

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C.
Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	EverMore Technology, Inc.
Applicant Address	2F. No. 7, R&D Rd. I, Science-Based Industrial Park, Hsinchu, Taiwan, R.O.C.
FCC ID	S3RBTR900
Manufacturer's company	EverMore Technology, Inc.
Manufacturer Address	2F. No. 7, R&D Rd. I, Science-Based Industrial Park, Hsinchu, Taiwan, R.O.C.

Product Name	Bluetooth GPS Receiver
Brand Name	EverMore
Model Name	BT-R900
Test Rule	47 CFR FCC Part 15 Subpart C § 15.247
Test Freq. Range	2400 ~ 2483.5MHz
Receive Date	Apr. 27, 2006
Test Date	Jan. 3, 2007
Submission Type	Class II Change
Class II Change	Please refer to section 3.7

Statement

Test result included is only for the Bluetooth part of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in **ANSI C63.4-2003** and **47 CFR FCC Part 15 Subpart C**.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. CERTIFICATE OF COMPLIANCE	1
2. SUMMARY OF THE TEST RESULT	2
3. GENERAL INFORMATION	3
3.1. Product Details.....	3
3.2. Accessories.....	3
3.3. Table for Filed Antenna.....	3
3.4. Table for Carrier Frequencies	4
3.5. Table for Test Modes.....	4
3.6. Table for Testing Locations.....	4
3.7. Class II Change	5
3.8. Table for Supporting Units	5
3.9. Test Software Setting	5
3.10. Test Configurations	6
4. TEST RESULT	7
4.1. AC Power Line Conducted Emissions Measurement.....	7
4.2. Radiated Emissions Measurement.....	11
5. LIST OF MEASURING EQUIPMENTS	16
6. SPORTON COMPANY PROFILE	17
6.1. Test Location.....	17
APPENDIX A. PHOTOGRAPHS OF EUT.....	A1 ~ A12
APPENDIX B. TEST PHOTOS.....	B1 ~ B3

History of This Test Report

Original Issue Date: Jan. 4, 2007

Report No.: FR642408-01

■ No additional attachment.

Additional attachment were issued as following record:

1. CERTIFICATE OF COMPLIANCE

Product Name : Bluetooth GPS Receiver
Brand Name : EverMore
Model Name : BT-R900
Applicant : EverMore Technology, Inc.
Test Rule Part(s) : 47 CFR FCC Part 15 Subpart C § 15.247

Sportun International as requested by the applicant to evaluate the EMC performance of the product sample received on Apr. 27, 2006 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sharon Jiang 5.1.07

Prepared By:

Sharon Jiang / Specialist

Leo Hung 5.1.07

Tested By:

Leo Hung / Engineer

Z Wayne Hsu 5.1.07

Reviewed By:

Wayne Hsu

2. SUMMARY OF THE TEST RESULT

Applied Standard: 47 CFR FCC Part 15 Subpart C				
Part	Rule Section	Description of Test	Result	Under Limit
4.1	15.207	AC Power Line Conducted Emissions	Complies	16.03 dB
-	15.247(b)(1)	Maximum Peak Conducted Output Power	-	-
-	15.247(a)(1)	Hopping Channel Separation	-	-
-	15.247(b)(1)	Number of Hopping Frequency	-	-
-	15.247(a)(1)	Dwell Time	-	-
4.2	15.247(d)	Radiated Emissions	Complies	6.86 dB
-	15.247(d)	Band Edge Emissions	-	-
-	15.203	Antenna Requirements	-	-

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.26dB	Confidence levels of 95%
Maximum Peak Conducted Output Power	±0.5dB	Confidence levels of 95%
Hopping Channel Separation / Dwell Time	±6.25×10 ⁻⁷	Confidence levels of 95%
Radiated Emissions / Band Edge Emissions	±3.72dB	Confidence levels of 95%

3. GENERAL INFORMATION

3.1. Product Details

Items	Description
Radio Type	Intentional Transceiver
Power Type	Host (Notebook) / Battery 3.7VDC / Power Adapter / Car charger
Interface Type	Mini USB
Modulation	FHSS (GFSK / QPSK /8PPSK)
Data Rate (Mbps)	GFSK: 1 ; QPSK: 2 ; 8PSK: 3
Frequency Range	2400 ~ 2483.5MHz
Channel Number	79
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

3.2. Accessories

Power	Brand	Model	Rating
Battery	MAGIC	NK3650	3.7VDC
Adapter	SEMDICAR	TC-FU-USB	Input: 100V-240V, 50/60Hz, 0.15A, Output: 5V, 1A
Car charger	-	-	Input: 12V Output:5V
Others			
USB Cable, Shieded, 1m			

