

HCT. CO., LTD.

CERTIFICATION DIVISION

105-1, JANGAM-RI, MAJANG-MYEON, ICHEON-SI, KYUNGGI-DO, KOREA

TEL: +82 31 645 6300 FAX: +82 31 645 6401

CERTIFICATE OF COMPLIANCE (ERM EVALUATION)

Manufacture: Advanced RF Technologies, Inc

3116 WEST VANOWEN STREET, BURBANK, CA 91505 U.S.A

Date of Issue:

January 19, 2012

Location:

HCT CO., LTD., 105-1, Jangam-ri, Majang-Myeon,

Icheon-si, Kyunggi-Do, Korea

Test Report No.: HCTR1201FR20

HCT FRN: 0005866421

IC Recognition No.: 5944A-3

FCC ID:

IC:

S2O-SDR-700

6416A-SDR700

APPLICANT:

Advanced RF Technologies, Inc

EUT Type:

Software Define Modular Repeater

Model:

SDR-700

Frequency Ranges:

DL: 728 MHz ~ 740 MHz,746 MHz ~ 757 MHz

UL: 698 MHz ~ 710 MHz,776 MHz ~ 787 MHz

Conducted Output Power:

DL: 30.00 dBm UL: 30.05 dBm

FCC Rules Part(s):

CFR 47, Part 27

IC Rule Part(s):

RSS-Gen (Issue 2, June 2007), RSS-131 (Issue 2, July 2003)

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Part 27 of the FCC Rules under normal use and maintenance.

Report prepared by :Chang Seok Choi

Test engineer of RF Team

Approved by

: Sang Jun Lee

Manager of RF Team

Report No.: HCTR1201FR20

FCC ID: S2O-SDR-700/ IC: 6416A-SDR700

CONTENTS

1. CLIENT INFORMATION	3
2. TEST SPECIFICATIONS	4
3. STANDARDS ENVIRONMENTAL TEST CONDITIONS	4
4. TEST EQUIPMENT	5
5. RF OUTPUT POWER	6
6. OCCUPIED BANDWIDTH	13
7. SPURIOUS AND HARMONIC EMISSION AT ANTENNA TERMINAL	24
8. FIELD STRENGTH OF SPURIOUS RADIATION	53
9. FREQUENCY STABILITY OVER TEMPERATURE AND VOLTAGE VARIATIONS	57
10. RECEIVER SPURIOUS EMISSIONS	59
11. RF EXPOSURE STATEMENT	62

DATE: January 19, 2012

1. CLIENT INFORMATION

The EUT has been tested by request of

Company	Advanced RF Technologies, Inc 3116 WEST VANOWEN STREET, BURBANK, CA 91505 U.S.A	
Contact Point	Attention: Ms. Julie Song Tel.: 800-313-9345	

■ FCC ID: S2O-SDR-700

■ IC: 6416A-SDR700

■ APPLICANT: Advanced RF Technologies, Inc

■ EUT Type: Software Define Modular Repeater

■ Model: SDR-700

DL : 728 MHz \sim 740 MHz,746 MHz \sim 757 MHz

■ Frequency Ranges: UL: 698 MHz ~ 710 MHz,776 MHz ~ 787 MHz

DL: 30.00 dBm

■ Conducted Output Power: UL: 30.05 dBm

■ Antenna Gain(s) : 16 dBi

■ FCC Rules Part(s): CFR Title 47 Part 27 Sub Part C

■ IC Rules Part(s): RSS-Gen (Issue 2, June 2007), RSS-131 (Issue 2, July 2003)

■ Place of Tests: 105-1, Jangam-ri , Majang-Myeon, Icheon-si, Kyunggi-Do, 467-811,

KOREA. (IC Recognition No.: 5944A-3)

2. TEST SPECIFICATIONS

Description	Reference (FCC)	Reference (IC)	Results
RF Power Output	§2.1046; §27.50	RSS-GEN, Section 4.8 RSS-131, Section 4.3	Compliant
Occupied Bandwidth	§2.1049	RSS-131, Section 4.2 RSS-GEN, Section 4.6.1	Compliant
Spurious Emissions at Antenna Terminals	§2.1053, §27.53	RSS-131, Section 4.4 RSS-GEN, Section 4.9	Compliant
Radiated Spurious Emissions	§2.1053, §27.53	RSS-131, Section 4.4 RSS-GEN, Section 4.9	Compliant
Frequency Stability	§2.1055	RSS-131, Section 4.5 RSS-GEN, Section 4.7	Compliant
Receiver Spurious	-	RSS-131, Section 4.4 RSS-GEN, Section 4.10	Compliant

3. STANDARDS ENVIRONMENTAL TEST CONDITIONS

Temperature :	+ 15 to + 35	
Relative humidity:	30 % to 60 %	
Air pressure	860 mbar to 1 060 mbar	

4. TEST EQUIPMENT

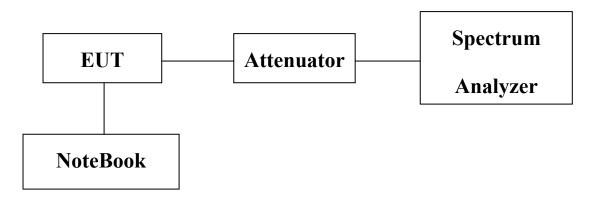
Manufacturer	Model / Equipment	Cal Interval	Calibration Due	Serial No.
Agilent	E4438C /Signal Generator	Annual	11/08/2012	MY42082646
Agilent	N5182A /Signal Generator	Annual	08/23/2012	MY50141649
Agilent	E4416A /Power Meter	Annual	11/07/2012	GB41291412
Agilent	E9327A/ Power Sensor	Annual	05/02/2012	MY4442009
Korea Eng	KR-1005L/ Temperature and Humidity Chamber	Annual	11/07/2012	KRAC05063-3CH
Agilent	N9020A /Signal Analyzer	Annual	06/10/2012	MY51110020
Agilent	8498A /ATTENUATOR	Annual	11/07/2012	51162
HD	MA240/ Antenna Position Tower	N/A	N/A	556
EMCO	1050/ Turn Table	N/A	N/A	114
HD GmbH	HD 100/ Controller	N/A	N/A	13
HD GmbH	KMS 560/ SlideBar	N/A	N/A	12
MITEQ	AMF-6D-001180-35-20P/AMP	Annual	12/26/2012	990893
Schwarzbeck	BBHA 9120D/ Horn Antenna	Biennial	10/17/2013	937
Schwarzbeck	VULB 9168/TRILOG Antenna	Biennial	02/09/2013	9168-200

5. RF OUTPUT POWER

Test Requirements:

§ 2.1046 Measurements required: RF power output:

§ 2.1046 (a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in § 2.1033(c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated. § 2.1046 (b) For single sideband, independent sideband, and single channel, controlled carrier radiotelephone transmitters, the procedure specified in paragraph (a) of this section shall be employed and, in addition, the transmitter shall be modulated during the test as specified and as applicable in § 2.1046 (b) (1-5). In all tests, the input level of the modulating signal shall be such as to develop rated peak envelope power or carrier power, as appropriate, for the transmitter.


