

Page : 1 of 102
Issued date : April 06, 2005
Revised date : April 11, 2005
FCC ID : S4JS159601

SAR EVALUATION REPORT

Report No.: 25BE0219-HO-3A

Applicant	:	NEC Infrotia Corporation

Type of Equipment : Mobile Terminal

Model No. : S1596-01P (Tested model name)

(S1596-01**: '**' differs for the identification of the customer.)

FCC ID : S4JS159601

Test standard : FCC47CFR 2.1093

FCC OET Bulletin 65, Supplement C

Test Result : Complied

Max SAR Measured : 0.608 W/kg(Body 2412MHz)

- 1. This test report shall not be reproduced except full or partial, without the written approval of UL Apex Co., Ltd.
- 2. The results in this report apply only to the sample tested.
- 3. This equipment is in compliance with above regulation. We hereby certify that the data contain a true representation of the SAR profile.
- 4. The test results in this test report are traceable to the national or international standards.

Date of test	:	March 25 and 28 ,2005
Tested by	:	Miyo Ikuta Head Office EMC Lab.
Approved by	:	
		Hironobu Shimoji Group Leader of Head Office EMC Lab.

UL Apex Co., Ltd. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 2 of 102

 Issued date
 : April 06, 2005

 Revised date
 : April 11, 2005

 FCC ID
 : S4JS159601

<u>CONTENTS</u>	PAGE
SECTION 1 : Client information	3
SECTION 2 : Equipment under test	4
SECTION 3 : Requirements for compliance testing defined by the FCC	6
SECTION 4 : Dosimetry assessment setup	6
SECTION 5 : Test system specifications	10
SECTION 6 : Test setup of EUT	11
SECTION 7 : Measurement uncertainty	18
SECTION 8 : Simulated tissue liquid parameter	19
SECTION 9 : System validation data	21
SECTION 10 : Evaluation procedure	22
SECTION 11 : Exposure limit	23
SECTION 12 : SAR Measurement results	24
SECTION 13 : Equipment & calibration information	28
SECTION 14 : References	29
APPENDIX 1 : Photographs of test setup	
APPENDIX 2 : SAR Measurement data	
APPENDIX 3: Validation Measurement data	
APPENDIX 4: System Validation Dipole (D2450V2,S/N: 713)	
APPENDIX 5: Dosimetric E-Field Probe Calibration (ET3DV6,S/N: 1684)	
APPENDIX 6 : Conducted power on the time	102

 $4383\text{-}326\ Asama\text{-}cho,\ Ise\text{-}shi,\ Mie\text{-}ken\ 516\text{-}0021\ JAPAN$

Page : 3 of 102
Issued date : April 06, 2005
Revised date : April 11, 2005
FCC ID : S4JS159601

SECTION 1: Client information

Company Name : NEC Infrotia Corporation

Brand Name : NEC

Address : 2-6-1 Kitamikata Takatsu-ku Kawasaki Kanagawa 213-8511, Japan

Telephone Number : 81-44-820-3881

Facsimile Number : 81-44-820-4534

Contact Person : Yoshihiro Hasegawa

 $4383\text{-}326\ Asama\text{-}cho,\ Ise\text{-}shi,\ Mie\text{-}ken\ 516\text{-}0021\ JAPAN$

Page : 4 of 102
Issued date : April 06, 2005
Revised date : April 11, 2005
FCC ID : S4JS159601

SECTION 2 : Equipment under test

2.1 Identification of EUT

Applicant : NEC Infrotia Corporation

Type of Equipment : Mobile Terminal

Model No. : S1596-01P (Tested model name)

Serial No. : 525006A

Country of Manufacture : Japan

Receipt Date of Sample : March 23, 2005

Condition of EUT : Production prototype

(Not for sale: This sample is equivalent to mass-produced items.)

Category Identified : Portable device

Supply : DC12.0V / 1.7A

Battery : Model name S1596-05

V/mAh 7.4V / 2400mAh

2.2 Product description of Wireless LAN module

This Wireless LAN module has IEEE.802.11b/11g.

