

Test Report

Report Number: 3186504MPK-002 Project Number: 3186504 Report Date: August 31, 2009

Testing performed on the Cellular Repeater Model Number: EPOCH-III-C

FCC ID: S2O-EPOCHIIIC

to

FCC Part 22 Subpart H

for

Advanced RF Technologies

Test Performed by:

Intertek 1365 Adams Court Menlo Park, CA 94025 USA **Test Authorized by:**

Advanced RF Technologies 2607 Colorado Boulevard Los Angeles, CA 90041 USA

Prepared by:	12 Andr	Date:	August 31, 2009

Bruce Gordon, EMC Engineer

 λ

Reviewed by: Date: August 31, 2009

Krishna Vemuri, Senior EMC Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

EMC Report for Advanced RF Technologies on the model: EPOCH-III-C File: 3186504MPK-002

Page 1 of 61

TABLE OF CONTENTS

1.0	Intro	oduction	4
	1.1	Product Description	4
	1.2	Summary of Test Results	5
	1.3	Test Configuration	6
		1.3.1 Support Equipment	6
		1.3.2 Block diagram of Test Setup	6
	1.4	Mode of Operation	8
2.0	RF I	Power Output	9
	2.1	Test Procedure	9
	2.2	Test Equipment	9
	2.3	Test Results	9
3.0	Occup	pied Bandwidth, Input/Output Comparison	11
	3.1	Test Procedure	
	3.2	Test Equipment	11
	3.3	Test Results	11
4.0	Out-o	of-Band Emissions at Antenna Terminal	18
	4.1	Requirement	18
	4.2	Test Procedure	18
	4.3	Test Equipment	18
	4.4	Test Results	18
5.0	Trar	nsmitter Spurious Radiation	42
	5.1	Requirement	
	5.2	Test Procedure	42
	5.3	Test Equipment	42
	5.4	Configuration Photographs	43
	5.5	Test Results	44
6.0	Radi	iated Emissions	45
	6.1	Radiated Emission Limits	45
	6.2	Field Strength Calculation	46
	6.3	Configuration Photographs	
	6.4	Test Results	48
7.0	AC l	Line Conducted Emissions	51
	7.1	Conducted Emission Limits	51
	7.2	Test Procedure	
	7.3	Configuration Photographs	53
	7.4	Test Results	54

8.0	Freq	quency Stability versus Temperature and Voltage	57
	8.1	Requirement	57
	8.2	Test Procedure	57
	8.3	Test Results	58
9.0	List	of Test Equipment	59
10.0	RF I	Exposure evaluation	60
11.0	Doci	ument History	61

1.0 Introduction

1.1 Product Description

The Equipment Under Test (EUT), model EPOCH-III-C is a Cellular Repeater.

Rated RF Output Power	33 dBm, Down Link and Up Link	
Frequency Ranges	Cellular Band 869 – 894 MHz, Down Link	
	824 – 849 MHz, Up Link	
Type of modulation	CDMA (F9W)	
	GSM (GXW)	
	TDMA (DXW)	
Antenna Gain	12 dBi max, Donor (Up Link)	
	3 dBi max, Server (Down Link)	

EUT receive date: August 3, 2009

EUT receive condition: The production version of the EUT was received in good condition with no

apparent damage.

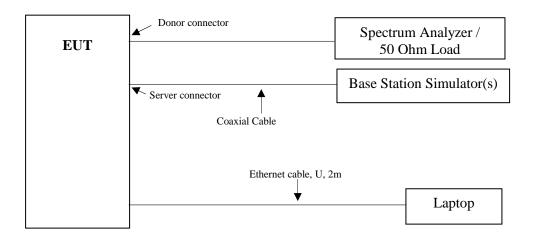
Test start date: August 4, 2009 **Test completion date:** August 31, 2009

Page 4 of 61

1.2 Summary of Test Results

FCC Rule	Description of Test	Result
2.1046	RF Power Output	Complies
2.1049	Occupied Bandwidth	Complies
22.913	ERP	N/A*
24.232	EIRP	
2.1051	Out of Band Emissions at Antenna Terminals	Complies
2.1053	Transmitter Spurious Radiation	Complies
2.1055	Frequency Stability vs. Temperature and Voltage	Complies
15.109	Radiated Emissions	Complies
15.107	AC Line Conducted	Complies

^{*} This requirement is not applicable for amplifiers

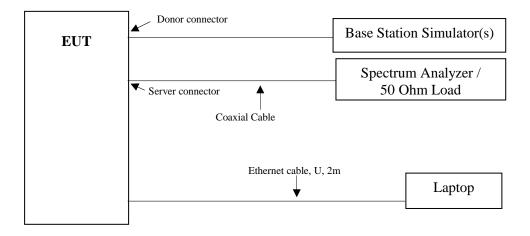

1.3 Test Configuration

1.3.1 Support Equipment

Description	Model	Serial Number
Compaq Laptop Computer	Compaq nc6220	None
JFW 50 Ohm Terminator	50T-034-1.0	ETL-342
JFW 50 Ohm Terminator	50T-034-1.0	ETL-343
Rohde & Schwarz Universal Radio Communication Set	CMU-200	101119
Rohde & Schwarz Universal Radio Communication Set	CMU-200	8374931/056

1.3.2 Block diagram of Test Setup

Up Link Configuration



S = Shielded	F = With Ferrite
U = Unshielded	$\mathbf{m} = \text{Length in Meters}$

EMC Report for Advanced RF Technologies on the model: EPOCH-III-C File: 3186504MPK-002

Down Link Configuration

S = Shielded	F = With Ferrite
U = Unshielded	m = Length in Meters

EMC Report for Advanced RF Technologies on the model: EPOCH-III-C
File: 3186504MPK-002
Page 7 of 61

1.4 Mode of Operation

The EUT was powered by 120VAC. The EUT was configured for maximum gain, 95dB. Basestation simulators were used to provide the input signals to the EUT. Tests were performed with CDMA, GSM and TDMA modulations. The input power was the maximum declared by the manufacturer.

EMC Report for Advanced RF Technologies on the model: EPOCH-III-C File: 3186504MPK-002

Page 8 of 61

2.0 RF Power Output

FCC 2.1046

2.1 Test Procedure

The EUT RF output was connected as shown on the diagram in report section 1.3.2. The EUT was setup to transmit continuously with maximum power.

A spectrum analyzer was setup to measure peak power. Measurements were performed at three frequencies (low, middle, and high channels) with all modulations.

