAD, KINGSLIM, AKASO	
EUT Supports Radios application:	IEEE 802.11b/g/n	(4)
Power Supply:	Input: 5V === 2A	
Sample Received Date:	Jun. 29, 2015	
Sample tested Date:	Jun. 29, 2015 to Aug. 24, 2015	75

6.3 Product Specification subjective to this standard

Operation	Frequency:		02.11b/g/n(HT2	,			
		IEEE 80	02.11n(HT40):	2422MHz to	2452MHz		
Channel N	lumbers:		IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels IEEE 802.11n HT40: 7 Channels				
Channel S	Separation:	5MHz				6	
Type of M	odulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g : OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20 and HT40) : OFDM (64QAM, 16QAM, QPSK,BPSK)					•)
Sample T	ype:	Portable	e production				
Antenna T	ype and Gain:		Type: integral antenna Gain: 0dBi				
Test Volta	ige:	DC 3.7\	V	9		-	(4)
Operation	Frequency ea	ch of chann	el(802.11b/g/n	HT20)	0	/	6
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel(802.11n HT40)							
Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2422MHz	4	2437MHz	7	2452MHz		
2	2427MHz	5	2442MHz				
3	2432MHz	6	2447MHz				

6.4 Description of Support Units

The EUT has been tested with associated equipment below:

Device Type	Brand	Model	Data Cable	Remark
-		-		<u></u>

6.5 Test Location

All tests were performed at:

Centre Testing International (Shenzhen) Corporation

Building C, Scientific Innovation Park, Tiegang Reservior, Xixiang, Baoan District, Shenzhen, China Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 565659

Centre Testing International (Shenzhen) Corporation EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 565659.

Page 10 of 61

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of

Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
0	DE	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3 F	Dedicted Courieus amission test	4.5dB (30MHz-1GHz)
	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Communication test set test set	Agilent	N4010A	MY47230124	04-02-2015	04-01-2016
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2015	03-31-2016
Attenuator	HuaXiang	SHX370	15040701	04-01-2015	03-31-2016
Signal Generator	Keysight	N5182B	MY53051549	03-31-2015	03-30-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-13-2015	01-12-2016
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-13-2015	01-12-2016
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002		01-13-2015	01-12-2016
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001		01-13-2015	01-12-2016
DC Power	Keysight	E3642A	MY54436035	03-31-2015	03-30-2016
PC-1	Lenovo	R4960d		04-01-2015	03-31-2016
BT&WI-FI Automatic control	R&S	OSPB157	101374	04-01-2015	03-31-2016
RF control unit	JS Tonscend	JS0806-2	2015860006	04-01-2015	03-31-2016
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2	(3)	04-01-2015	03-31-2016

	Shielding Room No. 1 – Conduction Emission Test						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100009	07-09-2014	07-08-2015		
Receiver	R&S	ESCI	100009	07-09-2015	07-08-2016		
Receiver	R&S	ESCI	100009	07-09-2014	07-08-2015		
Receiver	R&S	ESCI	100009	07-09-2015	07-08-2016		
LISN	R&S	ENV216	100098	11-12-2014	11-13-2015		

Page 13 of 61

(20)		10.5	(20)	1/2	47
		3M Semi/full-anech	noic Chamber	•	
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
3M Chamber	TDK	SAC-3		06-02-2015	06-01-2016
TRILOG Broadband Antenna	schwarzbeck	VULB9163	9163-617	07-14-2014	07-13-2015
TRILOG	(A)	(6)		(60)	
Broadband Antenna	schwarzbeck	VULB9163	9163-617	07-14-2015	07-13-2016
TRILOG Broadband Antenna	schwarzbeck	VULB9163	9163-617	07-14-2014	07-13-2015
TRILOG Broadband Antenna	schwarzbeck	VULB9163	9163-617	07-14-2015	07-13-2016
Microwave Preamplifier	Agilent	8449B	3008A02425	02-05-2015	02-04-2016
Horn Antenna	ETS-LINDGREN	3117	00057410	07-08-2014	07-07-2015
Horn Antenna	ETS-LINDGREN	3117	00057410	07-08-2015	07-07-2016
Horn Antenna	ETS-LINDGREN	3117	00057410	07-08-2014	07-07-2015
Horn Antenna	ETS-LINDGREN	3117	00057410	07-08-2015	07-07-2016
Loop Antenna	ETS	6502	00071730	07-23-2014	07-22-2015
Loop Antenna	ETS	6502	00071730	07-23-2015	07-22-2016
Loop Antenna	ETS	6502	00071730	07-23-2014	07-22-2015
Loop Antenna	ETS	6502	00071730	07-23-2015	07-22-2016
Spectrum Analyzer	R&S	FSP40	100416	07-09-2014	07-08-2015
Spectrum Analyzer	R&S	FSP40	100416	07-09-2015	07-08-2016
Spectrum Analyzer	R&S	FSP40	100416	07-09-2014	07-08-2015
Spectrum Analyzer	R&S	FSP40	100416	07-09-2015	07-08-2016
Receiver	R&S	ESCI	100435	07-09-2014	07-08-2015
Receiver	R&S	ESCI	100435	07-09-2015	07-08-2016
Receiver	R&S	ESCI	100435	07-09-2014	07-08-2015
Receiver	R&S	ESCI	100435	07-09-2015	07-08-2016
Multi device Controller	maturo	NCD/070/10711112		01-13-2015	01-12-2016
LISN	schwarzbeck	NNBM8125	81251547	07-09-2014	07-08-2015
LISN	schwarzbeck	NNBM8125	81251547	07-09-2015	07-08-2016
LISN	schwarzbeck	NNBM8125	81251547	07-09-2014	07-08-2015
LISN	schwarzbeck	NNBM8125	81251547	07-09-2015	07-08-2016
LISN	schwarzbeck	NNBM8125	81251546	07-09-2014	07-08-2015
LISN	schwarzbeck	NNBM8125	81251546	07-09-2015	07-08-2016
LISN	schwarzbeck	NNBM8125	81251546	07-09-2014	07-08-2015
LISN	schwarzbeck	NNBM8125	81251546	07-09-2015	07-08-2016
Signal Generator	Agilent	E4438C	MY45095744	04-19-2015	04-18-2016
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Temperature/ Humidity Indicator	TAYLOR	1451	5190	07-10-2014	07-09-2015
Temperature/ Humidity Indicator	TAYLOR	1451	5190	07-10-2015	07-09-2016
Temperature/ Humidity Indicator	TAYLOR	1451	5190	07-10-2014	07-09-2015
Temperature/ Humidity Indicator Communication	TAYLOR	1451	5190	07-10-2015	07-09-2016
test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016
Cable line	Fulai(7M)	SF106	5219/6A	01-13-2015	01-12-2016
Cable line	Fulai(7M)	SF106	5220/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5216/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5217/6A	01-13-2015	01-12-2016
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016
High-pass filter(3-	Sinoscite	FL3CX03WG18NM		01-13-2015	01-12-2016