3.3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	Phycomp	-	SMD Antenna	NA	4
2	INPAQ	PA1575MZ50	GPS Patch Antenna	NA	5

3.4. Table for Carrier Frequencies

Frequency Band	Channel No.	Frequency
2400~2483.5MHz	0	2402 MHz
	1	2403 MHz
	:	:
	38	2440 MHz
	39	2441 MHz
	40	2442 MHz
	:	:
	77	2479 MHz
	78	2480 MHz

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Ant.
AC Power Conducted Emissions	Normal Link/Power Adapter/ Car Charger	3 Mbps	Hopping 0~78	1
Radiated Emissions Below 1GHz	Normal Link/Power Adapter/ Car Charger	3 Mbps	Hopping 0~78	1

Test Mode:

Mode 1: Power Adapter

Mode 2: Car Charger

Due to Mode 1 generated the worst test result, so it was recorded in this report.

Note: Radiated emissions above 1GHz test mode data is better than original test mode data, so it was not recorded in this report.

3.6. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH03-HY	SAC	Hwa Ya	101377	IC 4088	-
CO04-HY	Conduction	Hwa Ya	101377	IC 4088	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Fully Anechoic Chamber (FAC).

Please refer section 6 for Test Site Address.

3.7. Class II Change

This product is an extension of original one reported under Sporton project number: FR642408

Below is the table for the change of the product with respect to the original one.

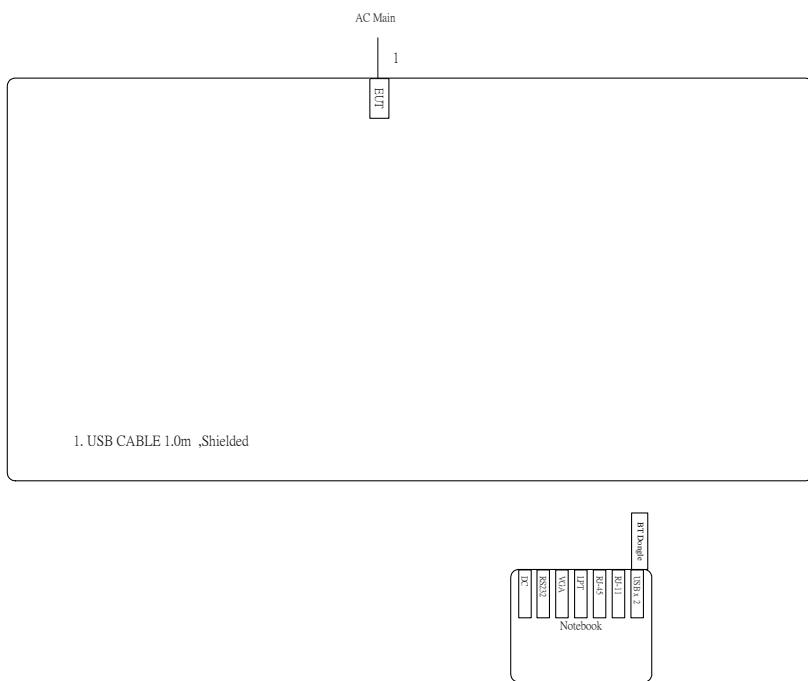
Modifications
Add 2 test modes: Power Adapter / Car Charger

3.8. Table for Supporting Units

Support Unit	Brand	Model	FCC ID
Notebook	DELL	PP01L	DoC
Dongle	Mototrola	890-57-280	VZ10010000
Notebook	DELL	D520	E2KWM3945ABG
BT DONGLE	SMC	SMC-BT10	DoC