2.2 Test Equipment

Rohde & Schwarz FSU26 Spectrum Analyzer

2.3 Test Results

Up Link					
Modulation	Channel	Frequency	Input Power	Output	
		(MHz)	(dBm)	Power (dBm)	
CDMA Cell	1013	824.7	-63.9	33.0	
CDMA Cell	384	836.52	-63.8	33.0	
CDMA Cell	777	848.3	-64.3	33.0	

Up Link						
Modulation	Channel	Frequency	Input Power	Output		
		(MHz)	(dBm)	Power (dBm)		
GSM 850	128	824.2	-62.1	33.0		
GSM 850	190	836.6	-61.9	33.0		
GSM 850	251	848.8	-62.2	33.0		

		Up Link		
Modulation	Channel	Frequency	Input Power	Output
		(MHz)	(dBm)	Power (dBm)
TDMA Cell	1013	824.7	-65.1	33.0
TDMA Cell	384	836.52	-64.7	33.0
TDMA Cell	777	848.3	-65.0	33.0

File: 3186504MPK-002

Page 9 of 61

Down Link					
Modulation Channel Frequency Input Power Out					
		(MHz)	(dBm)	Power (dBm)	
CDMA Cell	1013	869.7	-64.1	33.0	
CDMA Cell	384	881.52	-64.0	33.0	
CDMA Cell	777	893.3	-63.8	33.0	

		Down Link		
Modulation	Channel	Frequency	Input Power	Output
		(MHz)	(dBm)	Power (dBm)
GSM 850	128	869.2	-61.6	33.0
GSM 850	190	881.6	-62.5	33.0
GSM 850	251	893.8	-61.8	33.0

		Down Link		
Modulation	Channel	Frequency (MHz)	Input Power (dBm)	Output Power (dBm)
TDMA Cell	1013	869.7	-64.7	33.0
TDMA Cell	384	881.52	-65.2	33.0
TDMA Cell	777	893.3	-65.4	33.0

EMC Report for Advanced RF Technologies on the model: EPOCH-III-C File: 3186504MPK-002

Page 10 of 61

3.0 Occupied Bandwidth, Input/Output Comparison

FCC 2.1049

3.1 Test Procedure

The EUT RF ports were connected as shown on the diagram in report section 1.3.2. The EUT was setup to transmit maximum power.

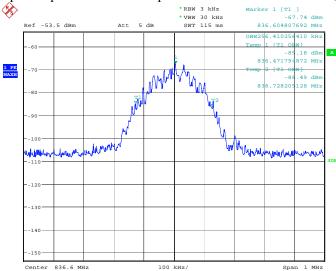
The spectrum analyzer was setup to measure the Occupied Bandwidth (defined as the 99% Power Bandwidth). The Occupied Bandwidth was measured at the input and output ports of the EUT at the middle channels for each type of modulation in the Up Link and Down Link bands.

3.2 Test Equipment

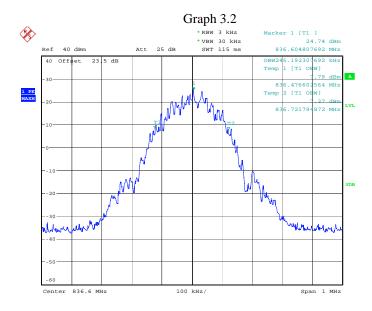
Rohde & Schwarz FSU26 Spectrum Analyzer

3.3 Test Results

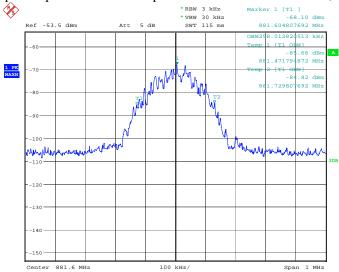
Refer to the following Graphs.

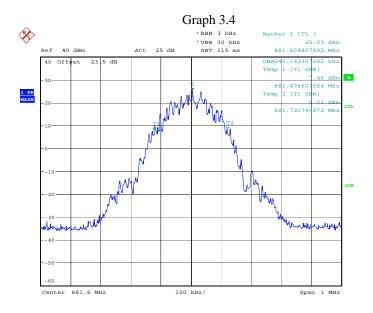

Result Compiles	Result	Complies			
-----------------	--------	----------	--	--	--

File: 3186504MPK-002

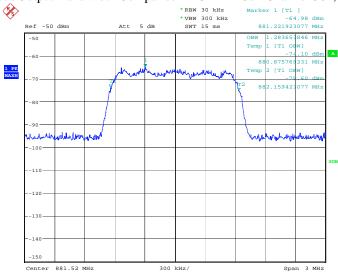

Page 11 of 61

 $\label{eq:Graph 3.1}$ Input/Output Bandwidth Comparison – GSM 850 Channel 190, Up Link

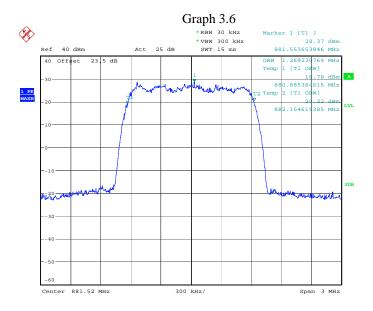

Date: 19.AUG.2009 04:28:27


Date: 19.AUG.2009 04:26:49

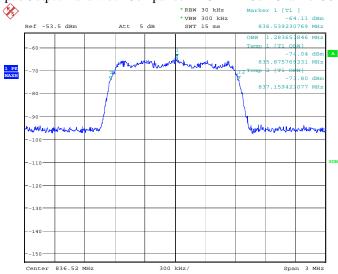
Graph 3.3 Input/Output Bandwidth Comparison – GSM 850 Channel 190, Down Link

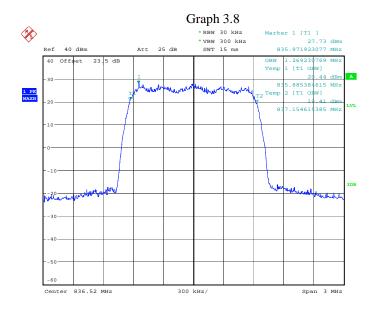


Date: 19.AUG.2009 04:34:40

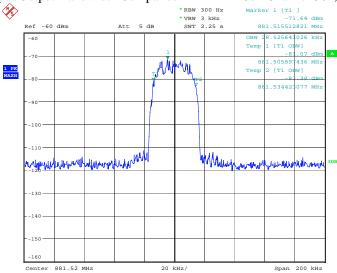


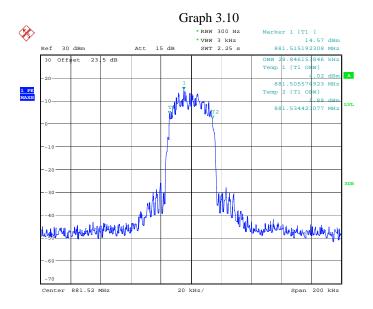
Date: 19.AUG.2009 04:33:23


Date: 19.AUG.2009 04:44:54

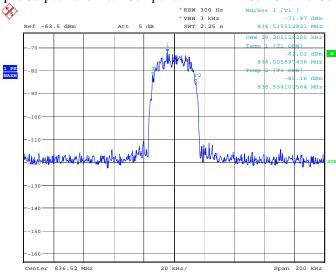

Date: 19.AUG.2009 04:42:33

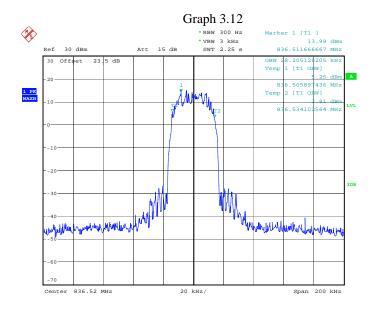
Graph 3.7 Input/Output Bandwidth Comparison – CDMA Cell Channel 384, Up Link


Date: 19.AUG.2009 04:48:40


Date: 19.AUG.2009 04:47:44

Graph 3.9
Input/Output Bandwidth Comparison – TDMA Cell Channel 384, Down Link


Date: 19.AUG.2009 04:56:12


Date: 19.AUG.2009 04:53:42

Graph 3.11 Input/Output Bandwidth Comparison – TDMA Cell Channel 384, Up Link

Date: 19.AUG.2009 05:00:39

Date: 19.AUG.2009 04:59:33

4.0 Out-of-Band Emissions at Antenna Terminal

FCC 2.1051

4.1 Requirement

The power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $(43 + 10 \log P) dB$.

