

EMC Technologies Pty Ltd
ABN 82 057 105 549
57 Assembly Drive
Tullamarine Victoria Australia 3043

Ph: + 613 9335 3333
Fax: + 613 9338 9260
email: melb@emctech.com.au

SAR Test Report

Report Number: M060337

Test Sample: Vitec Group Communications UPSCS
radio belt pack

Model Number: CEL-BP
FCC ID: S30-CEL-BP
Tested For: TRL Compliance Ltd

Date of Issue: 11th April 2006

EMC Technologies Pty Ltd reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. EMC Technologies Pty Ltd shall have no liability for any deductions, inferences or generalisations drawn by the client or others from EMC Technologies Pty Ltd issued reports. This report shall not be used to claim, constitute or imply product endorsement by EMC Technologies Pty Ltd.

Nata Accredited Laboratory
Number: 5292

EMC Technologies is a NATA Accredited Laboratory complying with the requirements specified in ISO/IEC 17025 and results produced are traceable to national standards of measurement. This document shall not be reproduced, except in full.

CONTENTS

1.0	General Information	3
2.0	Description of Device	4
2.1	Description of Test Sample	4
2.2	Test sample Accessories	4
2.2.1	<i>Battery Types</i>	4
2.2.2	<i>Belt Clip</i>	4
2.3	Test Signal, Frequency and Output Power	5
2.4	Battery Status	5
2.5	Details of Test Laboratory	6
2.5.1	<i>Location</i>	6
2.5.2	<i>Accreditations</i>	6
2.5.3	<i>Environmental Factors</i>	6
3.0	DESCRIPTION OF SAR MEASUREMENT SYSTEM	7
3.1	Probe Positioning System	7
3.2	E-Field Probe Type and Performance	7
3.3	Data Acquisition Electronics	7
3.4	Calibration and Validation Procedures and Data	7
3.4.1	<i>Validation Results @ 1800 MHz</i>	7
3.4.2	<i>Deviation from reference validation values</i>	8
3.4.3	<i>Liquid Depth 15cm</i>	8
3.5	Phantom Properties (Size, Shape, Shell Thickness)	9
3.6	Tissue Material Properties	10
3.6.1	<i>Liquid Temperature and Humidity</i>	10
3.7	Simulated Tissue Composition Used for SAR Test	10
3.8	Device Holder for DASY4	10
4.0	SAR Measurement Procedure Using DASY4	10
5.0	MEASUREMENT UNCERTAINTY	12
6.0	Equipment List and Calibration Details	14
7.0	SAR Test Method	15
7.1	Description of the Test Positions	15
7.1.1	<i>"Belt Clip" Position</i>	15
7.2	List of All Test Cases (Antenna In/Out, Test Frequencies, User Modes)	15
7.3	FCC RF Exposure Limits for Occupational/ Controlled Exposure	15
7.4	FCC RF Exposure Limits for Un-controlled/Non-occupational	15
8.0	SAR measurement RESULTS	16
9.0	Compliance statement	16
APPENDIX A1 Test Sample Photographs		17
APPENDIX A2 Test Setup Photograph		18
APPENDIX B Plots Of The SAR Measurements		19
APPENDIX C SAR testing equipment calibration certificate Attachments		23

SAR EVALUATION

Vitec Group Communications UPCS radio belt pack, **Model:** CEL-BP
Report Number: M060337

1.0 GENERAL INFORMATION

Test Sample: Vitec Group Communications UPCS radio belt pack
Model Number: CEL-BP
Serial Number: 3332
Manufacturer: Vitec Group Communications
FCC ID: S30-CEL-BP
Device Category: Portable Transmitter
Test Device: Production Unit
RF exposure Category: General Public/Unaware user

Tested for: TRL Compliance Ltd
Address: Nipe Lane, Up Holland, Lancashire WN8 9PY United Kingdom
Contact: John Charters
Phone: +44 (0) 1695 556666
Fax: +44 (0) 1695 557077
Email: john.charters@trlcompliance.com

Test Standard/s: Evaluating Compliance with FCC Requirements For Human Exposure
to Radiofrequency Electromagnetic Fields
Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01)

Statement Of Compliance: The Vitec Group Communications UPCS radio belt pack, Model: CEL-BP. Complied with the FCC General public/uncontrolled RF exposure limits of 1.6mW/g per requirements of 47CFR2.1093(d).

Test Date: 31st March 2006

Test Officer:
Peter Jakubiec
Assoc Dip Elect Eng

Authorised Signature:
Aaron Sargent B.Eng
EMR Engineer

2.0 DESCRIPTION OF DEVICE

2.1 Description of Test Sample

The device under test was a Vitec Group Communications UPCS radio belt pack, Model: CEL-BP operating in 1900 MHz frequency band. It has an internal integral antenna and was tested in the Belt Clip configurations of the phantom.

Operating Mode during Testing	: Continuous Transmission
Operating Mode production sample	: 12% duty cycle max.
Modulation Scheme	: QPSK
Device Power Rating for test sample and identical production unit	: 250 mW Burst, average level 2-4mW
Device Dimensions (LxWxH)	: 150 x 82 x 32 mm
Applicable Head Configurations	: None
Applicable Body Configurations	: Belt Clip Position
Battery Options	: 4 cell AA Size NiMH battery pack 4.8V

2.2 Test sample Accessories

2.2.1 Battery Types

A 4.8V Ni-MH Battery Pack is used to power the Vitec Group Communications UPCS radio belt pack, Model: CEL-BP. The maximum rated power is 250 mW Burst. SAR measurements were performed with a standard 4.8 V battery.

