FCC / INDUSTRY CANADA MEASUREMENT REPORT

CERTIFICATION OF COMPLIANCE FCC PART90 & INDUSTRY CANADA RSS-119 CERTIFICATION

PRODUCT Two Way Radio

Land Mobile Service (LMR)

MODEL/TYPE NO : SP7102

FCC ID : RXUSP7102 TRADE NAME : maxon

Maxon CIC Corp.

APPLICANT

Chongho Building, #7-61 Yangjae-Dong, Seocho-Gu, Seoul, 137-130, Korea

Attn.: Hyun Koo Kang / Senior Manager

CLASSIFICATION : TNF Licensed Non-Broadcast Station Transmitter Held to Face

FCC Part 90 Private land mobile radio services

DIVER A PER (C)

RULE PART(S) : Land Mobile and Fixed Radio Transmitters and Receivers,

27.4 MHz to 960 MHz

FCC PROCEDURE : Certification

DATES OF TEST : March 27, 2008 to April 16, 2008

DATES OF ISSUE : April 18, 2008 TEST REPORT No. : BWS-08-RF-0003

TEST LAB. : BWS TECH Inc. (FCC Registration Number : 553281)

This Two Way Radio SP7102 has been tested in accordance with the measurement procedures specified in ANSI C63.4-2003 and ANSI/TIA-603-B-2002 at the BWS TECH/EMC Test Laboratory and has been shown to be complied with the electromagnetic radiated emission limits specified in FCC Rule Part 90 and Industry Canada RSS-119.

I attest to the accuracy of data. All measurement herein was performed by me or were made under my supervision. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. The results of testing in this report apply to the product/system, which was tested only. Other similar equipment may not necessarily produce the same results due to production tolerance and measurement uncertainties.

April 18, 2008

(Date)

Tested by CY-Choi

April 18, 2008

(Date)

Reviewed by TaeHyun, Nam

BWS TECH Inc.

www.bws.co.kr

#611-1 Maesan-Ri, Mohyeon-Myeon, Yongin-Si, Gyeonggi-Do, 449-853 Korea TEL: +82 31 333 5997 FAX: +82 31 333 0017

TABLE OF CONTENTS

		Pages
1. Gen	eral Information	3
2. Des	cription of Test Facility	4
3. Proc	uct Information	5
4. Sum	mary of Test Results	8
5. Test	Data	9
5.1.	Power Line Conducted Emission	9
5.2.	Radiated Emission Tests	13
5.3.	RF Power Output (Conducted)	15
5.4.	Modulation Characteristics - Audio Frequency Response	17
5.5.	Modulation Characteristics - Audio Lowpass Filter Response	21
5.6.	Modulation Characteristics - Modulation Limiting	23
5.7.	Occupied Bandwidth	30
5.8.	Spurious Emissions at Antenna Terminals	56
5.9.	Field Strength of Spurious Radiation	64
5.10.	Frequency Stability/Temperature Variation	66
5.11.	Transient Frequency Behavior	87
6. Test	Equipment List	102

Appendix 1. Test Setup Photos

Appendix 2. FCC ID Label and location

Appendix 3. External Photos of EUT

Appendix 4. Internal Photos of EUT

Appendix 5. Block Diagram

Appendix 6. Schematics

Appendix 7. Theory of Operation

Appendix 8. Part List/Tune up Procedure

Appendix 9. User Manual

Appendix 10. RF Exposure Information

FCC / INDUSTRY CANADA TEST REPORT

Scope - Measurement and determination of electromagnetic emission(EME) of radio frequency devices including intentional radiators and/or unintentional radiators for compliance with the technical rules and regulations of the U.S Federal Communications Commission(FCC)

1. General Information

Applicant

Company Name Maxon CIC Corp.

Company Address

Chongho Building, #7-61 Yangjea-Dong, Seocho-Gu, Seoul, 137-130,

Korea

Phone/Fax Phone: +82-2-3498-3060 Fax: 02-3498-3115

Manufacturer

Company Name Maxon CIC Thailand Co., Ltd(MCTL)

Company Address 40/23 Moo 5 Rojana Industrial Park Tambol U-Thai, Amphur U-Thai

Ayutthaya 13210 Thailand

Phone/Fax Tel No.: +66-(0)35-719-498~501 Fax No.: +66-(0)35-719-492

• EUT Type Two Way Radio (LMR)

Model Number SP7102

• FCC Identifier RXUSP7102

• S/N 0711000001

FCC Part 90 Private land mobile radio services

• FCC Rule Part(s) RSS-119 Land Mobile and Fixed Radio Transmitters and Receivers,