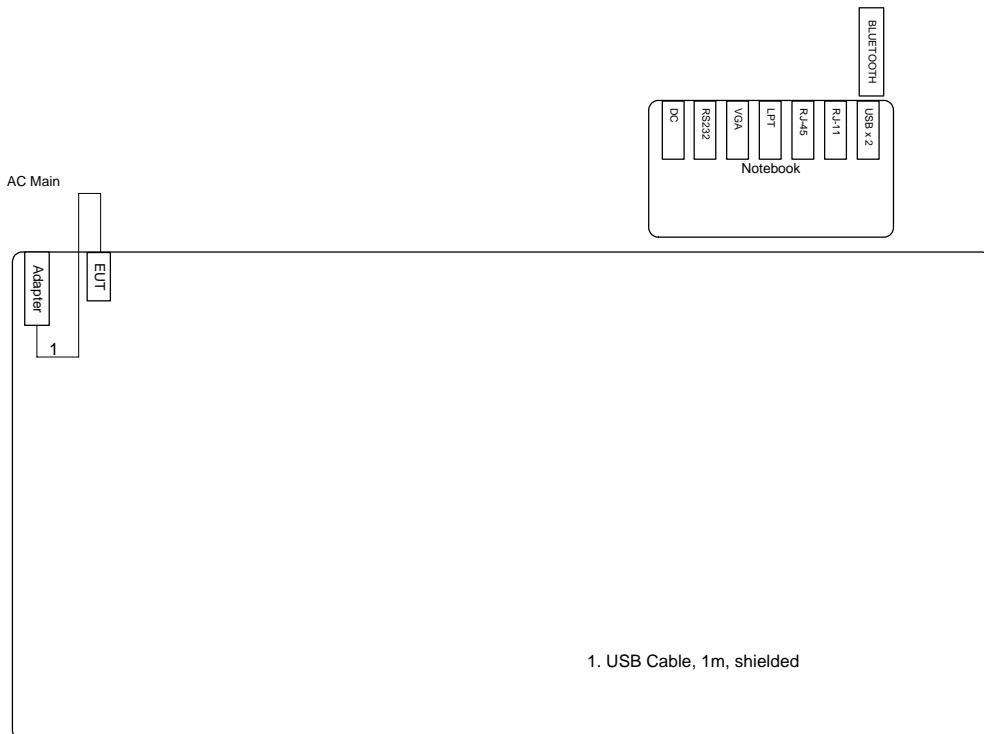
3.9. Test Software Setting

During the test, the following programs under WIN XP were executed:


Executed " RF test " to control the EUT continuously transmit RF signal.

Executed " Bluesoleil " to display the status of linking with the Bluetooth Tester.

3.10. Test Configurations


3.10.1. Radiation Emissions Test Configuration

Power Adapter / Car Charger

3.10.2. AC Power Line Conduction Emissions Test Configuration

Power Adapter / Car Charger

4. TEST RESULT

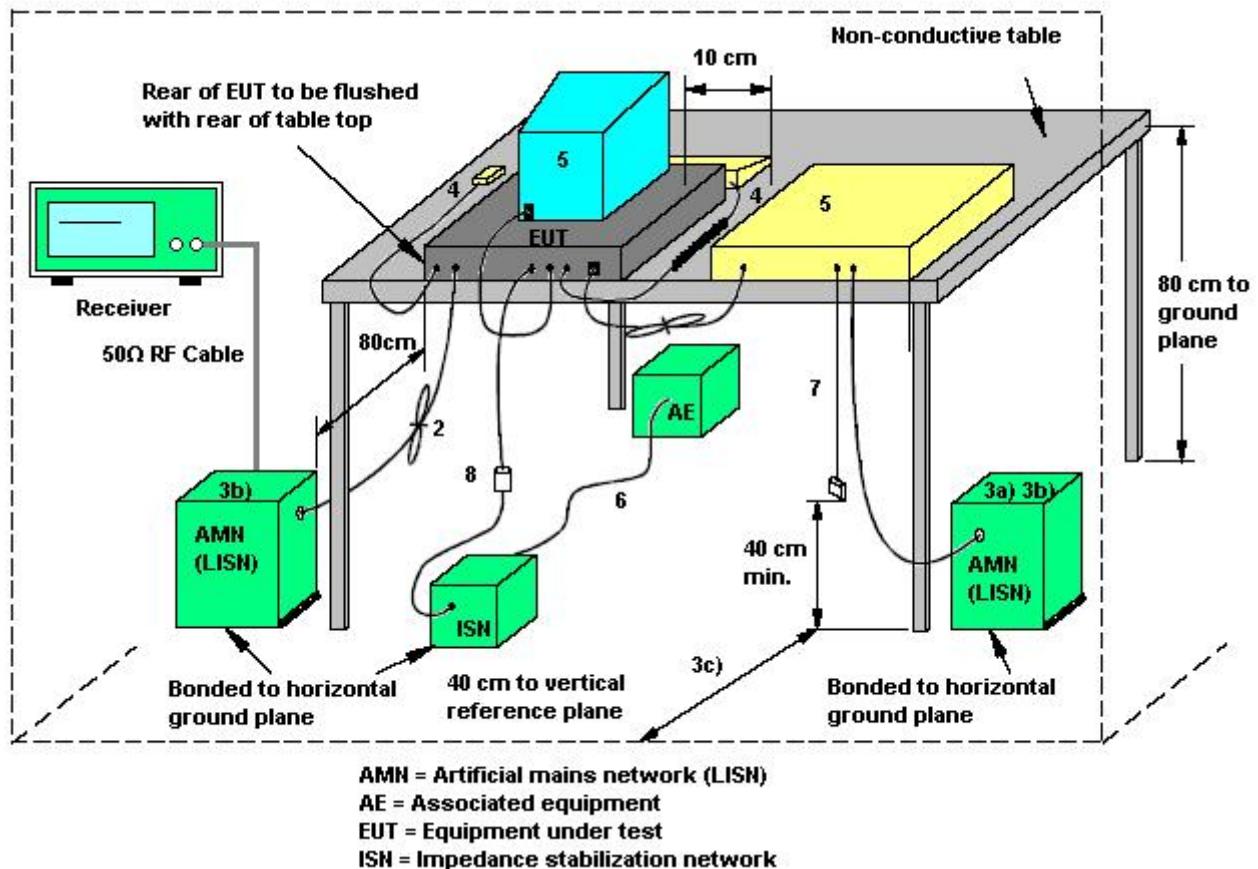
4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For a Low-power Radio-frequency Device which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting


Please refer to section 5 in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

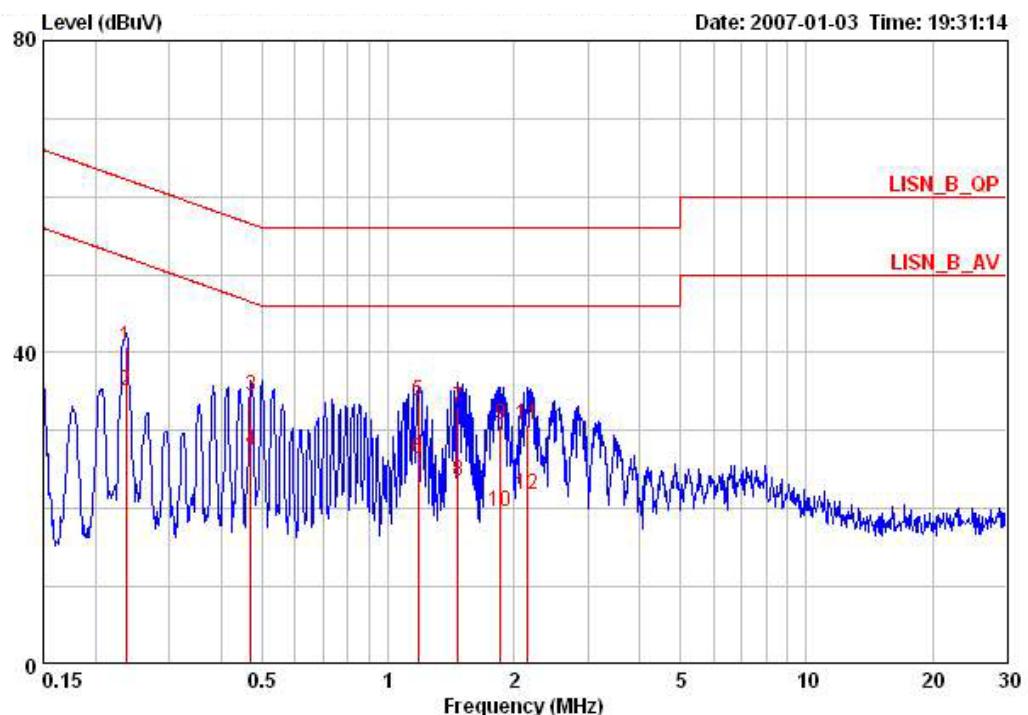
4.1.3. Test Procedures

1. Configure the EUT according to ANSI C63.4. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
4. The frequency range from 150 KHz to 30 MHz was searched.
5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