2.2.2 Belt Clip

One type of plastic belt clip is sold with the device. The belt clip is fixed to the back of the device and provides a spacing of 5 mm between the device and flat phantom. This plastic belt-clip was attached to the device during testing in the Belt-Clip position.

2.3 Test Signal, Frequency and Output Power

The Vitec Group Communications UPCS radio belt pack, Model: CEL-BP is a 5-channel device that operates in the 1900 MHz frequency band. The frequency range is 1921.5 MHz to 1928.4 MHz. The transmitter was configured into a test mode that ensured a continuous RF transmission for the duration of each SAR scan. The device transmission characteristics were also monitored during testing to confirm the device was transmitting continuously. The device has a headset output to which a headset with a microphone was connected during all testing in the belt-clip position. Excluding the speaker/microphone accessory there were no wires or other connections to the radio belt pack during the SAR measurements.

Please note that measurement of conducted power was not possible due to the lack of suitable RF test port.

2.4 Battery Status

The device battery was fully charged prior to commencement of measurement. Each SAR test was completed within 30 minutes. The battery condition was monitored by measuring the RF power at a defined position inside the phantom before the commencement of each test and again after the completion of the test.

Battery Details

Battery #1: 4 cell AA Size NiMH battery pack 4.8V **BATTERY #2:** 4 cell AA Size NiMH battery pack 4.8V

2.5 DETAILS OF TEST LABORATORY

2.5.1 Location

EMC Technologies Pty Ltd - ACN/ABN: 82057105549
57 Assembly Drive
Tullamarine, (Melbourne) Victoria
Australia 3043

Telephone: +61 3 9335 3333
Facsimile: +61 3 9338 9260
email: melb@emctech.com.au
website: www.emctech.com.au

2.5.2 Accreditations

EMC Technologies Pty. Ltd. is accredited by the National Association of Testing Authorities, Australia (NATA). **NATA Accredited Laboratory Number: 5292**

EMC Technologies Pty Ltd is NATA accredited for the following standards:

ARPANSA Standard	RF and microwave radiation hazard measurement
AS/NZS 2772.2:	
ACA:	Radio communications (Electromagnetic Radiation - Human Exposure) Standard 2003
FCC:	Guidelines for Human Exposure to RF Electromagnetic Field OET65C 01/01
CENELEC:	ES59005: 1998
EN 50360: 2001	Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz – 3 GHz)
EN 50361: 2001	Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300MHz – 3GHz)
IEEE 1528: 2003	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head Due to Wireless Communications Devices: Measurement Techniques.

Refer to NATA website www.nata.asn.au for the full scope of accreditation.

2.5.3 Environmental Factors

The measurements were performed in a shielded room with no background network signals. The temperature in the laboratory was controlled to within 21 ± 1 °C, the humidity was 52 %. The liquid parameters were measured prior to the commencement of the tests. Tests were performed to check that reflections within the environment did not influence the SAR measurements. The noise floor of the DASY4 SAR measurement system using the SN1380 probe is less than 5µV in both air and liquid mediums.

3.0 DESCRIPTION OF SAR MEASUREMENT SYSTEM

3.1 Probe Positioning System

The measurements were performed with the state of the art automated near-field scanning system **DASY4 Version V4.5 Build19** from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision 6-axis robot (working range greater than 1.1m), which positions the SAR measurement probes with a positional repeatability of better than ± 0.02 mm. The DASY4 fully complies with the OET65 C (01-01), IEEE 1528 and EN50361 SAR measurement requirements.

3.2 E-Field Probe Type and Performance

The SAR measurements were conducted with the dosimetric probe ET3DV6 Serial: 1380 (manufactured by SPEAG) designed in the classical triangular configuration and optimised for dosimetric evaluation. The probe has been calibrated and found to be accurate to better than ± 0.25 dB. The probe is suitable for measurements close to material discontinuity at the surface of the phantom. The sensors of the probe are directly loaded with Schottky diodes and connected via highly resistive lines (length = 300 mm) to the data acquisition unit.

3.3 Data Acquisition Electronics

The data acquisition electronics (DAE3) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. The input impedance of the DAE3 box is $200\text{ M}\Omega$; the inputs are symmetrical and floating. Common mode rejection is above 80dB. Transmission to the PC-card is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The mechanical probe-mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

3.4 Calibration and Validation Procedures and Data

Prior to the SAR assessment, the system validation kit was used to verify that the DASY4 was operating within its specifications. The validation was performed at 1800 MHz with the SPEAG DV1800V2 calibrated dipole.

The validation dipoles are highly symmetric and matched at the centre frequency for the specified liquid and distance to the phantom. The accurate distance between the liquid surface and the dipole centre is achieved with a distance holder that snaps onto the dipole.

System validation is performed by feeding a known power level into a reference dipole, set at a known distance from the phantom. The measured SAR is compared to the theoretically derived level.

3.4.1 Validation Results @ 1800 MHz

The following table lists the dielectric properties of the tissue simulating liquid measured prior to SAR validation. The results of the validation are listed in columns 4 and 5. The forward power into the reference dipole for each SAR validation was adjusted to 250mW.

Table: Validation Results (Dipole: SPEAG DV1800V2 SN: 242)

1 Validation Date	2 Frequency (MHz)	3 ϵ_r (measured)	4 σ (mho/m) (measured)	5 Measured SAR 1g	6 Measured SAR 10g
31 st March 2006	1800	39.4	1.34	9.06	4.83

3.4.2 Deviation from reference validation values

The reference SAR values are derived using a reference dipole and flat phantom suitable for a centre frequency of 1800 MHz. These reference SAR values are obtained from the IEEE Std 1528-2003 and are normalized to 1W.