27.4 MHz to 960 MHz

• FCC Classification TNF: Licensed Non-Broadcast Station Transmitter

• Freq. Range 136 MHz ~ 174 MHz

• Channel 255 Channels

Modulation Method FM

• Emission Designator 11K0F3E, 16K0F3E

• RF Power Output 1/5 Watt

Test Procedure ANSI C63.4-2003 and ANSI/TIA-603-B-2002

• Dates of Tests March 27, 2008 to April 16, 2008

BWS TECH Inc. (FCC Registration Number: 553281)

• Place of Tests #611-1 Maesan-Ri, Mohyeon-Myeon, Yongin-Si, Gyeonggi-Do, 449-853 Korea

TEL: +82 31 333 5997 FAX: +82 31 333 0017

• Test Report No. BWS-08-RF-0003

 Report No: BWS-08-RF-0003
 FCC Test Report
 Page Number : 3 of 102

 BWS TECH Inc.
 Data of Issue : April 18, 2008

2. Description of Test Facility

The measurement for radiated and conducted emission test were conducted at the open area test site of BWS TECH Inc. facility located at #611-1 Maesan-Ri, Mohyeon-Myeon, Yongin-Si, Gyeonggi-Do, 449-853 Korea. The site is constructed in conformance with the requirements of the ANSI C63.4-2000 and CISPR Publication 16. The BWS TECH measurement facility has been filed to the Commission with the FCC for 3 and 10-meter site configurations. Detailed description of test facility was found to be in compliance with the requirements of Section 2.948 FCC Rules according to the ANSI C63.4-2000 and registered to the Federal Communications Commission (Registration Number : 553281).

The measurement procedure described in American National Standard for Method of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz (ANSI C.63.4-2000) was used in determining radiated and conducted emissions from the Maxon C IC Corp. Two Way Radio Model: SP7102.

3. Product Information

The Equipment Under Test (EUT) is the MAXON CIC CO LTD Two Way Radio model: SP7102(FCC ID: RXUSP7102).

SP7102 is FM transceiver operating between 136 ~ 174 MHz with an output power of 5 W (1 W at

The SP7102 offers many advanced features found in more expensive Land Mobile Radios.

SP7102 is 255 channel portable FM transceiver constructed with a microprocessor controlled, temperature compensated Phase Locked Loop (PLL) frequency synthesizer. The radio features a double conversion receiver and a direct FM transmitter modulator.

3.1 DC Voltage and Currents

The DC voltages applied to and DC currents into the several elements of the final radio frequency amplifying stage for normal operation over power range were;

Standby: 7.4 Volts, 0.12 Ampare Receive: 7.4 Volts, 0.60 Ampare Low Power: 7.4 Volts, 0.70 Ampare High Power: 7.4 volts, 1.90 Ampare

3.2 Emission Designator

Type of Emission: F3E

Necessary Bandwidth and Emission Bandwidth:

12.5 kHz (Narrow Band) : Bn = 11K0F3E 25 kHz (Wide Band): Bn = 16K0F3E

Calculation:

Maximum Modulation(M) in kHz: 3

Maximum Deviation(D) in kHz: 2.5(NB) and 5(WB)

Constant Factor(k): 1

Bn = 2M + 2DK

3.3 General Specification

Current Consumption

GENERAL

Equipment Type : Hand portable

Band : VHF

Channel Spacings: 12.5 kHz, 25 kHz programmable

RF Output Power : 5 / 1 watt Modulation Type : F3E

Audio Power : 500 mW (Ext with 8 ohm) 600 mW (Int with 6 ohm) Intermediate Frequency : 46.35 MHz & 450 kHz

Number of Channels : 255 Frequency Source : Synthesizer

Operation Rating : Intermittent

90 : 5 : 5 (Standby: RX: TX)
Rechargeable

Power Supply : Rectal geable li-ion polymer Battery, 7.4 VDC

Temperature Range : Storage (- 40° C to + 80° C)

Operating (- 30° C to + 60° C)

Off < 1 mA

Standby (Muted) < 50 mA (Battery Save On) < 120 mA (Battery Save Off)

Unmuted, 100 % Max AF Power < 400 mA
Transmit 5 Watt RF Power < 2.0 A

Battery Life : (5-5-90% Duty Cycle) 1550 mAh 10 Hrs @ 5 W

Frequency Bands : 136 MHz ~ 174 MHz (TX, RX)

Dimensions : Radio (120mm)H x (53 mm)W x (32.5 mm)D with battery pack

Weight: Radio 290g (with 1500mAh li-ion polymer battery)