Note: That corresponds to the level of -13 dBm for any out-of-band and spurious emissions.

4.2 Test Procedure

The EUT RF output was connected as shown on the diagram in report section 1.3.2. The EUT was setup to transmit the maximum power.

The spectrum analyzer resolution bandwidth (RBW) was set to 100 kHz in the Cell band. For measurements at the band edges, the resolution bandwidth (RBW) was set to 100 kHz. Measurements were performed at three frequencies at the low, middle, and high channels for all modulations types.

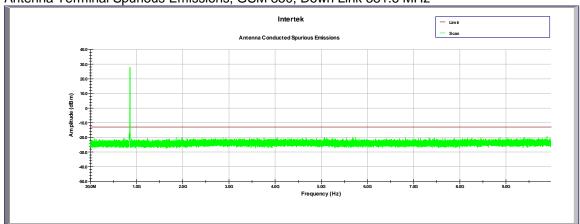
Intermodulation was performed by injecting two modulated signals into the EUT. One signal was set at the bandedge of either the Up Link or Down Link band and the other signal was set 6 MHz away.

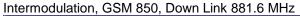
4.3 Test Equipment

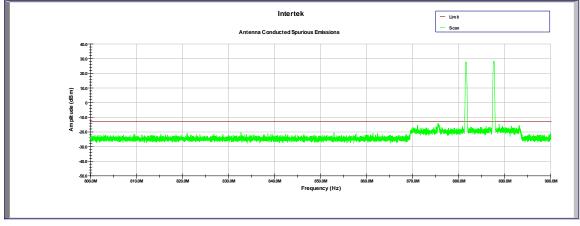
Rohde & Schwarz FSU26 Spectrum Analyzer

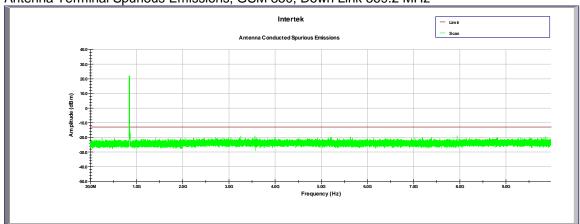
4.4 Test Results

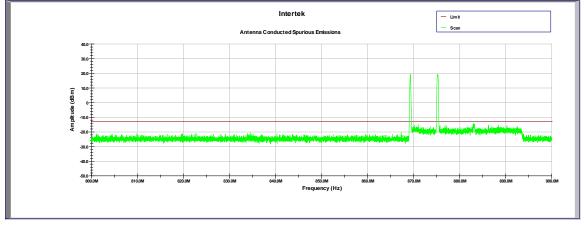
Refer to the following Graphs.

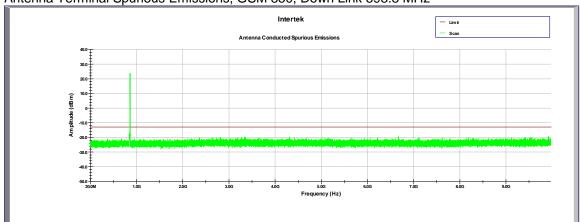

Result	Complies
icsuit	Complies

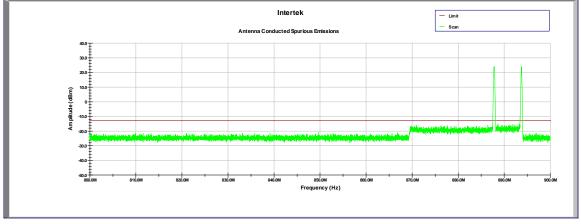

EMC Report for Advanced RF Technologies on the model: EPOCH-III-C


File: 3186504MPK-002 Page 18 of 61

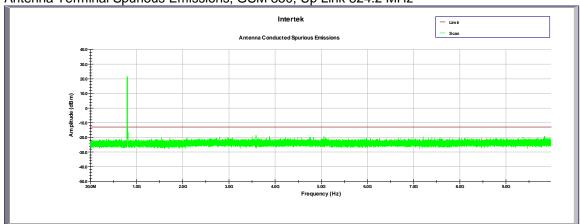

 $\label{eq:Graph 4.1 \& 4.2} Graph 4.1 \& 4.2$ Antenna Terminal Spurious Emissions, GSM 850, Down Link 881.6 MHz

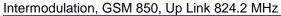


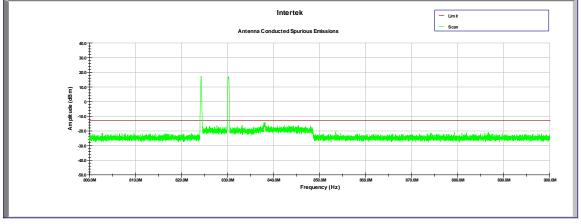




Page 20 of 61

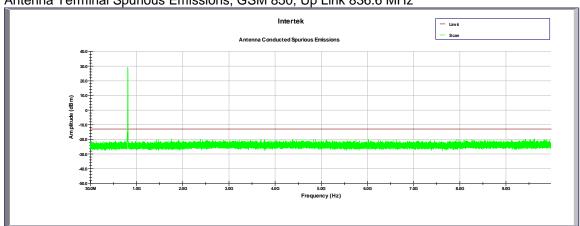


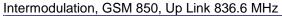

Page 21 of 61

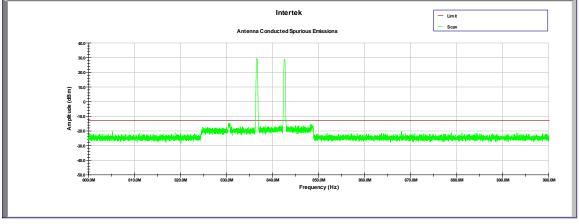


Graph 4.7 & 4.8

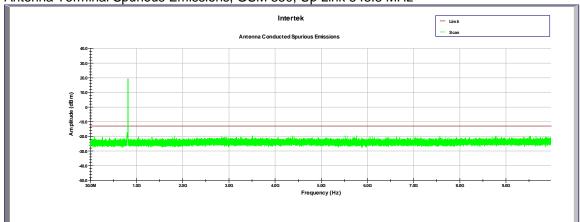
Antenna Terminal Spurious Emissions, GSM 850, Up Link 824.2 MHz