The SPEAG calibration reference SAR value is the SAR validation result obtained in a specific dielectric liquid using the validation dipole (DV1800V2) during calibration. The measured one-gram SAR should be within 10% of the expected target reference values shown in table below.

Table: Deviation from reference validation values

Date	Measured SAR 1g (mW/g)	Measured SAR 1g (Normalized to 1W)	SPEAG Calibration reference SAR Value 1g (mW/g)	Deviation From SPEAG (%)	IEEE Std 1528 reference SAR value 1g (mW/g)	Deviation From IEEE (%)
31 st March 06	9.06	36.24	38.2	-5.13	38.1	-4.88

NOTE: All reference validation values are referenced to 1W input power.

3.4.3 Liquid Depth 15cm

During the SAR measurement process the liquid level was maintained to a level of 15cm with a tolerance of ± 0.5 cm. The following photo shows the depth of the liquid maintained during the testing.

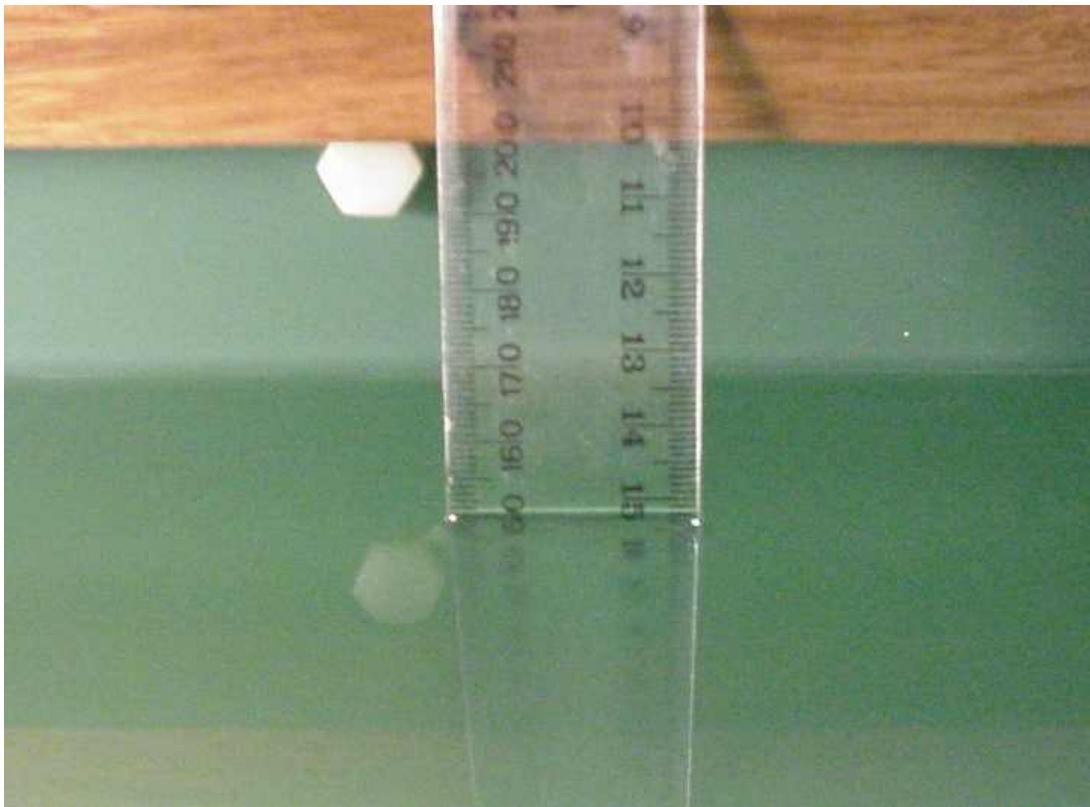


Photo of liquid Depth in Flat Phantom

3.5 Phantom Properties (Size, Shape, Shell Thickness)

The phantom used during the SAR testing in Touch, Tilted positions and the validation was the "SAM" phantom from SPEAG. The phantom thickness is 2.0mm +/- 0.2 mm and was filled with the required tissue simulating liquid.

For SAR testing in the Belt Clip positions an AndreT Flat Phantom V10.1 was used. The phantom thickness is 2.0mm +/- 0.2 mm and the phantom was filled with the required tissue simulating liquid. Following table provides a summary of the measured phantom properties

Table: Phantom Properties (300MHz-2500MHz)

Phantom Properties	Requirement for specific EUT	Measured
Thickness of flat section	2.0mm +/- 0.2mm (flat section)	2.08 – 2.20mm
Dielectric Constant	<5.0	4.603 @ 300MHz (worst-case frequency)
Loss Tangent	<0.05	0.0379 @ 2500MHz (worst-case frequency)

Photo 1: Flat_Phantom V10.1 2mm

3.6 Tissue Material Properties

The dielectric parameters of the tissue simulating liquid were measured prior to SAR assessment using the HP85070A dielectric probe kit and HP8753ES Network Analyser. The actual dielectric parameters are shown in the following tables.

Table: Measured Body Simulating Liquid Dielectric Values

Frequency Band	ϵ_r (measured range)	ϵ_r (target)	σ (mho/m) (measured range)	σ (target)	ρ kg/m ³
1925 MHz Body	51.6	53.3 \pm 5% (50.6 to 56.0)	1.57	1.52 \pm 5% (1.44 to 1.60)	1000

NOTE: The brain and muscle liquid parameters were within the required tolerances of \pm 5%.

3.6.1 Liquid Temperature and Humidity

The humidity and dielectric/ambient temperatures are recorded during the assessment of the tissue material dielectric parameters. The difference between the ambient temperature of the liquid during the dielectric measurement and the temperature during tests was less than |2|°C.

