

# Global United Technology Services Co., Ltd.

Report No.: GTSE13070117101

# TEST REPORT

Applicant: Ambient, LLC dba Ambient Weather

Address of Applicant: 6845 W. Frye Road Chandler, AZ 85226

**Equipment Under Test (EUT)** 

**Product Name:** Wireless Thermometer

Model No.: WS09, WS09-C, WS091, WS091-C

FCC ID: S2SWS09

Applicable standards: FCC CFR Title 47 Part 15 Subpart B:2012

July 23, 2013 Date of sample receipt:

July 23-August 02, 2013 **Date of Test:** 

August 02, 2013 Date of report issue:

**Test Result:** PASS \*

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS International Electrical Approvals or testing done by GTS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by GTS International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.



## 2 Version

| Version No. | Date            | Description |
|-------------|-----------------|-------------|
| 00          | August 02, 2013 | Original    |
|             |                 |             |
|             |                 |             |
|             |                 |             |
|             |                 |             |

| Prepared By: | hank. yan        | Date:         | August 02, 2013 |
|--------------|------------------|---------------|-----------------|
|              | Project Engineer |               |                 |
| Check By:    | Homs. Hu         | Date:         | August 02, 2013 |
|              | Reviewer         | <del></del> - |                 |



#### 3 **Contents**

|   |     |                                             | Page |
|---|-----|---------------------------------------------|------|
| 1 | COV | /ER PAGE                                    | 1    |
| 2 | VER | SION                                        | 2    |
| 3 | CON | ITENTS                                      | 3    |
| 4 | TES | T SUMMARY                                   | 4    |
| 5 | GEN | IERAL INFORMATION                           | 5    |
|   | 5.1 | CLIENT INFORMATION                          | 5    |
|   | 5.2 | GENERAL DESCRIPTION OF EUT                  | 5    |
|   | 5.3 | TEST MODE                                   | 5    |
|   | 5.4 | TEST FACILITY                               | 6    |
|   | 5.5 | TEST LOCATION                               |      |
|   | 5.6 | DESCRIPTION OF SUPPORT UNITS                |      |
|   | 5.7 | DEVIATION FROM STANDARDS                    |      |
|   | 5.8 | ABNORMALITIES FROM STANDARD CONDITIONS      |      |
|   | 5.9 | OTHER INFORMATION REQUESTED BY THE CUSTOMER |      |
| 6 | TES | T INSTRUMENTS LIST                          | 7    |
| 7 | TES | T RESULTS AND MEASUREMENT DATA              | 8    |
|   | 7.1 | RADIATED EMISSION                           | 8    |
| 8 | TES | T SETUP PHOTO                               | 14   |
| 9 | EUT | CONSTRUCTIONAL DETAILS                      | 15   |

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



## 4 Test Summary

| Test Item          | Section in CFR 47 | Result |  |  |
|--------------------|-------------------|--------|--|--|
| Conducted Emission | Part15.107        | N/A    |  |  |
| Radiated Emissions | Part15.109        | PASS   |  |  |

PASS: The EUT complies with the essential requirements in the standard.

N/A: not applicable.



## **5** General Information

#### 5.1 Client Information

| Applicant:               | Ambient, LLC dba Ambient Weather                                            |
|--------------------------|-----------------------------------------------------------------------------|
| Address of Applicant:    | 6845 W. Frye Road Chandler, AZ 85226                                        |
| Manufacturer:            | Shenzhen Kello Sciece Technology Co., Ltd.                                  |
| Address of Manufacturer: | 32nd Building Area B Tanglang Industrial Park Xili Shenzhen Guangdong China |
| Factory:                 | Shenzhen Kello Sciece Technology Co., Ltd.                                  |
| Address of Factory:      | 32nd Building Area B Tanglang Industrial Park Xili Shenzhen Guangdong China |

## 5.2 General Description of EUT

| Product Name:   | Wireless Thermometer                                                                                                                                                                                   |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model No.:      | WS09, WS09-C, WS091, WS091-C                                                                                                                                                                           |
| Test Model No.: | WS09                                                                                                                                                                                                   |
| Remark:         | WS09, WS09-C, WS091 and WS091-C are identical in the same PCB layout, interior structure and electrical circuits. The only differences are the appearance color and model name for commercial purpose. |
| Power supply:   | DC 6.0V(4*1.5V("AAA" Size battery))                                                                                                                                                                    |

#### 5.3 Test mode

| Receiving mode | Keep the EUT in Receiving mode. |
|----------------|---------------------------------|
|----------------|---------------------------------|



#### 5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • CNAS —Registration No.: CNAS L5775

CNAS has accredited Global United Technology Services Co., Ltd. To ISO/IEC 17025 General Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

#### • FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance

from the FCC is maintained in files. Registration 600491, June 28, 2013.

#### • Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

#### 5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-27798480 Fax: 0755-27798960

### 5.6 Description of Support Units

None

#### 5.7 Deviation from Standards

None.

#### 5.8 Abnormalities from Standard Conditions

None.

#### 5.9 Other Information Requested by the Customer

None.

Global United Technology Services Co., Ltd.

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Shenzhen, China 518102

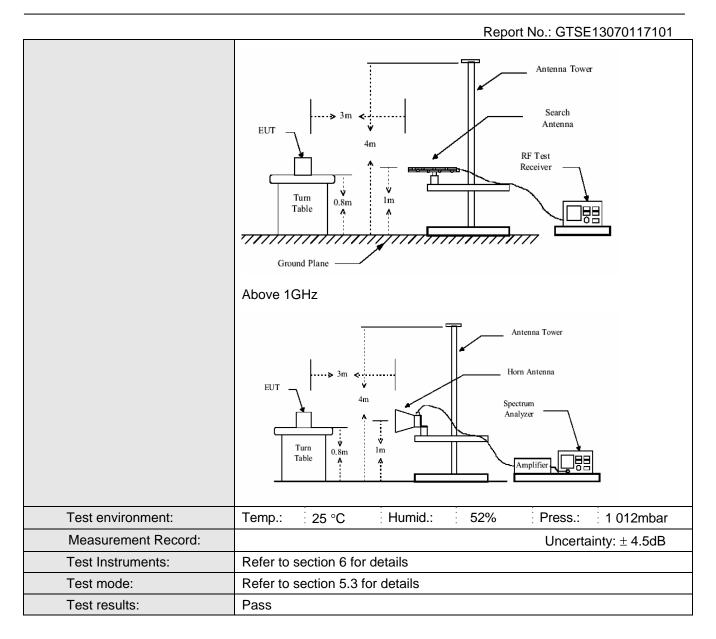
Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



## **6** Test Instruments list

| Radi | Radiated Emission:                   |                                       |                                    |                  |                        |                            |  |  |  |
|------|--------------------------------------|---------------------------------------|------------------------------------|------------------|------------------------|----------------------------|--|--|--|
| Item | Test Equipment                       | Test Equipment Manufacturer Model No. |                                    | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |  |
| 1    | 3m Semi- Anechoic<br>Chamber         | ZhongYu Electron                      | gYu Electron 9.0(L)*6.0(W)* 6.0(H) |                  | Mar. 29 2013           | Mar. 28 2014               |  |  |  |
| 2    | Control Room                         | ZhongYu Electron                      | 6.2(L)*2.5(W)* 2.4(H)              | GTS251           | N/A                    | N/A                        |  |  |  |
| 3    | ESU EMI Test Receiver                | R&S                                   | ESU26                              | GTS203           | Jun. 29 2013           | Jun. 29 2014               |  |  |  |
| 4    | BiConiLog Antenna                    | SCHWARZBECK                           | VULB9163                           | GTS214           | Jun. 29 2013           | Jun. 29 2014               |  |  |  |
| 5    | Double -ridged waveguide SCHWARZBECK |                                       | 9120D                              | GTS208           | Jun. 29 2013           | Jun. 29 2014               |  |  |  |
| 6    | RF Amplifier                         | HP                                    | 8347A                              | GTS204           | Jun. 29 2013           | Jun. 29 2014               |  |  |  |
| 7    | Preamplifier                         | HP                                    | 8349B                              | GTS206           | Jun. 29 2013           | Jun. 29 2014               |  |  |  |
| 8    | EMI Test Software                    | AUDIX                                 | E3                                 | N/A              | N/A                    | N/A                        |  |  |  |
| 9    | Coaxial cable                        | GTS                                   | N/A                                | GTS210           | Jul. 07 2013           | Jul. 06 2014               |  |  |  |
| 10   | Coaxial Cable                        | GTS                                   | N/A                                | GTS211           | Jul. 07 2013           | Jul. 06 2014               |  |  |  |
| 11   | Thermo meter                         | N/A                                   | N/A                                | GTS256           | Jul. 01 2013           | Jul. 01 2014               |  |  |  |

| General used equipment: |                                |           |           |                  |                        |                         |  |  |
|-------------------------|--------------------------------|-----------|-----------|------------------|------------------------|-------------------------|--|--|
| Item                    | em Test Equipment Manufacturer |           | Model No. | Inventory<br>No. | Cal.Date<br>(dd-mm-yy) | Cal.Due date (dd-mm-yy) |  |  |
| 1                       | Barometer                      | ChangChun | DYM3      | GTS257           | Jul. 27 2013           | Jul. 27 2014            |  |  |