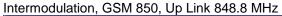


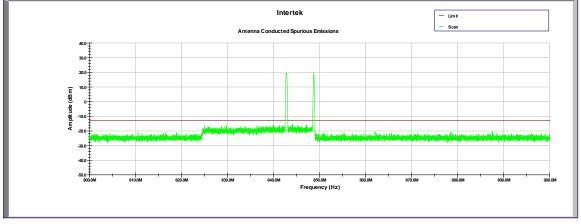



Page 22 of 61

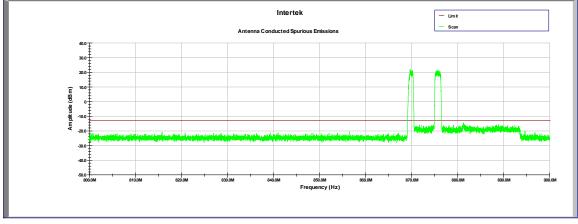
 $\label{eq:Graph-4.9} {\it Graph~4.9~\&~4.10}$ Antenna Terminal Spurious Emissions, GSM 850, Up Link 836.6 MHz



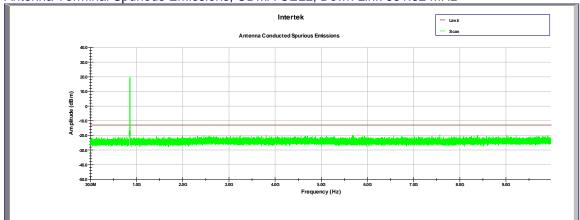


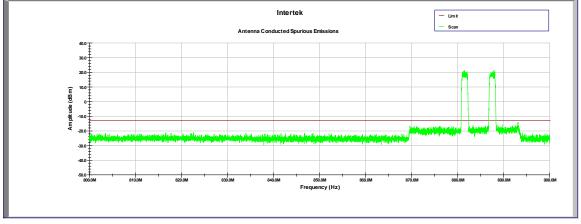


Graph 4.11 & 4.12
Antenna Terminal Spurious Emissions, GSM 850, Up Link 848.8 MHz

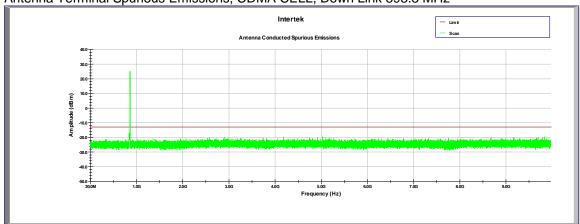


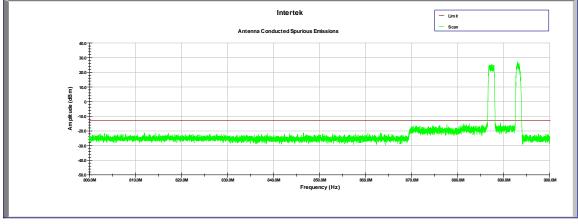
Page 24 of 61



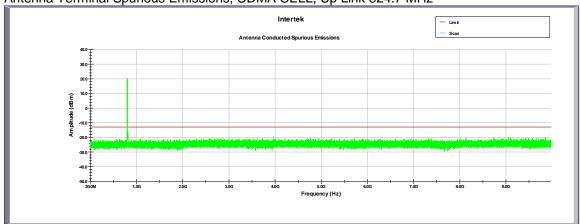


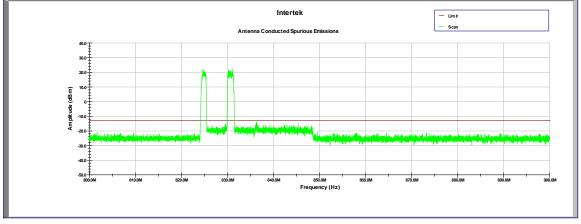
Graph 4.15 & 4.16
Antenna Terminal Spurious Emissions, CDMA CELL, Down Link 881.52 MHz





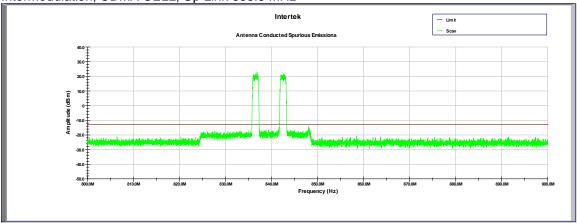
Page 26 of 61



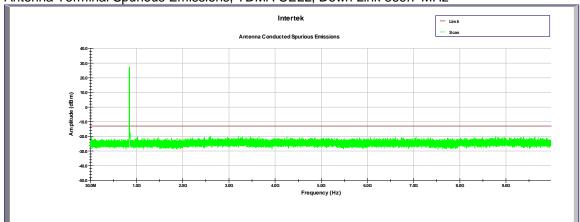


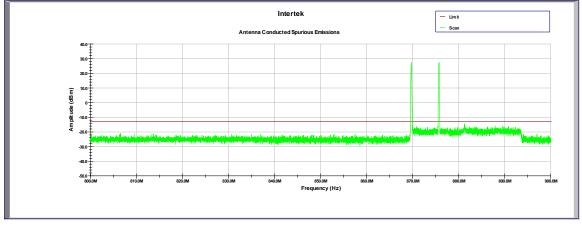
Graph 4.19 & 4.20
Antenna Terminal Spurious Emissions, CDMA CELL, Up Link 824.7 MHz



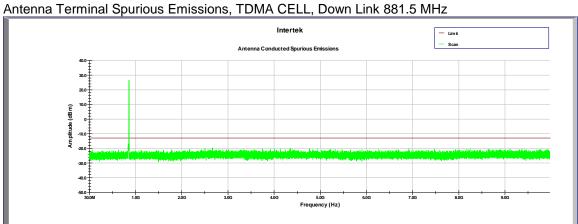


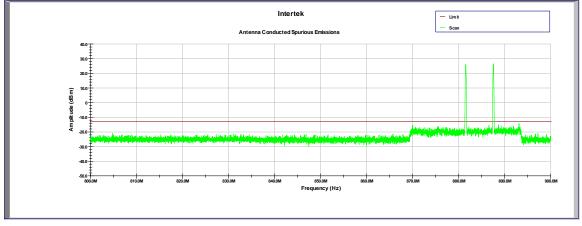
Graph 4.21 & 4.22
Antenna Terminal Spurious Emissions, CDMA CELL, Up Link 836.5 MHz



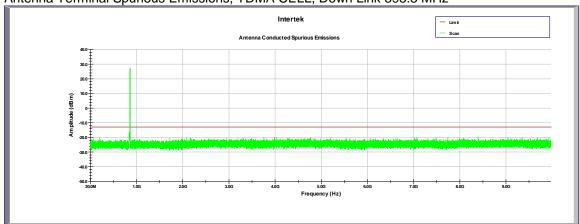


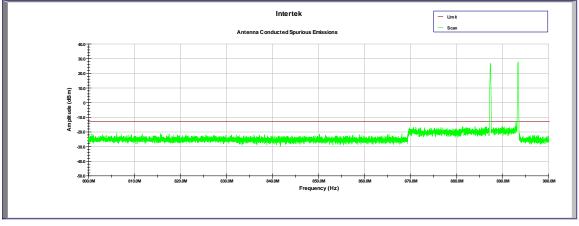
Graph~4.23~&~4.24 Antenna Terminal Spurious Emissions, TDMA CELL, Down Link 869.7 MHz