Table: Temperature and Humidity recorded for each day

Date	Ambient Temperature (°C)	Liquid Temperature (°C)	Humidity (%)
31 st March 2006	21.2	20.9	52

3.7 Simulated Tissue Composition Used for SAR Test

The tissue simulating liquids are created prior to the SAR evaluation and often require slight modification each day to obtain the correct dielectric parameters.

Table: Tissue Type: Brain @ 1800MHz

Volume of Liquid: 30 Litres

Approximate Composition	% By Weight
Distilled Water	61.17
Salt	0.31
Bactericide	0.29
Triton X-100	38.23
-	-

Table: Tissue Type: Muscle @ 1900MHz

Volume of Liquid: 60 Litres

Approximate Composition	% By Weight
Distilled Water	40.4
Salt	0.5
Sugar	58
HEC	1
Bactericide	0.1

*Refer "OET Bulletin 65 97/01 P38"

3.8 Device Holder for DASY4

The DASY4 device holder supplied by SPEAG is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The rotation centres for both scales is the ear opening. Thus the device needs no repositioning when changing the angles.

The DASY4 device holder is made of low-loss material having the following dielectric parameters: relative permittivity ϵ =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, to reduce the influence on the clamp on the test results.

Refer to Appendix A2-A3 for photographs of device positioning

4.0 SAR MEASUREMENT PROCEDURE USING DASY4

The SAR evaluation was performed with the SPEAG DASY4 system. A summary of the procedure follows:

- a) A measurement of the SAR value at a fixed location is used as a reference value for assessing the power drop of the EUT. The SAR at this point is measured at the start of the test and then again at the end of the test.
- b) The SAR distribution at the exposed side of the head or the flat section of the flat phantom is measured at a distance of 3.9 mm from the inner surface of the shell. The area covers the entire dimension of the device and the horizontal grid spacing is 15 mm x 15 mm. The actual Area Scan has dimensions of 91 mm x 141 mm surrounding the test device hot spot location. Based on this data, the area of the maximum absorption is determined by Spline interpolation.
- c) Around this point, a volume of 30 mm x 30 mm x 30 mm is assessed by measuring 7 x 7 x 7 points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:
 - (i) The data at the surface are extrapolated, since the centre of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation is based on a least square algorithm. A polynomial of the fourth order is calculated through the points in z-axes. This polynomial is then used to evaluate the points between the surface and the probe tip.
 - (ii) The maximum interpolated value is searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g and 10 g) are computed using the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"- condition (in x, y and z-direction). The volume is integrated with the trapezoidal – algorithm. One thousand points (10 x 10 x 10) are interpolated to calculate the averages.
 - (iii) All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.
 - (iv) The SAR value at the same location as in Step (a) is again measured

5.0 MEASUREMENT UNCERTAINTY

The uncertainty analysis is based on the template listed in the IEEE Std 1528-2003 for both Handset SAR tests and Validation uncertainty. The measurement uncertainty of a specific device is evaluated independently and the total uncertainty for both evaluations (95% confidence level) must be less than 30%.

Table: Uncertainty Budget for DASY4 Version V4.5 Build19 – EUT SAR test

a	b	c	d	e= f(d,k)	f	g	h=cxf/e	i=cxg/e	k
Uncertainty Component	Sec.	Tol. (%)	Prob. Dist.	Div.	$C_i (1g)$	$C_i (10g)$	$1g u_i (\%)$	$10g u_i (\%)$	v_i
Measurement System									
Probe Calibration (k=1) (standard calibration)	7.2.1	4.8	N	1	1	1	4.8	4.8	∞
Axial Isotropy	7.2.1	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	7.2.1	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	7.2.1	1	R	1.73	1	1	0.6	0.6	∞
Linearity	7.2.1	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	7.2.1	1	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	7.2.1	1	N	1	1	1	1.0	1.0	∞
Response Time	7.2.1	0.8	R	1.73	1	1	0.5	0.5	∞
Integration Time	7.2.1	2.6	R	1.73	1	1	1.5	1.5	∞
RF Ambient Conditions	7.2.3	0.05	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mechanical Tolerance	7.2.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning with respect to Phantom Shell	7.2.2	2.9	R	1.73	1	1	1.7	1.7	∞
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	7.2.4	1	R	1.73	1	1	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	7.2.2	1.61	N	1	1	1	1.6	1.6	11
Device Holder Uncertainty									
Output Power Variation – SAR Drift Measurement	7.2.3	7.96	R	1.73	1	1	4.6	4.6	∞
Phantom and Tissue Parameters									
Phantom Uncertainty (shape and thickness tolerances)	7.2.2	4	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity – Deviation from target values	7.2.3	5	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity – Measurement uncertainty	7.2.3	4.3	N	1	0.64	0.43	2.8	1.8	5
Liquid Permittivity – Deviation from target values	7.2.3	5	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity – Measurement uncertainty	7.2.3	4.3	N	1	0.6	0.49	2.6	2.1	5
Combined standard Uncertainty			RSS				10.3	9.9	154
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=2				20.6	19.72	

Estimated total measurement uncertainty for the DASY4 measurement system was ± 10.3 . The extended uncertainty ($K = 2$) was assessed to be ± 20.6 based on 95% confidence level. The uncertainty is not added to the measurement result.