## 7 Test Results and Measurement Data

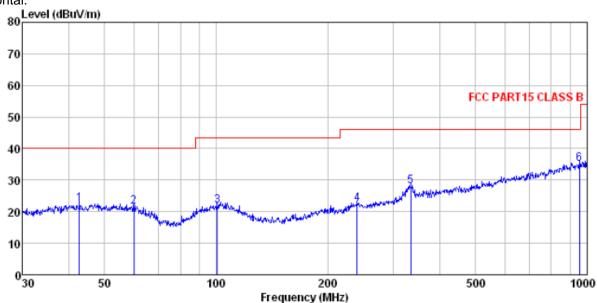
#### 7.1 Radiated Emission

| 7.1 | 7.1 Radiated Emission |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-----|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|     | Test Requirement:     | FCC Part15 B Section 15.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     | Test Method:          | ANSI C63.4:2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                 |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     | Test Frequency Range: | 30MHz to 2GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     | Test site:            | Measurement Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | stance: 3m (      | Semi-Anecho      | ic Chambe      | r)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|     | Receiver setup:       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     |                       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Detector          | RBW              | VBW            | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|     |                       | 30MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Quasi-pea<br>Peak | k 120kHz<br>1MHz | 300kHz<br>3MHz | Quasi-peak Value<br>Peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|     |                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Peak              | 1MHz             | 10Hz           | Average Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                  |                | The standard of the standard o |  |
|     | Limit:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     |                       | Frequen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | су                | Limit (dBuV      | /m @3m)        | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|     |                       | 30MHz-88MHz 40.00 Quasi-peak V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     |                       | 88MHz-216MHz 43.50 Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     |                       | 216MHz-960MHz 46.00 Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     |                       | 960MHz-1GHz 54.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                  |                | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|     |                       | 54 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                  | Average Value  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     |                       | Above 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iHZ -             | 74.0             | 0              | Peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|     | Test Procedure:       | <ol> <li>The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.</li> <li>The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have</li> </ol> |                   |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     | Test setup:           | average methors  Below 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                |                  |                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|     |                       | D010W 10112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |





#### Note:


The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor



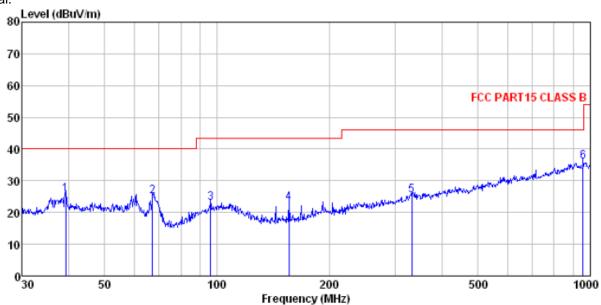
#### **Measurement Data**

Below 1GHz Horizontal:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163-2013M HORIZONTAL : 1171RF Condition


Job No.

Test Mode Test Engin : Receiving mode

| 551 | rugineer: | nauk   |         |       |        |          |               |         |        |
|-----|-----------|--------|---------|-------|--------|----------|---------------|---------|--------|
|     |           | Read   | Antenna | Cable | Preamp |          | Limit         | Over    |        |
|     | Frea      | Level  | Factor  | Loss  | Factor | Level    | Line          | Limit   | Remark |
|     |           |        |         |       |        |          |               |         |        |
|     | MHz       | dBu∀   | aB7=    | dB    | dB     | dBuV/m   | dBuV/m        | dB      |        |
|     | Juiz      | ana,   | ш, ж    | ш     | ш      | and 47 m | CED CE V/ JIL | ш       |        |
| 1   | 42.750    | 38. 25 | 15.56   | 0.69  | 32.03  | 22.47    | 40.00         | -17, 53 | OP     |
| ÷   |           |        |         |       |        |          |               |         | -      |
| 2   | 60.069    |        |         | U. 86 | 31.94  |          |               |         | -      |
| 3   | 100.581   | 37.42  | 15.11   | 1.19  | 31.76  | 21.96    | 43.50         | -21.54  | QP     |
| 4   | 239.987   | 38.33  | 14.09   | 2.07  | 32.16  | 22.33    | 46.00         | -23.67  | QP     |
| 5   | 334.859   | 41.71  | 15.92   | 2.54  | 32.07  | 28.10    | 46.00         | -17.90  | QP     |
| 6   | 952.094   | 37.83  | 23.43   | 5.04  | 31.21  | 35.09    | 46.00         | -10.91  | QP     |