§ 2.1046 (c) For measurements conducted pursuant to paragraphs (a) and (b) of this section, all calculations and methods used by the applicant for determining carrier power or peak envelope power, as appropriate, on the basis of measured power in the radio frequency load attached to the transmitter output terminals shall be shown. Under the test conditions specified, no components of the emission spectrum shall exceed the limits specified in the applicable rule parts as necessary for meeting occupied bandwidth or emission limitations.

§ 27.50 Power limits and duty cycle. (2) Fixed and base stations transmitting a signal in the 746–757 MHz, 758–763 MHz, 776–787 MHz, and 788–793 MHz bands with an emission bandwidth of 1 MHz or less must not exceed an ERP of 1000 watts and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted if power levels are reduced below 1000 watts ERP in accordance with Table 1 of this section.

Test Procedures:

As required by 47 CFR 2.1046, RF power output measurements were made at the RF output terminals using an attenuator and spectrum analyzer or power meter. This test was performed in all applicable modulations.

Block Diagram 1. RF Power Output Test Setup

Test Results:

Input Signal	Modulation	Level (dBm)
LTE	QPSK, 16QAM, 64QAM	-59.2

[Downlink]

Band	Bandwidth	Frequency (MHz)	Measured Average Output Power (dBm)
A	5 MIL	731	29.99
В	5 MHz	737	29.90
A&B	10 MHz	734	30.00
С		751	30.00

[Uplink]

Band	Bandwidth	Frequency (MHz)	Measured Average Output Power (dBm)
A	5 MHz	701	29.99
В		707	30.05
A&B	10 MHz	704	29.98
С		782	30.04

Plots of RF Output Power

[LTE Downlink A_5 MHz]

[LTE Downlink B_5 MHz]

[LTE Downlink A&B_10 MHz]

[LTE Downlink C_10 MHz]

[LTE Uplink A_5 MHz]

[LTE Uplink B_5 MHz]

[LTE Uplink A&B_10 MHz]

[LTE Uplink C_10 MHz]

6. OCCUPIED BANDWIDTH

Test Requirement(s): § 2.1049 Measurements required: Occupied bandwidth:

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the specified conditions of § 2.1049 (a) through (i) as applicable.

Test Procedures: As required by 47 CFR 2.1049, occupied bandwidth measurements were made with a

Spectrum Analyzer connected to the RF ports for both Uplink and Downlink
The modulation characteristics of signal generator's carrier was measured first at a
maximum RF level prescribed by the OEM. The signal generator was then connected to

either the Uplink or Downlink input at the appropriate RF level. The resulting modulated signal through the EUT was measured and compared against the original

signal.

Test Results: The EUT complies with the requirements of this section.

Input Signal	Modulation	Level (dBm)
LTE	QPSK, 16QAM, 64QAM	-59.2

[Downlink Output]

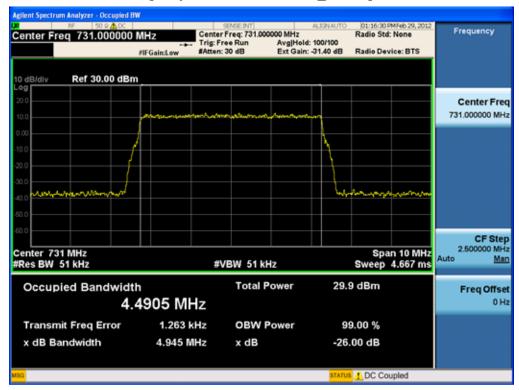
Band	Bandwidth	Frequency (MHz)	Occupied Bandwidth (MHz)
A	5 MIL	731	4.945
В	5 MHz	737	4.944
A&B	10 MHz	734	9.847
С		751	9.864

[Downlink Input]

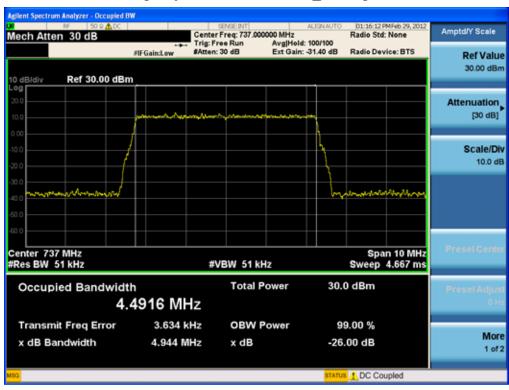
Band	Bandwidth	Frequency (MHz)	Occupied Bandwidth (MHz)
A	5 MHz	731	4.988
В	5 MHz	737	4.979
A&B	10 MHz	734	9.913
С		751	9.848

[Uplink Output]

Band	Bandwidth	Frequency (MHz)	Occupied Bandwidth (MHz)
A	5 MHz	701	4.967
В	5 MHz	707	4.918
A&B	10 MH-	704	9.867
С	10 MHz	782	9.887

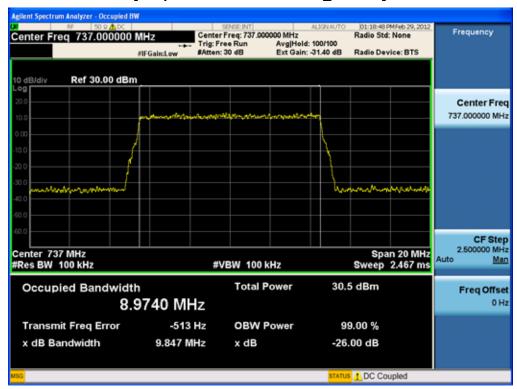

[Uplink Input]

Band	Bandwidth	Frequency (MHz)	Occupied Bandwidth (MHz)
A	5 MHz	701	4.979
В		707	4.961
A&B	10 MHz	704	9.931
С		782	9.880

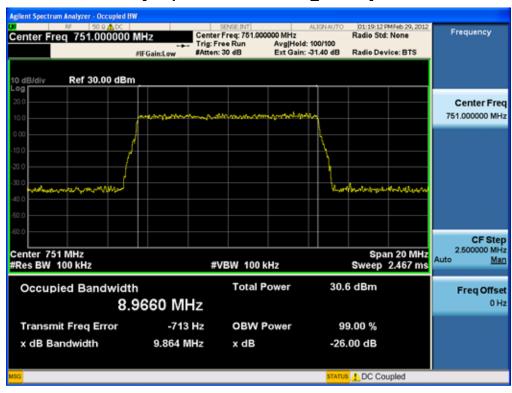


Plots of Occupied Bandwidth

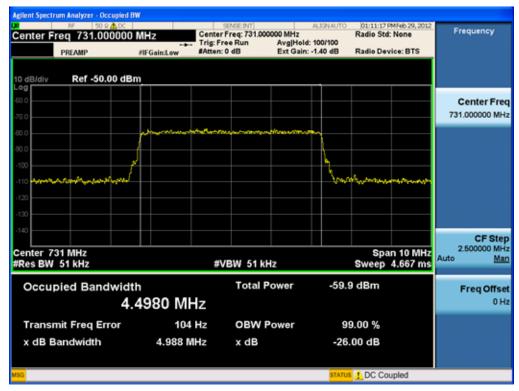
[Output LTE Downlink A_5 MHz]