Table: Uncertainty Budget for DASY4 Version V4.5 Build19 - Validation

a	b	c	d	e= f(d,k)	f	g	h=cxf/e	i=cxg/e	k
Uncertainty Component	Sec.	Tol. (6%)	Prob. Dist.	Div.	$C_i (1g)$	$C_i (10g)$	$1g u_i (6\%)$	$10g u_i (6\%)$	v_i
Measurement System									
Probe Calibration (k=1) (standard calibration)	E.2.1	4.8	N	1	1	1	4.8	4.8	∞
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	∞
Hemispherical Isotropy	E.2.2	0	R	1.73	1	1	0.0	0.0	∞
Boundary Effect	E.2.3	1	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	1	N	1	1	1	1.0	1.0	∞
Response Time	E.2.7	0	R	1.73	1	1	0.0	0.0	∞
Integration Time	E.2.8	0	R	1.73	1	1	0.0	0.0	∞
RF Ambient Conditions	E.6.1	0.05	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning with respect to Phantom Shell	E.6.3	2.9	R	1.73	1	1	1.7	1.7	∞
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E.5	1	R	1.73	1	1	0.6	0.6	∞
Test Sample Related									
Dipole Axis to Liquid Surface		2	R	1.73	1	1	1.2	1.2	∞
Power Drift		4.7	R	1.73	1	1	2.7	2.7	∞
				□					□
Phantom and Tissue Parameters									
Phantom Uncertainty (shape and thickness tolerances)	E.3.1	4	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity – Deviation from target values	E.3.2	5	R	1.73	0.6	0.43	1.7	1.2	∞
Liquid Conductivity – Measurement uncertainty	E.3.3	2.5	N	1.73	0.6	0.43	0.9	0.6	5
Liquid Permittivity – Deviation from target values	E.3.2	5	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity – Measurement uncertainty	E.3.3	2.5	N	1.73	0.6	0.49	0.9	0.7	5
Combined standard Uncertainty			RSS				8.0	7.8	154
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=2				16.0	15.63	

Estimated total measurement uncertainty for the DASY4 measurement system was $\pm 8.0\%$. The extended uncertainty ($K = 2$) was assessed to be $\pm 16.0\%$ based on 95% confidence level. The uncertainty is not added to the Validation measurement result.

6.0 EQUIPMENT LIST AND CALIBRATION DETAILS

Table: SPEAG DASY4 Version V4.5 Build19

Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Due	Used For this Test?
Robot - Six Axes	Staubli	RX90BL	N/A	Not applicable	Yes
Robot Remote Control	SPEAG	CS7MB	RX90B	Not applicable	Yes
SAM Phantom	SPEAG	N/A	1260	Not applicable	Yes
SAM Phantom	SPEAG	N/A	1060	Not applicable	No
Flat Phantom	AndreT	10.1	P 10.1	Not Applicable	Yes
Flat Phantom	AndreT	9.1	P 9.1	Not Applicable	No
Flat Phantom	SPEAG	PO1A 6mm	1003	Not Applicable	No
Data Acquisition Electronics	SPEAG	DAE3 V1	359	07-July-2006	No
Data Acquisition Electronics	SPEAG	DAE3 V1	442	08-Dec-2006	Yes
Probe E-Field - Dummy	SPEAG	DP1	N/A	Not applicable	No
Probe E-Field	SPEAG	ET3DV6	1380	14-Dec-2006	Yes
Probe E-Field	SPEAG	ET3DV6	1377	14-July-2006	No
Probe E-Field	SPEAG	ES3DV6	3029	1-Nov-2005	No
Probe E-Field	SPEAG	EX3DV4	3563	1-July-2006	No
Antenna Dipole 300 MHz	SPEAG	D300V2	1005	26-Oct-2007	No
Antenna Dipole 450 MHz	SPEAG	D450V2	1009	15-Dec-2006	No
Antenna Dipole 900 MHz	SPEAG	D900V2	047	12-July-2006	No
Antenna Dipole 1640 MHz	SPEAG	D1640V2	314	25-May-2006	No
Antenna Dipole 1800 MHz	SPEAG	D1800V2	242	13-July-2006	Yes
Antenna Dipole 2450 MHz	SPEAG	D2450V2	724	2-Nov-2006	No
Antenna Dipole 3500 MHz	SPEAG	D3500V2	1002	1-July-2007	No
Antenna Dipole 5600 MHz	SPEAG	D5GHzV2	1008	27-Oct-2007	No
RF Amplifier	EIN	603L	N/A	In test	No
RF Amplifier	Mini-Circuits	ZHL-42	N/A	In test	Yes
RF Amplifier	Mini-Circuits	ZVE-8G	N/A	In test	No
Synthesized signal generator	Hewlett Packard	ESG-D3000A	GB37420238	*Not Required	Yes
RF Power Meter Dual	Hewlett Packard	437B	3125012786	28-May-2006	Yes
RF Power Sensor 0.01 - 18 GHz	Hewlett Packard	8481H	1545A01634	30-May-2006	Yes
RF Power Meter Dual	Gigatronics	8542B	1830125	13-April-2006	Yes
RF Power Sensor	Gigatronics	80301A	1828805	13-April-2006	Yes
RF Power Meter Dual	Hewlett Packard	435A	1733A05847	*Not Required	Yes
RF Power Sensor	Hewlett Packard	8482A	2349A10114	*Not Required	Yes
Network Analyser	Hewlett Packard	8714B	GB3510035	31-Aug-2006	No
Network Analyser	Hewlett Packard	8753ES	JP39240130	11-Aug-2006	Yes
Dual Directional Coupler	Hewlett Packard	778D	1144 04700	In test	No
Dual Directional Coupler	NARDA	3022	75453	In test	Yes

7.0 SAR TEST METHOD

7.1 Description of the Test Positions

SAR measurements were performed in the "Belt Clip" positions. The "Belt Clip" position was measured in the flat section of the AndreT 10.1 phantom. The UPSCS radio is not intended to be used at the head.

