

TEST REPORT

CERTIFICATE OF CONFORMITY

Standard: 47 CFR FCC Part 15, Subpart C (Section 15.247)

Report No.: RFBENL-WTW-P24060724-6

FCC ID: RYK-WNFQ291BEBT

Product: WiFi 7/BT module

Brand: Sparklan

Model No.: WNFQ-291BEI(BT)

Series Model: WNFQ-291BE(BT)

Received Date: 2024/8/16

Test Date: 2024/10/26 ~ 2024/12/20

Issued Date: 2025/4/11

Applicant: SparkLAN Communications, Inc.

Address: 5F, No. 199, Ruihu St., Neihu Dist., Taipei City 114067, Taiwan, R.O.C

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan

FCC Registration / 723255 / TW2022

Designation Number:

Approved by: _____, **Date:** _____ 2025/4/11

May Chen / Manager

This test report consists of 36 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

Prepared by : Phoenix Huang / Specialist

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at <http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/> and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Table of Contents

Release Control Record	3
1 Certificate.....	4
2 Summary of Test Results	5
2.1 Measurement Uncertainty	5
2.2 Supplementary Information	5
3 General Information	6
3.1 General Description.....	6
3.2 Antenna Description of EUT	7
3.3 Channel List.....	8
3.4 Test Mode Applicability and Tested Channel Detail.....	9
3.5 Duty Cycle of Test Signal.....	10
3.6 Test Program Used and Operation Descriptions.....	11
3.7 Connection Diagram of EUT and Peripheral Devices	11
3.8 Configuration of Peripheral Devices and Cable Connections	13
4 Test Instruments	14
4.1 RF Output Power.....	14
4.2 Unwanted Emissions below 1 GHz	14
4.3 Unwanted Emissions above 1 GHz.....	15
5 Limits of Test Items.....	16
5.1 RF Output Power	16
5.2 Unwanted Emissions below 1 GHz	16
5.3 Unwanted Emissions above 1 GHz.....	16
6 Test Arrangements.....	17
6.1 RF Output Power.....	17
6.1.1 Test Setup	17
6.1.2 Test Procedure.....	17
6.2 Unwanted Emissions below 1 GHz	18
6.2.1 Test Setup	18
6.2.2 Test Procedure.....	19
6.3 Unwanted Emissions above 1 GHz.....	21
6.3.1 Test Setup	21
6.3.2 Test Procedure	21
7 Test Results of Test Item	22
7.1 RF Output Power.....	22
7.2 Unwanted Emissions below 1 GHz	24
7.3 Unwanted Emissions above 1 GHz.....	27
8 Pictures of Test Arrangements	35
9 Information of the Testing Laboratories	36

Release Control Record

Issue No.	Description	Date Issued
RFBENL-WTW-P24060724-6	Original release.	2025/4/11

1 Certificate

Product: WiFi 7/BT module

Brand: Sparklan

Test Model: WNFQ-291BEI(BT)

Series Model: WNFQ-291BE(BT)

Sample Status: Engineering sample

Applicant: SparkLAN Communications, Inc.

Test Date: 2024/10/26 ~ 2024/12/20

Standard: 47 CFR FCC Part 15, Subpart C (Section 15.247)

Measurement

procedure: ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

KDB 662911 D01 Multiple Transmitter Output v02r01

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)			
Standard / Clause	Test Item	Result	Remark
15.247(b)	RF Output Power	Pass	Meet the requirement of limit.
15.247(e)	Power Spectral Density	N/A	Refer to Note 1 below
15.247(a)(2)	6 dB Bandwidth	N/A	Refer to Note 1 below
15.247(d)	Conducted Out of Band Emissions	N/A	Refer to Note 1 below
15.207	AC Power Conducted Emissions	N/A	Refer to Note 1 below
15.205 / 15.209 / 15.247(d)	Unwanted Emissions below 1 GHz	Pass	Minimum passing margin is -1.3 dB at 199.60 MHz
15.205 / 15.209 / 15.247(d)	Unwanted Emissions above 1 GHz	Pass	Minimum passing margin is -17.6 dB at 7320.00 MHz
15.203	Antenna Requirement	Pass	Antenna connector is MHF 4L, I-PEX MHF4, RP-SMA (M), MHF4L to SMA-F not a standard connector.

Note:

- Only RF Output Power and Unwanted Emissions test items were performed for this addendum. The others testing data refer to original test report (Original FCC ID: J9C-QCNCM865).
- Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Specification	Expanded Uncertainty (k=2) (\pm)
RF Output Power	-	1.1 dB
Unwanted Emissions below 1 GHz	9 kHz ~ 30 MHz	3.1 dB
	30 MHz ~ 1 GHz	5.1 dB
Unwanted Emissions above 1 GHz	1 GHz ~ 18 GHz	5.1 dB
	18 GHz ~ 40 GHz	5.3 dB

The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated.

2.2 Supplementary Information

There is not any deviation from the test standards for the test method, and no modifications required for compliance.

3 General Information

3.1 General Description

Product	WiFi 7/BT module
Brand	Sparklan
Test Model	WNFQ-291BEI(BT)
Series Model	WNFQ-291BE(BT)
Status of EUT	Engineering sample
Power Supply Rating	3.3 Vdc from host equipment
Modulation Type	GFSK
Modulation Technology	DTS
Transfer Rate	Up to 2 Mbps
Operating Frequency	2.402 GHz ~ 2.48 GHz
Number of Channel	40
Output Power	1Tx: 41.21 mW (16.15 dBm) 2Tx: 50.761 mW (17.06 dBm)

Note:

1. This report is prepared for FCC class II permissive change. The difference compared with the original design is as the following:
 - ◆ Add Dipole antenna and Chip antenna (Refer to section 3.2)
 - ◆ Change shielding case and add thermal pad.
 - ◆ Change temperature operating range to -40 °C ~ 85 °C
2. According to above conditions, there are RF Output Power and Unwanted Emissions test items need to be performed. All data for meeting the requirement is verified.
3. All models are listed as below.

Brand	Model	Difference
Sparklan	WNFQ-291BEI(BT)	All models are electrically identical, different model names are for marketing purpose.
	WNFQ-291BE(BT)	

From the above models, model: WNFQ-291BEI(BT) was selected as representative model for the test and its data was recorded in this report.

4. There are Bluetooth (EDR, BLE, QHS) and WLAN (2.4 GHz & 5 GHz & 5.9 GHz & 6 GHz) technology used for the EUT.
5. Simultaneously transmission combination.

DBS		
Combination	Technology	
1	WLAN(2.4GHz)_Ant 0+1	WLAN(5GHz) _Ant 0+1
2	WLAN(2.4GHz) _Ant 0+1	WLAN(6GHz) _Ant 0+1

HBS+BT			
Combination	Technology		
3	Bluetooth_Ant 0+1		WLAN(5GHz) _Ant 0+1
4	Bluetooth_Ant 0+1		WLAN(6GHz) _Ant 0+1
5	WLAN(5GHz_U-NII-1, U-NII-2A) Ant 0+1	WLAN(5GHz_U-NII-2C, U-NII-3, U-NII-4) _Ant 0+1	Bluetooth
6	WLAN(5GHz_U-NII-1, U-NII-2A) Ant 0+1	WLAN(6GHz) _Ant 0+1	Bluetooth

Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.

6. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 Antenna Description of EUT

1. The antenna information is listed as below.

Original									
Antenna Set	RF Chain No.	Brand	Model	Antenna Net Gain (dBi)	Frequency Range (GHz)	Cable Loss (dB)	Antenna Type	Connector Type	Cable Length (mm)
1	Chain0/1	Hong-Bo	260-25094	3.53 3.06 3.07 4.81 4.2	2.4~2.4835 5.15~5.25 5.25~5.35 5.47~5.725 5.725~5.850	0.74 1.16 1.18 1.26 1.28	PIFA	MHF 4L	300
2	Chain0/1	Hong-Bo	260-25083	5.09 5.14 5.09 5.16 5.12	5.850~5.895 5.925~6.425 6.425~6.525 6.525~6.875 6.875~7.125	1.29 1.35 1.38 1.45 1.50	PIFA	MHF 4L	300
3	Chain0/1	Hong-Bo	260-25084	3.22 3.35 3.42 4.77 4.72 4.71 4.75 4.29 4.81 4.74	2.4~2.4835 5.150~5.250 5.250~5.350 5.470~5.725 5.725~5.850 5.850~5.895 5.925~6.425 6.425~6.525 6.525~6.875 6.875~7.125	0.49 0.76 0.77 0.80 0.84 0.84 0.86 0.91 0.96 0.98	Monopole	MHF 4L	200
Newly									
Antenna Set	RF Chain No.	Brand	Model	Antenna Net Gain (dBi)	Frequency Range (GHz)	Antenna Type	Connector Type	Cable Length (mm)	
4	Chain0/1	SparkLAN	AD-513AX	3.11 4.46 4.07 4.53 4.06 4.04 3.97	2.4~2.4835 5.150~5.850 5.850~5.895 5.925~6.425 6.425~6.525 6.525~6.875 6.875~7.125	Dipole	I-PEX MHF4	150	
5	Chain0/1	SparkLAN	AD-510AX	2.27 2.88 2.6 3.23 3.34 3.52 3.52	2.4~2.4835 5.150~5.850 5.850~5.895 5.925~6.425 6.425~6.525 6.525~6.875 6.875~7.125	Dipole	RP-SMA (M)	150	
6	Chain0/1	SparkLAN	AD-512AX	2.35 3.00 2.80 2.87 3.02 3.02 2.61	2.4~2.4835 5.150~5.850 5.850~5.895 5.925~6.425 6.425~6.525 6.525~6.875 6.875~7.125	Dipole	RP-SMA (M)	150	
7	Chain0/1	SparkLAN	AD-516AX	1.65 4.3 3.98 4 4 3.91 3.78	2.4~2.4835 5.150~5.850 5.850~5.895 5.925~6.425 6.425~6.525 6.525~6.875 6.875~7.125	Dipole	I-PEX MHF4	250	
8	Chain0/1	Johanson	2450AD18A6050	2 1.5 2.7 2.7 2.7 2.7 2.7	2.4~2.4835 5.150~5.850 5.850~5.895 5.925~6.425 6.425~6.525 6.525~6.875 6.875~7.125	Chip	MHF4L to SMA-F	-	

* Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

3.3 Channel List

40 channels are provided for BT-LE:

Channel	Frequency (MHz)						
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

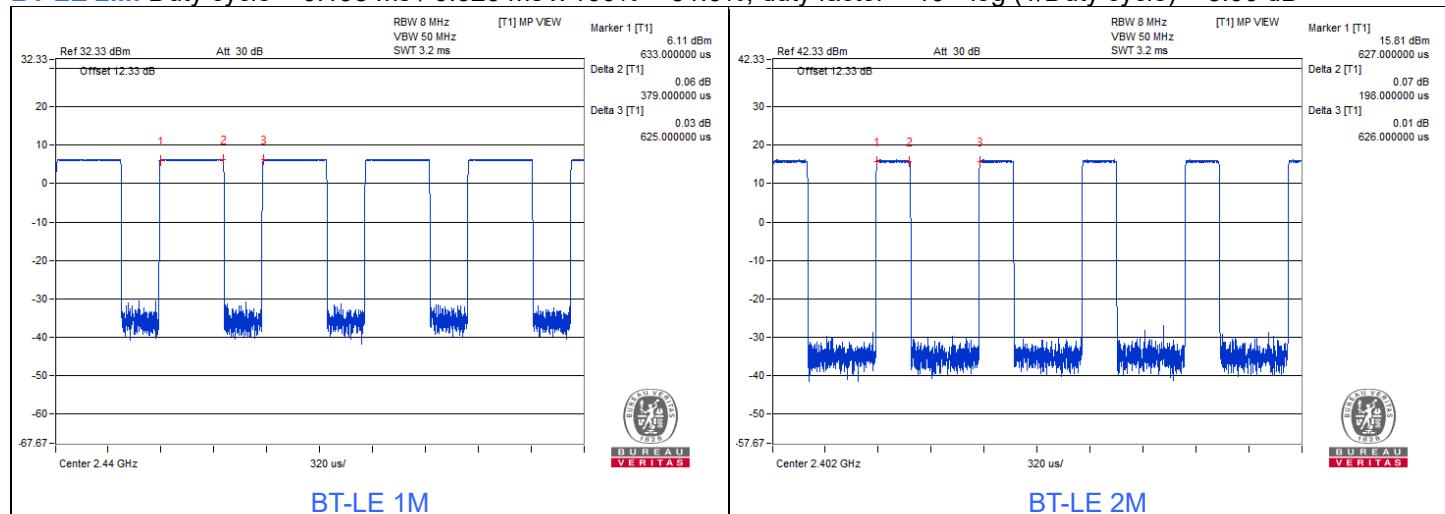
3.4 Test Mode Applicability and Tested Channel Detail

Pre-Scan:	1. The Dipole and Chip of antenna type in antennas can be used in the following ways: X / Y / Z axis. Pre-scan in these ways and find the worst case as a representative test condition. 2. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.
Worst Case:	1. Dipole antenna the worst case was found when positioned on (X / Y / Z axis): Y axis 2. Chip antenna the worst case was found when positioned on (X / Y / Z axis): Y axis

Following channel(s) was (were) selected for the final test as listed below:

Test Item	EUT Configure Mode	Mode	Tested Channel	Tx Antenna	Modulation	Data Rate Parameter
RF Output Power	-	BT-LE 1M	0, 19, 39	1Tx / 2Tx	GFSK	1Mb/s
		BT-LE 2M	0, 19, 39		GFSK	2Mb/s
Unwanted Emissions below 1 GHz	A, B	BT-LE 1M	19	1Tx	GFSK	1Mb/s
Unwanted Emissions above 1 GHz	C, D	BT-LE 1M	19	1Tx / 2Tx	GFSK	1Mb/s
EUT Configure Mode:	A	EUT only (remove 50 ohm terminator and Connect to the appropriate equipment)				
	B	EUT with 50 ohm terminator				
	C	EUT with Dipole antenna (Model: AD-513AX)				
	D	EUT with Chip antenna (Model: 2450AD18A6050)				

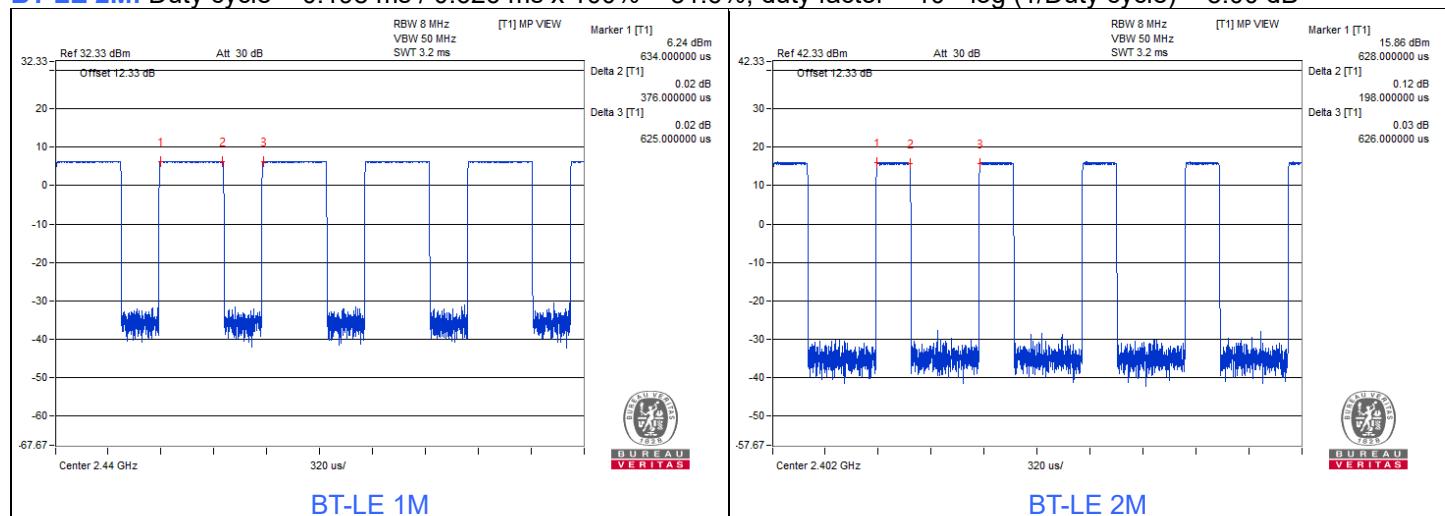
Note:


1. For 1Tx diversity configuration the worst chain is: Chain 0.
2. For unwanted emission test items, the tested channel was chosen the worst case as mode represent to report.

3.5 Duty Cycle of Test Signal

1Tx

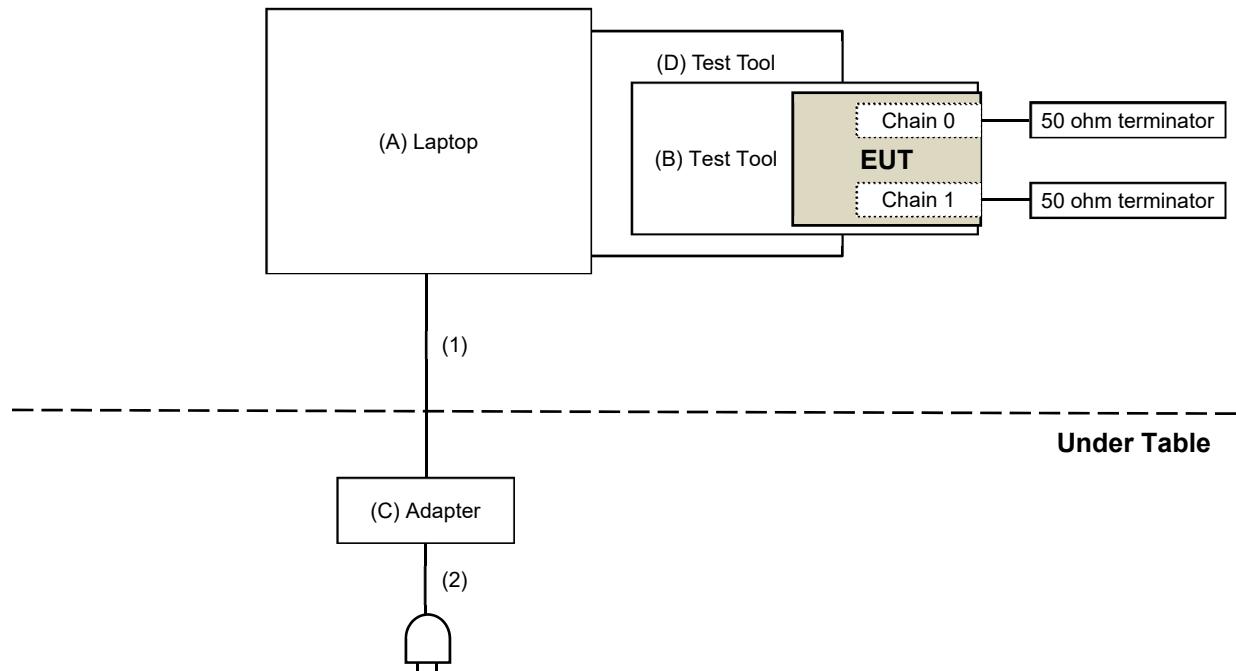
BT-LE 1M: Duty cycle = $0.379 \text{ ms} / 0.625 \text{ ms} \times 100\% = 60.6\%$, duty factor = $10 \times \log(1/\text{Duty cycle}) = 2.17 \text{ dB}$


BT-LE 2M: Duty cycle = $0.198 \text{ ms} / 0.626 \text{ ms} \times 100\% = 31.6\%$, duty factor = $10 \times \log(1/\text{Duty cycle}) = 5.00 \text{ dB}$

2Tx

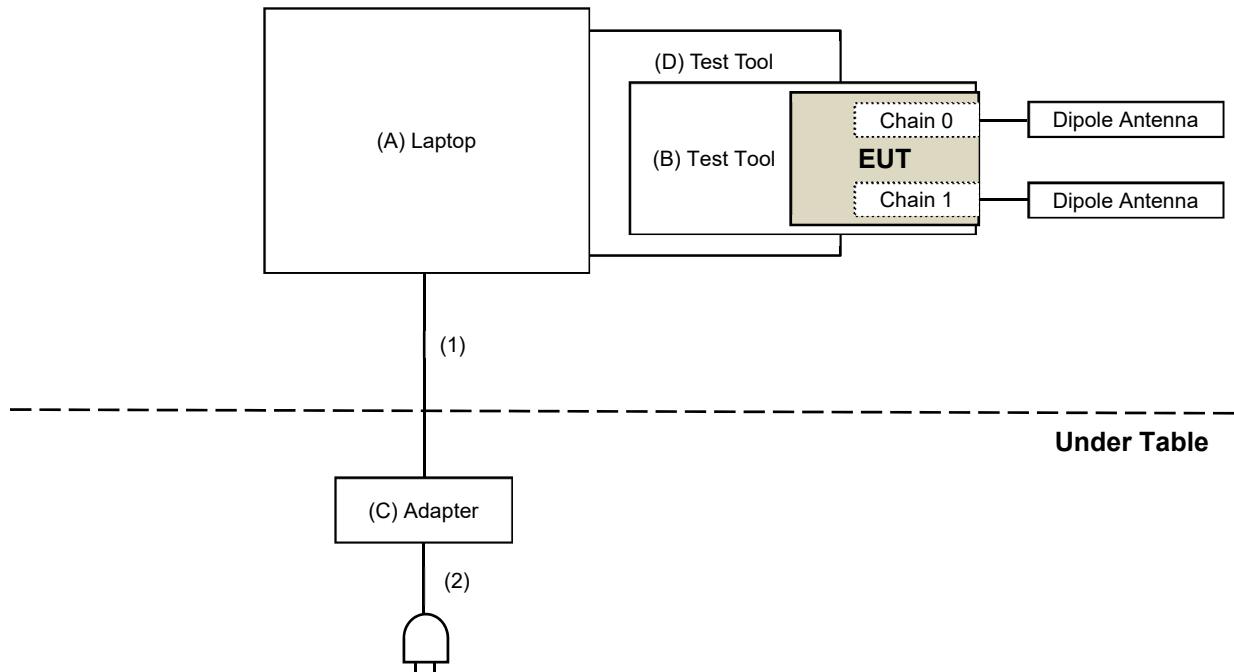
BT-LE 1M: Duty cycle = $0.376 \text{ ms} / 0.625 \text{ ms} \times 100\% = 60.2\%$, duty factor = $10 \times \log(1/\text{Duty cycle}) = 2.21 \text{ dB}$

BT-LE 2M: Duty cycle = $0.198 \text{ ms} / 0.626 \text{ ms} \times 100\% = 31.6\%$, duty factor = $10 \times \log(1/\text{Duty cycle}) = 5.00 \text{ dB}$

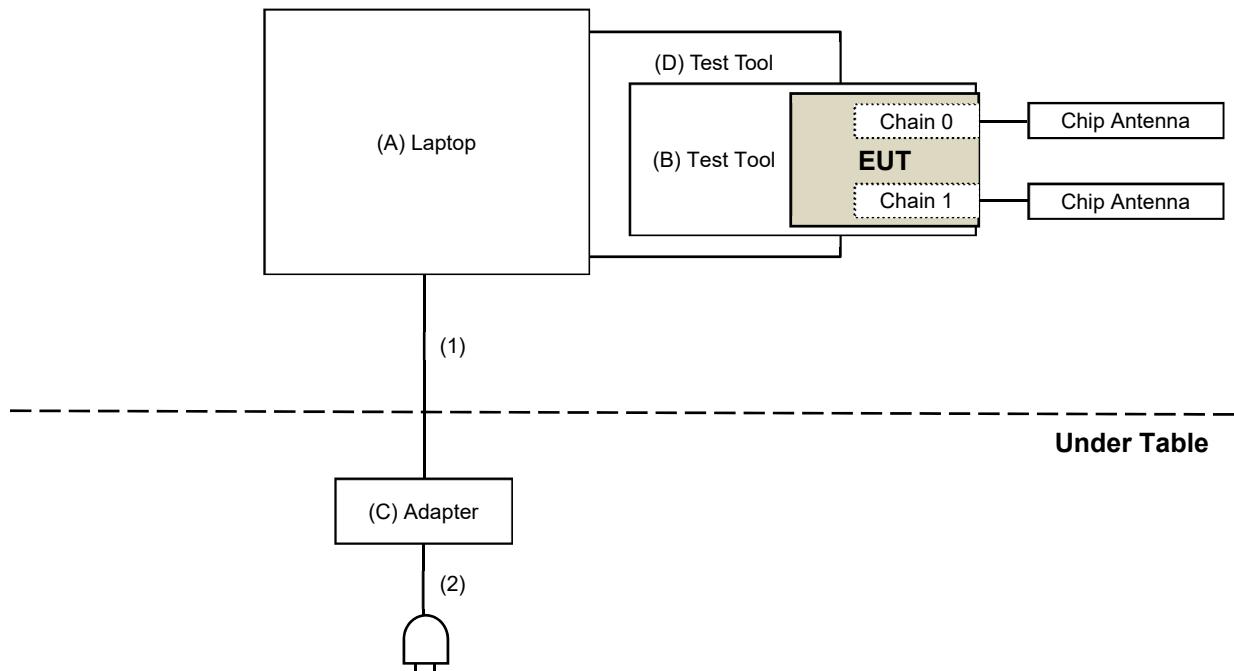

3.6 Test Program Used and Operation Descriptions

Controlling software (Bluetooth and ANT QRCT Module V4.0.00031.1) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

3.7 Connection Diagram of EUT and Peripheral Devices


For Unwanted Emission test below 1G

Mode B



For Unwanted Emission test above 1G

Mode C

Mode D

3.8 Configuration of Peripheral Devices and Cable Connections

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A	Laptop	Dell	E6430	N/A	N/A	Supplied by applicant
B	Test Tool	Qualcomm	N/A	N/A	N/A	Supplied by applicant
C	Adapter	Dell	LA65NM130	N/A	N/A	Supplied by applicant
D	Test Tool	Qualcomm	N/A	N/A	N/A	Supplied by applicant

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	DC Cable	1	1.8	No	0	Supplied by applicant
2	AC Cable	1	1.5	No	0	Supplied by applicant

4 Test Instruments

The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1 RF Output Power

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Pulse Power Sensor Anritsu	MA2411B	1726434	2024/6/7	2025/6/6
RF Power Meter Anritsu	ML2495A	1529002	2024/6/7	2025/6/6

Notes:

1. The test was performed in Oven room 2.
2. Tested Date: 2024/10/26

4.2 Unwanted Emissions below 1 GHz

Mode A

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
MXA Signal Analyzer Keysight	N9020B	MY60112408	2024/3/7	2025/3/6
Software	ADT_RF Test Software V7.6.5.4	N/A	N/A	N/A

Notes:

1. The test was performed in Oven room 2.
2. Tested Date: 2024/10/26

Mode B

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Bi_Log Antenna Schwarzbeck	VULB 9168	9168-0842	2024/10/8	2025/10/7
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	N/A	N/A
EMI Test Receiver R&S	ESR7	102026	2024/3/25	2025/3/24
Fixed Attenuator Mini-Circuits	UNAT-5+	PAD-ATT5-02	2024/3/30	2025/3/29
Loop Antenna TESEQ	HLA 6121	63620	2024/10/17	2025/10/16
Preamplifier EMCI	EMC330N	980538	2024/3/30	2025/3/29
PXA Signal Analyzer Keysight	EMC001340	980142	2024/2/19	2025/2/18
	N9030B	MY57141948	2024/5/20	2025/5/19
RF Coaxial Cable JYEBAO	5D-FB	LOOPCAB-001	2024/2/19	2025/2/18
		LOOPCAB-002	2024/2/19	2025/2/18
RF Coaxial Cable PEWC	8D	966-5-1	2024/3/30	2025/3/29
		966-5-2	2024/3/30	2025/3/29
		966-5-3	2024/3/30	2025/3/29
Software	ADT_Radiated_V8.7.08	N/A	N/A	N/A

Notes:

1. The test was performed in 966 Chamber No. 5.
2. Tested Date: 2024/10/29

4.3 Unwanted Emissions above 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	N/A	N/A
EMI Test Receiver R&S	ESR7	102026	2024/3/25	2025/3/24
Horn Antenna Schwarzbeck	BBHA 9120D	9120D-1819	2023/11/12 2024/11/10	2024/11/11 2025/11/9
	BBHA 9170	9170-739	2023/11/12 2024/11/10	2024/11/11 2025/11/9
Preamplifier EMCI	EMC12630SE	980509	2024/1/29	2025/1/28
	EMC184045SE	980387	2024/8/8	2025/8/7
PXA Signal Analyzer Keysight	N9030B	MY57141948	2024/5/20	2025/5/19
RF Coaxial Cable EMCI	EMC102-KM-KM-1200	160924	2024/1/29	2025/1/28
	EMC102-KM-KM-4000	200214	2024/1/29	2025/1/28
	EMC104-SM-SM-1500	180503	2024/3/16	2025/3/15
	EMC104-SM-SM-2000	180501	2024/3/16	2025/3/15
	EMC104-SM-SM-6000	180506	2024/3/16	2025/3/15
Software	ADT_Radiated_V8.7.08	N/A	N/A	N/A

Notes:

1. The test was performed in 966 Chamber No. 5.
2. Tested Date: 2024/10/30 ~ 2024/12/20

5 Limits of Test Items

5.1 RF Output Power

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30 dBm)

Per KDB 662911 D01 Multiple Transmitter Output Method of conducted output power measurement on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \leq 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT} ;

Array Gain = $5 \log(N_{ANT}/N_{SS})$ dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \geq 5$.

For power measurements on all other devices: Array Gain = $10 \log(N_{ANT}/N_{SS})$ dB.

5.2 Unwanted Emissions below 1 GHz

Radiated emissions up to 1 GHz which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	$2400/F(\text{kHz})$	300
0.490 ~ 1.705	$24000/F(\text{kHz})$	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

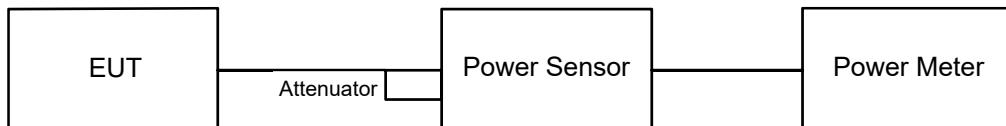
Notes:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB_{uV}/m) = 20 log Emission level (uV/m).

5.3 Unwanted Emissions above 1 GHz

Radiated emissions above 1 GHz which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
Above 960	500	3


Notes:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB_{uV}/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

6 Test Arrangements

6.1 RF Output Power

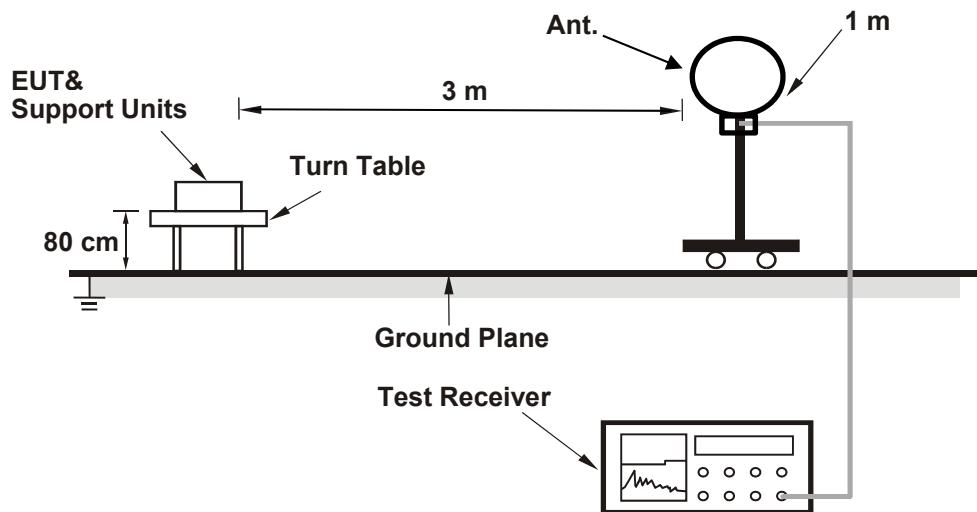
6.1.1 Test Setup

6.1.2 Test Procedure

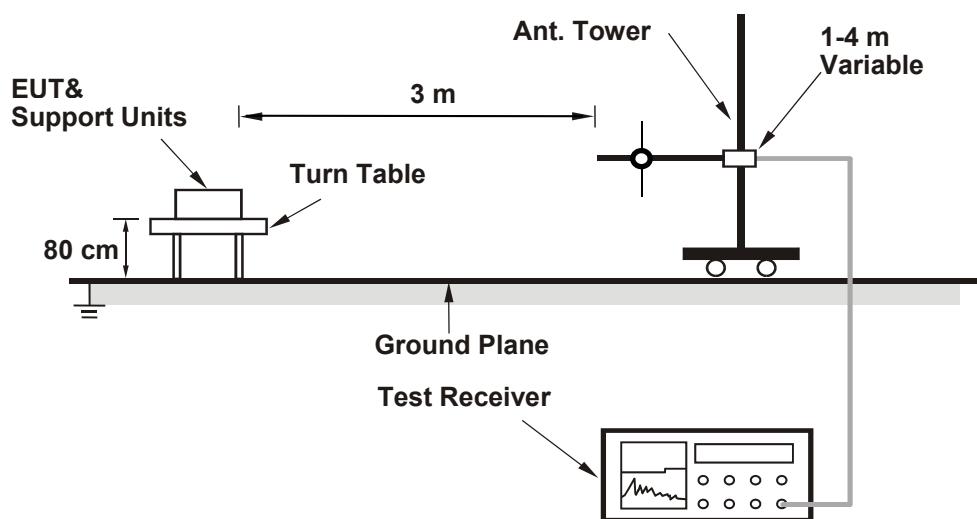
Peak Power:

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average Power:


Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

6.2 Unwanted Emissions below 1 GHz


6.2.1 Test Setup

For Radiated Configuration:

For Radiated emission below 30 MHz

For Radiated emission above 30 MHz

For Conducted Configuration:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.2.2 Test Procedure

Radiated versus Conducted Measurement.

The unwanted emission limits in both the restricted and non-restricted bands are based on antenna-port conducted measurements in conjunction with cabinet emissions tests are permitted to demonstrate compliance.

The following steps was performed:

- a. Cabinet emissions measurements. Radiated measurement was performed to ensure that cabinet emissions are below the emission limits. For the cabinet-emission measurements the antenna was replaced by a termination matching the nominal impedance of the antenna.
- b. Conducted tests was performed using equipment that matches the nominal impedance of the antenna assembly used with the EUT.
- c. EIRP calculation. A value representative of an upper bound on out-of-band antenna gain (in dBi) shall be added to the measured antenna-port conducted emission power to compute EIRP within the specified measurement bandwidth. (For emissions in the restricted bands, additional calculations are required to convert EIRP to field strength at the specified distance.) The upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands or 2 dBi, whichever is greater.
- d. EIRP adjustments for multiple outputs. (Follow the procedures specified in FCC KDB Publication 662911)
- e. For all of Radiation emission test

For Radiated emission below 30 MHz

- e-1.1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- e-1.2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- e-1.3. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- e-1.4. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e-1.5. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9 kHz to 90 kHz and 110 kHz to 490 kHz) set to average detect function and peak detect function.

Notes:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz at frequency below 150 kHz.
2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz or 10 kHz at frequency (150 kHz to 30 MHz).
3. All modes of operation were investigated and the worst-case emissions are reported.

For Radiated emission above 30 MHz

- e-2.1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- e-2.2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- e-2.3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e-2.4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e-2.5. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

Notes:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
2. All modes of operation were investigated and the worst-case emissions are reported.

Radiated versus Conducted Measurement

For Radiated measurement:

The level of unwanted emissions was measured when radiated by the cabinet or structure of the equipment with the antenna connector(s) terminated by a specified load (cabinet radiation).

For Conducted measurement:

The level of unwanted emissions was measured as their power in a specified load (conducted spurious emissions).

Conducted Unwanted Emission Convert Formula

- a. Emission Level (dB_{UV}/m) = EIRP Level (dBm) – 20log(d) + 104.8

d = measurement distance in 3 meters.

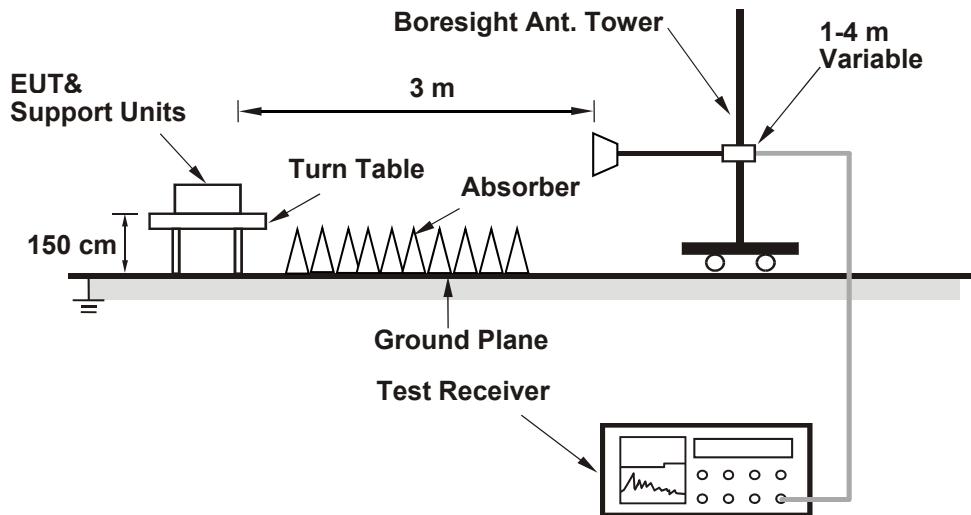
- b. EIRP Level (dBm) = Raw Value(dBm) + Correction Factor(dB)

- c. Correction Factor is directional gain, and the composite gain will be used when signal support the correlated signal.

For the out of band spurious the gain for the specific band may have been used rather than the highest gain across all bands.

For the band edge the gain for the specific band may have been used.

Notes:


1. In restricted bands below 1000 MHz, add upper bound on ground plane reflection:

For frequencies between 30 MHz and 1000 MHz, add 4.7 dB.

2. The conducted emission test was considered some factor to compute test result.

6.3 Unwanted Emissions above 1 GHz

6.3.1 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.3.2 Test Procedure

- The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver/spectrum analyzer was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Notes:

- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1 GHz.
- For harmonic signal measurement, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is $\geq 1/T$ (Duty cycle < 98%) or 10 Hz (Duty cycle $\geq 98\%$) for Average detection (AV) at frequency above 1 GHz.
- All modes of operation were investigated and the worst-case emissions are reported.

7 Test Results of Test Item

7.1 RF Output Power

Input Power:	3.3 Vdc	Environmental Conditions:	25°C, 60% RH	Tested By:	Kevin Ko
--------------	---------	---------------------------	--------------	------------	----------

1Tx

For Peak Power

BT-LE 1M

Chan.	Chan. Freq. (MHz)	Peak Power (mW)	Peak Power (dBm)	Power Limit (dBm)	Test Result
0	2402	37.67	15.76	30	Pass
19	2440	41.02	16.13	30	Pass
39	2480	30.903	14.90	30	Pass

Note: The antenna gain is 3.53 dBi < 6 dBi, so the output power limit shall not be reduced.

BT-LE 2M

Chan.	Chan. Freq. (MHz)	Peak Power (mW)	Peak Power (dBm)	Power Limit (dBm)	Test Result
0	2402	37.411	15.73	30	Pass
19	2440	41.21	16.15	30	Pass
39	2480	31.989	15.05	30	Pass

Note: The antenna gain is 3.53 dBi < 6 dBi, so the output power limit shall not be reduced.

For Average Power

BT-LE 1M

Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	35.237	15.47
19	2440	38.637	15.87
39	2480	29.242	14.66

BT-LE 2M

Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	33.884	15.30
19	2440	38.371	15.84
39	2480	30.761	14.88

Input Power:	3.3 Vdc	Environmental Conditions:	25°C, 60% RH	Tested By:	Kevin Ko
--------------	---------	---------------------------	--------------	------------	----------

2Tx

For Peak Power

BT-LE 1M

Chan.	Chan. Freq. (MHz)	Peak Power (dBm)		Total Power (mW)	Total Power (dBm)	Power Limit (dBm)	Test Result
		Chain 0	Chain 1				
0	2402	13.94	12.98	44.635	16.50	30	Pass
19	2440	14.33	13.74	50.761	17.06	30	Pass
39	2480	13.24	12.58	39.2	15.93	30	Pass

Note: The directional gain is 3.53 dBi < 6 dBi, so the output power limit shall not be reduced.

BT-LE 2M

Chan.	Chan. Freq. (MHz)	Peak Power (dBm)		Total Power (mW)	Total Power (dBm)	Power Limit (dBm)	Test Result
		Chain 0	Chain 1				
0	2402	13.88	13.01	44.433	16.48	30	Pass
19	2440	14.19	13.74	49.901	16.98	30	Pass
39	2480	13.26	12.66	39.634	15.98	30	Pass

Note: The directional gain is 3.53 dBi < 6 dBi, so the output power limit shall not be reduced.

For Average Power

BT-LE 1M

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Average Power (mW)	Total Average Power (dBm)
		Chain 0	Chain 1		
0	2402	13.72	12.65	41.958	16.23
19	2440	14.06	13.51	47.907	16.80
39	2480	12.86	12.12	35.613	15.52

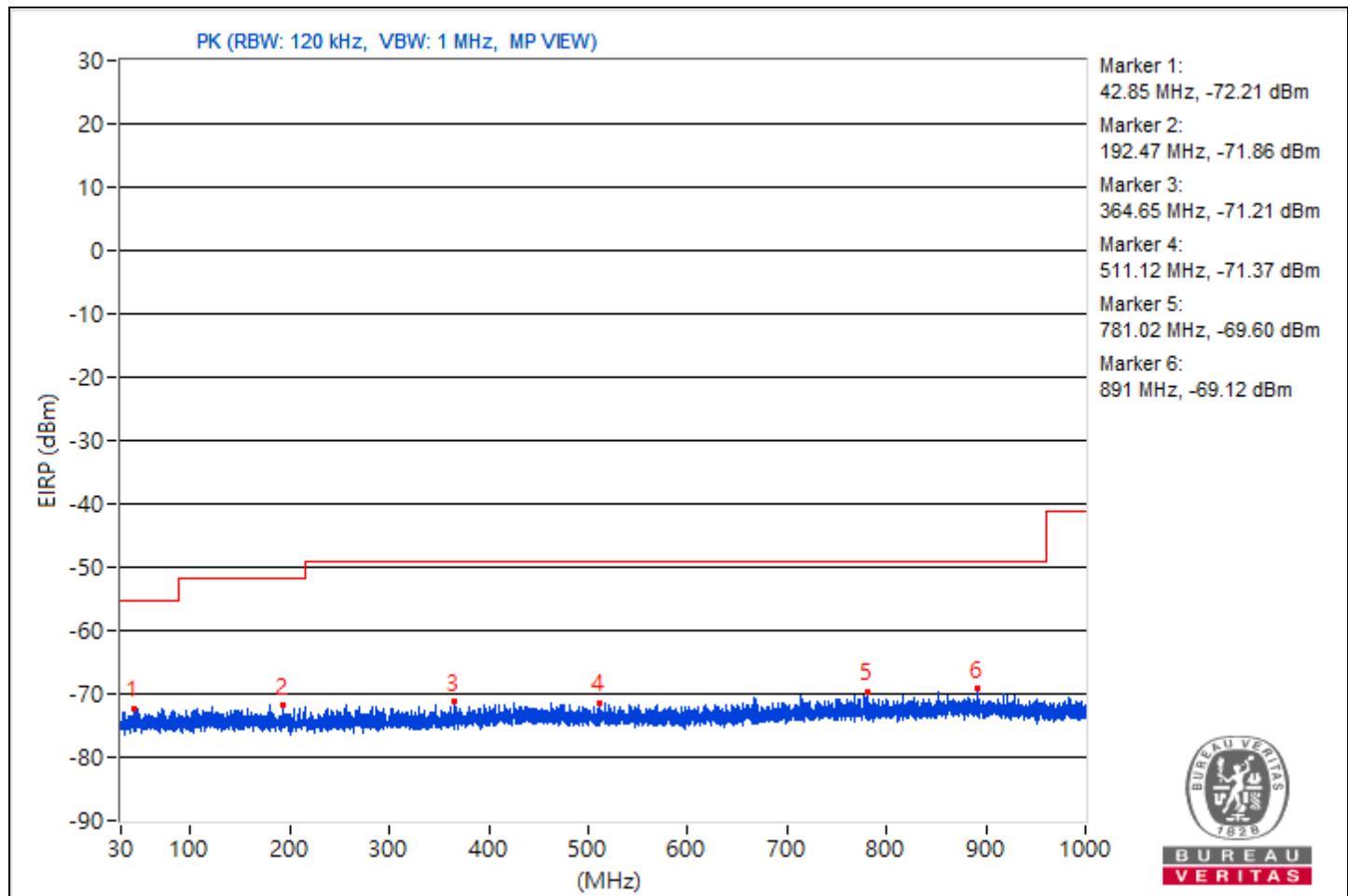
BT-LE 2M

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Average Power (mW)	Total Average Power (dBm)
		Chain 0	Chain 1		
0	2402	13.49	12.71	41	16.13
19	2440	13.99	13.45	47.192	16.74
39	2480	13.08	12.38	37.622	15.75

7.2 Unwanted Emissions below 1 GHz

Mode A

1Tx

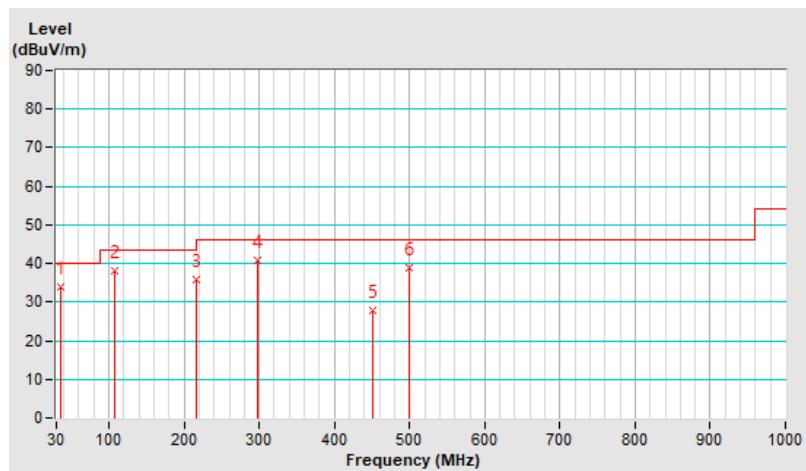

RF Mode	BT-LE 1M	Channel	CH 19 : 2440 MHz
Frequency Range	30 MHz ~ 1 GHz	Environmental Conditions	22°C, 11% RH
Tested By	Kevin Ko		

Conducted Unwanted Emissions

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value Chain 0 (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	42.85	23.05 PK	40	-16.95	-82.07	9.86	-72.21
2	192.47	23.4 PK	43.5	-20.1	-81.72	9.86	-71.86
3	364.65	24.05 PK	46	-21.95	-81.07	9.86	-71.21
4	511.12	23.89 PK	46	-22.11	-81.23	9.86	-71.37
5	781.02	25.66 PK	46	-20.34	-79.46	9.86	-69.6
6	891	26.14 PK	46	-19.86	-78.98	9.86	-69.12

Notes:

1. Margin value = Emission Level - Limit value
2. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.

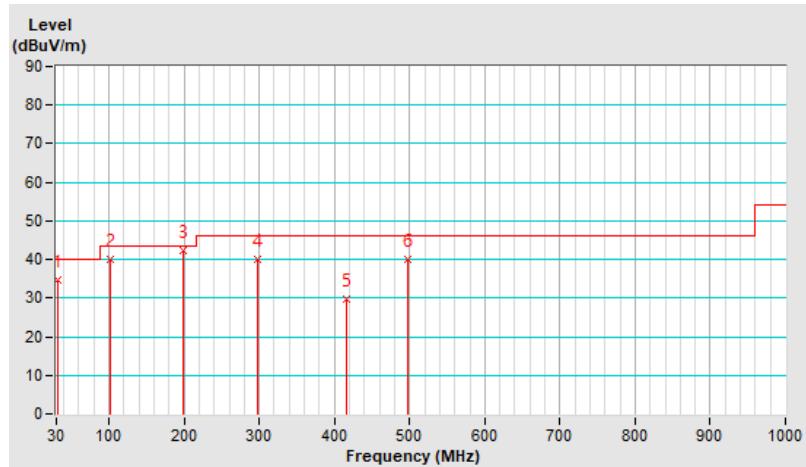

Mode B
1Tx

RF Mode	BT-LE 1M	Channel	CH 19 : 2440 MHz
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	QP: RB=120kHz, DET=Quasi-Peak
Input Power (System)	120 Vac, 60 Hz	Environmental Conditions	24 °C, 65 % RH
Tested By	Willy Lin		

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	35.61	33.9 QP	40.0	-6.1	2.00 H	281	52.3	-18.4
2	108.20	38.1 QP	43.5	-5.4	2.00 H	332	58.8	-20.7
3	216.40	35.9 QP	46.0	-10.1	1.50 H	140	56.8	-20.9
4	297.47	40.8 QP	46.0	-5.2	1.50 H	177	57.8	-17.0
5	451.47	27.7 QP	46.0	-18.3	3.00 H	313	40.4	-12.7
6	499.58	38.9 QP	46.0	-7.1	1.50 H	200	50.9	-12.0

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.



RF Mode	BT-LE 1M	Channel	CH 19 : 2440 MHz
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	QP: RB=120kHz, DET=Quasi-Peak
Input Power (System)	120 Vac, 60 Hz	Environmental Conditions	24 °C, 65 % RH
Tested By	Willy Lin		

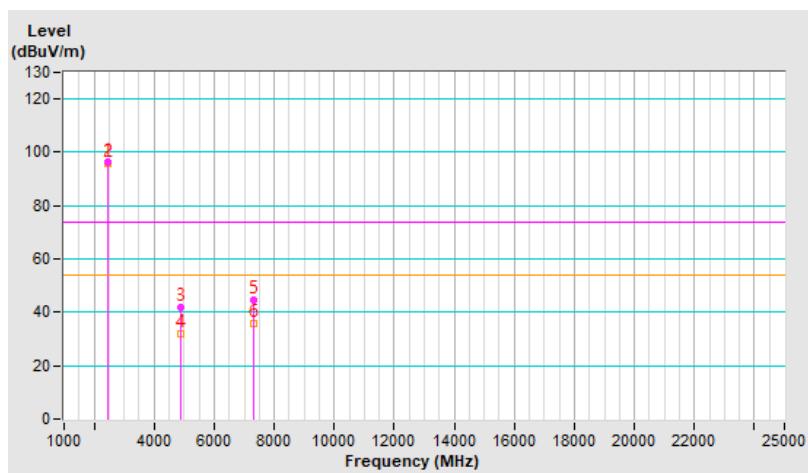
Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	32.25	34.8 QP	40.0	-5.2	1.50 V	260	53.4	-18.6
2	102.66	40.1 QP	43.5	-3.4	1.50 V	294	61.7	-21.6
3	199.60	42.2 QP	43.5	-1.3	2.00 V	164	63.1	-20.9
4	296.91	40.1 QP	46.0	-5.9	1.00 V	180	57.1	-17.0
5	416.35	29.6 QP	46.0	-16.4	1.50 V	211	43.4	-13.8
6	498.33	40.0 QP	46.0	-6.0	3.00 V	316	52.0	-12.0

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.

7.3 Unwanted Emissions above 1 GHz

Mode C

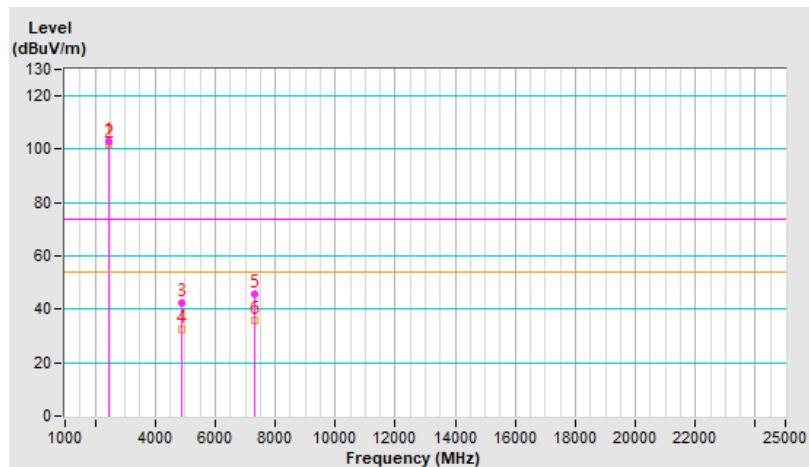

1Tx

RF Mode	BT-LE 1M	Channel	CH 19 : 2440 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 kHz, DET=Peak
Input Power (System)	120 Vac, 60 Hz	Environmental Conditions	21 °C, 64 % RH
Tested By	Willy Lin		

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2440.00	96.6 PK			1.05 H	115	100.0	-3.4
2	*2440.00	95.6 AV			1.05 H	115	99.0	-3.4
3	4880.00	41.7 PK	74.0	-32.3	1.64 H	144	40.2	1.5
4	4880.00	31.8 AV	54.0	-22.2	1.64 H	144	30.3	1.5
5	7320.00	44.7 PK	74.0	-29.3	1.81 H	252	37.1	7.6
6	7320.00	35.8 AV	54.0	-18.2	1.81 H	252	28.2	7.6

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.



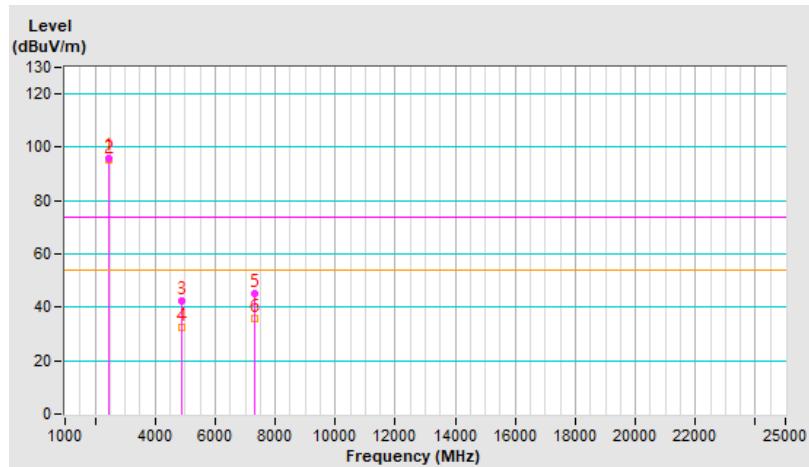
RF Mode	BT-LE 1M	Channel	CH 19 : 2440 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 kHz, DET=Peak
Input Power (System)	120 Vac, 60 Hz	Environmental Conditions	21 °C, 64 % RH
Tested By	Willy Lin		

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2440.00	103.1 PK			1.50 V	282	106.5	-3.4
2	*2440.00	102.1 AV			1.50 V	282	105.5	-3.4
3	4880.00	42.6 PK	74.0	-31.4	1.65 V	157	41.1	1.5
4	4880.00	32.4 AV	54.0	-21.6	1.65 V	157	30.9	1.5
5	7320.00	45.8 PK	74.0	-28.2	1.95 V	299	38.2	7.6
6	7320.00	35.9 AV	54.0	-18.1	1.95 V	299	28.3	7.6

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

2Tx

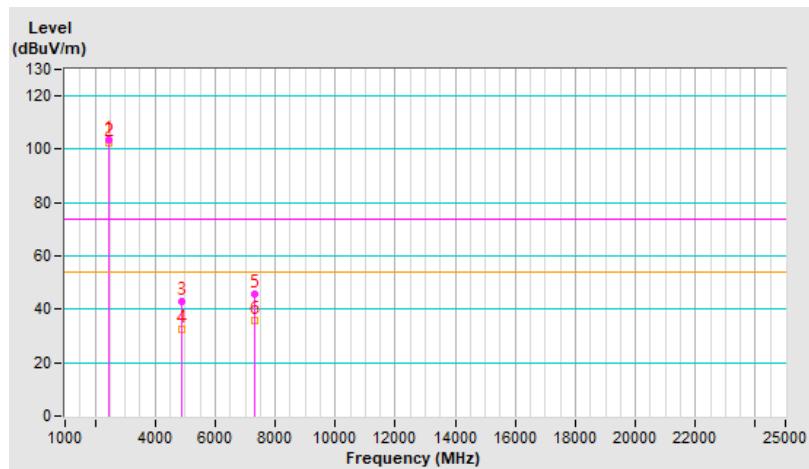

RF Mode	BT-LE 1M	Channel	CH 19 : 2440 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 kHz, DET=Peak
Input Power (System)	120 Vac, 60 Hz	Environmental Conditions	21 °C, 64 % RH
Tested By	Willy Lin		

Antenna Polarity & Test Distance : Horizontal at 3 m

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2440.00	96.1 PK			1.06 H	113	99.5	-3.4
2	*2440.00	95.3 AV			1.06 H	113	98.7	-3.4
3	4880.00	42.6 PK	74.0	-31.4	1.67 H	151	41.1	1.5
4	4880.00	32.4 AV	54.0	-21.6	1.67 H	151	30.9	1.5
5	7320.00	45.3 PK	74.0	-28.7	1.87 H	254	37.7	7.6
6	7320.00	35.8 AV	54.0	-18.2	1.87 H	254	28.2	7.6

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

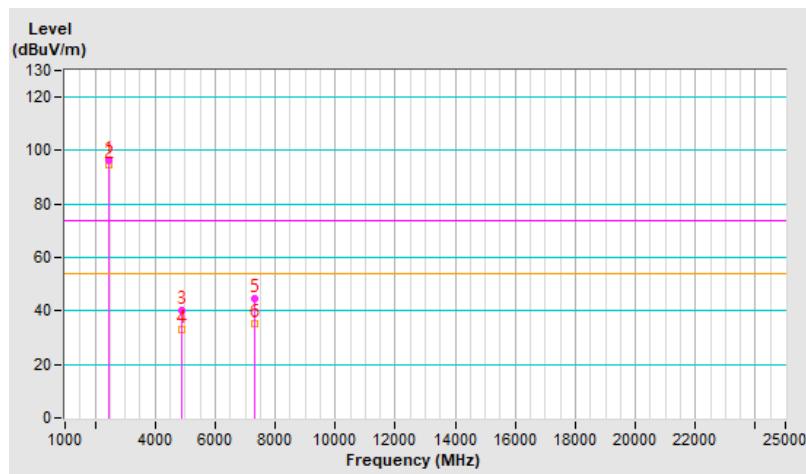


RF Mode	BT-LE 1M	Channel	CH 19 : 2440 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 kHz, DET=Peak
Input Power (System)	120 Vac, 60 Hz	Environmental Conditions	21 °C, 64 % RH
Tested By	Willy Lin		

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2440.00	103.4 PK			1.43 V	276	106.8	-3.4
2	*2440.00	102.3 AV			1.43 V	276	105.7	-3.4
3	4880.00	42.7 PK	74.0	-31.3	1.68 V	138	41.2	1.5
4	4880.00	32.5 AV	54.0	-21.5	1.68 V	138	31.0	1.5
5	7320.00	45.9 PK	74.0	-28.1	1.93 V	269	38.3	7.6
6	7320.00	35.9 AV	54.0	-18.1	1.93 V	269	28.3	7.6

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

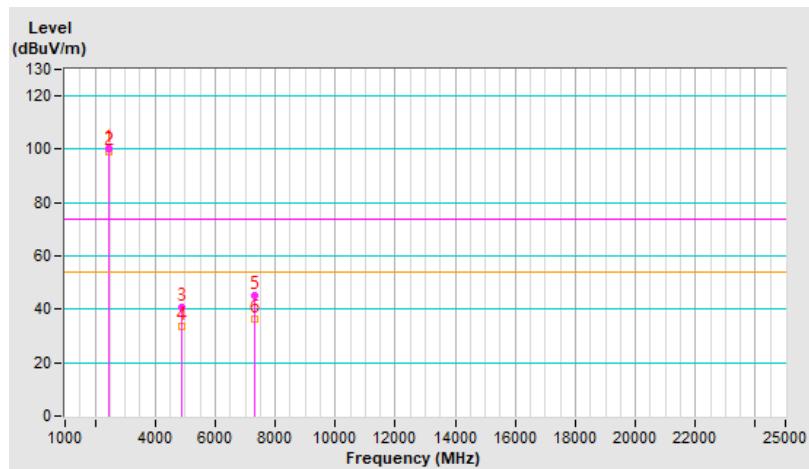

Mode D
1Tx

RF Mode	BT-LE 1M	Channel	CH 19 : 2440 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 kHz, DET=Peak
Input Power (System)	120 Vac, 60 Hz	Environmental Conditions	25 °C, 75 % RH
Tested By	Tank Wu		

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2440.00	96.2 PK			3.76 H	224	99.9	-3.7
2	*2440.00	94.8 AV			3.76 H	224	98.5	-3.7
3	4880.00	40.4 PK	74.0	-33.6	2.39 H	253	39.0	1.4
4	4880.00	33.1 AV	54.0	-20.9	2.39 H	253	31.7	1.4
5	7320.00	44.7 PK	74.0	-29.3	1.31 H	359	37.5	7.2
6	7320.00	35.2 AV	54.0	-18.8	1.31 H	359	28.0	7.2

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.



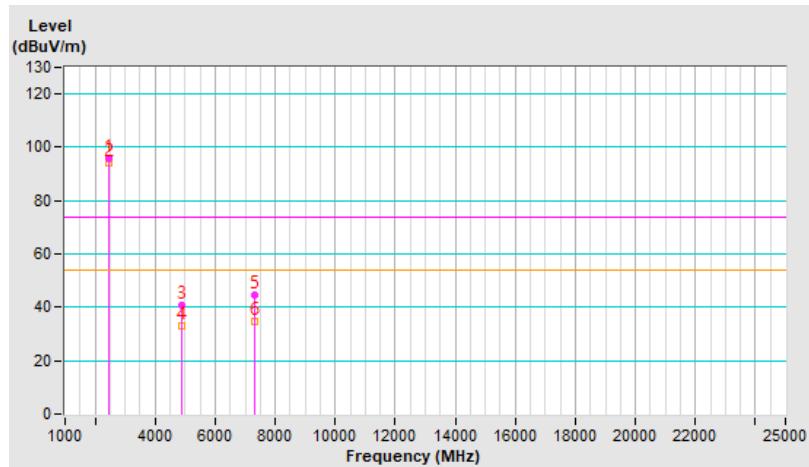
RF Mode	BT-LE 1M	Channel	CH 19 : 2440 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 kHz, DET=Peak
Input Power (System)	120 Vac, 60 Hz	Environmental Conditions	25 °C, 75 % RH
Tested By	Tank Wu		

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2440.00	100.2 PK			1.06 V	7	103.9	-3.7
2	*2440.00	99.1 AV			1.06 V	7	102.8	-3.7
3	4880.00	40.7 PK	74.0	-33.3	1.52 V	108	39.3	1.4
4	4880.00	33.7 AV	54.0	-20.3	1.52 V	108	32.3	1.4
5	7320.00	45.3 PK	74.0	-28.7	1.65 V	305	38.1	7.2
6	7320.00	36.4 AV	54.0	-17.6	1.65 V	305	29.2	7.2

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

2Tx

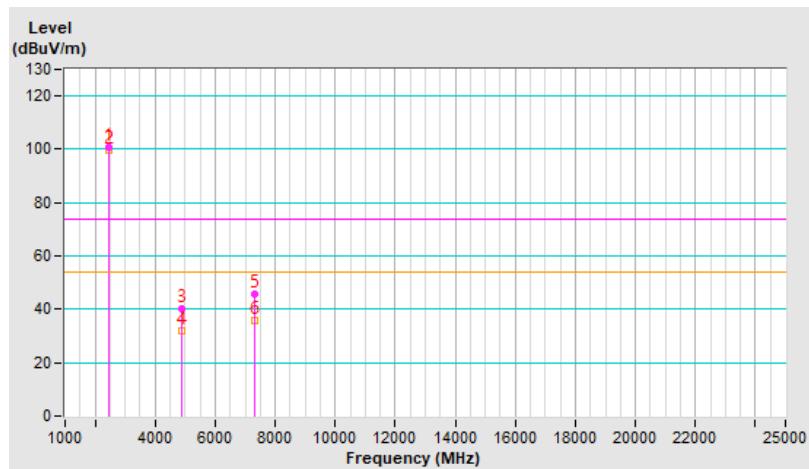

RF Mode	BT-LE 1M	Channel	CH 19 : 2440 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 kHz, DET=Peak
Input Power (System)	120 Vac, 60 Hz	Environmental Conditions	25 °C, 75 % RH
Tested By	Tank Wu		

Antenna Polarity & Test Distance : Horizontal at 3 m

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2440.00	95.8 PK			1.00 H	167	99.5	-3.7
2	*2440.00	94.2 AV			1.00 H	167	97.9	-3.7
3	4880.00	40.6 PK	74.0	-33.4	2.27 H	268	39.2	1.4
4	4880.00	32.8 AV	54.0	-21.2	2.27 H	268	31.4	1.4
5	7320.00	44.6 PK	74.0	-29.4	1.02 H	269	37.4	7.2
6	7320.00	34.7 AV	54.0	-19.3	1.02 H	269	27.5	7.2

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.



RF Mode	BT-LE 1M	Channel	CH 19 : 2440 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 kHz, DET=Peak
Input Power (System)	120 Vac, 60 Hz	Environmental Conditions	25 °C, 75 % RH
Tested By	Tank Wu		

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2440.00	100.8 PK			2.75 V	125	104.5	-3.7
2	*2440.00	99.9 AV			2.75 V	125	103.6	-3.7
3	4880.00	40.4 PK	74.0	-33.6	2.24 V	118	39.0	1.4
4	4880.00	31.9 AV	54.0	-22.1	2.24 V	118	30.5	1.4
5	7320.00	45.7 PK	74.0	-28.3	1.32 V	295	38.5	7.2
6	7320.00	35.9 AV	54.0	-18.1	1.32 V	295	28.7	7.2

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

8 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo)

9 Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565
Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232
Fax: 886-3-3270892

Email: service.adt@bureauveritas.com

Web Site: <http://ee.bureauveritas.com.tw>

The address and road map of all our labs can be found in our web site also.

--- END ---