TRANSMITTER

Carrier Power : High (5W), Low (1W)

Audio Frequency Deviation : 25 kHz Channel Spacing Max. ±5.0 kHz 12.5 kHz Channel Spacing Max. ±2.5 kHz

Audio Frequency Response: Within +1/-3dB of 6dB octave

Adjacent Channel Power : 25 kHz Channel Spacing < 70 dBc 12.5 kHz Channel Spacing < 60 dBc

Conducted Spurious Emission : < -36dBm

Transmitter Audio Distortion: < 5% @ 1 kHz (Without CTCSS)

Hum & Noise : 25 kHz Channel Spacing > 40 dB (with PSOPH) 12.5 kHz Channel Spacing > 40 dB (with no PSOPH) No osc at 3 10:1 VSWR all phase angles and suitable antenna

RECEIVER

Sensitivity (12dB Sinad) : $< -118 \text{ dBm} (0.28 \mu\text{V})$

Amplitude Characteristic : < ±3 dB

Adjacent Channel Selectivity: 25 kHz Channel Spacing >70 dB 12.5 kHz Channel Spacing >60 dB

Spurious Response Rejection : 70 dB IMD Response Rejection : 65 dB

Temperature Stability : 0.0005% (-30°C to +60°C)

Spurious Emission : Per FCC and IC Rules and Regulations

AF Distortion : < 5%

Frequency Response : 6 dB/octave de-emphasized response in the range 300 Hz –

· 3kHz

RX Hum & Noise25 kHz Channel Spacing > 40 dB (with PSOPH)
12.5 kHz Channel Spacing > 40 dB (with no PSOPH)

 Report No: BWS-08-RF-0003
 FCC Test Report
 Page Number : 6 of 102

 BWS TECH Inc.
 Data of Issue : April 18, 2008

3.4 EUT operating conditions & test configuration

3.4.1 Client Condition

Temperature : $-30 \, ^{\circ}\text{C} \, ^{\sim} \, +60 \, ^{\circ}\text{C}$

Humidity : 95 %

3.4.2 EUT Operating Condition

Operating Mode: Transmitter was operated in a continues transmission mode with the

carrier modulated as specified in the test data.

Special test Software: Not Used. Special test Hardware: Not Used.

TX Frequency Band: 136 MHz ~ 174 MHz

Test Frequencies: 1st 136.025 MHz

2nd 155.025 MHz 3rd 173.985 MHz

Modulation: FM Modulation

Modulation Signal Source : External Source

4. Summary of Test Results

TEST REQUIREMENTS	FCC Paragraph	IC Paragraph	Result
Power Line Conducted Emission	§15.207	RSS-Gen §7.2.2	Pass
Radiated Emission Tests	§15.209	RSS-Gen §6	Pass
RF Power Output (Conducted)	§2.1046	RSS-119 §5.4	Pass
Audio Frequency Response	§2.1047(A)	RSS-119 §5.13	Pass
Audio Low pass Filter Response	§2.1047(A)	RSS-119 §5.13	Pass
Modulation Limiting	§2.1047(B)	RSS-119 §5.13	Pass
Occupied Bandwidth	§2.1049	RSS-119 §5.5	Pass
Spurious Emissions at Antenna Terminals	§2.1051	RSS-119 §5.8	Pass
Field Strength of Spurious Radiation	§2.1053	RSS-119 §5.8	Pass
Frequency Stability/Temperature Variation	§2.1055	RSS-119 §5.3	Pass
Transient Frequency Behavior	§90.214	RSS-119 §5.9	Pass

Page Number: 8 of 102

Data of Issue:

April 18, 2008

5. TEST DATA

5.1 Power Line Conducted Emission

Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 kHz on the 230V AC power and return leads of the EUT according to the methods defined in FCC Part 15.207. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane as shown in section 3.1.5. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position producing maximum conducted emissions.

5.1.1 Test Condition

Frequency Range of Test : 150 kHz to 30 MHz

Test Standard : FCC Part 15.207

Test Date : April 16, 2008

Temperature/Humidity : 24 °C/ 40 %

5.1.2 Test Standard

Frequency Range	Limit (dBuV)		
(MHz)	Quasi-Peak	Average	
0.15 ~ 0.5	66 – 56	56 – 46	
0.5 ~ 5	56	46	
5 ~ 30	60	50	

5.1.3 Test Equipment List

Equipment Type	Model	Manufacture	Serial No	Cal Due Date
TEST RECEIVER	ESPI	ROHDE & SCHWARZ	100063	11. 19. 2008
Conducted Cable	N/A	N/A	N/A	N/A
LISN	FCC-LISN-50-50-2-02	FCC	03074	11. 02. 2008