See Appendix A for photos of test positions.

7.1.1 "Belt Clip" Position

The device was tested in the (2.00 mm) flat section of the AndreT phantom for the "Belt Clip" position. A belt clip maintained a distance of approximately 5 mm between the back of the device and the flat phantom. The Transceiver was placed at the flat section of the phantom and suspended until the Belt Clip touched the phantom. The belt clip was made of plastic and the device was connected with the hands free earpiece/microphone.

7.2 List of All Test Cases (Antenna In/Out, Test Frequencies, User Modes)

The device has a fixed antenna. The SAR was measured at three test channels with the test sample operating at maximum power, as specified in section 2.1.

7.3 FCC RF Exposure Limits for Occupational/ Controlled Exposure

Spatial Peak SAR Limits For:	
Partial-Body:	8.0 mW/g (averaged over any 1g cube of tissue)
Hands, Wrists, Feet and Ankles:	20.0 mW/g (averaged over 10g cube of tissue)

7.4 FCC RF Exposure Limits for Un-controlled/Non-occupational

Spatial Peak SAR Limits For:	
Partial-Body:	1.6 mW/g (averaged over any 1g cube of tissue)
Hands, Wrists, Feet and Ankles:	4.0 mW/g (averaged over 10g cube of tissue)

8.0 SAR MEASUREMENT RESULTS

The SAR values averaged over 1 g and 10 g tissue masses were determined for the sample device for the "Body Worn position" configuration of the phantom and the results are given in table below. Please note that the bandwidth of the DUT was less than 10 MHz and only the middle channel configuration was tested.

The plots with the corresponding SAR distributions, which reveal information about the location of the maximum SAR with respect to the devices, are contained in Appendix B of this report.

Table: SAR MEASUREMENT RESULTS

1. Test Position	2. Plot No.	3. Test Channel	4. Test Freq (MHz)	5. Measured 1g SAR Results (mW/g)	6. Measured Drift (dB)
Belt Clip Position	1	3	1925	0.009	-0.328

Note: The uncertainty of the system ($\pm 20.6\%$) has not been added to the results.

The highest SAR level recorded was 0.009 mW/g for a 1g cube. This value was measured in the "Belt Clip" position at a frequency of 1925 MHz (Channel 3).

The FCC SAR limit for Non-occupational exposure is 1.6 m W/g measurement in a 1g cube of tissue.

9.0 COMPLIANCE STATEMENT

The Vitec Group Communications UPSCS radio belt pack model CEL-BP was tested on behalf of TRL Compliance Ltd. It complied with the FCC SAR requirements.

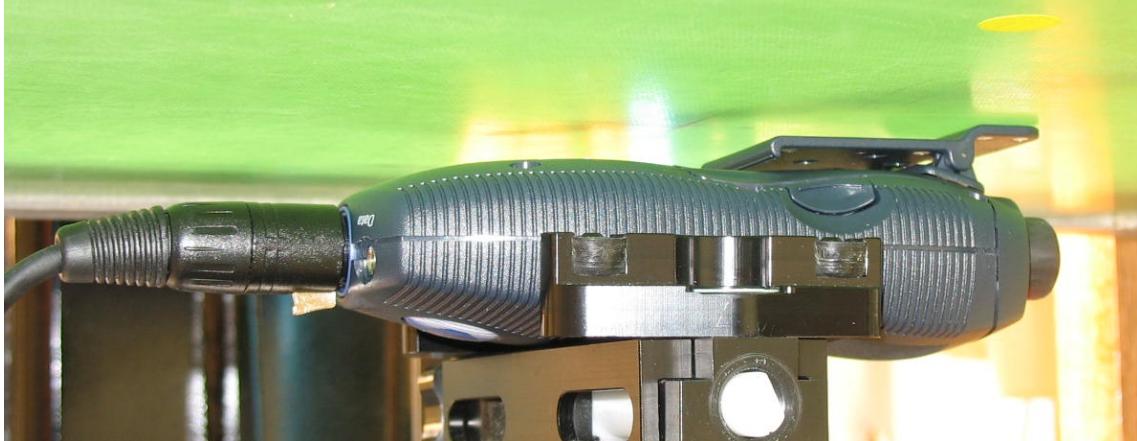
The highest SAR level recorded was 0.009 mW/g for a 1g cube. This value was measured in the "Belt Clip" position, and was below the uncontrolled limit of 1.6 mW/g, even taking into account the measurement uncertainty of 20.6 %.

APPENDIX A1 Test Sample Photographs

Battery 1

Battery 2

Vitec Group Communications UPCS radio belt pack, CEL-BP



Vitec Group Communications UPCS radio belt pack, CEL-BP

APPENDIX A2 Test Setup Photograph

Body Worn Position

Body Worn Position

APPENDIX B Plots Of The SAR Measurements

Plots of the measured SAR distributions inside the phantom are given in this Appendix for all tested configurations. The spatial peak SAR values were assessed with the procedure described in this report.