Tx Frequency : 2412-2462MHz(802.11b/g)

Modulation : DSSS,OFDM

Rating : DC5.0V

Max.Output Power Tested : 17.75dBm

Antenna Type : $\lambda/4$ Inverted F antenna

Antenna Gain : 5.28 dBi (Max.)

(This antenna gain is value mounted to the mobile terminal.)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 5 of 102
Issued date : April 06, 2005
Revised date : April 11, 2005
FCC ID : S4JS159601

2.2 Product description of Bluetooth module

Tx Frequency : 2402-2480MHz

Modulation : GFSK & Hopping

Rating : DC 3.3V, DC 1.8V

Max.Output Power Tested : -0.05dBm

Antenna Type : $\lambda/4$ Inverted F antenna

Antenna Gain : 2.044dBi (Max.)

(This antenna gain is value mounted to the mobile terminal.)

 $4383\text{-}326\ Asama\text{-}cho,\ Ise\text{-}shi,\ Mie\text{-}ken\ 516\text{-}0021\ JAPAN$

 Page
 : 6 of 102

 Issued date
 : April 06, 2005

 Revised date
 : April 11, 2005

 FCC ID
 : \$4J\$S159601

SECTION 3: Requirements for compliance testing defined by the FCC

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992. According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

1 Specific Absorption Rate (SAR) is a measure of the rate of energy absorption due to exposure to an RF transmitting source (wireless portable device).

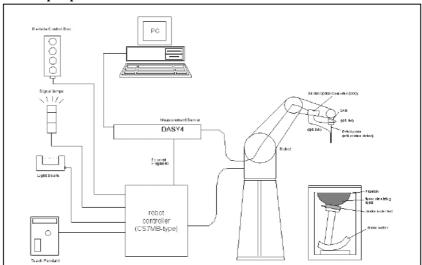
2 IEEE/ANSI Std. C95.1-1992 limits are used to determine compliance with FCC ET Docket 93-62.

SECTION 4 : Dosimetry assessment setup

These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9 m), which positions the probes with a positional repeatability of better than +/- 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetry probe ET3DV6, SN: 1684 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in [2] with accuracy of better than +/-10%. The spherical isotropy was evaluated with the procedure described in [3] and found to be better than +/-0.25 dB. The phantom used was the

SAM Twin Phantom as described in FCC supplement C, IEEE P1528 and CENELEC EN50361.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


 Page
 : 7 of 102

 Issued date
 : April 06, 2005

 Revised date
 : April 11, 2005

 FCC ID
 : S4JS159601

4.1 Configuration and peripherals

The DASY4 system for performing compliance tests consist of the following items:

- 1. A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- 2. A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- 3. A data acquisition electronic (DAE), which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- 4. The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- 5. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 6. A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- 7. A computer operating Windows 2000.
- 8. DASY4 software.
- 9. Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.
- 10. The SAM twin phantom enabling testing left-hand and right-hand usage.
- 11. The device holder for handheld mobile phones.
- 12. Tissue simulating liquid mixed according to the given recipes.
- 13. Validation dipole kits allowing to validate the proper functioning of the system.

UL Apex Co., Ltd. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 8 of 102

 Issued date
 : April 06, 2005

 Revised date
 : April 11, 2005

 FCC ID
 : S4JS159601

4.2 System components

4.2.1 ET3DV6 Probe Specification

Construction:

Symmetrical design with triangular core
Built-in optical fiber for surface detection System
Built-in shielding against static charges
PEEK enclosure material (resistant to organic solvents, e.g., glycol ether)

Calibration:

Basic Broad Band calibration in air from 10 MHz to 2.5 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 900 MHz, 1.8 GHz and 2.45GHz (accuracy +/-8%)

Frequency:

10 MHz to 3GHz; Linearity: +/-0.2 dB (30 MHz to 3 GHz)

Directivity:

+/-0.2 dB in brain tissue (rotation around probe axis) +/-0.4 dB in brain tissue (rotation normal probe axis)

Dynamic Range:

5 mW/g to > 100 mW/g;Linearity: +/-0.2 dB

Optical Surface Detection:

+/-0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces.