Report No.: EED32H000941-2

Page 14 of 61

18GHz)		12-0398-002			
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4	(C,F.)	01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA09CL1 2-0395-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA08CL1 2-0393-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA04CL1 2-0396-002		01-13-2015	01-12-2016
band rejection filter Sinoscite		FL5CX02CA03CL1 2-0394-001		01-13-2015	01-12-2016

8 Radio Technical Requirements Specification

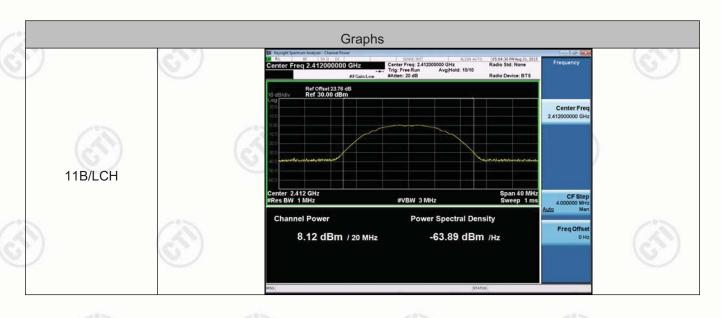
Reference documents for testing:

.0.0.	moo accamento for tooti	
No.	Identity	Document Title
1	FCC Part15C (2014)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

est itesuits List.	1.4.71	1.6.71		. 79.3
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)

Report No. : EED32H000941-2 Page 16 of 61


Appendix A): Conducted Peak Output Power

Result Table

Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	8.12	PASS
11B	MCH	8.61	PASS
11B	HCH	8.39	PASS
11G	LCH	8.48	PASS
11G	MCH	8.37	PASS
11G	HCH	8.48	PASS
11N20SISO	LCH	8.55	PASS
11N20SISO	MCH	8.39	PASS
11N20SISO	нсн	8.04	PASS
11N40SISO	LCH	7.73	PASS
11N40SISO	MCH	7.16	PASS
11N40SISO	HCH	7.06	PASS

Remark: Peak detector is used

Test Graph

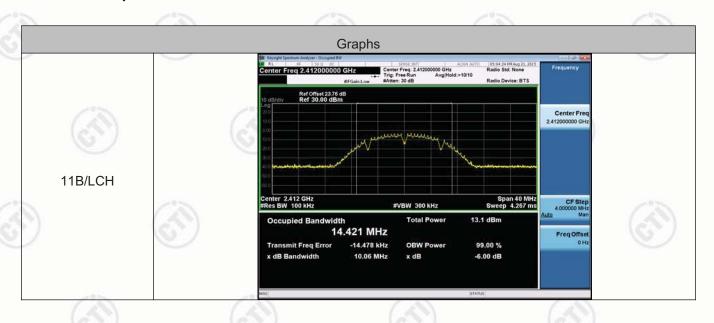
Page 17 of 61

Page 18 of 61

Page 19 of 61

Page 20 of 61

Page 21 of 61


Appendix B): 6dB Occupied Bandwidth

Result Table

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
11B	LCH	10.06	14.421	PASS
11B	MCH	10.00	14.330	PASS
11B	НСН	10.04	14.352	PASS
11G	LCH	16.37	16.783	PASS
11G	MCH	16.36	16.801	PASS
11G	HCH	16.36	16.749	PASS
11N20SISO	LCH	17.58	17.860	PASS
11N20SISO	MCH	17.58	17.805	PASS
11N20SISO	нсн	17.60	17.787	PASS
11N40SISO	LCH	36.29	36.812	PASS
11N40SISO	MCH	36.03	37.726	PASS
11N40SISO	НСН	35.79	45.017	PASS