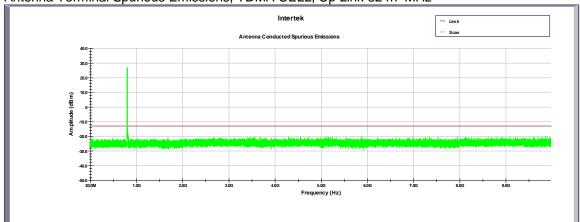
Graph 4.25 & 4.26

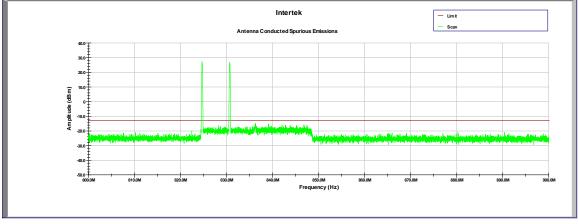




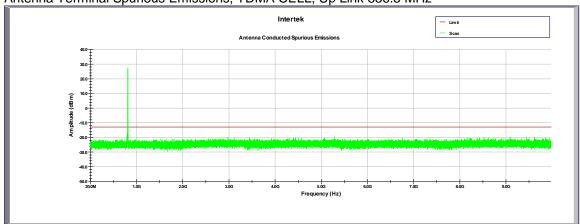
Graph 4.27 & 4.28

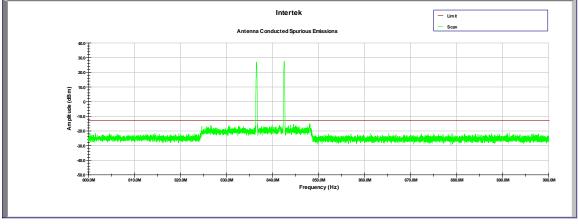
Antenna Terminal Spurious Emissions, TDMA CELL, Down Link 893.3 MHz



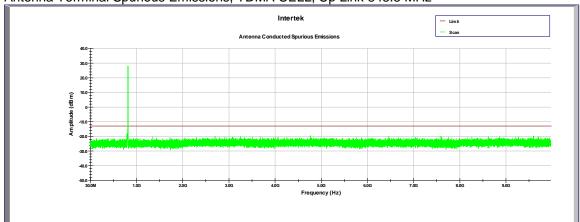


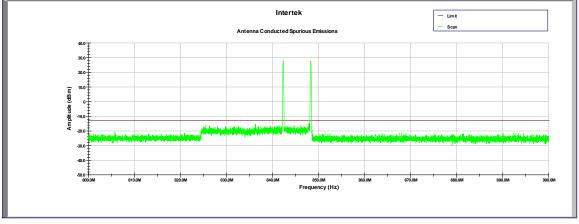
Graph 4.29 & 4.30
Antenna Terminal Spurious Emissions, TDMA CELL, Up Link 824.7 MHz



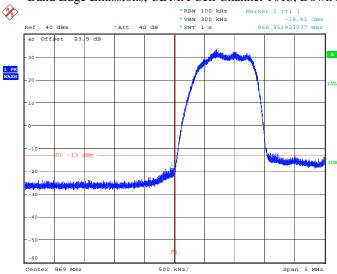


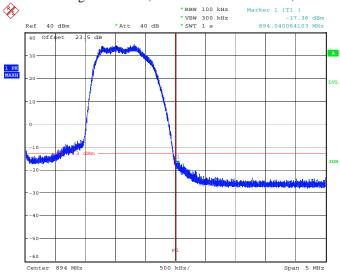
Graph 4.31 & 4.32
Antenna Terminal Spurious Emissions, TDMA CELL, Up Link 836.5 MHz





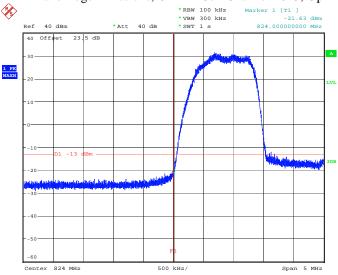
Graph 4.33 & 4.34
Antenna Terminal Spurious Emissions, TDMA CELL, Up Link 848.3 MHz