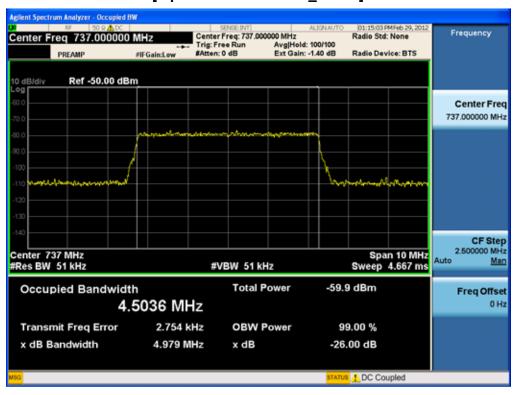
[Output LTE Downlink B_5 MHz]



[Output LTE Downlink A&B_10 MHz]

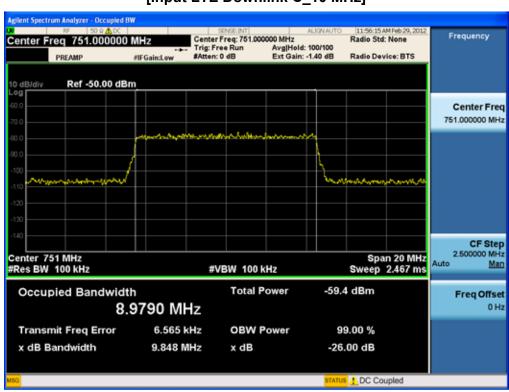


[Output LTE Downlink C_10 MHz]

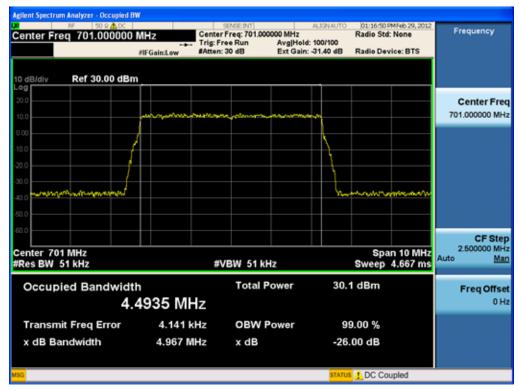


[Input LTE Downlink A_5 MHz]

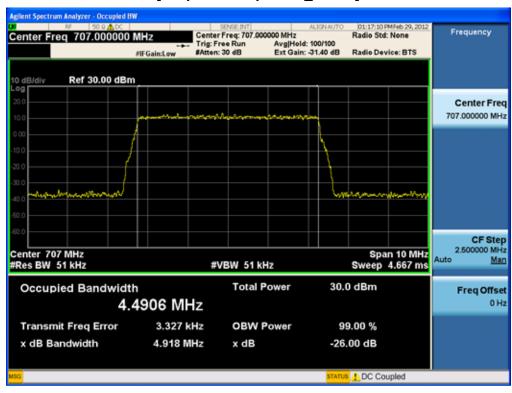
[Input LTE Downlink B_5 MHz]



[Input LTE Downlink A&B_10 MHz]



[Input LTE Downlink C_10 MHz]

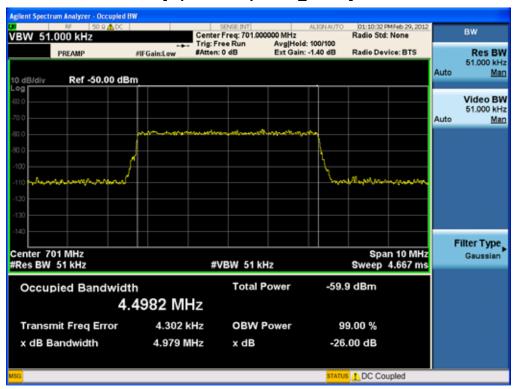


[Output LTE Uplink A_5 MHz]

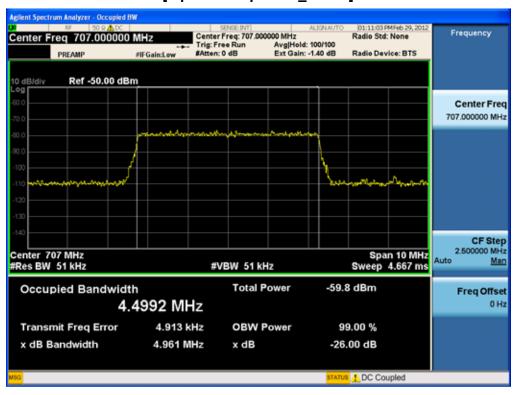
[Output LTE Uplink B_5 MHz]



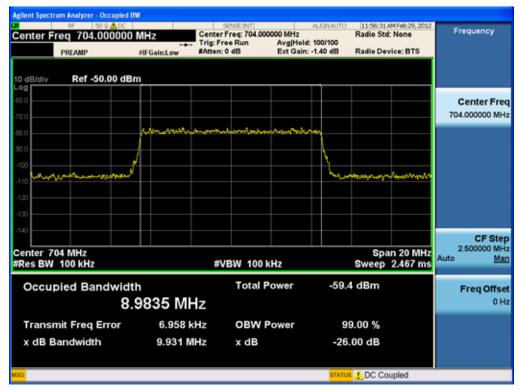
[Output LTE Uplink A&B_10 MHz]



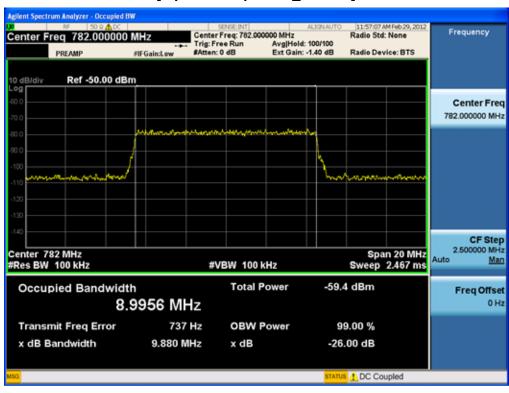
[Output LTE Uplink C_10 MHz]



[Input LTE Uplink A_5 MHz]



[Input LTE Uplink B_5 MHz]



[Input LTE Uplink A&B_10 MHz]

[Input LTE Uplink C_10 MHz]

7. SPURIOUS AND HARMONIC EMISSION AT ANTENNA TERMINAL

Test Requirement(s): § 2.1051 Measurements required: Spurious emissions at antenna terminals:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in § 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

§ 27.53 Emission limits

- (c) For operations in the 746–758 MHz band and the 776–788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:
- (1) On any frequency outside the 746–758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (2) On any frequency outside the 776–788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;
- (3) On all frequencies between 763–775 MHz and 793–805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;

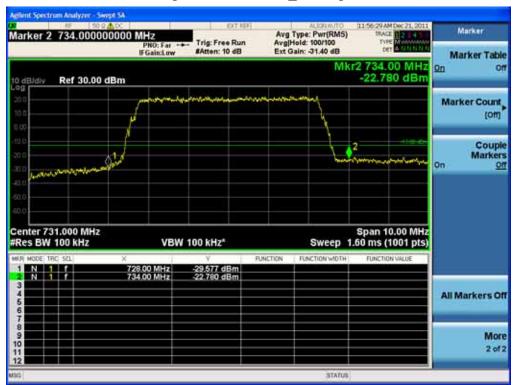
Test Procedures:

A modulated carrier generated by the signal generator carrier was connected to either the Uplink or Downlink RF port at a maximum level as determined by the spectrum analyzer was connected to either the Uplink or Downlink port depending on the circuitry being measured.

