

EST REPORT

Product 8" Tablet PC

Trade mark Dragon Touch, KINGPAD,

KINGSLIM, AKASO

i8 Pro, i8, i8X, i8D, i8X Pro, i88, Model/Type reference

i80, i80X, i8 Plus, i8X Plus,

i8 hybrid

Serial Number N/A

EED32H00215001 **Report Number**

FCC ID S5V-D080W1 Date of Issue Dec. 22, 2015

Test Standards : 47 CFR Part 15 Subpart C (2014)

Test result **PASS**

Prepared for:

Proexpress Distributor LLC 11011 GREENWOOD AVE. N APT5, SEATTLE, WA 98103.

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Report Seal

Sheek, Luc

Reviewed by:

Date:

Sheek Luo

Lab supervisor

Dec. 22, 2015

Check No.: 2212834822

2 Version

Version No.	Date	Description	(65)
00	Dec. 22, 2015	Original	
		(2)	

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

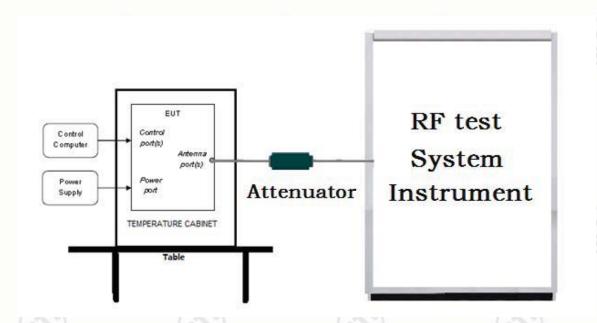
Model No.: i8 Pro, i8, i8X, i8D, i8X Pro, i88, i80, i80X, i8 Plus, i8X Plus, i8 hybrid

Only the Model i8 Pro was tested, since the electrical circuit design, layout, components used and internal wiring were identical for all above models. Only different on agent and marketing purposes.

Page 4 of 70

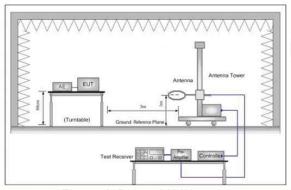
4 Content

1 COVER PAGE	•••••	•••••			1
2 VERSION			•••••	•••••	2
3 TEST SUMMARY	,	•••••		•••••	3
4 CONTENT				•••••	4
5 TEST REQUIREM	1ENT			•••••	5
5.1 TEST SETUP					5
	ducted test setup				
	ated Emissions test setup				
	ducted Emissions test setup				
	ON				
	RMATION				
	MATION				
	SCRIPTION OF EUT				
	ECIFICATION SUBJECTIVE TO T				
	OF SUPPORT UNITS				
	N				
	′				
	OM STANDARDS				
	ES FROM STANDARD CONDITION MATION REQUESTED BY THE (
	NT UNCERTAINTY (95% CONFI				
	Τ	,			
	AL REQUIREMENTS SPE				
	0dB Occupied Bandwidth				
,	Carrier Frequency Separation Owell Time				
	lopping Channel Number				
	Conducted Peak Output Pow				
	and-edge for RF Conducted				
Appendix G) R	RF Conducted Spurious Em	issions			37
	seudorandom Frequency H				
Appendix I) Ar	ntenna Requirement		•••••		45
	C Power Line Conducted Enterticited bands around fund				
	adiated Spurious Emissions				
	OF TEST SETUP				
	F EUT CONSTRUCTIONA				
PHOTOGRAPHS O	F EUT CONSTRUCTIONA	L DETAILS	••••••	••••••	61



Report No.: EED32H00215001 Page 5 of 70

5 Test Requirement


5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Antenna Tower

Antenna Tower

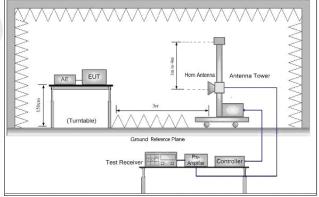
Antenna Tower

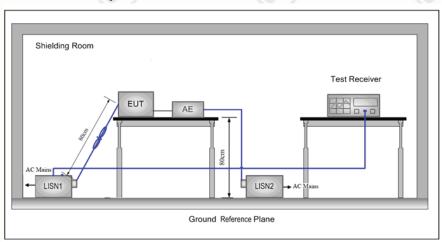
Antenna Antenna Tower

Test Receiver Angele Controller

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz




Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:				
Temperature:	24 °C			
Humidity:	50% RH	/3	75	
Atmospheric Pressure:	1010mbar	(25)	(25)	

5.3 Test Condition

Test Mode	Tx/Rx	RF Channel			
r est wode	TX/KX	Low(L)	Middle(M)	High(H)	
GFSK/π/4DQPSK/	2402MHz ~2480 MHz	Channel 1	Channel 40	Channel79	
8DPSK(DH1,DH3,DH5)	2402IVII 12 ~2400 IVII 12	2402MHz	2441MHz	2480MHz	

Test mode:

Pre-scan under all rate at lowest channel 1

Mode	GFSK				
packets	1-DH1	1-DH3	1-DH5		
Power (dBm)	2.631	2.642	2.782		
Mode					
packets	2-DH1	2-DH3	2-DH5		
Power (dBm)	4.298	4.301	4.325		
Mode		8DPSK			
packets	3-DH1	3-DH3	3-DH5		
Power (dBm)	4.780	4.794	4.805		

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of $\pi/4DQPSK$, 3-DH5 packet the power is the worst case of 8DPSK.

Report No. : EED32H00215001 Page 7 of 70

6 General Information

6.1 Client Information

Applicant:	Proexpress Distributor LLC
Address of Applicant:	11011 GREENWOOD AVE. N APT5, SEATTLE, WA 98103.
Manufacturer:	Proexpress Distributor LLC
Address of Manufacturer:	11011 GREENWOOD AVE. N APT5, SEATTLE, WA 98103.

6.2 General Description of EUT

Product Name:	8" Tablet PC	8" Tablet PC				
Model No.:	i8 Pro, i8, i8X	, i8D, i8X Pro, i88, i80, i80X, i8 Plus, i8X Plus, i8 hybrid				
Test Model No.:	i8 Pro					
Trade mark:	Dragon Touch	Dragon Touch, KINGPAD, KINGSLIM, AKASO				
EUT Supports Radios application:	Bluetooth V3.0+EDR					
Power Supply:	Adapter:	AC 100-240V, 50/60Hz Output: DC 5.0V, 2000mA				
(6,7)	Battery:	DC 3.7V, 4000mA				
AC Adapter line:	120cm(Unshi	elded)				
Sample Received Date:	Nov. 11, 2015					
Sample tested Date:	Nov. 11, 2015	Nov. 11, 2015 to Dec. 07, 2015				

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		
Bluetooth Version:	3.0+EDR		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Modulation Type:	GFSK, π/4DQPSK, 8DPSK	40	
Number of Channel:	79		6
Hopping Channel Type:	Adaptive Frequency Hopping systems		
Sample Type:	Portable production		
Test Power Grade:	N/A	(20)	
Test Software of EUT:	RTLBTAPP (manufacturer declare)	(0,	
Antenna Type:	Internal		
Antenna Gain:	2.2dBi		
Test Voltage:	AC 120V/60Hz	20	
187	[255]	2.50	100

Operation Frequency each of channel

Operation Frequency each of channel						7-	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz

Report No. : EED32H00215001 Page 8 of 70

_							
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		(0)

6.4 Description of Support Units

The EUT has been tested with associated equipment below

Description	Manufacturer	Model No.	Certification	Supplied by
Mobile Phone	SAMSUNG	GT-I9082i	FCC DOC	СТІ
Router	TP-Link	TL-WR340G+	FCC DOC	СТІ

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Report No.: EED32H00215001 Page 9 of 70

FCC-Registration No.: 565659

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 565659.