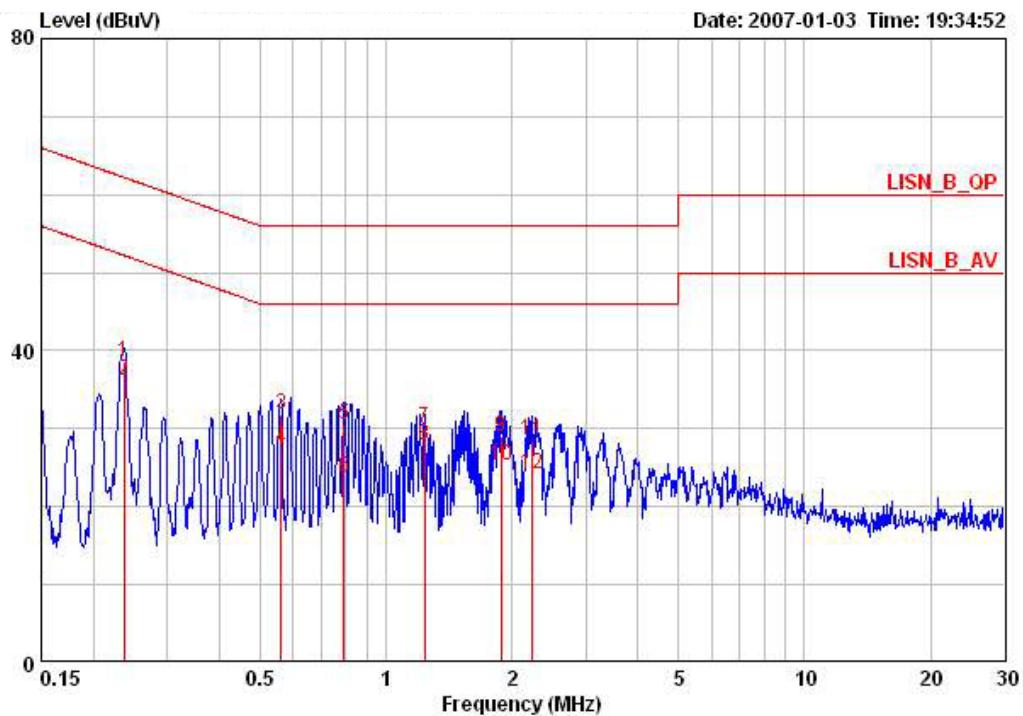
1. If cables, which hang closer than 40 cm to the horizontal metal groundplane, cannot be shortened to appropriate length, the excess shall be folded back and forth forming a bundle 30 cm to 40 cm long.
2. Excess mains cord shall be bundled in the centre or shortened to appropriate length.
3. EUT is connected to one artificial mains network (AMN). All AMNs and ISNs may alternatively be connected to a vertical reference plane or metal wall.
4. All other units of a system are powered from a second AMN. A multiple outlet strip can be used for multiple mains cords.
5. AMN and ISN are 80 cm from the EUT and at least 80 cm from other units and other metal planes.
6. Mains cords and signal cables shall be positioned for their entire lengths, as far as possible, at 40 cm from the vertical reference plane.
7. Cables of hand operated devices, such as keyboards, mouses, etc. shall be placed as for normal usage.
8. Peripherals shall be placed at a distance of 10 cm from each other and from the controller, except for the monitor which, if this is an acceptable installation practice, shall be placed directly on the top of the controller.
9. I/O signal cable intended for external connection.
10. The end of the I/O signal cables which are not connected to an AE may be terminated, if required, using correct terminating impedance.
11. If used, the current probe shall be placed at 0,1 m from the ISN.

4.1.5. Test Deviation


There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.


4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	24°C	Humidity	66%
Test Engineer	Johnson Chang	Phase	Line
Configuration	Normal Link		

Freq	Level	Over Limit	Limit Line	Read		LISN Factor	Cable Loss	Remark	Pol/Phase
				MHz	dBuV	dB	dBuV	dB	
1	0.23658	40.72	-21.50	62.22	40.44	0.08	0.20	QP	LINE
2	0.23658	35.07	-17.15	52.22	34.79	0.08	0.20	AVERAGE	LINE
3	0.47110	34.55	-21.94	56.49	34.35	0.00	0.20	QP	LINE
4	0.47110	27.57	-18.92	46.49	27.37	0.00	0.20	AVERAGE	LINE
5	1.178	33.78	-22.22	56.00	33.62	0.00	0.16	QP	LINE
6	1.178	26.35	-19.65	46.00	26.19	0.00	0.16	AVERAGE	LINE
7	1.472	32.85	-23.15	56.00	32.74	0.00	0.11	QP	LINE
8	1.472	23.64	-22.36	46.00	23.53	0.00	0.11	AVERAGE	LINE
9	1.858	30.69	-25.31	56.00	30.52	0.00	0.17	QP	LINE
10	1.858	19.58	-26.42	46.00	19.41	0.00	0.17	AVERAGE	LINE
11	2.149	30.74	-25.26	56.00	30.54	0.00	0.20	QP	LINE
12	2.149	21.78	-24.22	46.00	21.58	0.00	0.20	AVERAGE	LINE

Temperature	24°C	Humidity	66%
Test Engineer	Johnson Chang	Phase	Neutral
Configuration	Normal Link		