Table: 1800MHz Band SAR Measurement Plot Numbers

Test Position	Plot Number	Test Channel
Belt Clip Position	1	3

Table: 1800MHz Validation Plot Numbers

Date	Plot Number	Frequency
31 st March 2006	2	1800 MHz
Z-axis Graph for Plot 1 and 2		

Test Date: 31 March 2006

File Name: [1900 MHz Belt Clip DECT \(DAE442 Probe1380\) 31-03-06.da4](#)

DUT: CellCom Clear-Com DECT Beltpack Transmitter; **Type:** CEL-BP; **Serial:** 3332

* Communication System: DECT 1900 MHz; Frequency: 1925 MHz; Duty Cycle: 1:12

* Medium parameters used: $\sigma = 1.56861 \text{ mho/m}$, $\epsilon_r = 51.6466$; $\rho = 1000 \text{ kg/m}^3$

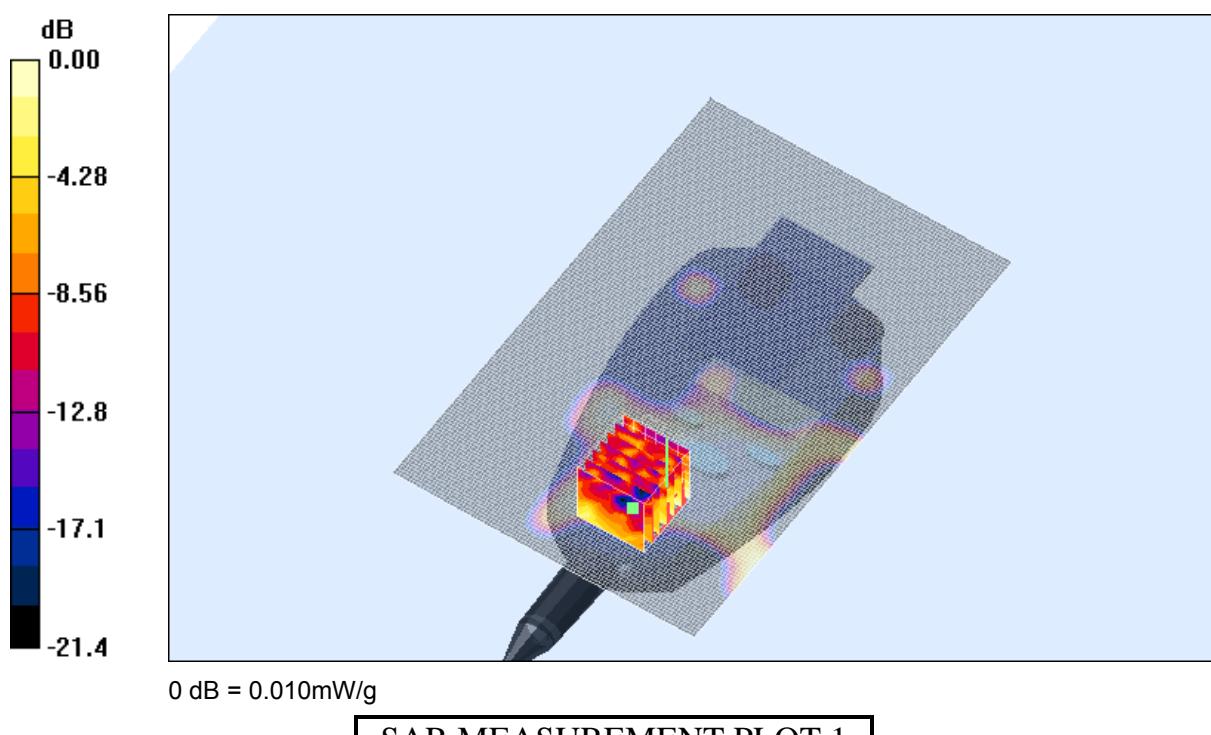
- Electronics: DAE3 Sn442; Probe: ET3DV6 - SN1380; ConvF(4.33, 4.33, 4.33)

- Phantom: Flat Phantom 10.1; Serial: P 10.1; Phantom section: Flat 2.2 Section

Channel 3 Test 2/Area Scan (91x141x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (interpolated) = 0.014 mW/g

Channel 3 Test 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5\text{mm}$,


$dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 2.55 V/m; Power Drift = -0.328 dB

Peak SAR (extrapolated) = 0.014 W/kg

SAR(1 g) = 0.00895 mW/g; SAR(10 g) = 0.00529 mW/g

Maximum value of SAR (measured) = 0.010 mW/g

Ambient Temperature

21.2 Degrees Celsius

Liquid Temperature

20.9 Degrees Celsius

Humidity

52.0 %

Test Date: 31 March 2006

File Name: [Validation 1800 MHz \(DAE442 Probe1380\) 31-03-06.da4](#)

DUT: Dipole 1800 MHz; Type: DV1800V2; Serial: 242

* Communication System: CW 1800 MHz; Frequency: 1800 MHz; Duty Cycle: 1:1

* Medium parameters used: $\sigma = 1.3437 \text{ mho/m}$, $\epsilon_r = 39.4452$; $\rho = 1000 \text{ kg/m}^3$

- Electronics: DAE3 Sn442; Probe: ET3DV6 - SN1380; ConvF(5.02, 5.02, 5.02)

- Phantom: SAM 22; Serial: 1260; Phantom section: Flat Section

Channel 1 Test/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 11.4 mW/g


Channel 1 Test/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.7 V/m; Power Drift = -0.016 dB