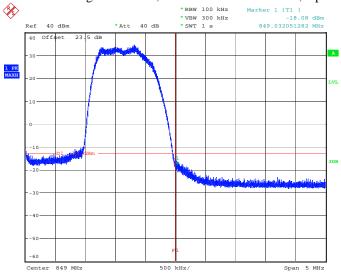


Graph 4.35
Band Edge Emissions, CDMA Cell Channel 1013, Down Link

Date: 19.AUG.2009 08:19:55

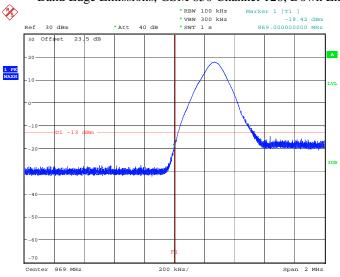

Graph 4.36
Band Edge Emissions, CDMA Cell Channel 777, Down Link

Date: 19.AUG.2009 08:21:34

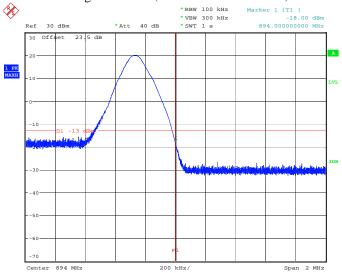


Graph 4.37
Band Edge Emissions, CDMA Cell Channel 1013, Up Link

Date: 19.AUG.2009 08:24:43

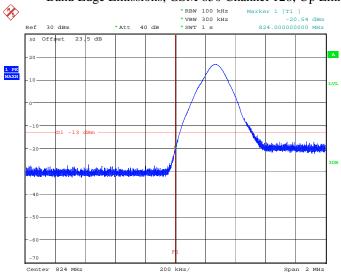

Graph 4.38
Band Edge Emissions, CDMA Cell Channel 777, Up Link

Date: 19.AUG.2009 08:26:09

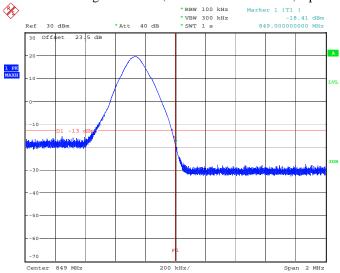


Graph 4.39
Band Edge Emissions, GSM 850 Channel 128, Down Link

Date: 19.AUG.2009 08:29:13

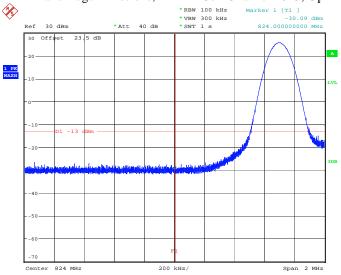

Graph 4.40
Band Edge Emissions, GSM 850 Channel 251, Down Link

Date: 19.AUG.2009 08:30:10

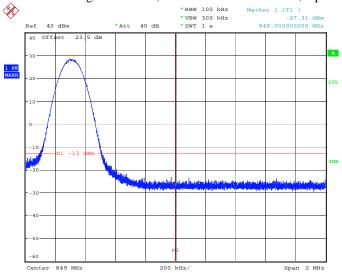


Graph 4.41 Band Edge Emissions, GSM 850 Channel 128, Up Link

Date: 19.AUG.2009 08:31:42

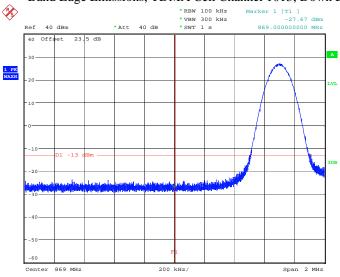

Graph 4.42 Band Edge Emissions, GSM 850 Channel 251, Up Link

Date: 19.AUG.2009 08:32:41

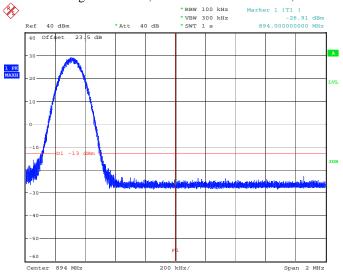


Graph 4.43
Band Edge Emissions, TDMA Cell Channel 1013, Up Link

Date: 19.AUG.2009 08:35:32


Graph 4.44
Band Edge Emissions, TDMA Cell Channel 777, Up Link

Date: 19.AUG.2009 08:36:34



Graph 4.45
Band Edge Emissions, TDMA Cell Channel 1013, Down Link

Date: 19.AUG.2009 08:38:45

Graph 4.46
Band Edge Emissions, TDMA Cell Channel 777, Down Link

Date: 19.AUG.2009 08:39:55

5.0 Transmitter Spurious Radiation

FCC 2.1053

5.1 Requirement

The power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $(43 + 10 \log P) dB$.

Note: That corresponds to the level of -13 dBm for any radiated out-of-band and spurious emissions.

5.2 Test Procedure

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.

The frequency range up to 10-th harmonic of each of the three fundamental frequencies (low, middle, and high channels) was investigated. The worst case of emissions are reported.

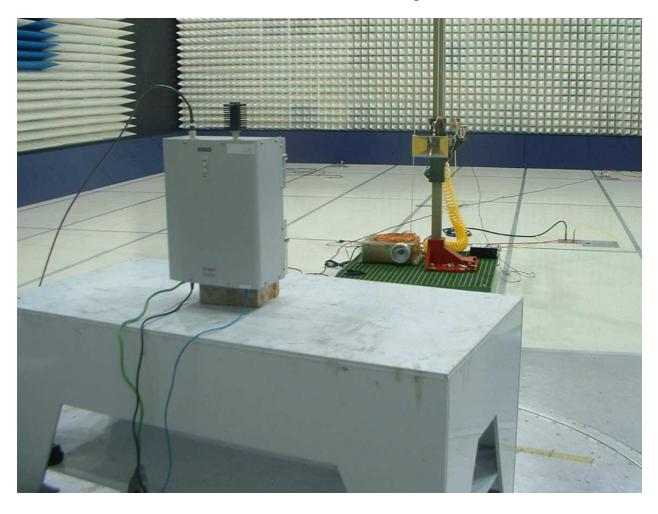
For spurious emissions attenuation, the substitution method was used. The EUT was substituted by a reference antenna (half-wave dipole - below 1 GHz, or Horn antenna - above 1GHz), connected to a signal generator. The signal generator output level (V_g in dBm) was adjusted to obtain the same reading as from EUT. The EIRP at the spurious emissions frequency was calculated as follows.

$$EIRP_{(dBm)} = V_g + G_{(dBi)}$$

The EUT output port was connected to a 50 Ω termination load.

5.3 Test Equipment

EMCO 3115 Horn Antenna Rohde & Schwarz FSU Spectrum Analyzer Preamplifiers


EMC Report for Advanced RF Technologies on the model: EPOCH-III-C

File: 3186504MPK-002 Page 42 of 61

5.4 Configuration Photographs

Radiated Emission Test Setup

Page 43 of 61

5.5 Test Results

Transmitter Spurious Radiated Emissions - Cellular Band

Frequency	SA Reading (from EUT)	Signal Generator Output required to have the same SA	EIRP	EIRP Limit	EIRP Margin
MHz	dB(μV)	Reading as from EUT V _g dBm	dBm	dBm	dB
1/1111	(L ()	Up Link, 824.7 MHz	4211	4211	
1649.4	41.1	-70.6	-61.0	-13.0	-48.0
2474.1	41.4	-67.9	-57.7	-13.0	-44.7
		Up Link, 836.5 MHz		•	
1673.0	41.2	-70.1	-60.6	-13.0	-47.6
2509.5	41.6	-67.3	-57.0	-13.0	-44.0
		Up Link, 848.3 MHz			
1696.6	41.2	-69.9	-60.4	-13.0	-47.4
2544.9	41.9	41.9 -66.5		-13.0	-43.2
		Down Link, 869.7 MHz			
1739.4	41.2	-69.6	-60.2	-13.0	-47.2
2609.1	41.7	-66.0	-55.7	-13.0	-42.7
		Down Link, 881.5 MHz			
1763.0	41.3	-69.3	-60.0	-13.0	-47.0
2644.5	41.8	-65.8	-55.5	-13.0	-42.5
		Down Link, 893.3 MHz			
1786.6	41.3	-68.8	-59.8	-13.0	-46.8
2679.9	41.8	-65.7	-55.4	-13.0	-42.4

EIRP is calculated as: EIRP $_{(dBm)}$ = $V_{g(dBm)}$ + $G_{(dBi)}$

All other emissions not reported are more than 20 dB below the limit.

Tiesen Compile	Result	
----------------	--------	--

EMC Report for Advanced RF Technologies on the model: EPOCH-III-C
File: 3186504MPK-002 Page 44 of 61

6.0 Radiated Emissions

FCC 15.109

6.1 Radiated Emission Limits

The following radiated emission limits apply to Class A unintentional radiators:

Radiated Emissions Limits, Section 15.109(b)

Frequency (MHz)	Class A at 10m (µV/m)	Class A at 10m (dBµV/m)
30-88	90	39
88-216	150	43.5
216-960	210	46.4
Above 960	300	49.5

Note: Three sets of units are commonly used for EMI measurement, decibels below one milliwatt (-dBm), decibels above a microvolt (dB μ V), and microvolts (μ V). To convert between them, use the following formulas: $20 \ LOG_{10}(\mu V) = dB\mu V$, $dBm = dB\mu V$ -107.