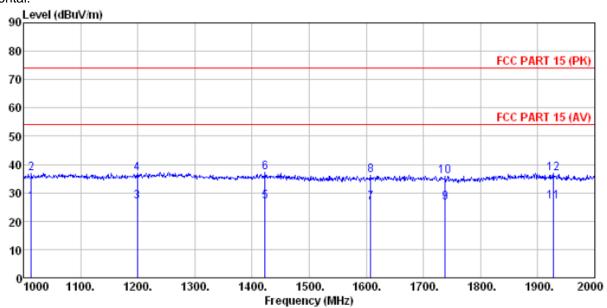


#### Vertical:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163-2013M VERTICAL : 1171RF Condition


Job No.

rest Mode : Receiving mode Test Engineer: Hamb

| 650 | rugineer.                               |       |          |       |        |        |        |        |        |
|-----|-----------------------------------------|-------|----------|-------|--------|--------|--------|--------|--------|
|     |                                         | Read  | Ant enna | Cable | Preamp |        | Limit  | Over   |        |
|     | Freq                                    | Level | Factor   | Loss  | Factor | Level  | Line   | Limit  | Remark |
|     | -                                       |       |          |       |        |        |        |        |        |
|     | MHz                                     | dBu∀  | —dB/m    | dB    | dB     | dBuV/m | dBuV/m | dB     |        |
|     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | aba.  | ш, ж     |       |        | ши, ж  | ши, ж  |        |        |
| 1   | 39, 299                                 | 41.81 | 15.39    | 0. 65 | 32.06  | 25, 79 | 40.00  | -14.21 | ΩP     |
| ż   | 67.202                                  |       | 11.75    |       | 31.90  |        |        |        | •      |
| 2   |                                         |       |          |       |        |        |        |        |        |
|     | 96.099                                  | 38.83 | 14.90    | 1.16  | 31.75  | 23.14  | 43.50  | -20.36 | QP     |
| 4   | 155.910                                 | 43.03 | 10.51    | 1.60  | 32.00  | 23.14  | 43.50  | -20.36 | QP     |
| 5   | 332.519                                 | 39.16 | 15.86    | 2.53  | 32.08  | 25.47  | 46.00  | -20.53 | QP     |
| 6   | 955.438                                 | 38.74 | 23.46    | 5.06  | 31.21  | 36.05  | 46.00  | -9.95  | QP     |
|     |                                         |       |          |       |        |        |        |        |        |



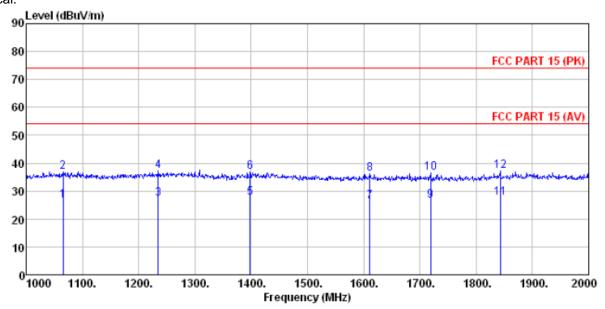
#### Above 1GHz Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120D ANT(>1GHZ) HORIZONTAL Condition