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard ConditionsNone.

6.9 Other Information Requested by the Customer None.

6.10 Measurement Uncertainty(95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE november ducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB(1GHz-18GHz)
3	Padiated Spurious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB(1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
3	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No. : EED32H00215001 Page 11 of 70

7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Communication test set test set	Agilent	N4010A	MY47230124	04-02-2015	04-01-2016
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2015	03-31-2016
Attenuator	HuaXiang	SHX370	15040701	04-01-2015	03-31-2016
Signal Generator	Keysight	N5182B	MY53051549	03-31-2015	03-30-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002	(C.)	01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-13-2015	01-12-2016
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-13-2015	01-12-2016
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002		01-13-2015	01-12-2016
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001	(0)	01-13-2015	01-12-2016
DC Power	Keysight	E3642A	MY54436035	03-31-2015	03-30-2016
PC-1	Lenovo	R4960d		04-01-2015	03-31-2016
BT&WI-FI Automatic control	R&S	OSPB157	101374	04-01-2015	03-31-2016
RF control unit	JS Tonscend	JS0806-2	2015860006	04-01-2015	03-31-2016
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		04-01-2015	03-31-2016

	Conducted disturbance Test							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016			
Receiver	R&S	ESCI	100009	06-30-2015	06-28-2016			
Temperature/ Humidity Indicator	Belida	TT-512	101	07-09-2015	07-07-2016			
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016			
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016			
LISN	R&S	ENV216	100098	06-30-2015	06-28-2016			
LISN	schwarzbeck	NNLK8121	8121-529	06-30-2015	06-28-2016			
Voltage Probe	R&S	ESH2-Z3	100042	07-09-2014	07-08-2017			
Current Probe	R&S	EZ17	100106	07-09-2014	07-08-2017			
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017			

		3M Semi/full-anech	noic Chamber	•	
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber	TDK	SAC-3		06-02-2013	06-01-2016
TRILOG Broadband Antenna	schwarzbeck	VULB9163	9163-617	07-31-2015	07-29-2016
Microwave Preamplifier	Agilent	8449B	3008A02425	02-05-2015	02-04-2016
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-30-2015	06-28-2016
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016
Multi device Controller	maturo	NCD/070/10711112		01-13-2015	01-12-2016
LISN	schwarzbeck	NNBM8125	81251547	06-30-2015	06-28-2016
LISN	schwarzbeck	NNBM8125	81251548	06-30-2015	06-28-2016
Signal Generator	Agilent	E4438C	MY45095744	04-19-2015	04-18-2016
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Temperature/ Humidity Indicator	TAYLOR	1451	1905	07- 08-2015	07-06-2016
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016
Cable line	Fulai(7M)	SF106	5219/6A	01-13-2015	01-12-2016
Cable line	Fulai(6M)	SF106	5220/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5216/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5217/6A	01-13-2015	01-12-2016
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18NM 12-0398-002	(4)	01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA09CL1 2-0395-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA08CL1 2-0393-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA04CL1 2-0396-002		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA03CL1 2-0394-001	~ =	01-13-2015	01-12-2016

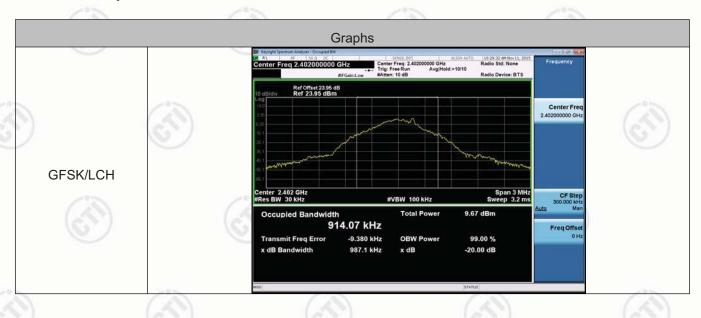
8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2014)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

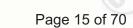


Report No. : EED32H00215001 Page 14 of 70

Appendix A) 20dB Occupied Bandwidth Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
GFSK	LCH	0.9871	0.91407	PASS	(65)
GFSK	MCH	0.9873	0.91720	PASS	
GFSK	НСН	0.9881	0.91634	PASS	
π/4DQPSK	LCH	1.282	1.1762	PASS	
π/4DQPSK	MCH	1.280	1.1759	PASS	Peak
π/4DQPSK	НСН	1.290	1.1783	PASS	detector
8DPSK	LCH	1.284	1.1723	PASS	
8DPSK	MCH	1.287	1.1735	PASS	(3)
8DPSK	НСН	1.288	1.1755	PASS	(0,)

Test Graph






Report No. : EED32H00215001 Page 18 of 70

Appendix B) Carrier Frequency Separation

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.176	PASS
GFSK	MCH	0.980	PASS
GFSK	НСН	0.988	PASS
π/4DQPSK	LCH	1.006	PASS
π/4DQPSK	MCH	1.018	PASS
π/4DQPSK	нсн	1.032	PASS
8DPSK	LCH	1.006	PASS
8DPSK	MCH	0.986	PASS
8DPSK	НСН	1.010	PASS

Test Graph





Page 22 of 70 Report No.: EED32H00215001

Appendix C) Dwell Time

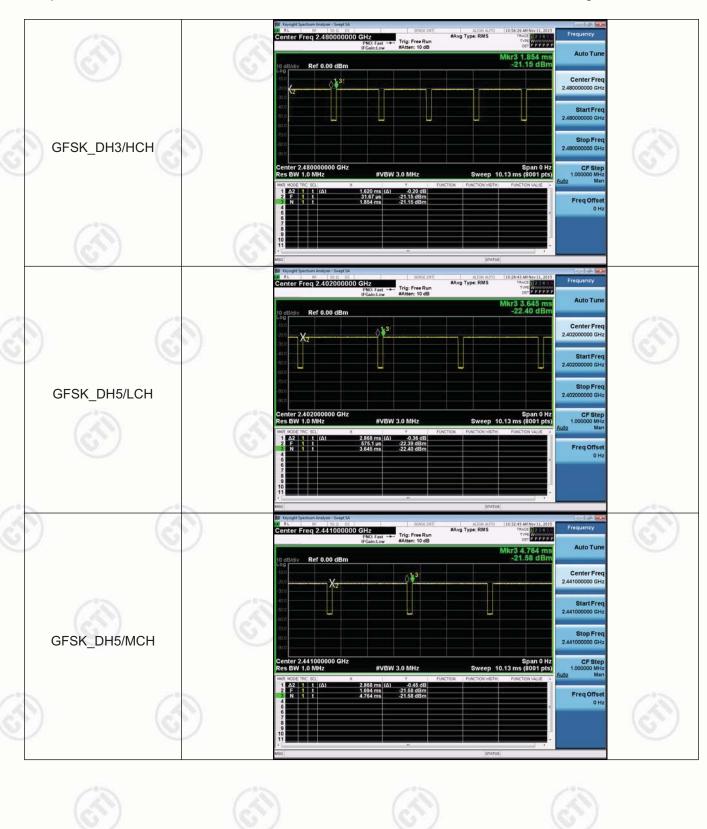
Result Table

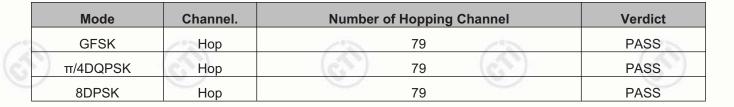
Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]
GFSK	DH1	LCH	0.364	320	0.116
GFSK	DH1	MCH	0.364	320	0.116
GFSK	DH1	НСН	0.364	320	0.116
GFSK	DH3	LCH	1.62	160	0.259
GFSK	DH3	MCH	1.619	160	0.259
GFSK	DH3	НСН	1.62	160	0.259
GFSK	DH5	LCH	2.868	106.7	0.306
GFSK	DH5	MCH	2.868	106.7	0.306
GFSK	DH5	НСН	2.868	106.7	0.306