Freq	Level	Over Limit	Limit	Read Line	LISN Level	Cable Factor	Loss	Remark	Pol/Phase	
									MHz	dBuV
									dB	dB
1	0.23658	38.54	-23.68	62.22	38.26	0.08	0.20	QP		NEUTRAL
2	0.23658	36.19	-16.03	52.22	35.91	0.08	0.20	AVERAGE		NEUTRAL
3	0.56111	31.88	-24.12	56.00	31.68	0.00	0.20	QP		NEUTRAL
4	0.56111	27.55	-18.45	46.00	27.35	0.00	0.20	AVERAGE		NEUTRAL
5	0.79180	30.41	-25.59	56.00	30.21	0.00	0.20	QP		NEUTRAL
6	0.79180	23.66	-22.34	46.00	23.46	0.00	0.20	AVERAGE		NEUTRAL
7	1.236	30.14	-25.86	56.00	29.99	0.00	0.15	QP		NEUTRAL
8	1.236	27.90	-18.10	46.00	27.75	0.00	0.15	AVERAGE		NEUTRAL
9	1.884	28.93	-27.07	56.00	28.75	0.00	0.18	QP		NEUTRAL
10	1.884	25.20	-20.80	46.00	25.02	0.00	0.18	AVERAGE		NEUTRAL
11	2.237	28.58	-27.42	56.00	28.38	0.00	0.20	QP		NEUTRAL
12	2.237	24.18	-21.82	46.00	23.98	0.00	0.20	AVERAGE		NEUTRAL

Note:

Level = Read Level + LISN Factor + Cable Loss.

4.2. Radiated Emissions Measurement

4.2.1. Limit

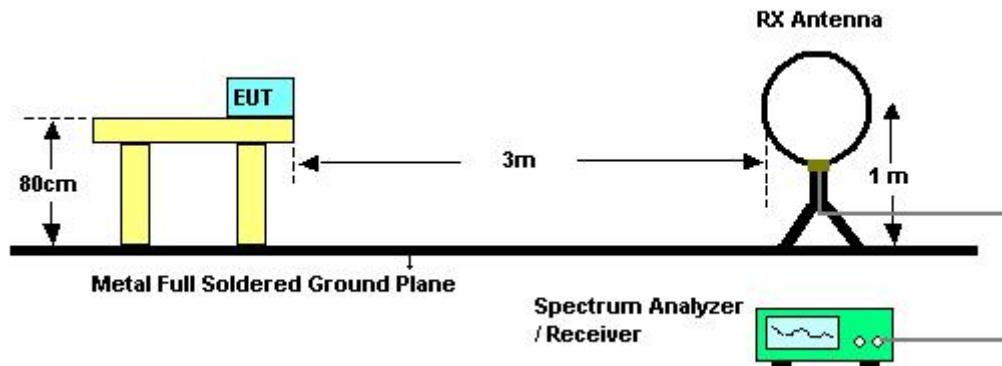
20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

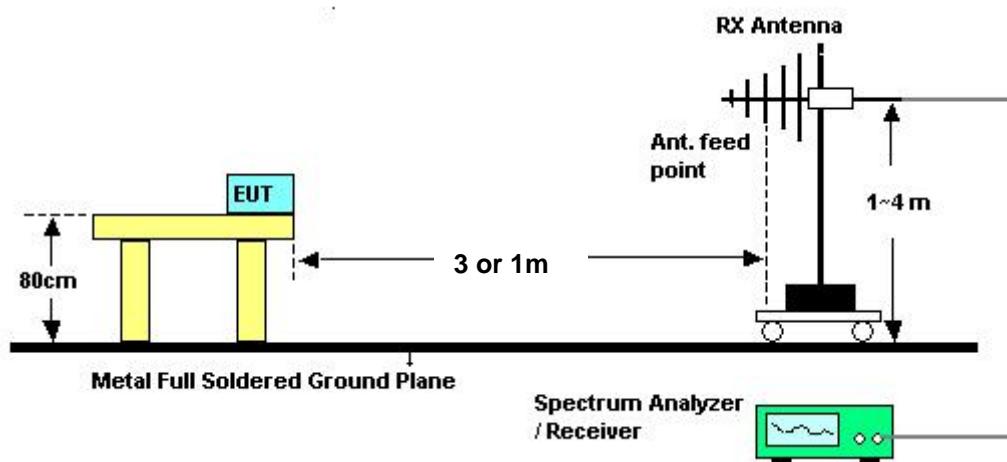
4.2.2. Measuring Instruments and Setting

Please refer to section 5 in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (other emission)	100KHz / 100KHz for peak


Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

4.2.3. Test Procedures


1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High – Low scan is not required in this case.