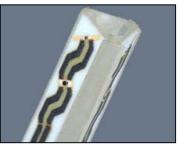
Dimensions:

Overall length: 330 mm (Tip: 16 mm)

Tip length: 16 mm

Body diameter: 12 mm (Body: 12 mm)

Tip diameter: 6.8 mm


Distance from probe tip to dipole centers: 2.7 mm

Application:

General dosimetric up to 3 GHz Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

ET3DV6 E-field Probe

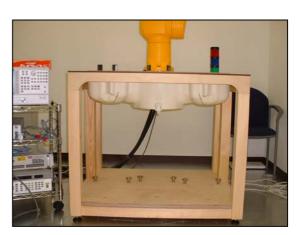
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 9 of 102
Issued date : April 06, 2005
Revised date : April 11, 2005
FCC ID : S4JS159601

4.2.2 SAM Twin Phantom

Construction:

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-200X, CENELEC EN 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.


Shell Thickness:

2 +/-0.2 mm

Filling Volume:

Approx. 25 liters **Dimensions:**

(H x L x W): 810 x 1000 x 500 mm

SAM Twin Phantom

4.2.3 Device Holder for Transmitters

In combination with the SAM Twin Phantom V4.0, the Mounting Device enables the rotation of the mounted transmitter

in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

* Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations.

To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Device holder couldn't be used at this SAR measurement.

Device Holder

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 10 of 102
Issued date : April 06, 2005
Revised date : April 11, 2005
FCC ID : S4JS159601

SECTION 5 : Test system specifications

Robot RX60L

Number of Axes : 6
Payload : 1.6 kg
Reach : 800mm
Repeatability : +/-0.025mm
Control Unit : CS7M
Programming Language : V+

Manuafacture : Stäubli Unimation Corp. Robot Model: RX60

DASY4 Measurement server

Features: 166MHz low power Pentium MMX

32MB chipdisk and 64MB RAM Serial link to DAE (with watchdog supervision)

16 Bit A/D converter for surface detection system

Two serial links to robot (one for real-time communication which is supervised by

watchdog)

Ethernet link to PC (with watchdog supervision)

Emergency stop relay for robot safety chainTwo expansion slots for future

applications

Manufacture : Schimid & Partner Engineering AG

Data Acquisition Electronic (DAE)

Features : Signal amplifier, multiplexer, A/D converter and control logic

Serial optical link for communication with DASY4 embedded system (fully remote controlled) 2 step probe touch detector for mechanical surface detection

and emergency robot stop (not in -R version)

Measurement Range : $1 \mu V$ to > 200 mV (16 bit resolution and two range settings: 4mV,

400mV)

Input Offset voltage : $< 1 \mu V$ (with auto zero)

Input Resistance : $200 \text{ M}\Omega$

Battery Power : > 10 h of operation (with two 9 V battery)

Dimension : 60 x 60 x 68 mm

Manufacture : Schimid & Partner Engineering AG

Software

Item : Dosimetric Assesment System DASY4

Type No. : SD 000 401A, SD 000 402A

Software version No. : 4.1

Manufacture / Origin : Schimid & Partner Engineering AG

E-Field Probe

Model : ET3DV6 Serial No. : 1684

Construction : Triangular core fiber optic detection system

Frequency: 10 MHz to 6 GHz

Linearity : +/-0.2 dB (30 MHz to 3 GHz)

Manufacture : Schimid & Partner Engineering AG

Phantom

Type : SAM Twin Phantom V4.0

Shell Material:FiberglassThickness:2.0 +/-0.2 mmVolume:Approx. 25 liters

Manufacture : Schimid & Partner Engineering AG

UL Apex Co., Ltd. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN