Appendix A. Maximum Permissible Exposure

Page No. : A1 of A3 FCC ID : RYK-WPEA121N

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f (900 / f)*		6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Page No. : A2 of A3 FCC ID : RYK-WPEA121N

1.3. Calculated Result and Limit

Antenna Type: Dipole Antenna

Max Conducted Power for IEEE 802.11a port A: 17.65dBm

Test Mode	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
5G	20	2	1.584893	17.65	58.2103	0.0184

Max Conducted Power for IEEE 802.11a port B: 15.98dBm

Test Mode	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
5G	20	2	1.584893	15.98	39.6278	0.0125

IEEE 802.11a port A + port B Power Density = 0.0184 + 0.0125 = 0.0309 (mW/cm2)

Max Conducted Power for IEEE 802.11n (20MHz) port A: 10.96dBm

Test Mode	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
5G	20	2	1.584893	10.96	12.4738	0.0039

Max Conducted Power for IEEE 802.11n (20MHz) port B: 13.84dBm

Test Mode	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
5G	20	2	1.584893	13.84	24.2103	0.0076

IEEE 802.11 n (20MHz) port A + port B Power Density = 0.0039 + 0.0076 = 0.0115 (mW/cm2)

Max Conducted Power for IEEE 802.11n (40MHz) port A: 11.52dBm

Test Mode	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
5G	20	2	1.584893	11.52	14.1906	0.0045

Max Conducted Power for IEEE 802.11n (40MHz) port B: 15.64dBm

Test Mode	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
5G	20	2	1.584893	15.64	36.6438	0.0116

IEEE 802.11n port A + port B Power Density = 0.0045 + 0.0116 = 0.0161 (mW/cm2)

Page No. : A3 of A3 FCC ID : RYK-WPEA121N