The spectrum was investigated from 30 MHz to the 26.5 GHz of the carrier.

Test Results:

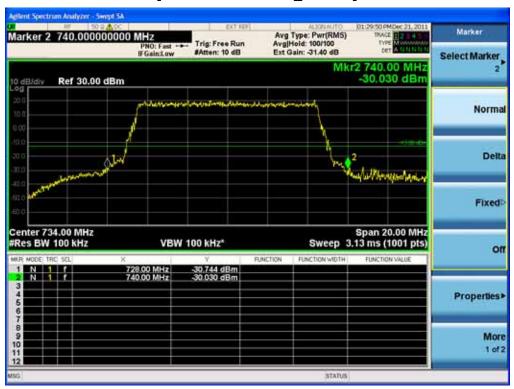
The EUT complies with the requirements of this section. There were no detectable Spurious emissions for this EUT.


HCT Co., Ltd.

105-1, Jangam-ri, Majang-Myeon, Icheon-si, Kyunggi-Do, Korea TEL: +82 31 645 6300 FAX: +82 31 645 6401 <u>www.hct.co.kr</u>

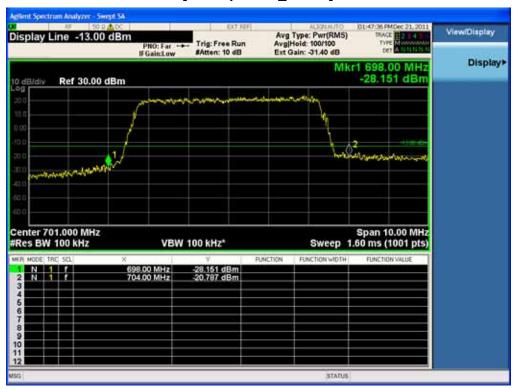
Plots of BAND EDGE

[LTE Downlink A_5 MHz]

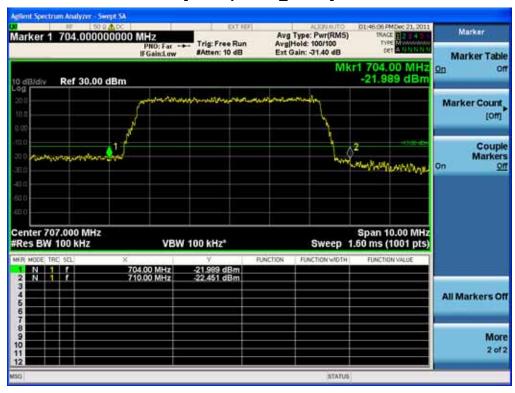


[LTE Downlink B_5 MHz]

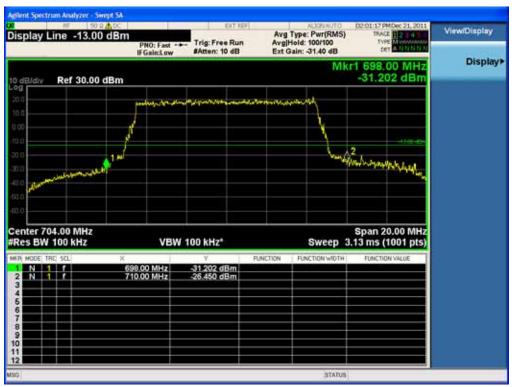
[LTE Downlink A&B_10 MHz]



[LTE Downlink C_10 MHz]



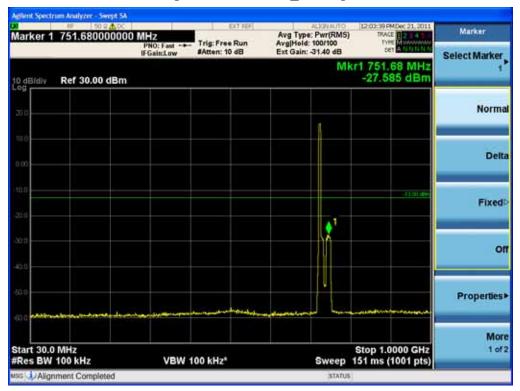
[LTE Uplink A_5 MHz]

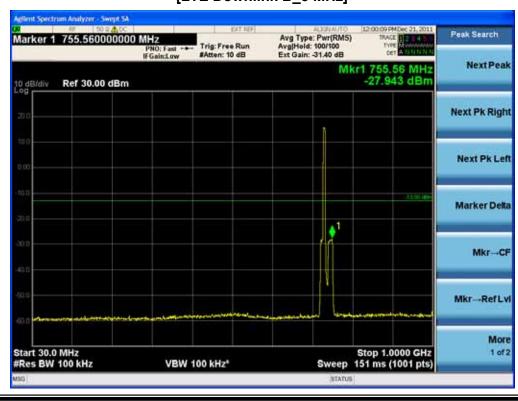


[LTE Uplink B_5 MHz]

[LTE Uplink A&B_10 MHz]

[LTE Uplink C_10 MHz]

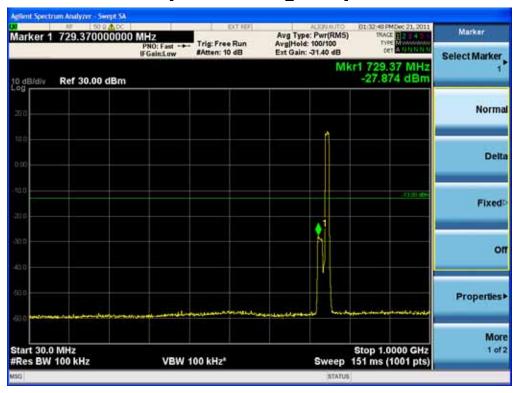



Plots of Spurious Emission

Conducted Spurious Emissions (30 MHz – 1 GHz)

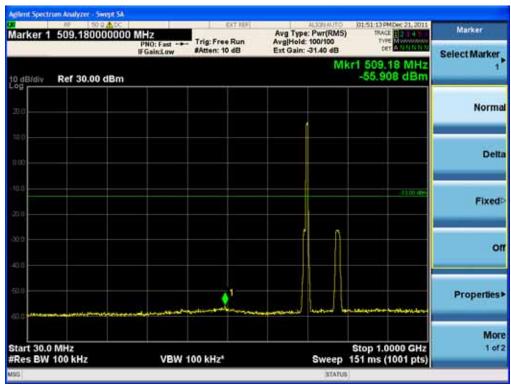
[LTE Downlink A_5 MHz]

[LTE Downlink B_5 MHz]

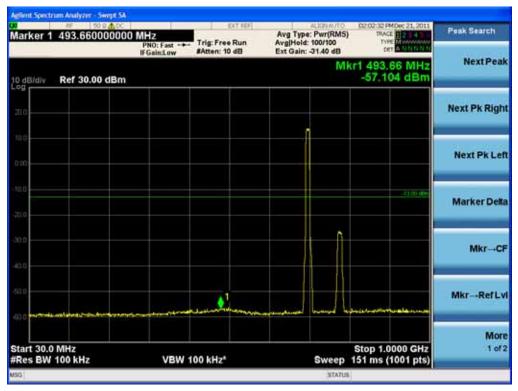


[LTE Downlink A&B_10 MHz]