4.2.4. Test Setup Layout

For radiated emissions below 30MHz

For radiated emissions above 30MHz

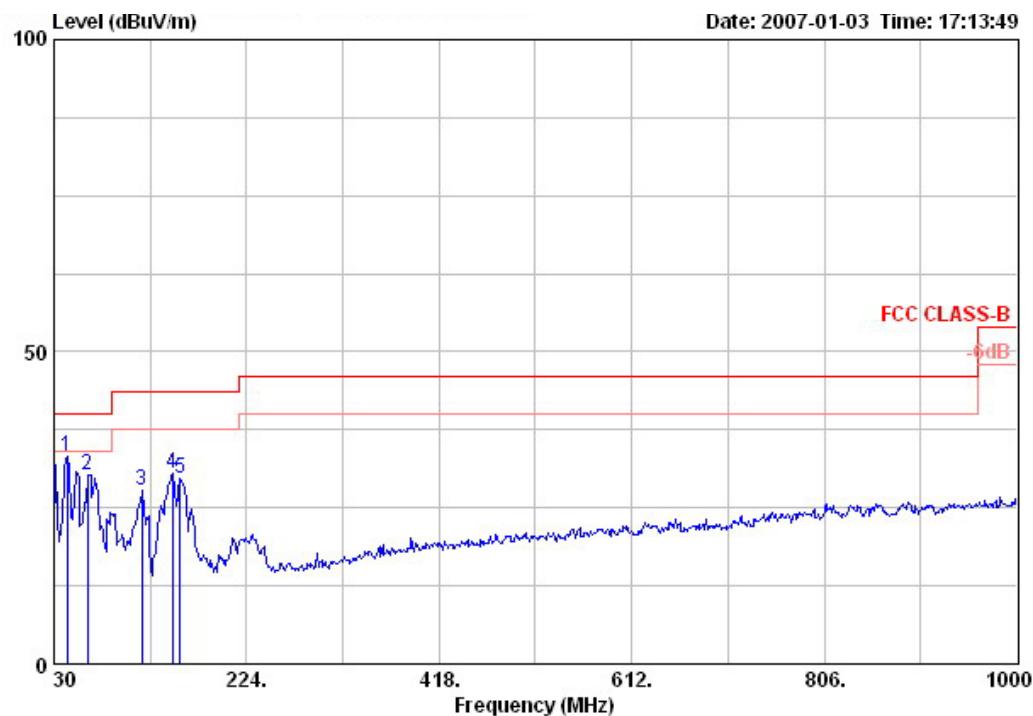
Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade from 3m to 1m.

Distance extrapolation factor = $20 \log (\text{specific distanc [3m]} / \text{test distance [1m]})$ (dB);

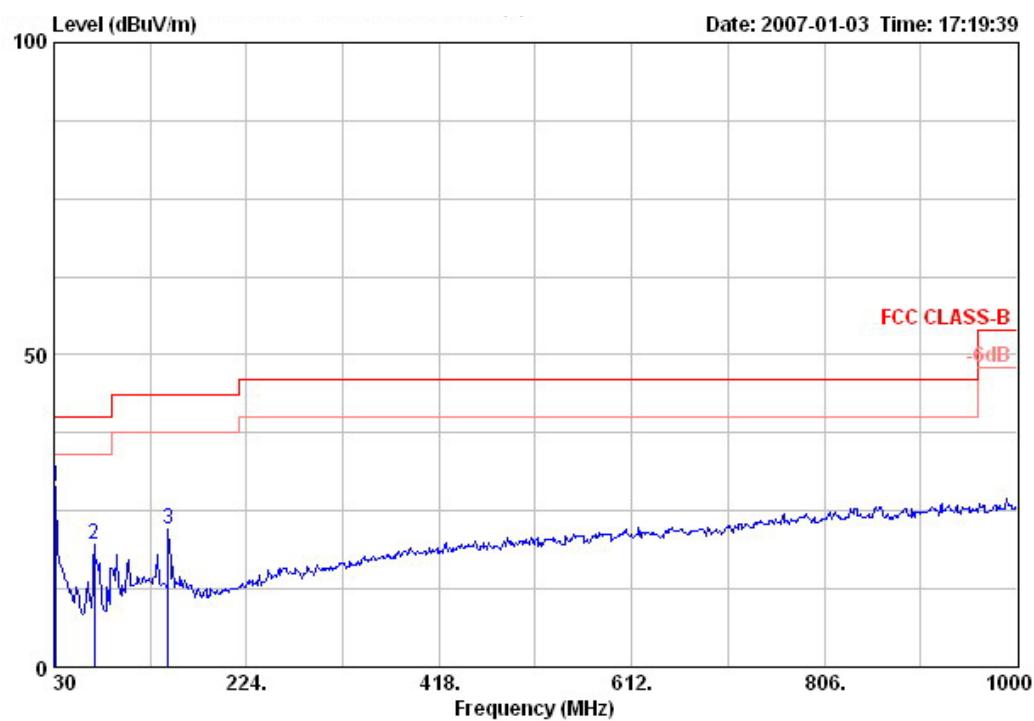
Limit line = specific limits (dBuV) + distance extrapolation factor [9.54 dB].

4.2.5. Test Deviation

There is no deviation with the original standard.


4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.