Job No. : 1171RF


Test Mode : Receiving mode Test Engineer: Hank

| esτ | Engineer: |              |              |       |        |        |        |            |         |
|-----|-----------|--------------|--------------|-------|--------|--------|--------|------------|---------|
|     |           | ReadAnt enna |              | Cable | Preamp |        | Limit  | Over       |         |
|     | Freq      | Level        | Factor       | Loss  | Factor | Level  | Line   | Limit      | Remark  |
|     | MHz       | dBu∀         | <u>dB</u> /m | dB    | āB     | dBuV/m | dBuV/m | <u>d</u> B |         |
|     |           |              | _,           |       |        |        |        |            |         |
| 1   | 1014.000  | 30.42        | 24.55        | 4.30  | 32.78  | 26.49  | 54.00  | -27.51     | Average |
| 2   | 1014.000  | 40.86        | 24.55        | 4.30  | 32.78  | 36.93  | 74.00  | -37.07     | Peak    |
| 3   | 1199.000  | 30.03        | 25.34        | 4.47  | 33.10  | 26.74  | 54.00  | -27.26     | Average |
| 4   | 1199.000  | 40.19        | 25.34        | 4.47  | 33.10  | 36.90  | 74.00  | -37.10     | Peak    |
| 5   | 1423.000  | 30.37        | 25.47        | 4.63  | 33.47  | 27.00  | 54.00  | -27.00     | Average |
| 6   | 1423.000  | 40.54        | 25.47        | 4.63  | 33.47  | 37.17  | 74.00  | -36.83     | Peak    |
| 7   | 1608.000  | 30.66        | 24.96        | 4.75  | 33.79  | 26.58  | 54.00  | -27.42     | Average |
| 8   | 1608.000  | 40.32        | 24.96        | 4.75  | 33.79  | 36.24  | 74.00  | -37.76     | Peak    |
| 9   | 1738.000  | 30.85        | 25.05        | 4.82  | 34.00  | 26.72  | 54.00  | -27.28     | Average |
| 10  | 1738.000  | 40.11        | 25.05        | 4.82  | 34.00  | 35.98  | 74.00  | -38.02     | Peak    |
| 11  | 1928.000  | 30.57        | 25.86        | 4.92  | 34.34  | 27.01  | 54.00  | -26.99     | Average |
| 12  | 1928, 000 | 40.43        | 25, 86       | 4.92  | 34.34  | 36, 87 | 74.00  | -37.13     | Peak    |

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



#### Vertical:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120D ANT(>1GHZ) VERTICAL : 1171RF Condition

Job No. : Receiving mode

Test Mode Test Engi

| lest | Engineer:                               | Hank         |        |       |        |         |        |        |         |
|------|-----------------------------------------|--------------|--------|-------|--------|---------|--------|--------|---------|
|      |                                         | ReadAnt enna |        | Cable | Preamp |         | Limit  | Over   |         |
|      | Freq                                    | Level        | Factor | Loss  | Factor | Level   | Line   | Limit  | Remark  |
|      |                                         |              |        |       |        |         |        |        |         |
|      | MHz                                     | dBu∜         | —dB/π  | dB    | dB     | dBuV/m  | dBuV/m | dB     |         |
|      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ша.          | ш, ш   |       |        | aba,, m | ша,, ж |        |         |
| 1    | 1066.000                                | 30.44        | 24.66  | 4.35  | 32.87  | 26.58   | 54.00  | -27.42 | Average |
| 2    | 1066.000                                | 40.87        | 24.66  | 4.35  | 32.87  | 37.01   | 74.00  | -36.99 | Peak    |
| 2    | 1235.000                                | 30.49        | 25.48  | 4.49  | 33.16  | 27.30   | 54.00  | -26.70 | Average |
| 4    | 1235.000                                | 40.29        | 25.48  | 4.49  | 33.16  | 37.10   | 74.00  | -36.90 | Peak    |
| 5    | 1398.000                                | 30.77        | 25.58  | 4.61  | 33.42  | 27.54   | 54.00  | -26.46 | Average |
| 6    | 1398.000                                | 40.07        | 25.58  | 4.61  | 33.42  | 36.84   | 74.00  | -37.16 | Peak    |
| 7    | 1611.000                                | 30.37        | 24.96  | 4.75  | 33.79  | 26.29   | 54.00  | -27.71 | Average |
| 8    | 1611.000                                | 40.23        | 24.96  | 4.75  | 33.79  | 36.15   | 74.00  | -37.85 | Peak    |
| 9    | 1719.000                                | 30.72        | 25.01  | 4.81  | 33.97  | 26.57   | 54.00  | -27.43 | Average |
| 10   | 1719.000                                | 40.71        | 25.01  | 4.81  | 33.97  | 36.56   |        | -37.44 |         |
| 11   | 1843.000                                | 31.44        | 25.50  | 4.88  | 34.20  |         |        |        | Average |
| 12   | 1843.000                                | 41.01        | 25.50  | 4.88  | 34.20  | 37. 19  |        | -36.81 |         |