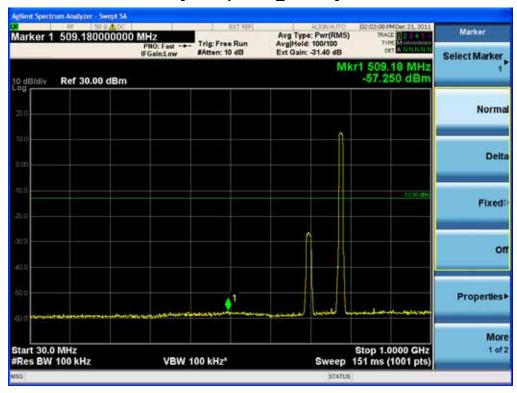
[LTE Downlink C_10 MHz]



[LTE Uplink A_5 MHz]



[LTE Uplink B_5 MHz]



[LTE Uplink A&B_10 MHz]

[LTE Uplink C_10 MHz]

Conducted Spurious Emissions (1 GHz -26.5 GHz)

[LTE Downlink A_5 MHz]

[LTE Downlink B_5 MHz]

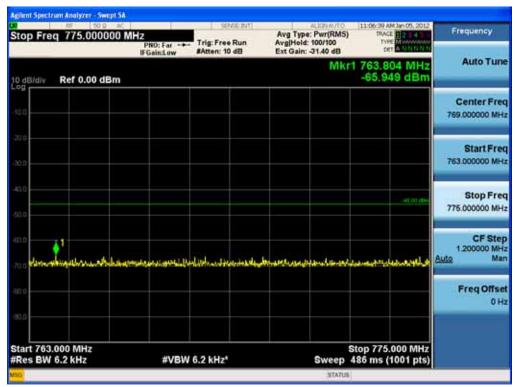
[LTE Downlink A&B_10 MHz]

[LTE Downlink C_10 MHz]

[LTE Uplink A_5 MHz]

[LTE Uplink B_5 MHz]

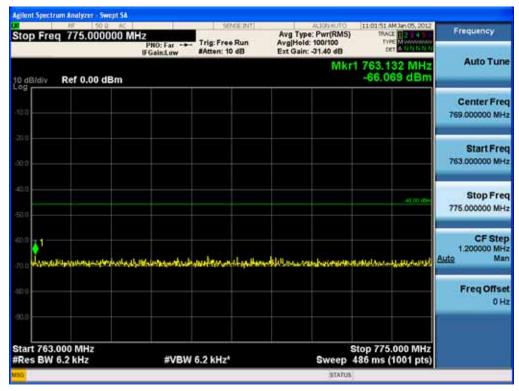
[LTE Uplink A&B_10 MHz]


[LTE Uplink C_10 MHz]

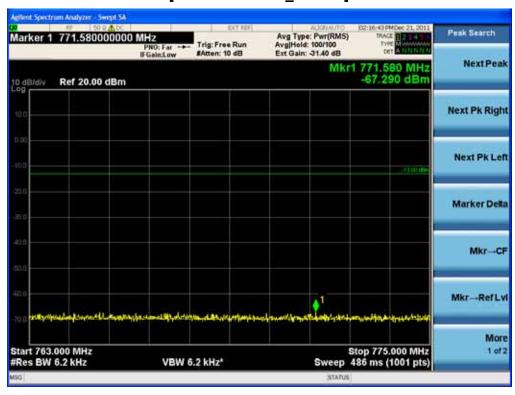


Conducted Spurious Emissions (763~775: -46 dBm/6.25 kHz)

[LTE Downlink A_5 MHz]



[LTE Downlink B_5 MHz]

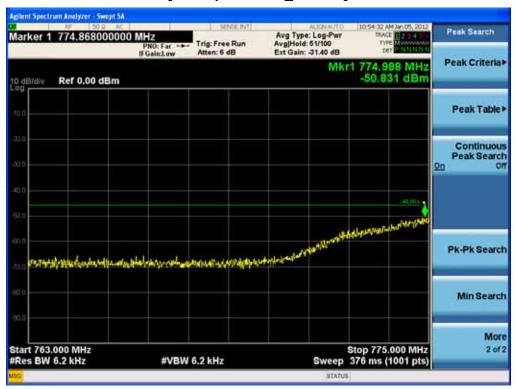


[LTE Downlink A&B_10 MHz]



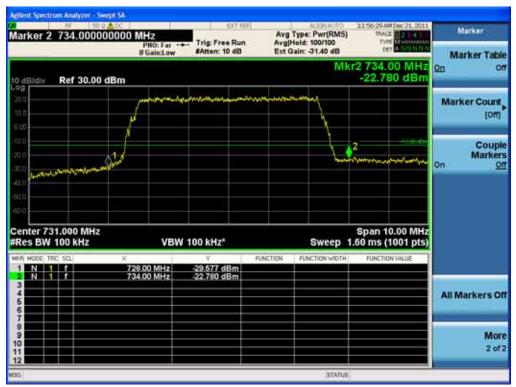
[LTE Downlink C_10 MHz]

[LTE Uplink A_5 MHz]



[LTE Uplink B_5 MHz]

[LTE Uplink A&B_10 MHz]

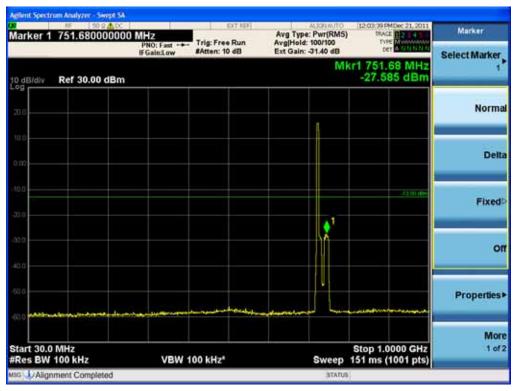

[LTE Uplink C_10 MHz]

Conducted Spurious Emissions (793~805: -46 dBm/6.25 kHz)

[LTE Downlink A_5 MHz]

[LTE Downlink B_5 MHz]

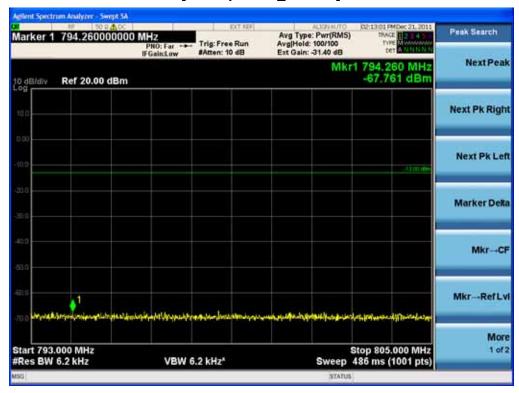
[LTE Downlink A&B_10 MHz]



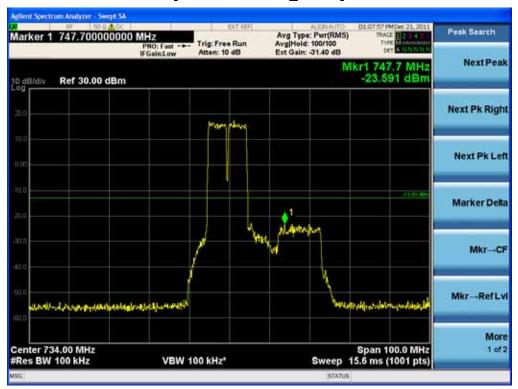
[LTE Downlink C_10 MHz]