4.2.7. Results of Radiated Emissions (30MHz~1GHz)

Temperature	24°C	Humidity	58%
Test Engineer	Leo Hung	Configurations	Normal Link / Power Adapter

Vertical

Freq	Level	Over Limit	Read	Antenna	Cable Preamp			Ant Pos	Table Pos
					Line	Level Factor	Loss Factor		
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	cm	deg
1 @	43.580	33.14	-6.86	40.00	47.09	12.02	0.53	26.50	Peak 400 0
2 @	63.950	30.22	-9.78	40.00	49.14	6.98	0.47	26.36	Peak 400 0
3 @	118.270	27.71	-15.79	43.50	40.10	12.75	0.84	25.98	Peak 400 0
4 @	149.310	30.38	-13.12	43.50	44.30	11.27	0.59	25.78	Peak 400 0
5 @	157.070	29.63	-13.87	43.50	43.99	10.71	0.69	25.76	Peak 400 0

Horizontal

Freq	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table
		Limit	Line	Antenna Factor	Loss Factor	dB	dB		
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	cm	deg
1 @	31.940	28.80	-11.20	40.00	36.01	18.96	0.32	26.49	Peak
2	70.740	19.75	-20.25	40.00	38.62	6.88	0.39	26.14	Peak
3	145.430	22.08	-21.42	43.50	35.76	11.56	0.54	25.79	Peak

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30 MHz - 1 GHz 3m	Jun. 15, 2006	Radiation (03CH03-HY)
Amplifier	SCHAFFNER	CPA9231A	18667	9 kHz - 2 GHz	Jan. 18, 2006	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3008A02120	1 GHz - 26.5 GHz	May 29, 2006	Radiation (03CH03-HY)
Amplifier	MITEQ	AMF-6F-260400	923364	26.5 GHz - 40 GHz	Jan. 24, 2006*	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP40	100004/040	9 kHz - 40 GHz	Sep. 21, 2006	Radiation (03CH03-HY)
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	May 23, 2006*	Radiation (03CH03-HY)
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30 MHz - 1 GHz	Jul. 24, 2006	Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6741	1GHz ~ 18GHz	Apr. 27, 2006	Radiation (03CH03-HY)
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15 GHz - 40 GHz	NCR	Radiation (03CH03-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30 MHz - 1 GHz	Dec. 02, 2006	Radiation (03CH03-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1 GHz - 40 GHz	Dec. 02, 2006	Radiation (03CH03-HY)
Turn Table	HD	DS 420	420/650/00	0 - 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
EMC Receiver	R&S	ESCS 30	100174	9kHz - 2.75GHz	Feb. 21, 2006	Conduction (CO04-HY)
LISN	MessTec	NNB-2/16Z	99079	9kHz - 30MHz	Mar. 28, 2006	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9kHz - 30MHz	Mar. 17, 2006	Conduction (CO04-HY)
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9kHz - 30MHz	Apr. 20, 2006	Conduction (CO04-HY)
ISN	SCHAFFNER	ISN T400	21653	9kHz -30MHz	Mar. 27. 2006	Conduction (CO04-HY)
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)

Note: Calibration Interval of instruments listed above is one year.

* Calibration Interval of instruments listed above is one year.

NCR means Non-Calibration required.

6. SPORTON COMPANY PROFILE

SPORTON Lab. was established in 1986 with one shielded room: the first private EMI test facility, offering local manufacturers an alternative EMI test familial apart from ERSO. In 1988, one 3M and 10M/3M open area test site were setup and also obtained official accreditation from FCC, VCCI and NEMKO. In 1993, a Safety laboratory was founded and obtained accreditation from UL of USA, CSA of Canada and TUV (Rhineland & PS) of Germany. In 1995, one EMC lab, including EMI and EMS test facilities was setup. In 1997, SPORTON Group has provided financial expense to relocate the headquarter to Orient Scientific Park in Taipei Hsien to offer more comprehensive, more qualified and better service to local suppliers and manufacturers. In 1999, Safety Group and Component Group were setup. In 2001, SPORTON has established 3M/10M chamber in Hwa Ya Technology Park.

6.1. Test Location

SHIJR	ADD : 6Fl., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C. TEL : 02-2696-2468 FAX : 02-2696-2255
HWA YA	ADD : No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL : 03-327-3456 FAX : 03-318-0055
LINKOU	ADD : No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C TEL : 02-2601-1640 FAX : 02-2601-1695
DUNGHU	ADD : No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C. TEL : 02-2631-4739 FAX : 02-2631-9740
JUNGHE	ADD : 7Fl., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C. TEL : 02-8227-2020 FAX : 02-8227-2626
NEIHU	ADD : 4Fl., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C. TEL : 02-2794-8886 FAX : 02-2794-9777
JHUBEI	ADD : No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C. TEL : 03-656-9065 FAX : 03-656-9085