Remark: Peak detector is used

Test Graph

Page 22 of 61

Page 23 of 61

Page 24 of 61

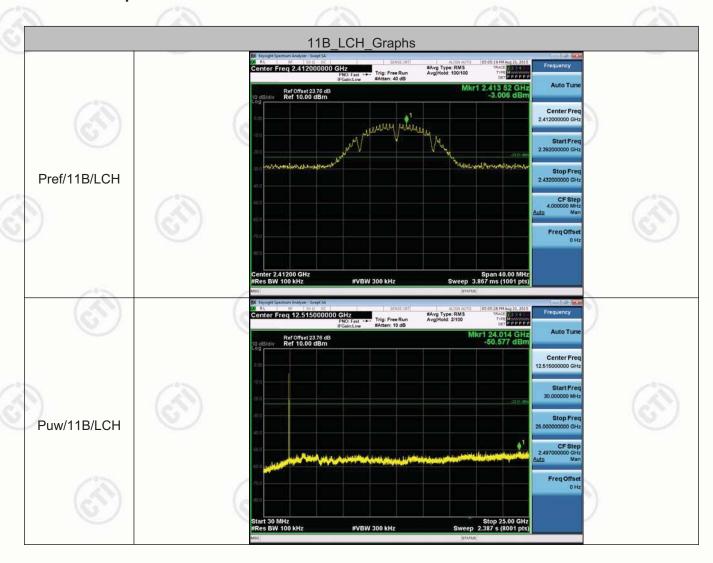
Page 25 of 61

Appendix C): Band-edge for RF Conducted Emissions

Test Graph

Page 27 of 61

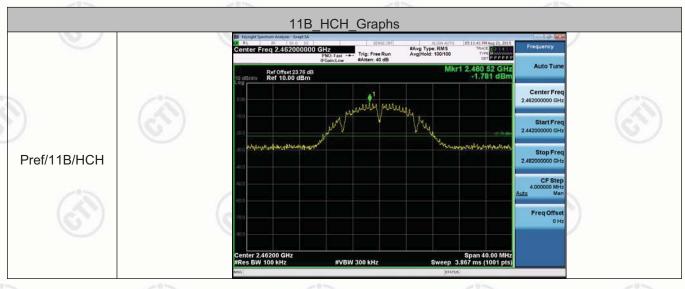
Page 28 of 61

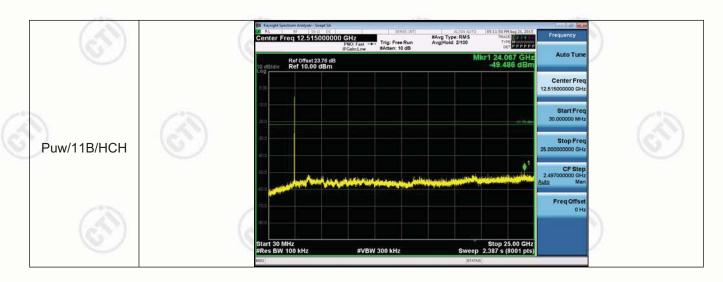


Appendix D): RF Conducted Spurious Emissions

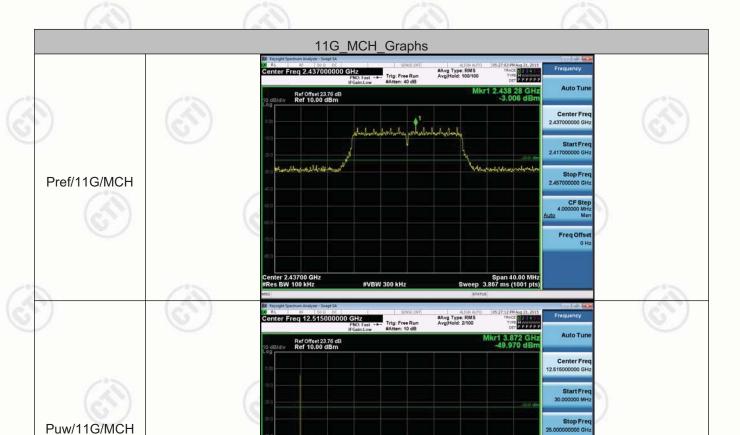
Test Graph

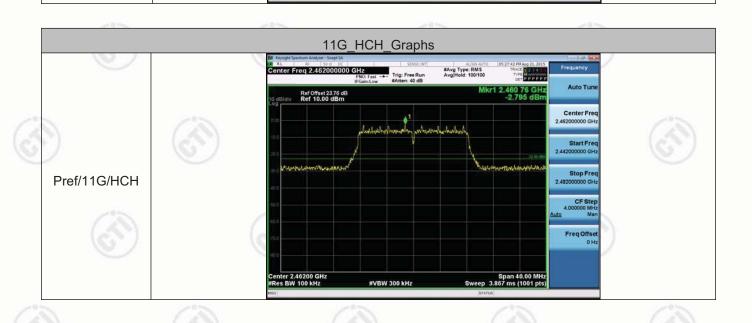


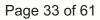


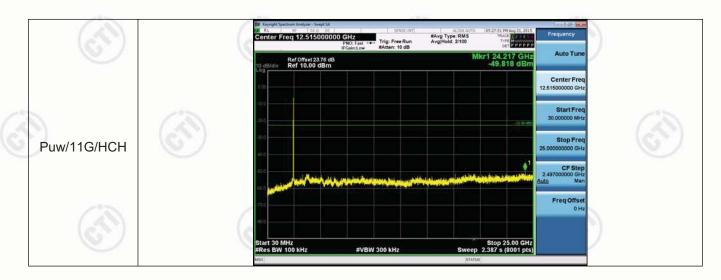


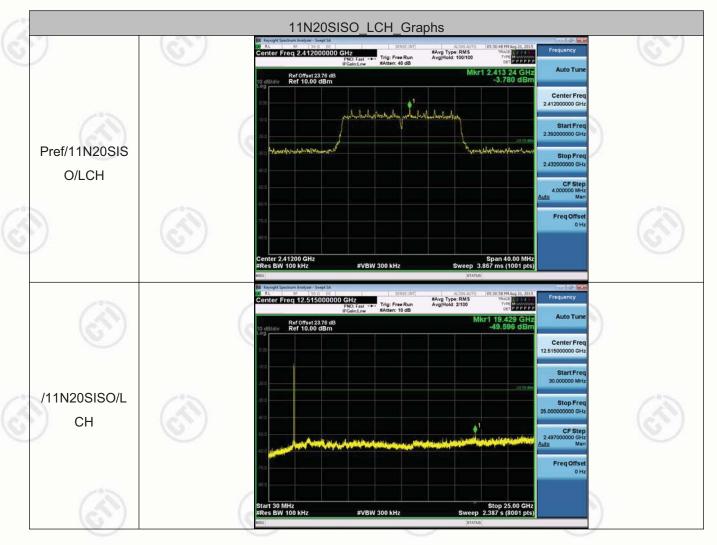
Page 31 of 61

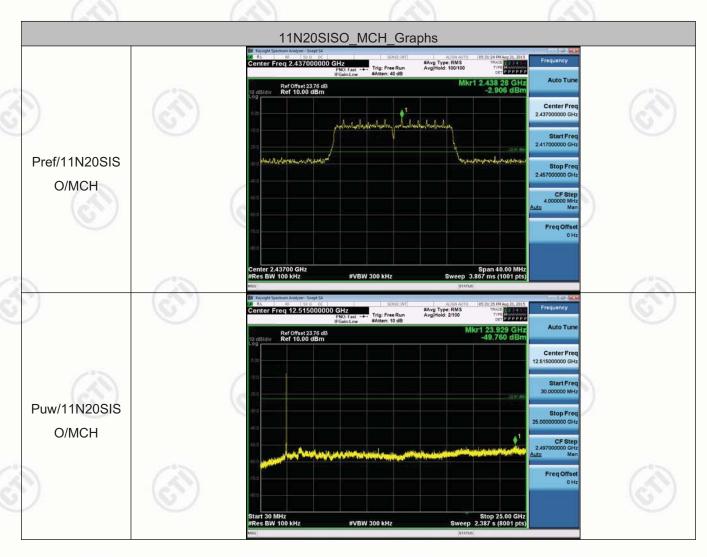


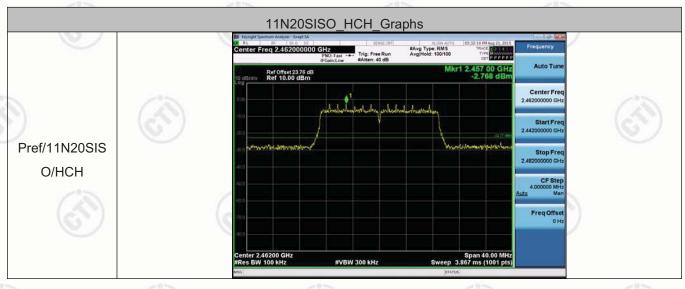


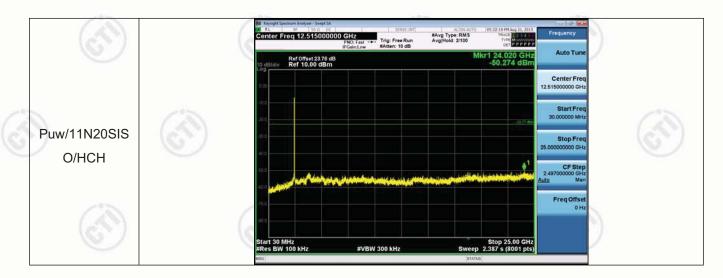


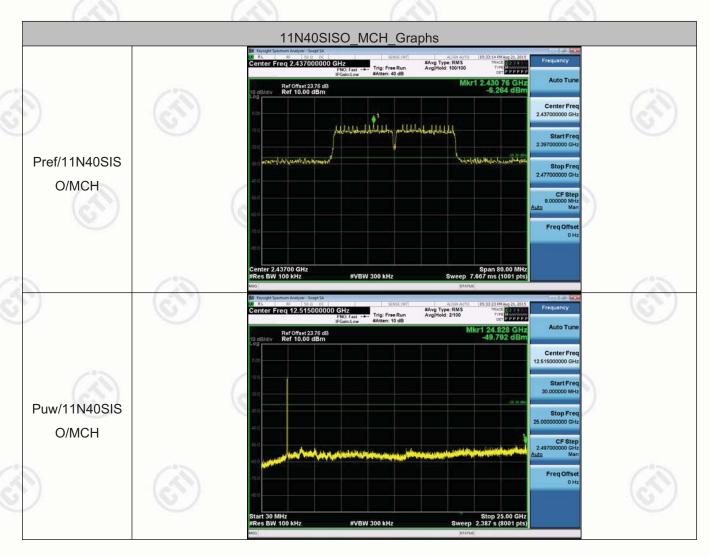


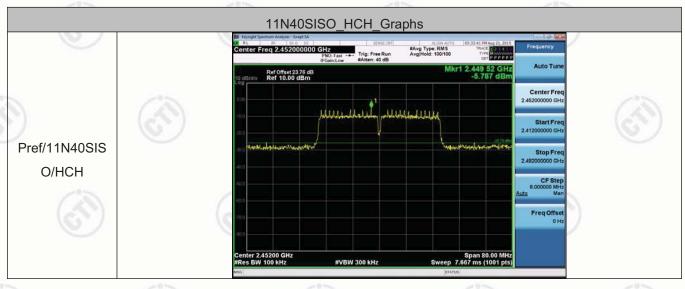


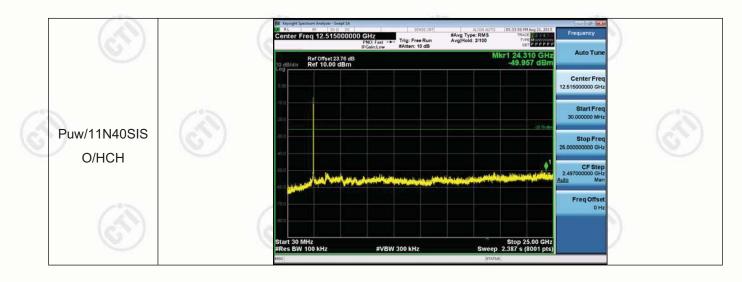




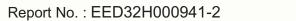








Page 37 of 61