[LTE Uplink A_5 MHz]

[LTE Uplink B_5 MHz]

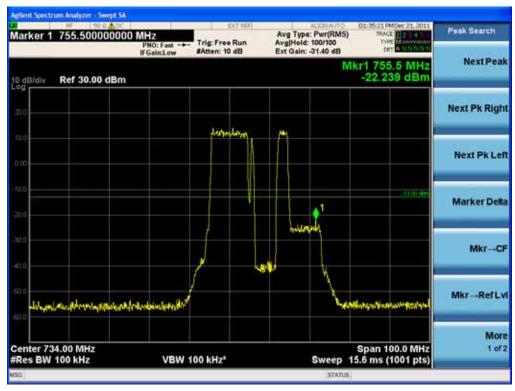


[LTE Uplink A&B_10 MHz]

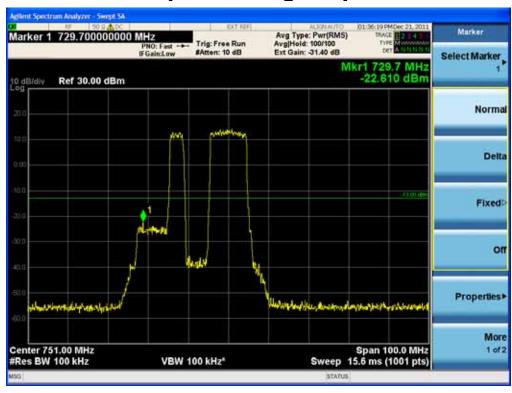

[LTE Uplink C_10 MHz]

Intermodulation Spurious Emissions

[LTE Downlink A_5 MHz]



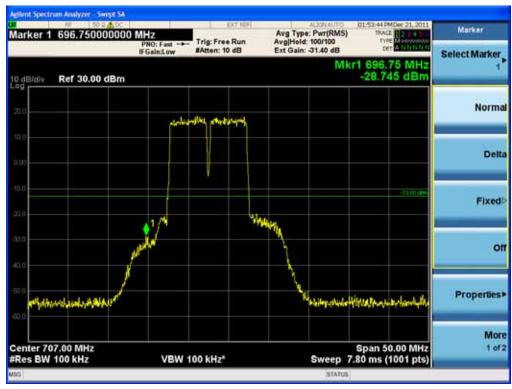
[LTE Downlink B_5 MHz]



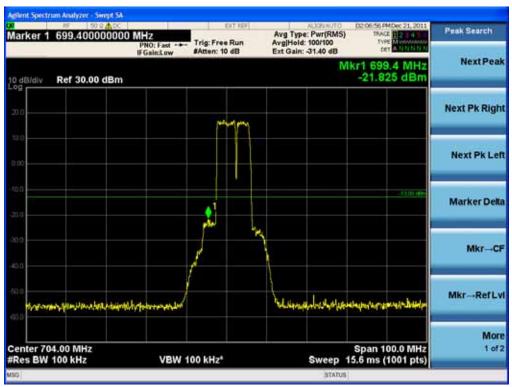
[LTE Downlink &B_10 MHz]



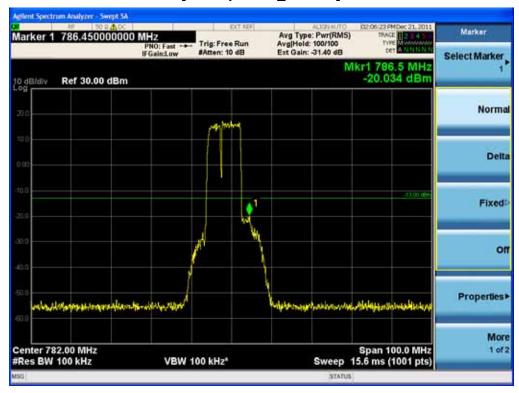
[LTE Downlink C_10 MHz]



[LTE Uplink A_5 MHz]



[LTE Uplink B_5 MHz]

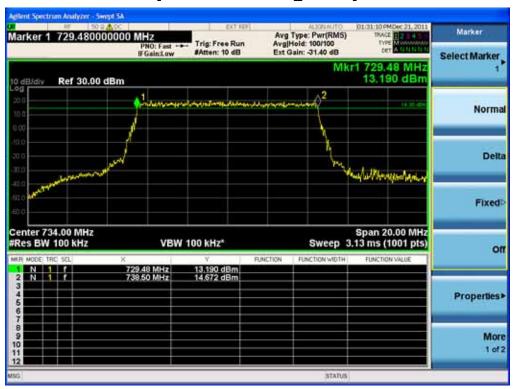


[LTE Uplink A&B_10 MHz]

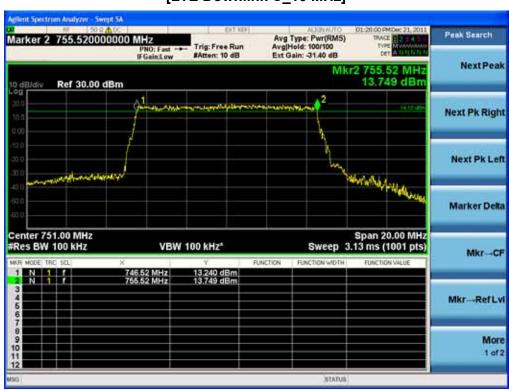

[LTE Uplink C_10 MHz]

Passband Gain

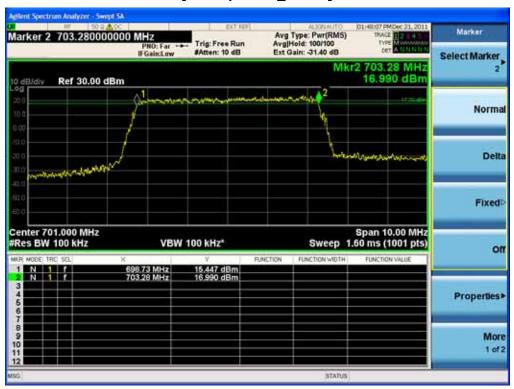
[LTE Downlink A_5 MHz]



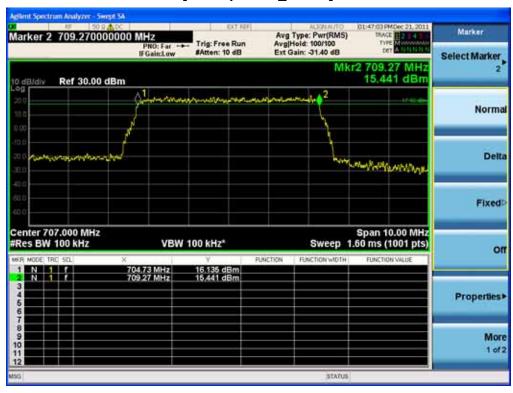
[LTE Downlink B_5 MHz]



[LTE Downlink A&B_10 MHz]



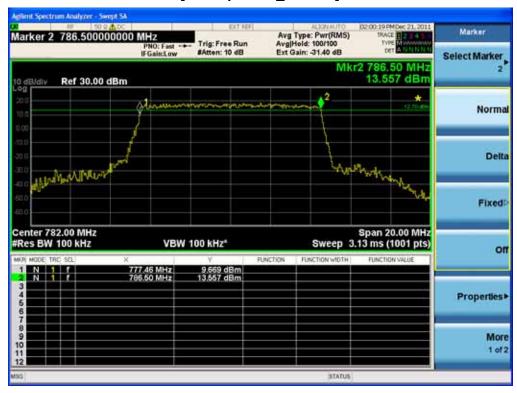
[LTE Downlink C_10 MHz]



[LTE Uplink A_5 MHz]



[LTE Uplink B_5 MHz]



[LTE Uplink A&B_10 MHz]

[LTE Uplink C_10 MHz]

8. FIELD STRENGTH OF SPURIOUS RADIATION

Test Requirement(s): § 2.1053 Measurements required: Field strength of spurious radiation.