Verdict **PASS PASS PASS PASS PASS PASS PASS PASS PASS**

Remark: GFSK is worse case and only reported

Test Graph



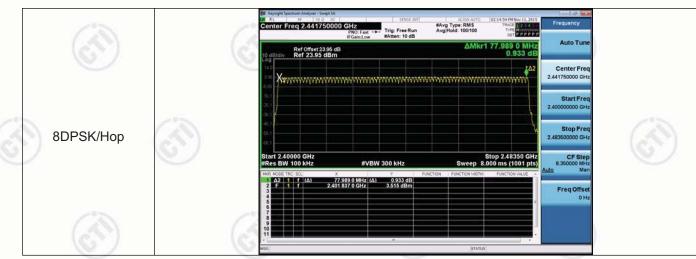


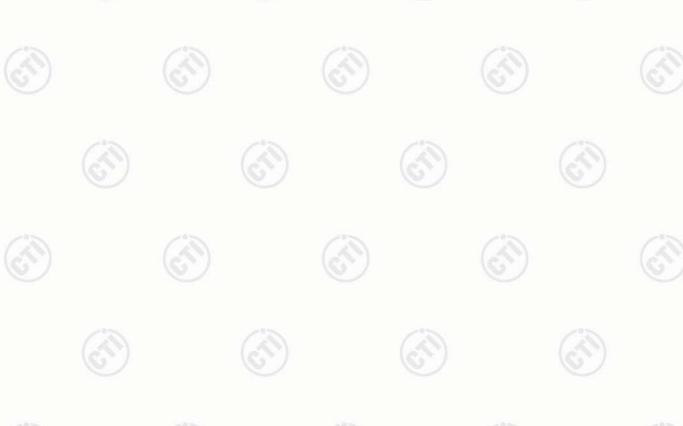

Report No.: EED32H00215001 Page 26 of 70

Appendix D) Hopping Channel Number

Result Table

Test Graph



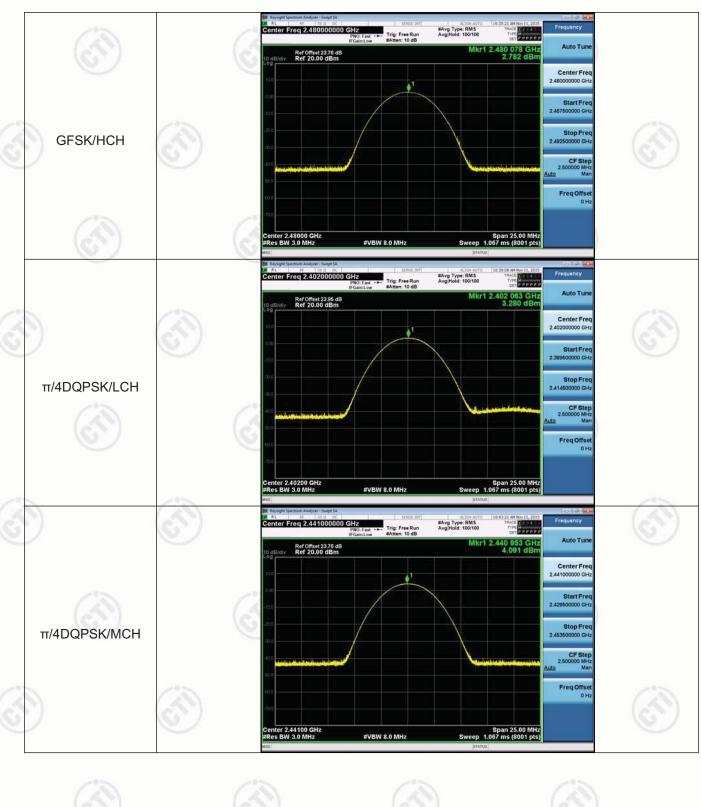


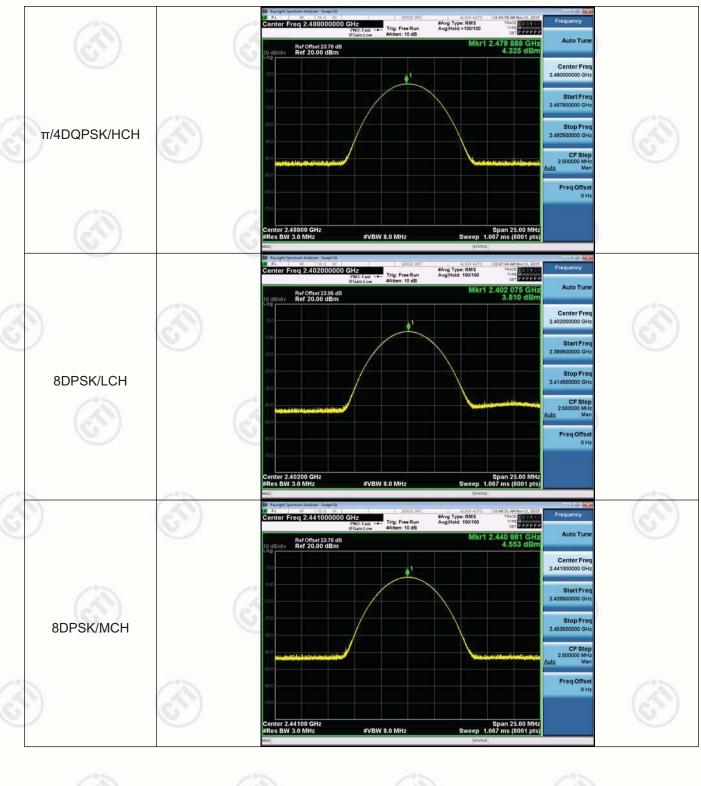
Report No.: EED32H00215001 Page 28 of 70

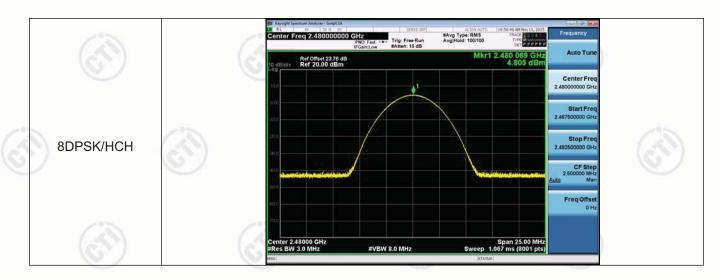
Appendix E) Conducted Peak Output Power Result Table

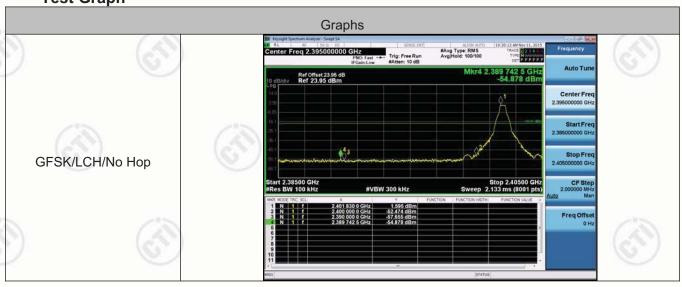
Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	1.954	PASS
GFSK	MCH	2.565	PASS
GFSK	HCH	2.782	PASS
π/4DQPSK	LCH	3.280	PASS
π/4DQPSK	MCH	4.091	PASS
π/4DQPSK	HCH	4.325	PASS
8DPSK	LCH	3.810	PASS
8DPSK	MCH	4.553	PASS
8DPSK	HCH	4.805	PASS

Test Graph









Report No. : EED32H00215001 Page 32 of 70

Appendix F) Band-edge for RF Conducted Emissions Result Table

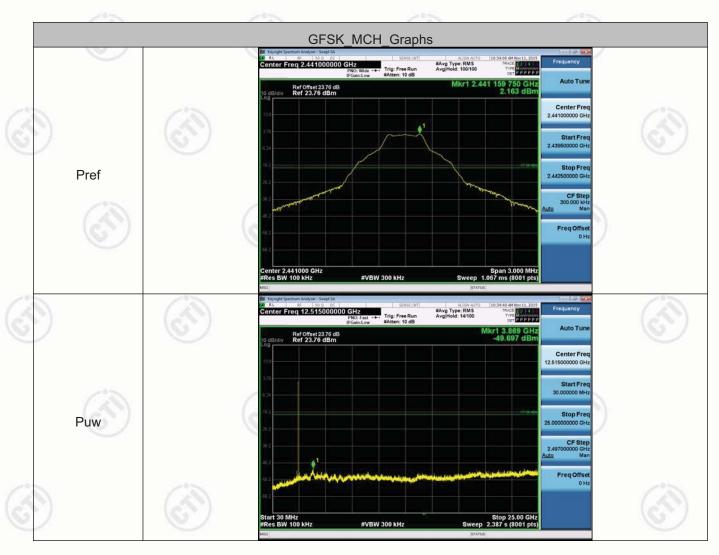
Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict		
(*)	(65)	1)	1.595	Off	-54.878	-18.41	PASS		
GFSK	LCH	2402	-6.070	On	-54.725	-26.07	PASS		
0=01/	GFSK HCH	0.400	2.338	Off	-54.977	-17.66	PASS		
GFSK		2480	-5.733	On	-54.996	-25.73	PASS		
MDODOK	LCH	214	400001	0.400	1.537	Off	-55.395	-18.46	PASS
π/4DQPSK		LCH 2402	3.678	On	-48.273	-16.32	PASS		
/4D0D0//	11011	HCH 2480	2.459	Off	-55.168	-17.54	PASS		
π/4DQPSK HCF	нсн		3.813	On	-49.534	-16.19	PASS		
ODDOK	1.011	0.400	1.598	Off	-55.765	-18.4	PASS		
8DPSK	LCH	2402	4.113	On	-47.640	-15.89	PASS		
ODDOK.	11011	0.400	2.501	Off	-54.936	-17.5	PASS		
8DPSK	HCH	2480	4.111	On	-49.599	-15.89	PASS		

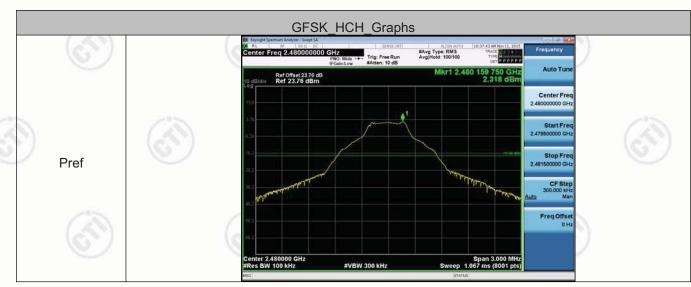
Test Graph

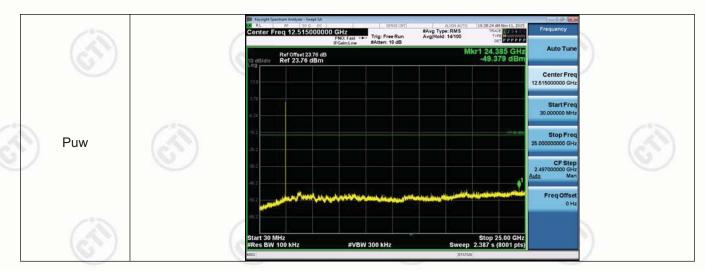


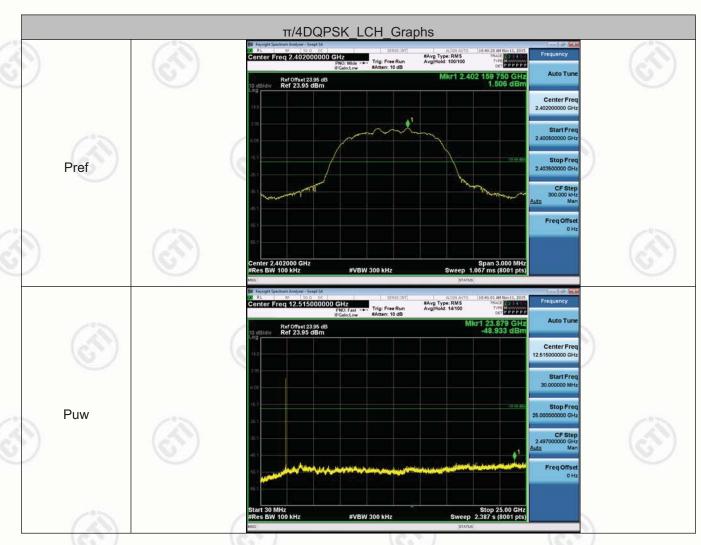
Appendix G) RF Conducted Spurious Emissions Result Table

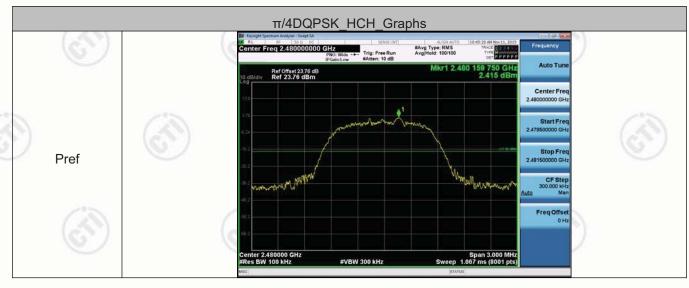
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	1.544	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	2.163	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	HCH	2.318	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	1.506	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	2.262	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	НСН	2.415	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	1.588	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	2.336	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	HCH	2.492	<limit< td=""><td>PASS</td></limit<>	PASS