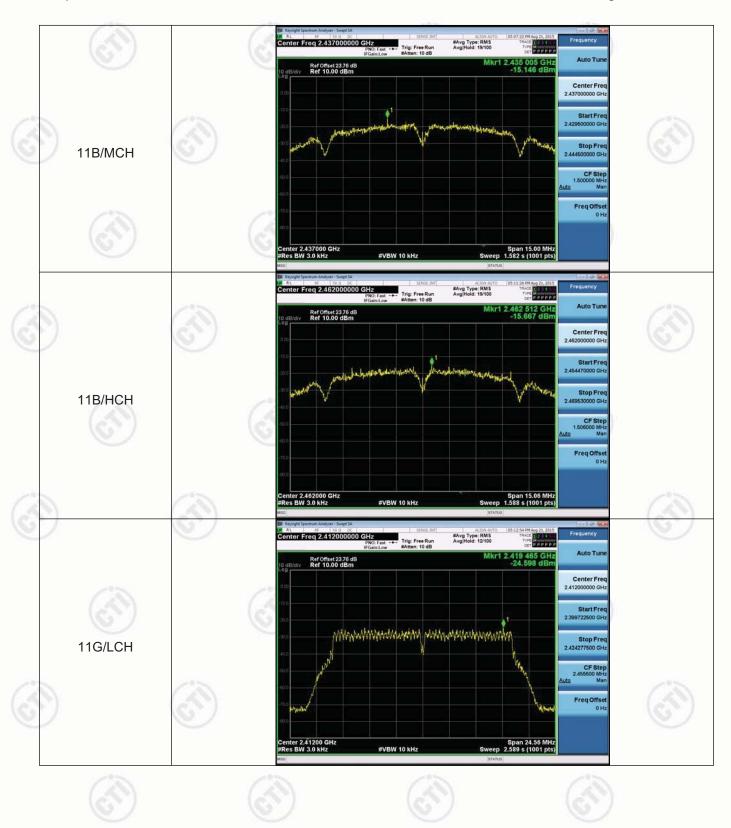
Page 38 of 61

Appendix E): Power Spectral Density

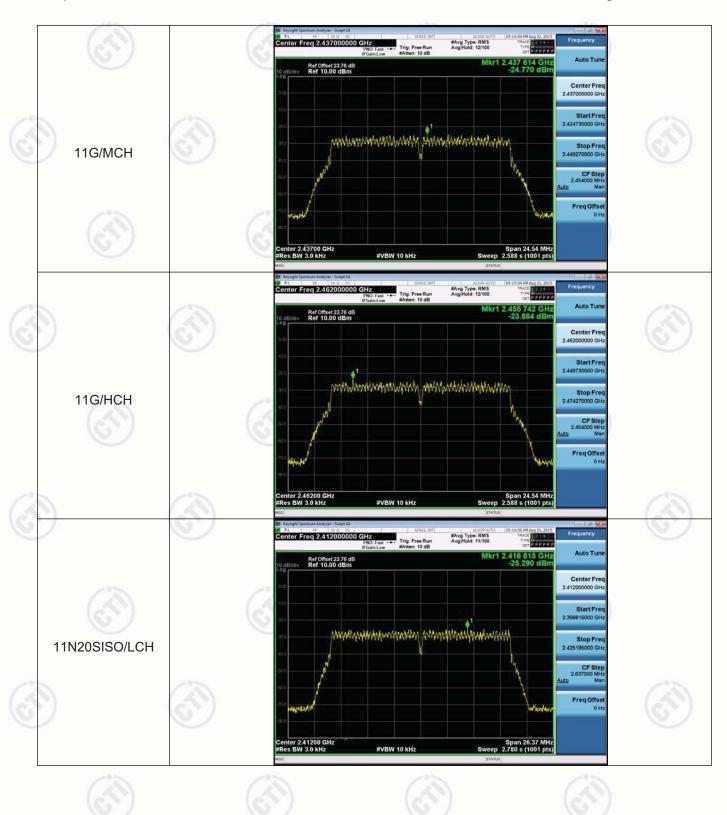
Result Table

Mode	Channel	Power Spectral Density [dBm]	Verdict
11B	LCH	-17.043	PASS
11B	MCH	-15.146	PASS
11B	HCH	-15.667	PASS
11G	LCH	-24.598	PASS
11G	MCH	-24.770	PASS
11G	HCH	-23.684	PASS
11N20SISO	LCH	-25.290	PASS
11N20SISO	MCH	-24.321	PASS
11N20SISO	HCH	-23.227	PASS
11N40SISO	LCH	-28.500	PASS
11N40SISO	MCH	-29.732	PASS
11N40SISO	НСН	-28.316	PASS