§ 2.1053 (a) Measurements shall be made to detect spurious emissions that may be Radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of § 2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required with the measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from half-wave dipole antennas.

- § 2.1053 (b): The measurements specified in paragraph (a) of this section shall be made for the following equipment:
- (1) Those in which the spurious emissions are required to be 60 dB or more below the mean power of the transmitter.
- (2) All equipment operating on frequencies higher than 25 MHz.
- **(3)** All equipment where the antenna is an integral part of, and attached directly to The transmitter.
- **(4)** Other types of equipment as required, when deemed necessary by the Commission.
- § 27.53 Emission limit (c) For operations in the 746–758 MHz band and the 776–788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On any frequency outside the 746–758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;

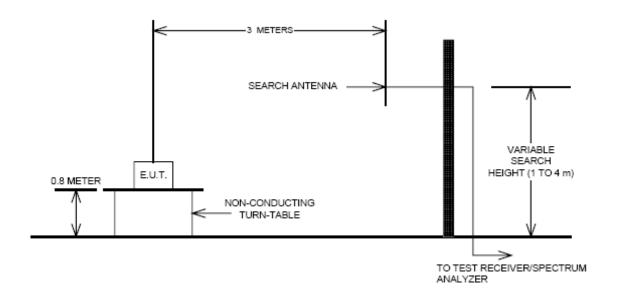
- (2) On any frequency outside the 776–788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;
- (f) For operations in the 746–763 MHz, 775–793 MHz, and 805–806 MHz bands, emissions in the band 1559–1610 MHz shall be limited to −70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and −80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

Test Procedures:

As required by 47 CFR 2.1053, *field strength of radiated spurious measurements* were made in accordance with the procedures of TIA/EIA-603-A-2001 "Land Mobile FM or PM Communications Equipment Measurement and Performance Standards".

Radiated emission measurements were performed inside a 3 meter semi-anechoic chamber.

The EUT was set at a distance of 3m from the receiving antenna. The EUT's RF ports were terminated to 50ohm load. The EUT was set to transmit at the low, mid and high channels of the transmitter frequency range at its maximum power level. The EUT was rotated about 360


and the receiving antenna scanned from 1-3m in order to capture the maximum emission. A calibrated antenna source was positioned in place of the EUT and the previously recorded signal was duplicated. The maximum EIRP of the emission was calculated by adding the forward power to the calibrated source plus its appropriate gain value. These steps were carried. out with the receiving antenna in both vertical and horizontal polarization. Harmonic emissions up to the 10th or 40GHz, whichever was the lesser, were investigated.

Test Results:

.

Radiated Spurious Emissions Test Setup

[Downlink]

Frequency	Freq.(MHz)	Substitute	Ant. Gain	C.L	Pol.	ERP	Margin
(MHz)	1 16q.(IVII 12)	Level[dBm]	(dBd)	O.L	i oi.	(dBm)	(dB)
734	1469.2	-53.26	6.02	4.73	V	-51.97	-38.97
	2205.0	-52.36	8.04	5.63	V	-49.95	-36.95
	1505.9	-52.07	6.28	4.73	V	-50.52	-37.52
751	1564.3	-51.13	6.69	4.83	V	-49.27	-9.27
	2263.1	-52.43	8.05	6.07	V	-50.45	-37.45

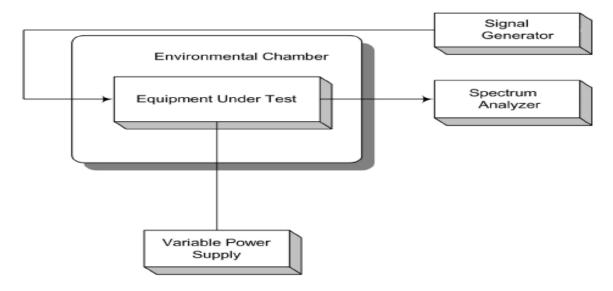
[Uplink]

Frequency	Freq.(MHz)	Substitute	Ant. Gain	C.L	Pol.	ERP	Margin
(MHz)	Fieq.(IVII IZ)	Level[dBm]	(dBd)	C.L	POI.	(dBm)	(dB)
704	1103.6	-52.28	4.23	3.93	V	-51.98	-38.98
	2812.4	-50.84	9.43	6.82	V	-48.23	-35.23
	1566.5	-53.55	6.70	4.85	V	-51.70	-11.70
782	2787.7	-52.84	8.62	6.79	V	-51.01	-38.01
	3128.0	-51.60	9.30	7.20	V	-49.50	-36.50

9. FREQUENCY STABILITY OVER TEMPERATURE AND VOLTAGE VARIATIONS

Test Requirement(s): §2.1055(a)(1)

Test Procedures:


As required by 47 CFR 2.1055, *Frequency Stability measurements* were made at the RF output terminals using a Spectrum Analyzer.

The EUT was placed in the Environmental Chamber.

A CW signal was injected into the EUT at the appropriate RF level. The frequency counter option on the Spectrum Analyzer was used to measure frequency deviations. The frequency drift was investigated for every 10 °C increment until the unit is stabilized then recorded the reading in tabular format with the temperature range of -30 to 50 °C.

Voltage supplied to EUT is 110 Vac reference temperature was done at 20° C. The voltage was varied by \pm 15 % of nominal

Test Setup:

Test Results:

The E.U.T was found in compliance for Frequency Stability and Voltage Test

105-1, Jangam-ri, Majang-Myeon, Icheon-si, Kyunggi-Do, Korea TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

Frequency Stability and Voltage Test Results

Reference: 110 Vac at 20°C Freq. = 751 MHz

Voltage	Temp.	Frequency	Frequency	Deviation	
(%)	()	(Hz)	Error (Hz)	(Hz)	ppm
	+20(Ref)	750 999 993	-7.3	0.0	0.0000
	-30	751 000 004	4.2	11.5	0.0153
	-20	751 000 004	3.7	11.0	0.0146
	-10	751 000 001	1.1	8.4	0.0112
100%	0	750 999 997	-3.2	4.1	0.0055
	+10	750 999 994	-5.6	1.7	0.0023
	+30	750 999 995	-5.3	2.0	0.0027
	+40	750 999 992	-7.9	-0.6	-0.0008
	+50	750 999 992	-8.2	-0.9	-0.0012
115%	+20	750 999 994	-6.4	0.9	0.0012
85%	+20	750 999 994	-5.6	1.7	0.0023