Test Graph

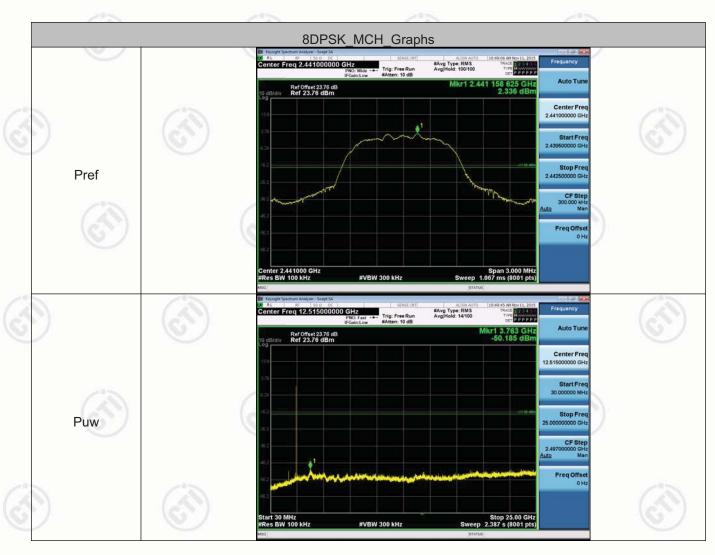


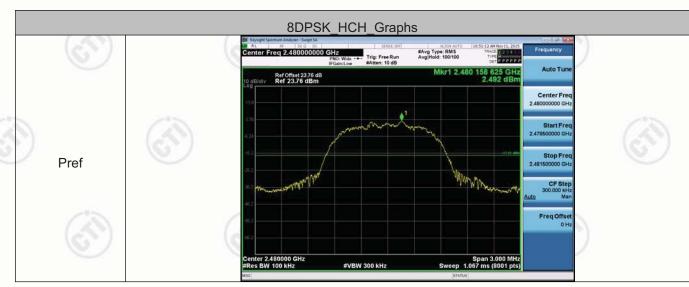


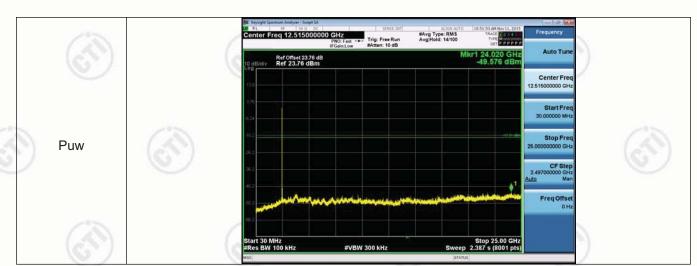


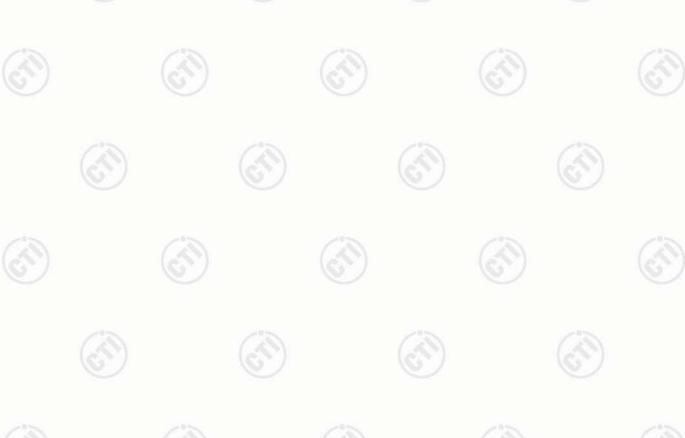








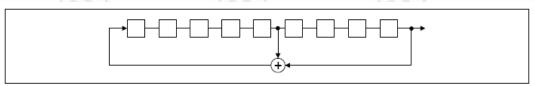




Page 44 of 70

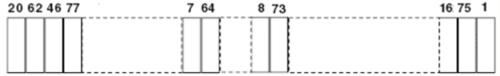
Appendix H) Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channe carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

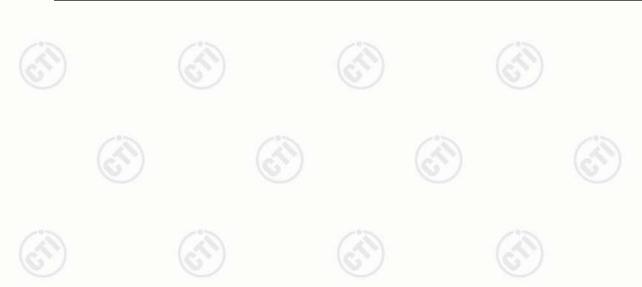
The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No. : EED32H00215001 Page 45 of 70

Appendix I) Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

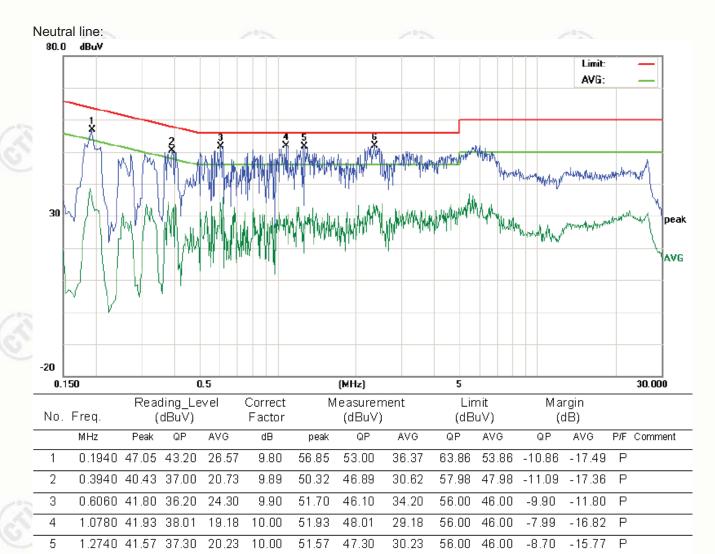
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.2dBi.

Appendix J) A	C Power Line Conduc	ted Emission	(2)	
Test Procedure:	Test frequency range:150KHz 1) The mains terminal disturba 2) The EUT was connected to Stabilization Network) which power cables of all other under which was bonded to the grant for the unit being measure multiple power cables to a sexceeded.	ance voltage test was a AC power source thresh provides a 50Ω/50μ nits of the EUT were round reference planed. A multiple socket of	ough a LISN 1 (Linu H + 5Ω linear imported to a see in the same way a putlet strip was use	e Impedance bedance. The cond LISN 2, as the LISN 1 ed to connect
	3) The tabletop EUT was place reference plane. And for flow horizontal ground reference4) The test was performed with EUT shall be 0.4 m from the	or-standing arrangeme plane, th a vertical ground re	ent, the EUT was eference plane. Th	placed on the e rear of the
	reference plane was bonde 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2.	ed to the horizontal gro the boundary of the u or LISNs mounted o etween the closest po	ound reference pla unit under test and on top of the grou ints of the LISN 1	ne. The LISN bonded to a nd reference and the EUT.
	5) In order to find the maximu all of the interface cables conducted measurement.			
Limit:	Frequency range (MHz)	Limit (d	, ,	
	0.15-0.5	Quasi-peak 66 to 56*	Average 56 to 46*	
	0.15-0.5	56	46	(3)
	5-30	60	50	
	* The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is applie			e range 0.15
Measurement Data				
An initial pre-scan was r	performed on the live and neutral I	ines with peak detector	or.	
Quasi-Peak and Averag	e measurement were performed a	at the frequencies with	maximized peak e	emission were
detected.				

Live line; 80.0 dBuV Limit: AVG: -20 0.150 0.5 (MHz) 5 30.000

	No.	Freq.		ding_Le dBuV)	vel	Correct Factor	М	easurem (dBuV)	nent	Lin (dBı			rgin dB)		
-		MHz	Peak	QP	AVG	dΒ	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.1900	50.67	43.77	24.03	9.80	60.47	53.57	33.83	64.03	54.03	-10.46	-20.20	Р	
	2	0.6180	36.27	31.60	18.94	9.90	46.17	41.50	28.84	56.00	46.00	-14.50	-17.16	Р	
	3	1.2340	31.54	28.00	16.32	10.00	41.54	38.00	26.32	56.00	46.00	-18.00	-19.68	Р	
1	4	2.4140	30.17	26.70	15.15	10.00	40.17	36.70	25.15	56.00	46.00	-19.30	-20.85	Р	
-	5	6.7020	37.51	34.20	19.17	10.00	47.51	44.20	29.17	60.00	50.00	-15.80	-20.83	Р	
	6	26.4140	35.16	31.90	18.37	10.37	45.53	42.27	28.74	60.00	50.00	-17.73	-21.26	Р	



-7.90

-14.82

Ρ

Notes:

6

1. The following Quasi-Peak and Average measurements were performed on the EUT:

51.81

48.10

31.18

56.00

46.00

10.00

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

21.18

38.10

2.3660 41.81

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	
	1	Peak	1MHz	3MHz	Peak	13
	Above 1GHz	Peak	1MHz	10Hz	Average	(0)
Test Procedure:	Below 1GHz test procedu	re as below:				
	a. The EUT was placed of at a 3 meter semi-anecd determine the position of the EUT was set 3 meters was mounted on the top of the antenna height is well and the example of the antenna was tuned table was turned from the example of	hoic camber. The of the highest raters away from the pof a variable-harried from one rater are set to rate and are set to rate hission, the EUT to heights from degrees to 360 m was set to Peaum Hold Mode. and of the restrict pliance. Also means analyzer ploof the set of the pliance.	diation. the interfer eight antermeter to food strength make the nake arran 1 meter to degrees that Detect ted band deasure any	ence-receinna tower. For meters and the second to the seco	above the grain above the grain and vent. worst case and the rotate maximum reard Specified the transmit in the restri	to, whice ound the able ading.
	g. Different between abov to fully Anechoic Cham metre(Above 18GHz th h. b. Test the EUT in the I i. The radiation measurer	e is the test site, ber and change ne distance is 1 i owest channel,	form table meter and the Highe	0.8 metre table is 1.5 st channel	to 1.5 metre).	
CO	Transmitting mode, and j. Repeat above procedu	d found the X axi	is positioni	ng which i	t is worse ca	
Limit:	Frequency	Limit (dBµV/ı	m @3m)	Rei	mark	
	30MHz-88MHz	40.0)	Quasi-pe	eak Value	
	88MHz-216MHz	43.5	,	Quasi-pe	eak Value	
		46.0			eak Value	
	216MHz-960MHz	70.0				
	216MHz-960MHz 960MHz-1GHz	54.0	- / /	Quasi-pe	eak Value	
	960MHz-1GHz	100	(6		eak Value ge Value	
	(48)	54.0	(6	Averag	eak Value ge Value	

Test plot as follows:

Worse case	e mode:	GFSK (1-D	GFSK (1-DH5)									
Frequency (MHz)	Read Level (dBµV)	Level (dBµV/m)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel		
2390.00	44.02	43.62	32.53	4.28	37.21	74	-30.38	Н	PK	Lowest		
2390.00	43.44	43.04	32.53	4.28	37.21	74	-30.96	V	PK	Lowest		
2483.50	49.32	49.35	32.71	4.51	37.19	74	-24.65	Н	PK	Highest		
2483.50	45.65	45.68	32.71	4.51	37.19	74	-28.32	V	PK	Highest		

Worse case	e mode:	π/4DQPSK	π/4DQPSK (2-DH5)									
Frequency (MHz)	Read Level (dBµV)	Level (dBµV/m)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel		
2390.00	44.14	43.74	32.53	4.28	37.21	74	-30.26	Н	PK	Lowest		
2390.00	44.12	43.72	32.53	4.28	37.21	74	-30.28	V	PK	Lowest		
2483.5	48.12	48.15	32.71	4.51	37.19	74	-25.85	Н	PK	Highest		
2483.5	46.82	46.85	32.71	4.51	37.19	74	-27.15	V	PK	Highest		

Worse case	e mode:	8DPSK (3-	8DPSK (3-DH5)									
Frequency (MHz)	Read Level (dBµV)	Level (dBµV/m)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel		
2390.00	44.79	44.39	32.53	4.28	37.21	74	-29.61	Н	PK	Lowest		
2390.00	43.64	43.24	32.53	4.28	37.21	74	-30.76	V	PK	Lowest		
2483.50	48.83	48.86	32.71	4.51	37.19	74	-25.14	Н	PK	Highest		
2483.50	46.25	46.28	32.71	4.51	37.19	74	-27.72	V	PK	Highest		

Note

- 1) Through Pre-scan transmitting mode with all kind of modulation and all kind of data type, find the 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of π /4DQPSK, 3-DH5 packet the power is the worst case of 8DPSK.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32H00215001 Page 51 of 70

Appendix L) Radiated Spurious Emissions

Receiver Setup:

	1.27			
Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
Above 1011	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

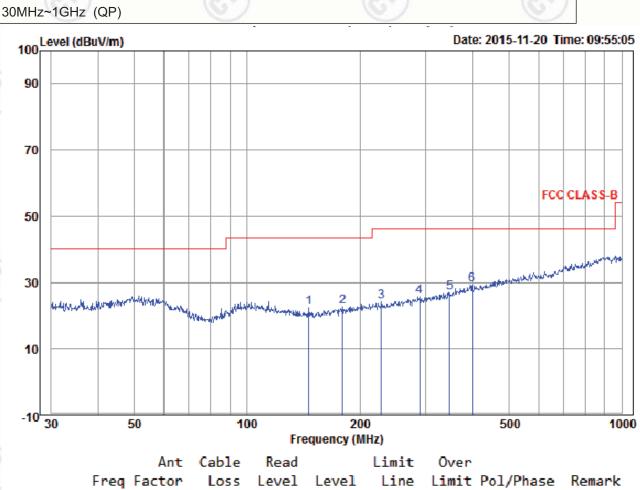
Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

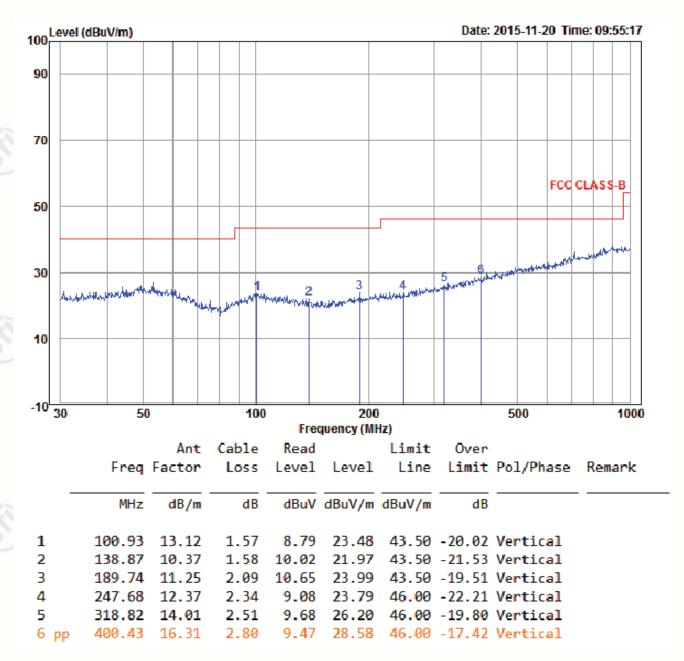
	j	n	n	п	r	۰
ш	-1	ш	ш	ш	L	


	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
/	0.490MHz-1.705MHz	24000/F(kHz)	-	(3)	30
١	1.705MHz-30MHz	30	ı	(62)	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

		Ant	Cable	Read		Limit	Over		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
								•	
-	MII-	-ID /		4D. W	JD. A/ /	JD. Al /			
	MHz	ab/m	ав	abuv	abuv/m	dBuV/m	dB		
1	146.37	9.91	1.58	10.90	22.39	43.50	-21.11	Horizontal	
2	180.02	10.90	1.98	9.85	22.73	43.50	-20.77	Horizontal	
3	228 49	12.08	2 29	9 66	24 03	16 00	-21 97	Horizontal	
4	289.00	13.27	2.37	10.15	25.79	46.00	-20.21	Horizontal	
5	348.03	14.75	2.70	9.55	27.00	46.00	-19.00	Horizontal	
6 nn	200 02	16 27	2 90	10 17	20 24	16 00	16 76	Horizontal	
6 рр	222.62	10.27	2.00	TO.T/	25.24	40.00	-10.76	HOLIZOUCAT	