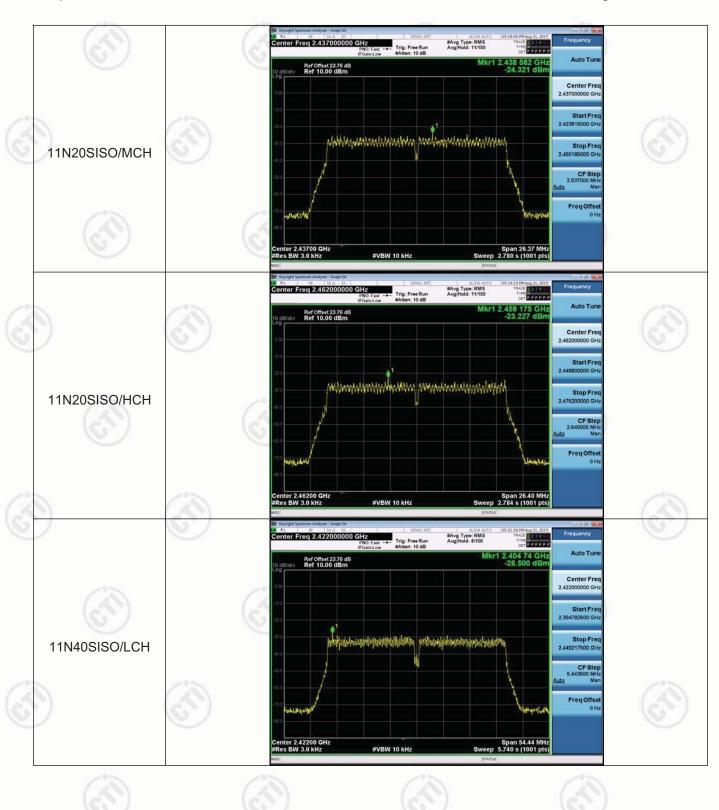
Test Graph



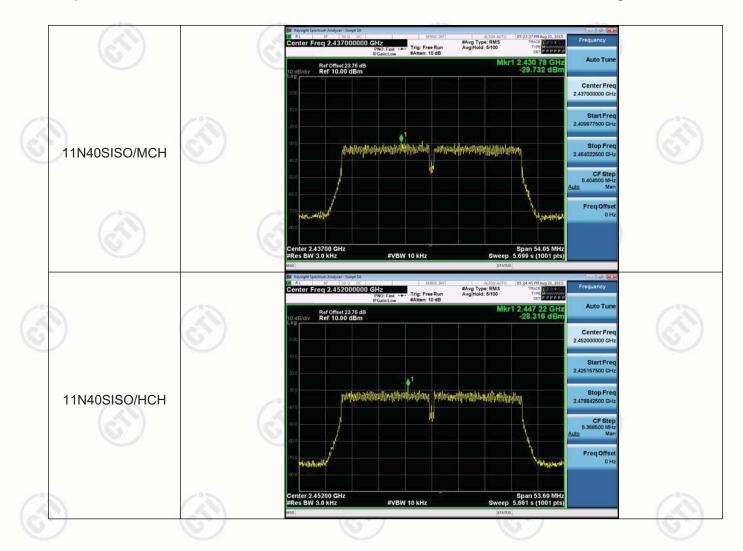
Page 39 of 61



Page 40 of 61



Page 41 of 61



Page 42 of 61

Page 43 of 61

Appendix F) Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Page 44 of 61

Appendix G) AC Power Line Conducted Emission

Test Procedure:

Test frequency range: 150KHz-30MHz

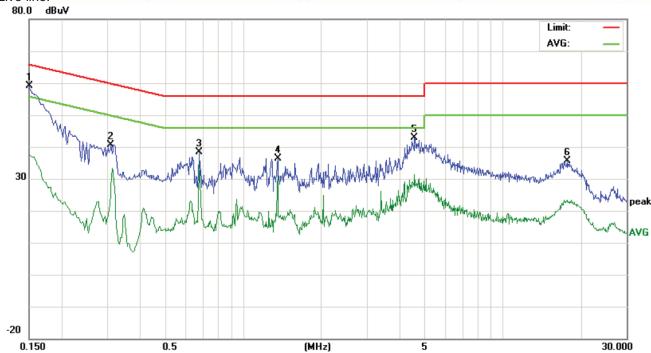
- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

Fraguency range (MUz)	Limit (c	dBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