EMC Report for Advanced RF Technologies on the model: EPOCH-III-C File: 3186504MPK-002

6.2 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

```
FS = RA + AF + CF - AG Where FS = Field \ Strength \ in \ dB\mu V/m RA = Receiver \ Amplitude \ (including \ preamplifier) \ in \ dB\mu V CF = Cable \ Attenuation \ Factor \ in \ dB AF = Antenna \ Factor \ in \ dB AG = Amplifier \ Gain \ in \ dB
```

An example for the calculations in the following table is as follows:

Assume a receiver reading of 52.0 dB μ V is obtained. The antennas factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29.0 dB is subtracted, giving field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

```
RA = 52.0 \ dB\mu V AF = 7.4 \ dB CF = 1.6 \ dB AG = 29.0 \ dB FS = 52.0 + 7.4 + 1.6 - 29.0 = 32 \ dB\mu V/m
```

Level in $\mu V/m = Common Antilogarithm [(32 dB<math>\mu V/m)/20] = 39.8 \mu V/m$

EMC Report for Advanced RF Technologies on the model: EPOCH-III-C

File: 3186504MPK-002 Page 46 of 61

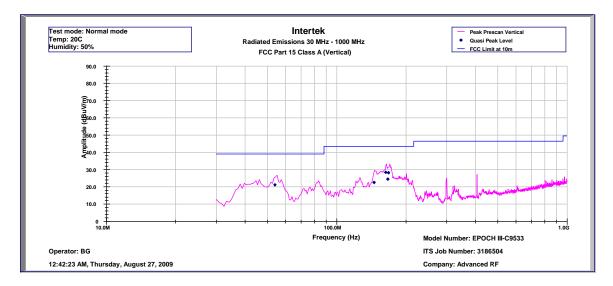
6.3 Configuration Photographs

Radiated Emission Test Setup

Page 47 of 61

6.4 Test Results

Tested By:	Bruce Gordon
Test Date:	August 27, 2009


Note: A complete scan was made from 30 MHz – 1000 MHz.

Result	Complies by 15.1 dB

File: 3186504MPK-002 Page 48 of 61

Radiated Emissions below 1 GHz

Intertek

Radiated Emissions 30 MHz - 1000 MHz

FCC Part 15 Class A (QP-Vertical)

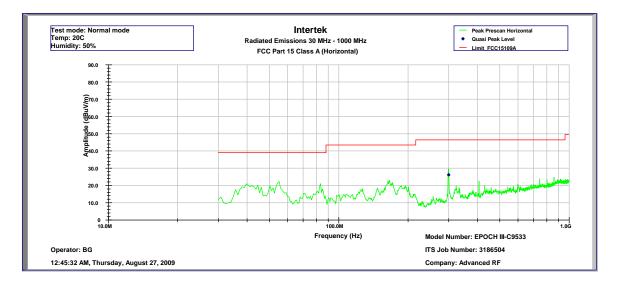
Operator: BG

ITS Job Number: 3186504 27-Aug-09 Company: Advanced RF

	Quasi Pk						
Frequency	FS	Limit at 10m	Margin	RA	CF	AG	AF
Hz	dB(uV/m)	dB(uV/m)	dB	dB(uV)	dB	dB	dB(1/m)
5.39E+07	21.1	39.0	-17.9	48.2	0.7	32.0	4.2
1.45E+08	22.5	43.5	-21.0	40.8	1.2	31.9	12.5
1.63E+08	28.4	43.5	-15.1	49.3	1.3	31.9	9.7
1.67E+08	24.5	43.5	-19.0	45.4	1.3	31.9	9.7
1.68E+08	28.1	43.5	-15.4	49.1	1.3	31.9	9.6

Model Number: EPOCHIIIC

Test mode: Normal


Temp: 20C Humidity: 50%

File: 3186504MPK-002

Page 49 of 61

Radiated Emissions below 1 GHz

Intertek

Radiated Emissions 30 MHz - 1000 MHz FCC Part 15 Class A (QP-Horizontal)

Operator: BG

27-Aug-09

Model Number: EPOCHIIIC ITS Job Number: 3186504 Company: Advanced RF

	Quasi Pk						
Frequency	FS	Limit at 10m	Margin	RA	CF	AG	AF
Hz	dB(uV/m)	dB(uV/m)	dB	dB(uV)	dB	dB	dB(1/m)
3.00E+08	26.1	46.4	-20.3	42.8	1.8	31.9	13.5

Test mode: Normal

Temp: 20C Humidity: 50%

EMC Report for Advanced RF Technologies on the model: EPOCH-III-C
File: 3186504MPK-002
Page 50 of 61

7.0 AC Line Conducted Emissions

FCC 15.107

7.1 Conducted Emission Limits

The following conducted emission limits apply to Class A and Class B unintentional radiators:

Conducted Emissions Limits, Section 15.107(b)

Frequency	Class A Lir	nit dB (µV)	Class B Limit dB (µV)		
Band MHz	Quasi-Peak	Average	Quasi-Peak	Average	
		66 to 56	56 to 46		
0.15-0.50	79	66	Decreases linearly with the	Decreases linearly with the	
			logarithm of the frequency	logarithm of the frequency	
0.50-5.00	73	60	56	46	
5.00-30.00	73	60	60	50	

Note: At the transition frequency the lower limit applies.

EMC Report for Advanced RF Technologies on the model: EPOCH-III-C File: 3186504MPK-002

7.2 Test Procedure

Measurements are carried out using quasi-peak and average detector receivers in accordance with CISPR 16. An AMN is required to provide a defined impedance at high frequencies across the power feed at the point of measurement of terminal voltage and also to provide isolation of the circuit under test from the ambient noise on the power lines. An AMN as defined in CISPR 16 shall be used.

The EUT is located so that the distance between the boundary of the EUT and the closest surface of the AMN is 0.8m.

Where a flexible mains cord is provided by the manufacturer, this shall be 1m long or if in excess of 1m, the excess cable is folded back and forth as far as possible so as to form a bundle not exceeding 0.4m in length.

The EUT is arranged and connected with cables terminated in accordance with the product specification.

Conducted disturbance is measured between the phase lead and the reference ground, and between the neutral lead and the reference ground. Both measured values are reported.

The EUT, where intended for tabletop use, is placed on a table whose top is 0.8m above the ground plane. A vertical, metal reference plane is placed 0.4m from the EUT. The vertical metal reference-plane is at least 2m by 2m. The EUT shall be kept at least 0.8m from any other metal surface or other ground plane not being part of the EUT. The table is constructed of non-conductive materials. Its dimensions are 1m by 1.5m, but may be extended for larger EUT.

Floor standing EUTs are placed on a horizontal metal ground plane and isolated from the ground plane by 3 to 12 mm of insulating material. The metal ground plane extends at least 0.5m beyond the boundaries of the EUT and has minimum dimensions of 2m by 2m.

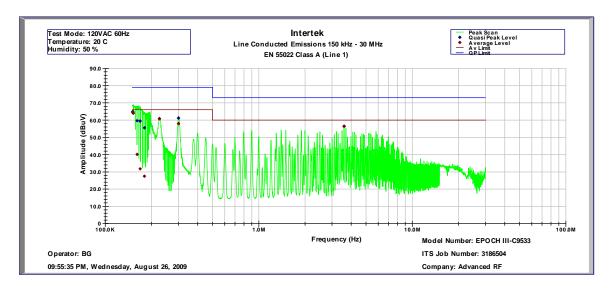
Equipment setup for conducted disturbance tests followed the guidelines of ANSI C63.4.

EMC Report for Advanced RF Technologies on the model: EPOCH-III-C File: 3186504MPK-002

7.3 Configuration Photographs

7.4 Test Results

Tested By:	Bruce Gordon
Test Date:	August 26, 2009


Note: A complete scan was made from $0.15\ MHz-30\ MHz$.

Result	Complies by 1.5 dB

EMC Report for Advanced RF Technologies on the model: EPOCH-III-C File: 3186504MPK-002

Conducted Emissions

Intertek

Line Conducted Emissions 150 kHz - 30 MHz

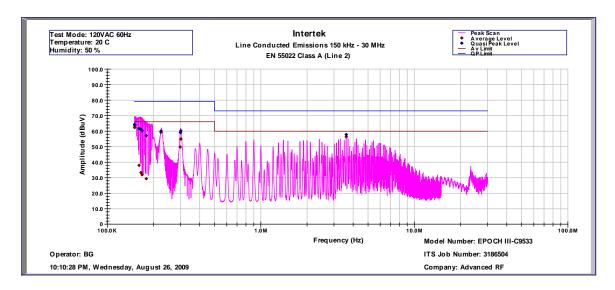
FCC Part 15 Class A (Line 1)

Operator: BG Model Number: EPOCHIIIC

ITS Job Number: 3186504 26-Aug-09 Company: Advanced RF

	Av	QP	Av	QP	Av	QP
Frequency	Level	Level	Limit	Limit	Margin	Margin
Hz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB	dB
151128	64.5	64.9	66.0	79.0	-1.5	-14.1
152038	64.0	64.1	66.0	79.0	-2.0	-14.9
161247	40.1	59.7	66.0	79.0	-25.9	-19.3
168829	31.7	59.4	66.0	79.0	-34.3	-19.6
180121	27.5	55.6	66.0	79.0	-38.5	-23.4
225272	60.8	60.8	66.0	79.0	-5.2	-18.2
299870	57.9	61.2	66.0	79.0	-8.1	-17.8

Test Mode: 120VAC 60Hz


Temperature: 20 C Humidity: 50 %

EMC Report for Advanced RF Technologies on the model: EPOCH-III-C

Page 55 of 61 File: 3186504MPK-002

Conducted Emissions

Intertek

Line Conducted Emissions 150 kHz - 30 MHz

FCC Part 15 Class A (Line 2)

Operator: BG Model Number: EPOCHIIIC

ITS Job Number: 3186504 Company: Advanced RF

26-Aug-09

	Av	QP	Av	QP	Av	QP
Frequency	Level	Level	Limit	Limit	Margin	Margin
Hz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB	dB
150650	62.4	64.3	66.0	79.0	-3.6	-14.7
151011	62.4	63.9	66.0	79.0	-3.6	-15.1
161076	38.0	61.6	66.0	79.0	-28.0	-17.4
165671	33.2	61.1	66.0	79.0	-32.8	-17.9
168761	31.9	60.3	66.0	79.0	-34.1	-18.7
179487	29.4	57.1	66.0	79.0	-36.6	-21.9
223865	59.3	60.0	66.0	79.0	-6.7	-19.0
298914	49.8	59.1	66.0	79.0	-16.2	-19.9
301503	54.9	60.2	66.0	79.0	-11.1	-18.8

Test Mode: 120VAC 60Hz

Temperature: 20 C Humidity: 50 %

Page 56 of 61

8.0 Frequency Stability versus Temperature and Voltage

FCC 2.1055

8.1 Requirement

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

8.2 Test Procedure

The EUT was placed inside the temperature chamber. The RF output port was connected to a spectrum analyzer. The EUT was setup to transmit the maximum power.

After the temperature stabilized for approximately 20 minutes, the transmitting frequency was measured by the spectrum analyzer and recorded.

At room temperature, the frequency was measured when the EUT was powered with the nominal voltage and with 85% and 115% of the nominal voltage.

8.3 Test Results

Frequency Stability Test Data

Nominal frequency: 836.520184 MHz

110111111111111111111111111111111111111					
Temperature (Celsius)	Measured Frequency (MHz)	Deviation (Hz)			
50	836.520163	-21			
40	836.520195	11			
30	836.520174	-10			
20	836.520184	0			
10	836.520201	17			
-10	836.520190	6			
-20	836.520172	-12			
-30	836.520205	21			

Voltage AC 60Hz	Measured Frequency (MHz)	Deviation (Hz)
102	836.520163	-21
120	836.520184	0
138	836.520198	14

Result Complies

EMC Report for Advanced RF Technologies on the model: EPOCH-III-C
File: 3186504MPK-002 Page 58 of 61

9.0 List of Test Equipment

Measurement equipment used for compliance testing utilized the equipment on the following list:

Equipment	Manufacturer	Model/Type	Serial #	Cal Int	Cal Due
RF Filter Section	Hewlett Packard	85460A	3448A00267	12	7/01/10
EMI Receiver	Hewlett Packard	8546A	3710A00373	12	7/01/10
Spectrum Analyzer	Rohde&Schwarz	FSU26	200482	12	4/27/10
BI-Log Antenna	EMCO	3143	9509	12	11/07/09
Pre-Amplifier	Sonoma	310N	185634	12	11/10/09
Pre-Amplifier	Miteq	AMF-4D-001180-24-10P	799159	12	7/29/10
LISN	FCC	FCC-LISN-50-50-M-H	2011	12	9/19/09
Horn Antenna	EMCO	3115	9509-3712	12	10/22/09

EMC Report for Advanced RF Technologies on the model: EPOCH-III-C

File: 3186504MPK-002 Page 59 of 61

10.0 RF Exposure evaluation

The EUT is a Cellular Repeater used in a fixed application, at least 75 cm from any body part of the user or near by persons.

Cell Band

The maximum conducted power for Cell Band is 33 dBm; 2000 mW; antenna is fix-mounted with a maximum gain of 12 dBi. Therefore, to comply with RF Exposure Requirement, the MPE is calculated.

The maximum Peak EIRP calculated is 45 dBm; 31,623mW.

The Power Density can be calculated using the formula

 $S = EIRP/4\pi D^2$

Where: S is Power Density in W/m²

D is the distance from the antenna.

It is considered that 75cm is the minimum distance that a user can go closer to the EUT.

At 0.75 m, $S = 4.5 \text{ W/m}^2$, which is below the MPE Limit of 5.67 W/m²

EMC Report for Advanced RF Technologies on the model: EPOCH-III-C File: 3186504MPK-002

Page 60 of 61

11.0 Document History

Revision/ Job Number	Writer Initials	Date	Change
1.0 / 3186504	BG	August 31, 2009	Original document

Page 61 of 61