Transmitter Emission above 1GHz

Test n	node:	GFSK (1-DH5)	Test Free	quency:		2402MHz	
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Antenna Polaxis
1634.419	31.12	37.77	2.95	46.04	42.34	74	-31.66	/°H
3258.042	33.37	37.04	5.57	45.59	47.49	74	-26.51	Н
3681.469	33.03	36.96	5.49	45.18	46.74	74	-27.26	Н
4804.000	34.69	36.82	5.11	42.32	45.30	74	-28.70	Н
7206.000	36.42	37.46	6.66	43.24	48.86	74	-25.14	Н
9608.000	37.88	37.82	7.73	43.64	51.43	74	-22.57	Н
1521.981	30.91	37.93	2.85	45.88	41.71	74	-32.29	V
3291.385	33.34	37.04	5.56	46.37	48.23	74	-25.77	V
3653.463	33.05	36.96	5.50	45.24	46.83	74	-27.17	V
4804.000	34.69	36.82	5.11	42.18	45.16	74	-28.84	V
7206.000	36.42	37.46	6.66	42.79	48.41	74	-25.59	V
9608.000	37.88	37.82	7.73	44.02	51.81	74	-22.19	V

Test r	node:	GFSK (1-DH5)	Test Frequency:		Frequency: 2441Mi		Hz	
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Antenna Polaxis	
1800.416	31.40	37.54	3.08	45.09	42.03	74	-31.97	Н	
3728.625	33.00	36.95	5.48	45.28	46.81	74	-27.19	Н	
4321.837	33.60	36.87	5.30	43.71	45.74	74	-28.26	S H	
4882.000	34.85	36.81	5.08	42.03	45.15	74	-28.85	Н	
7323.000	36.43	37.43	6.77	43.40	49.17	74	-24.83	Н	
9964.000	38.26	37.89	7.44	44.70	52.51	74	-21.49	Н	
1832.785	31.45	37.50	3.11	44.85	41.91	74	-32.09	٧	
3291.385	33.34	37.04	5.56	45.58	47.44	74	-26.56	٧	
3805.334	32.94	36.93	5.47	45.21	46.69	74	-27.31	V	
4882.000	34.85	36.81	5.08	42.23	45.35	74	-28.65	V	
7323.000	36.43	37.43	6.77	43.52	49.29	74	-24.71	V	
9764.000	38.05	37.85	7.60	43.52	51.32	74	-22.68	V	

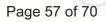


			-07		2000	200			
Test n	node:	GFSK (1-DH5)	Test Free	quency:	2480MHz			
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Antenna Polaxis	
1502.732	30.88	37.96	2.83	45.65	41.40	74	-32.60	Н	
1904.119	31.56	37.41	3.16	45.38	42.69	74	-31.31	Н	
3776.385	32.96	36.94	5.48	45.41	46.91	74	-27.09	Н	
4960.000	35.02	36.8	5.05	42.47	45.74	74	-28.26	Н	
7440.000	36.45	37.41	6.88	43.72	49.64	74	-24.36	Н	
9960.000	38.26	37.89	7.44	44.72	52.53	74	-21.47	Н	
1597.401	31.05	37.82	2.92	45.13	41.28	74	-32.72	V	
1870.490	31.51	37.45	3.14	45.37	42.57	74	-31.43	V	
3766.785	32.97	36.94	5.48	44.97	46.48	74	-27.52	V	
4960.000	35.02	36.8	5.05	40.83	44.10	74	-29.90	V	
7440.000	36.45	37.41	6.88	43.31	49.23	74	-24.77	V	
9920.000	38.22	37.88	7.47	43.76	51.57	74	-22.43	V	

Test n	node:	π/4DQPSł	(2-DH5)	Test Free	quency:		2402MHz	
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Antenna Polaxis
1676.558	31.19	37.71	2.98	45.38	41.84	74	-32.16	Н
1832.785	31.45	37.50	3.11	45.40	42.46	74	-31.54	Н
3653.463	33.05	36.96	5.50	45.17	46.76	74	-27.24	Н
4804.000	34.69	36.82	5.11	42.36	45.34	74	-28.66	Н
7206.000	36.42	37.46	6.66	43.44	49.06	74	-24.94	Н
9608.000	37.88	37.82	7.73	44.58	52.37	74	-21.63	Н
1487.509	30.85	37.98	2.82	45.63	41.32	74	-32.68	V
1676.558	31.19	37.71	2.98	45.38	41.84	74	-32.16	V
3291.385	33.34	37.04	5.56	45.93	47.79	74	-26.21	V
4804.000	34.69	36.82	5.11	41.96	44.94	74	-29.06	V
7206.000	36.42	37.46	6.66	43.22	48.84	74	-25.16	V
9608.000	37.88	37.82	7.73	44.58	52.37	74	-21.63	V

J-121		/			100	Z**			
Test m	node:	π/4DQPSk	(2-DH5)	Test Free	Test Frequency:		2441MHz		
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Antenna Polaxis	
1577.198	31.01	37.85	2.90	45.65	41.71	74	-32.29	/°H	
1715.411	31.26	37.65	3.02	46.31	42.94	74	-31.06	Н	
3634.910	33.07	36.97	5.50	45.06	46.66	74	-27.34	Н	
4882.000	34.85	36.81	5.08	42.12	45.24	74	-28.76	Н	
7323.000	36.43	37.43	6.77	43.31	49.08	74	-24.92	Н	
9764.000	38.05	37.85	7.60	43.72	51.52	74	-22.48	Н	
1759.638	31.33	37.60	3.05	44.95	41.73	74	-32.27	V	
2029.233	31.77	37.29	3.32	44.41	42.21	74	-31.79	V	
3653.463	33.05	36.96	5.50	45.91	47.50	74	-26.50	V	
4882.000	34.85	36.81	5.08	41.85	44.97	74	-29.03	V	
7323.000	36.43	37.43	6.77	43.48	49.25	74	-24.75	V	
9764.000	38.05	37.85	7.60	44.56	52.36	74	-21.64	V	

Test n	node:	π/4DQPSł	(2-DH5)	Test Free	quency:		2480MHz Limit Line Over (dBµV/m) Limit (dB)	
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)		The same of the sa	Antenna Polaxis
1715.411	31.26	37.65	3.02	45.48	42.11	74	-31.89	Н
1993.395	31.69	37.31	3.23	44.48	42.09	74	-31.91	Н
3795.660	32.95	36.94	5.47	44.68	46.16	74	-27.84	SH/
4960.000	35.02	36.80	5.05	41.67	44.94	74	-29.06	Н
7440.000	36.45	37.41	6.88	43.61	49.53	74	-24.47	Н
9920.000	38.22	37.88	7.47	44.13	51.94	74	-22.06	Н
1521.981	30.91	37.93	2.85	45.87	41.70	74	-32.30	V
1724.166	31.27	37.64	3.02	45.52	42.17	74	-31.83	V
3266.346	33.36	37.04	5.57	45.98	47.87	74	-26.13	V
4960.000	35.02	36.80	5.05	41.48	44.75	74	-29.25	V
7440.000	36.45	37.41	6.88	43.57	49.49	74	-24.51	V
9920.000	38.22	37.88	7.47	44.74	52.55	74	-21.45	V



			-0.70		100	700		
Test m	node:	8DPSK (3-DH5)	Test Free	quency:	2402MHz		
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Antenna Polaxis
1450.122	30.77	38.04	2.78	46.63	42.14	74	-31.86	/ °H.
1851.542	31.48	37.48	3.12	46.59	43.71	74	-30.29	Н
3192.366	33.43	37.06	5.58	46.22	48.17	74	-25.83	Н
4804.000	34.69	36.82	5.11	42.23	45.21	74	-28.79	Н
7206.000	36.42	37.46	6.66	42.91	48.53	74	-25.47	Н
9608.000	37.88	37.82	7.73	44.99	52.78	74	-21.22	Н
1638.585	31.12	37.76	2.95	46.39	42.70	74	-31.30	V
3200.502	33.42	37.06	5.58	46.03	47.97	74	-26.03	V
3766.785	32.97	36.94	5.48	45.70	47.21	74	-26.79	V
4804.000	34.69	36.82	5.11	41.93	44.91	74	-29.09	V
7206.000	36.42	37.46	6.66	42.35	47.97	74	-26.03	V
9608.000	37.88	37.82	7.73	44.04	51.83	74	-22.17	V

Test n	Test mode:		K (3-DH5) Test Frequency		quency:		2441MHz	
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Antenna Polaxis
1381.656	30.63	38.15	2.71	46.48	41.67	74	-32.33	Н
1597.401	31.05	37.82	2.92	46.30	42.45	74	-31.55	Н
3249.760	33.38	37.04	5.57	46.45	48.36	74	-25.64	SH/
4882.000	34.85	36.81	5.08	42.73	45.85	74	-28.15	Н
7323.000	36.43	37.43	6.77	43.51	49.28	74	-24.72	Н
9764.000	38.05	37.85	7.60	44.54	52.34	74	-21.66	Н
1506.563	30.88	37.95	2.83	45.73	41.49	74	-32.51	V
1837.456	31.46	37.50	3.11	44.87	41.94	74	-32.06	V
3325.070	33.31	37.03	5.56	46.55	48.39	74	-25.61	V
4882.000	34.85	36.81	5.08	42.01	45.13	74	-28.87	V
7323.000	36.43	37.43	6.77	43.00	48.77	74	-25.23	V
9764.000	38.05	37.85	7.60	44.62	52.42	74	-21.58	V

Test m	node:	8DPSK ((3-DH5)	Test Free	quency:		2480MHz			
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Antenna Polaxis		
1364.182	30.60	38.18	2.69	45.99	41.10	74	-32.90	- Н		
1741.812	31.30	37.62	3.04	45.75	42.47	74	-31.53	Н		
3681.469	33.03	36.96	5.49	45.19	46.75	74	-27.25	Н		
4960.000	35.02	36.80	5.05	40.99	44.26	74	-29.74	Н		
7440.000	36.45	37.41	6.88	42.48	48.40	74	-25.60	Н		
9920.000	38.22	37.88	7.47	44.49	52.30	74	-21.70	Н		
1597.401	31.05	37.82	2.92	45.99	42.14	74	-31.86	V		
1777.646	31.36	37.57	3.07	45.37	42.23	74	-31.77	V		
3672.110	33.04	36.96	5.49	45.51	47.08	74	-26.92	V		
4960.000	35.02	36.80	5.05	40.82	44.09	74	-29.91	V		
7440.000	36.45	37.41	6.88	42.79	48.71	74	-25.29	V		
9920.000	38.22	37.88	7.47	44.07	51.88	74	-22.12	V		

Note

- 1) Through Pre-scan transmitting mode with all kind of modulation and all kind of data type, find the 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of 8DPSK.
- 2) 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test mode No.: i8 Pro

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Report No.: EED32H00215001

Conducted emission Test Setup

PHOTOGRAPHS OF EUT Constructional Details

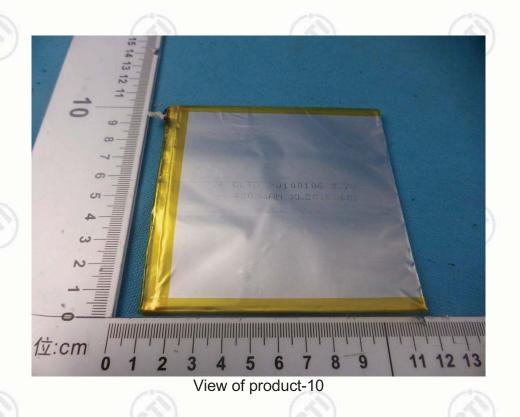
Test mode No.: i8 Pro

View of product-3

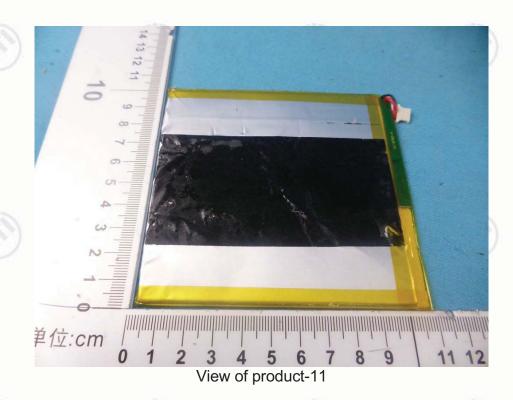
View of product-5

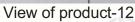
View of product-7

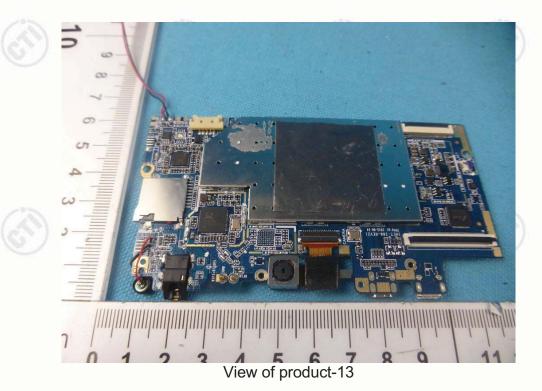
View of product-8

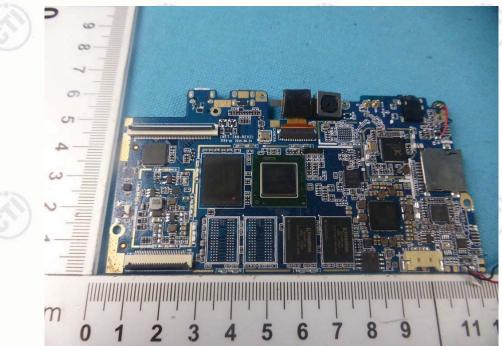


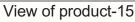
View of product-9







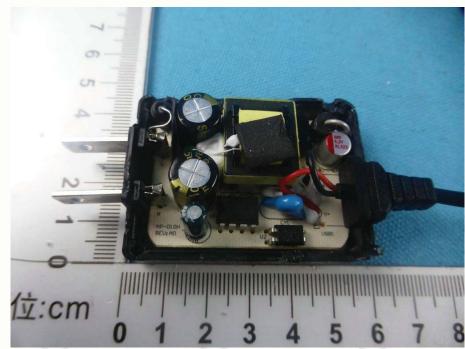


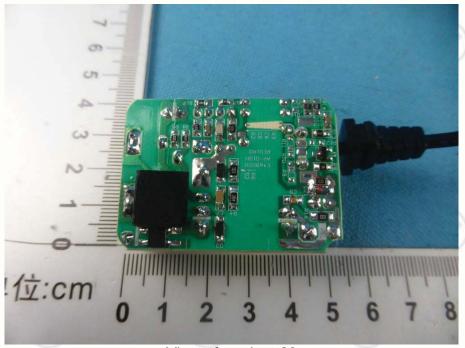


View of product-16

View of product-17

View of product-18





Report No.: EED32H00215001 Page 70 of 70

View of product-19

View of product-20

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.