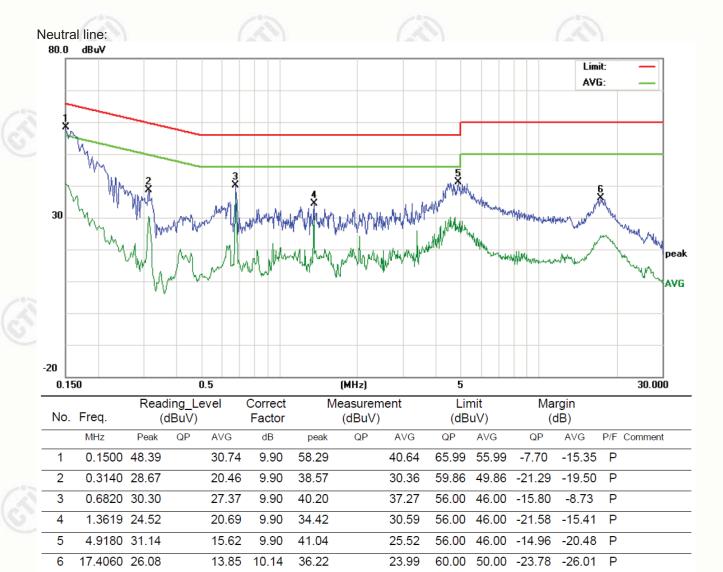


Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

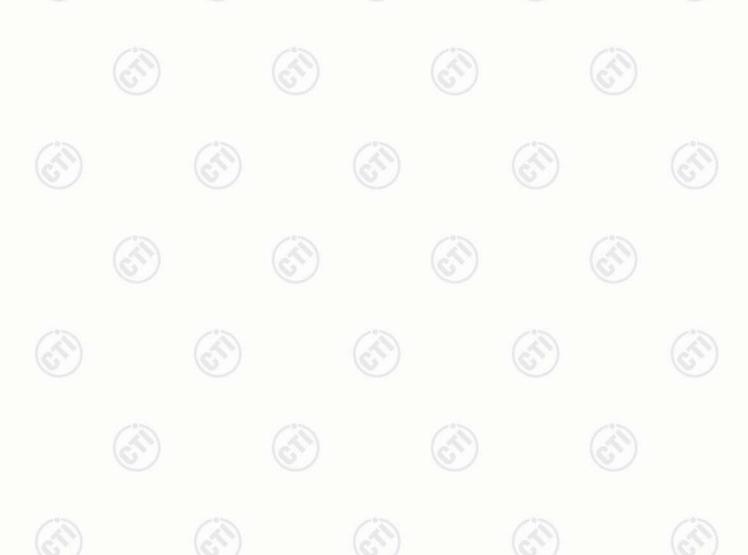
No.	Freq.		ing_Le BuV)	evel	Correct Factor	M	leasurem (dBuV)	ent	Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	49.12		27.81	9.90	59.02		37.71	65.99	55.99	-6.97	-18.28	Ρ	
2	0.3100	30.81		17.59	9.90	40.71		27.49	59.97	49.97	-19.26	-22.48	Р	
3	0.6820	28.39		26.46	9.90	38.29		36.36	56.00	46.00	-17.71	-9.64	Р	
4	1.3619	26.53		20.87	9.90	36.43		30.77	56.00	46.00	-19.57	-15.23	Р	
5	4.5860	32.96		21.36	9.90	42.86		31.26	56.00	46.00	-13.14	-14.74	Р	
6	17.7780	25.33		13.28	10.18	35.51		23.46	60.00	50.00	-24.49	-26.54	Р	



Page 46 of 61

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.



Appendix H) Restricted bands around fundamental frequency /Radiated Spurious Emissions

Receiver Setup:	Fraguenay	Detector	RBW	VBW	Remark	
	Frequency	Detector	KDVV	VDVV	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
	Above IGHZ	Peak	1MHz	10Hz	Average	
Test Procedure:	(67)	(67)	•	(37)	,	(6)

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 48 of 61

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

Limit:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	<u> </u>	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

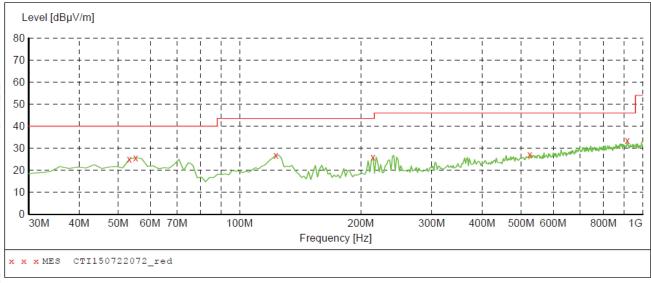
Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Page 49 of 61

Report No.: EED32H000941-2

Radiated Spurious Emissions test Data:

All the modes of operation (X, Y, Z) were investigated and the worst-case emissions are reported.


A. Below 30MHz:

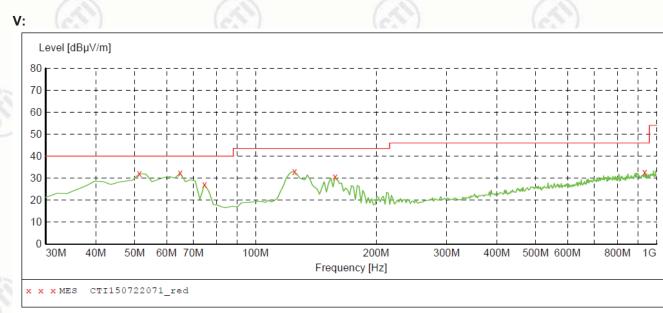
No emissions were found higher than the background below 30MHz and background is lower than the limit, so it deems to compliance with the limit without recorded.

B. $30MHz \sim 1GHz$:

The test data of low channel, middle channel and high channel are almost same in frequency bands 30MHz to 1GHz, and the data of IEEE 802.11b are chosen as representative in below:

H:

Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
53.280000 55.220000 123.120000 214.300000 524.700000	25.00 25.70 26.90 26.00 27.20	16.1 15.8 13.0 14.1 21.7	40.0 40.0 43.5 43.5 46.0	15.0 14.3 16.6 17.5 18.8	 	100.0 100.0 100.0 100.0	361.00 294.00 334.00 133.00 10.00	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL
916.580000	33.50	26.7	46.0	12.5		100.0	28.00	HORIZONTAL





Page 50 of 61

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
51.340000	32.00	16.3	40.0	8.0		100.0	268.00	VERTICAL
64.920000	32.30	13.5	40.0	7.7		100.0	215.00	VERTICAL
74.620000	27.10	11.0	40.0	12.9		100.0	308.00	VERTICAL
125.060000	32.90	12.8	43.5	10.6		100.0	370.00	VERTICAL
158.040000	30.60	11.7	43.5	12.9		100.0	10.00	VERTICAL
934.040000	32.80	26.7	46.0	13.2		100.0	255.00	VERTICAL

C. Above 1GHz:

IEEE 802.11b, 11Mbps:

Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
		Low channel (2412)	MHz)		
2390.0	35.93	74	PK	Н	Р
2400.0	50.33	74	PK	Н	Р
4824.0	44.98	74	PK	Н	Р
2390.0	36.32	74	PK	V	Р
2400.0	49.71	74	PK	V	Р
4824.0	45.95	74	PK	V	Р
·	ľ	Middle channel (2437	7MHz)		
4874.0	44.89	74	PK	Н	Р
4874.0	45.55	74	PK	V	P
/		High channel (2462)	MHz)		(0)
2483.5	43.51	74	PK	Н	Р
4924.0	44.88	74	PK	Н	Р
2483.5	45.62	74	PK	V	Р
4924.0	45.42	74	PK	V	Р

IEEE 802.11a, 6Mbps:

IEEE 802.11g	, bivibps:	200	200	ı	700
Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	LIGIACION LVDA		Result (P/F)
	L	ow channel (2412N	лНz)		1
2390.0	36.38	74	PK	H	Р
2400.0	49.38	74	PK	(CH)	Р
4824.0	44.52	74	PK	Н	Р
2390.0	36.25	74	PK	V	Р
2400.0	49.97	74	PK	V	Р
4824.0	45.49	74	PK	V	Р
	Mi	ddle channel (2437	MHz)	,	
4874.0	45.52	74	PK	Н	Р
4874.0	44.58	74	PK	V	Р
(35)	(ES))H	igh channel (2462l	MHz)	(c)	
2483.5	44.58	74	PK	Н	Р
4924.0	45.33	74	PK	Н	Р
2483.5	45.12	74	PK	V	Р
4924.0	45.18	74	PK	V	Р

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32H000941-2 Page 52 of 61

IEEE 802.11n HT20, 6.5Mbps:

ILLE 002.1111	11120, 0.5Wbps.		20000	1232	
Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
		Low channel (241)	2MHz)		- · >
2390.0	36.43	74	PK	Н	Р
2400.0	49.45	74	PK	Н	Р
4824.0	44.47	74	PK	Н	Р
2390.0	36.32	74	PK	V	Р
2400.0	49.38	74	PK	V	Р
4824.0	46.62	74	PK	V	Р
·	N	Middle channel (24	37MHz)		
4874.0	45.51	74	PK	Н	Р
4874.0	45.22	74	PK	V	Р
/		High channel (246	2MHz)		
2483.5	44.96	74	PK	Н	Р
4924.0	46.58	74	PK	Н	Р
2483.5	45.36	74	PK	V	Р
4924.0	46.17	74	PK	V	Р

IEEE 802.11n HT40, 13.5Mpbs:

IEEE 802.11n	H140, 13.5Mpbs:	100			197
Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Detector Type Antenna (H/V)	
	l	ow channel (2422	MHz)		
2390.0	36.09	74	PK	() H	Р
2400.0	50.31	74	PK	Н	Р
4844.0	45.98	74	PK	Н	Р
2390.0	36.21	74	PK	V	Р
2400.0	50.27	74	PK	V	Р
4844.0	47.62	74	PK	V	Р
	M	iddle channel (243	57MHz)		
4874.0	47.52	74	PK	Н	Р
4874.0	46.51	74	PK	V	Р
(37)	(C))	ligh channel (2452	2MHz)	(6)	
2483.5	45.71	74	PK	Н	Р
4904.0	48.26	74	PK	Н	Р
2483.5	44.41	74	PK	V	Р
4904.0	46.47	74	PK	V	Р

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 53 of 61

Note:

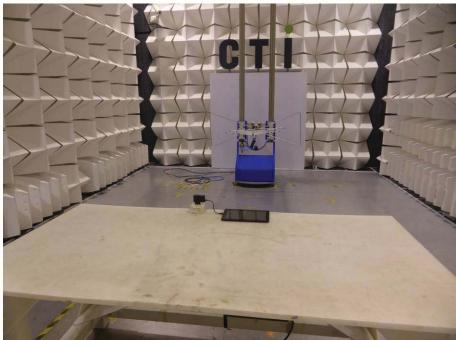
- 1) Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 54 of 61



PHOTOGRAPHS OF TEST SETUP

Radiated spurious emission Test Setup-1(Below 1GHz)

Page 55 of 61

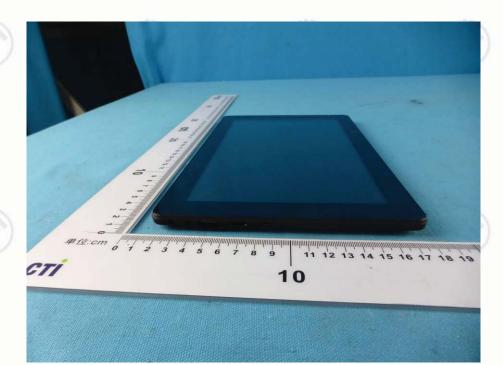
Conducted emission Test Setup

Page 56 of 61

PHOTOGRAPHS OF EUT Constructional Details

View of External Product-1

View of External Product-2



View of External Product-3

View of External Product-4

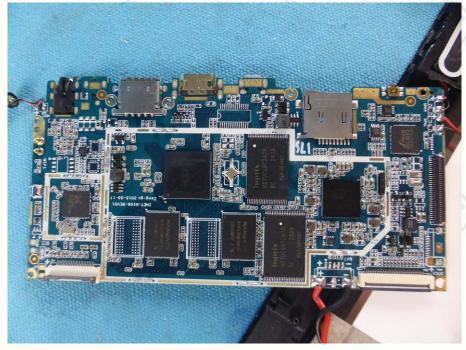
Page 58 of 61

View of External Product-5

View of External Product-6

View of Internal Product-1

View of Internal Product-2



View of Internal Product-3

View of Internal Product-4



View of Internal Product-5

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