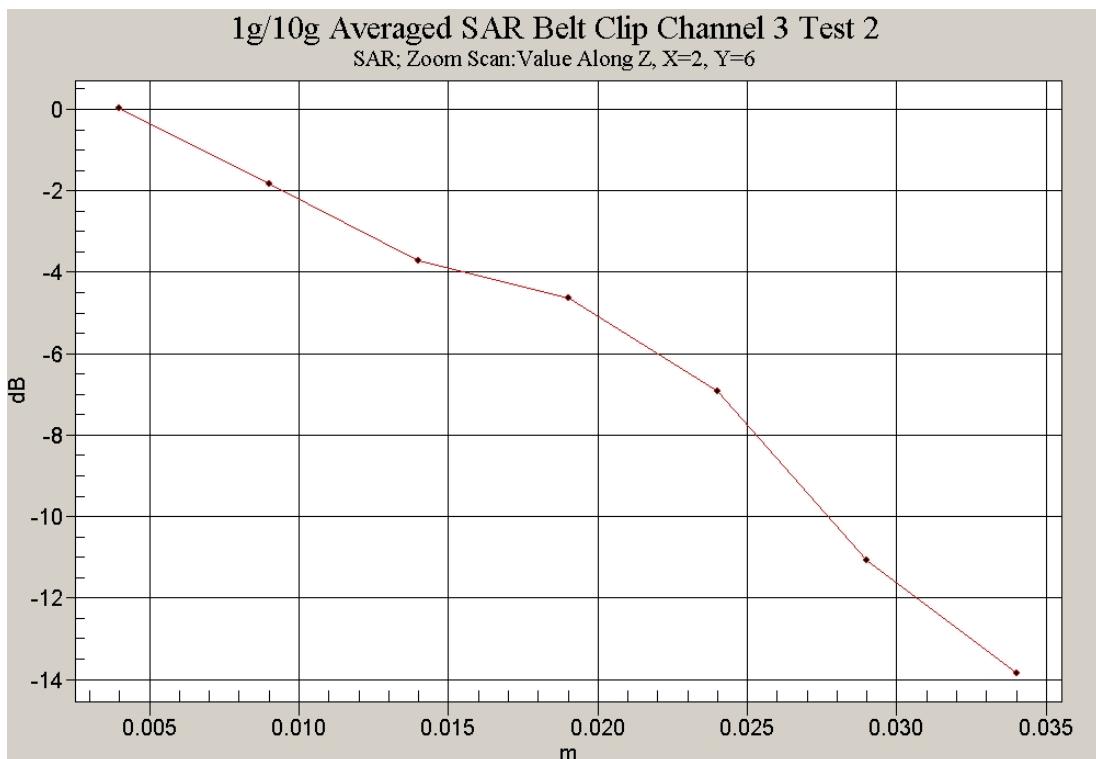
Peak SAR (extrapolated) = 15.9 W/kg

SAR(1 g) = 9.06 mW/g; SAR(10 g) = 4.83 mW/g

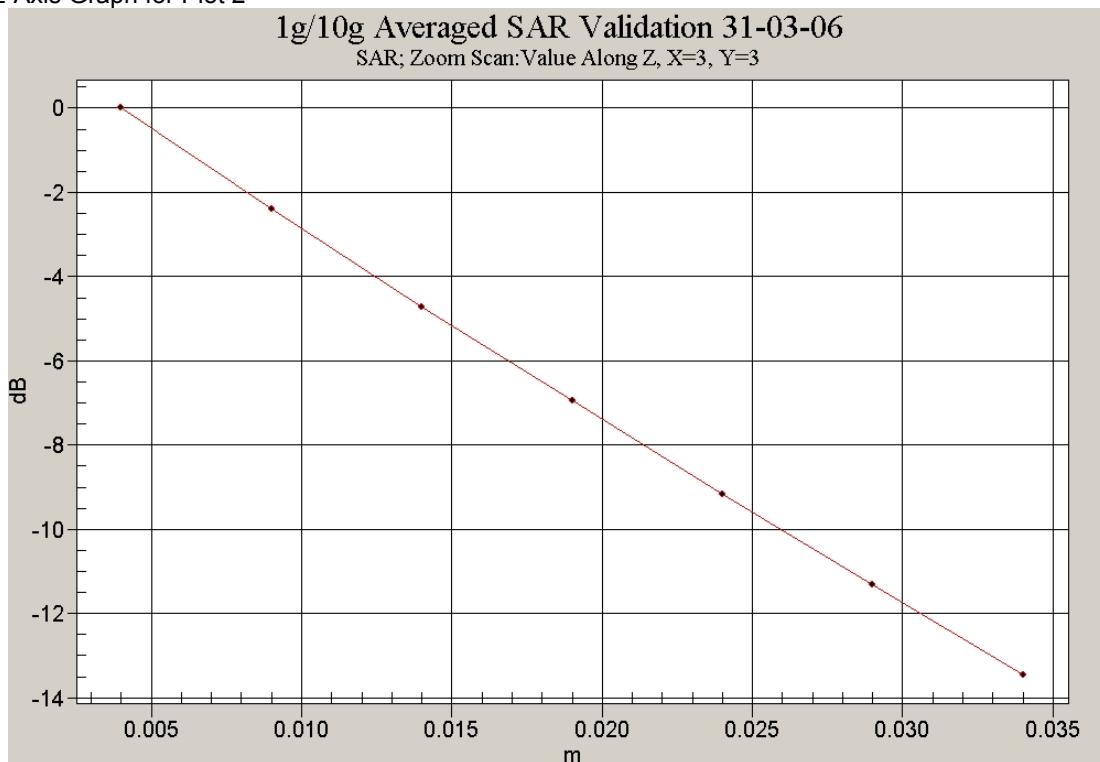
Maximum value of SAR (measured) = 10.2 mW/g

Ambient Temperature

21.2 Degrees Celsius


Liquid Temperature

20.9 Degrees Celsius


Humidity

52.0 %

Z-Axis Graph for Plot 1

Z-Axis Graph for Plot 2

APPENDIX C
SAR TESTING EQUIPMENT CALIBRATION CERTIFICATE ATTACHMENTS

Calibration Certificate Attachments

1. 1380 E-Field Probe Calibration Sheet	9 Pages
2. 2500MHz Dipole Calibration Sheet	5 pages