Reference: 110 Vac at 20° C Freq. = 782 MHz

Voltage	Temp.	Frequency	Frequency	Deviation	
(%)	()	(Hz)	Error (Hz)	(Hz)	ppm
	+20(Ref)	781 999 994	-5.9	0.0	0.0000
	-30	782 000 003	2.6	8.5	0.0109
	-20	782 000 002	2.1	8.0	0.0102
	-10	782 000 001	0.5	6.4	0.0082
100%	0	781 999 999	-1.1	4.8	0.0061
	+10	781 999 998	-2.5	3.4	0.0043
	+30	781 999 996	-4.4	1.5	0.0019
	+40	781 999 995	-4.9	1.0	0.0013
	+50	781 999 995	-5.2	0.7	0.0009
115%	+20	781 999 996	-4.3	1.6	0.0020
85%	+20	781 999 996	-4.0	1.9	0.0024

10. RECEIVER SPURIOUS EMISSIONS

Test Requirement(s): RSS-GEN 4.10

The receiver shall be operated in the normal receive mode near the mid-point of the band over which the

receiver is designed to operate.

Unless otherwise specified in the applicable RSS, the radiated emission measurement is the standard

measurement method (with the device's antenna in place) to measure receiver spurious emissions.

Radiated emission measurements are to be performed using a calibrated open-area test site. As an alternative,

the conducted measurement method may be used when the antenna is detachable. In such a case, the receiver

spurious signal may be measured at the antenna port.

If the receiver is super-regenerative, stabilize it by coupling to it an unmodulated carrier on the receiver

frequency (antenna conducted measurement) or by transmitting an unmodulated carrier on the receiver

frequency from an antenna in the proximity of the receiver (radiated measurement). Taking care not to

overload the receiver, vary the amplitude and frequency of the stabilizing signal to obtain the highest level of

the spurious emissions from the receiver.

For either method, the search for spurious emissions shall be from the lowest frequency internally generated

or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the

higher, to at least 3 times the highest tuneable or local oscillator frequency, whichever is the higher, without

exceeding 40 GHz.

For emissions below 1 GHz, measurements shall be performed using a CISPR quasi-peak detector and the

related measurement bandwidth. As an alternative to CISPR quasi-peak measurement, compliance with the

emission limit can be demonstrated using measuring equipment employing a peak detector with the same

measurement bandwidth as that for CISPR quasi-peak measurements. Above 1 GHz, measurements shall be

performed using an average detector and a resolution bandwidth of 300 kHz to 1 MHz.

Test Requirement(s): RSS-131 6.4

Spurious emissions of zone enhancers and translators shall be suppressed as much as possible.

Spurious emissions shall be attenuated below the rated power of the enhancer by at least:

 $43 + 10 \text{ Log}_{10}(P_{\text{rated}} \text{ in watts})$, or 70 dB, whichever is less stringent.

Note: If the minimum standard is not met, check to see if the input signal generators have a high harmonic

content.

- 59 /63-

Test Procedures:

The receiver shall be operated in the normal receive mode near the mid-point of the band over which the receiver is designed to operate.

Unless otherwise specified in the applicable RSS, the radiated emission measurement is the standard measurement method (with the device's antenna in place) to measure receiver spurious emissions.

Radiated emission measurements are to be performed using a calibrated open-area test site. As an alternative, the conducted measurement method may be used when the antenna is detachable. In such a case, the receiver spurious signal may be measured at the antenna port.

If the receiver is super-regenerative, stabilize it by coupling to it an unmodulated carrier on the receiver frequency (antenna conducted measurement) or by transmitting an unmodulated carrier on the receiver frequency from an antenna in the proximity of the receiver (radiated measurement). Taking care not to overload the receiver, vary the amplitude and frequency of the stabilizing signal to obtain the highest level of the spurious emissions from the receiver.

For either method, the search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tuneable or local oscillator frequency, whichever is the higher, without exceeding 40 GHz.

For emissions below 1 GHz, measurements shall be performed using a CISPR quasi-peak detector and the related measurement bandwidth. As an alternative to CISPR quasi-peak measurement, compliance with the emission limit can be demonstrated using measuring equipment employing a peak detector with the same measurement bandwidth as that for CISPR quasi-peak measurements. Above 1 GHz, measurements shall be performed using an average detector and a resolution bandwidth of 300 kHz to 1 MHz.

Spurious Frequency (MHz)	Field Strength (microvolts/m) at 3 metres
30-88	100
88-216	150
216-960	200
960-1610	500
Above 1610	1000

$30~MHz \sim 1~GHz$

Frequency MHz	Reading dBuV	Ant. Factor dB/m	Cable Loss dB	ANT POL (H/V)	Total dBuV/m	Limit dBuV/m	Margin dB
288.0	16.9	12.5	1.8	V	30.2	46.0	-15.8

Above 1 GHz

Frequency MHz	Reading dBuV	Ant. Factor dB/m	Cable Loss dB	ANT POL (H/V)	Total dBuV/m	Limit dBuV/m	Margin dB
No Peaks Found							

11. RF EXPOSURE STATEMENT

1. LIMITS

According to §1.1310 and §2.1091 RF exposure is calculated.

(B) Limits for General Population/Uncontrolled Exposures

Frequency range	Electric field	Magnetic field	Power density	Averaging time
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm²)	(minutes)
0.3 - 1.34	614 824/f 27.5	1.63 2.19/f 0.073	*(100) *(180/ f²) 0.2 f/1500 1.0	30 30 30 30 30

F = frequency in MHz

2. MAXIMUM PERMISSIBLE EXPOSURE Prediction

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$S = PG/4\pi R^2$

S = Power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

^{* =} Plane-wave equivalent power density

2-1 Limit (Down Link)

	1	1
Max Peak output Power at antenna input terminal	30.000	dBm
Max Peak output Power at antenna input terminal	1000.000	mW
Prediction distance	170.000	cm
Prediction frequency	734.000	MHz
Antenna Gain(typical)	16.000	dBi
Antenna Gain(numeric)	39.811	-
Power density at prediction frequency (S)	0.10962	mW/cm ²
MPE limit for uncontrolled exposure at prediction frequency	0.489	mW/cm ²

2-2 Limit (Up Link)

	•	
Max Peak output Power at antenna input terminal	30.050	dBm
Max Peak output Power at antenna input terminal	1011.579	mW
Prediction distance	170.000	cm
Prediction frequency	707.000	MHz
Antenna Gain(typical)	16.000	dBi
Antenna Gain(numeric)	39.811	-
Power density at prediction frequency (S)	0.11089	mW/cm ²
MPE limit for uncontrolled exposure at prediction frequency	0.471	mW/cm ²

3. RESULTS

The power density level at 170 cm is 0.10962 mW/cm², which is below the uncontrolled exposure limit of 0.489 mW/cm² at Down Link

The power density level at 170 cm is 0.11089 mW/cm², which is below the uncontrolled exposure limit of 0.471 mW/cm² at Up Link

Simultaneous MPE at 170 cm is (0.10962/0.489) + (0.11089/0.471) = 0.4596 < 1

Warning: In order to avoid the possibility of exceeding the FCC radio frequency exposure limits, it must also have a minimum distance of 170 cm from the body during normal operation.