5.1.4 Test Result of Power Line Conducted Emission

EUT : SP7102

Input Voltage : 230V, 50Hz

Power Line Conducted Emission Test Results: PASS

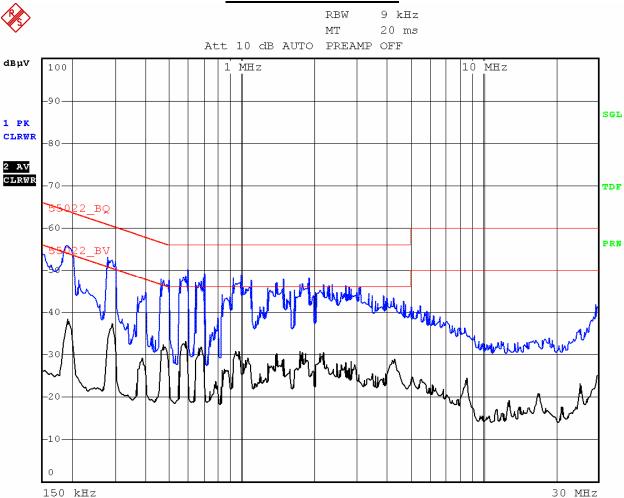
Test data sheets follow.

	Corre	ection			Quasi-Peak Mode				Averag	e Mode	
Freq [MHz]	AMN	C.L	Phase [H/N]	Limit	Reading	Emission Level	Margin	Limit	Reading	Emission Level	Margin
				[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dBuV]
0.186	0.06	0.03	Н	65.00	55.80	55.89	9.11	57.71	38.48	38.57	19.14
0.278	0.07	0.16	Н	62.40	53.15	53.38	9.02	54.37	37.35	37.58	16.79
0.374	0.08	0.24	N	59.70	49.56	49.88	9.82	50.86	33.65	33.97	16.89
0.462	0.07	0.28	Н	57.10	47.90	48.25	8.85	47.53	32.40	32.75	14.78
0.598	0.07	0.30	Н		50.19	50.56	5.44		33.21	33.58	12.42
0.922	0.05	0.35	Н	56.00	48.22	48.62	7.38	46.00	30.85	31.25	-31.25
1.894	0.03	0.53	Н	30.00	48.20	48.76	7.24	40.00	28.96	29.52	-29.52
2.690	0.03	0.58	Н		46.45	47.06	8.94		28.29	28.90	-28.90
5.478	0.05	0.88	Н		41.48	42.41	13.59				
8.358	0.06	1.00	N	60.00	36.68	37.74	22.26	50.00			
18.774	0.07	1.33	Н	00.00	33.90	35.30	24.70	30.00			
29.446	0.26	1.65	Н		41.79	43.70	16.30				

Notes:

- 1. All modes of operation were investigated and the worst-case emissions are reported. See the plots in next 2 pages.
- 2. Line N = (Neutral), Line H = (Hot)
- 3. Measurement uncertainty estimated at ± 1.38 dB. The measurement uncertainty is given with a confidence of 95.45 % with the coverage factor, k=2

 Report No: BWS-08-RF-0003
 FCC Test Report
 Page Number : 10 of 102

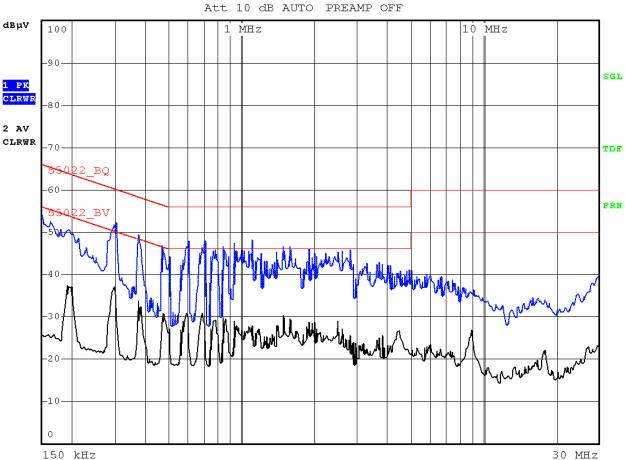

 BWS TECH Inc.
 Data of Issue : April 18, 2008

11 of 102

April 18, 2008

PLOTS OF EMISSIONS

Test Model: SP7102 Test Mode: HOT


Classification: FCC Part 15.207

PLOTS OF EMISSIONS

RBW 9 kHz MT 20 ms

Test Model: SP7102 Test Mode: NEUTRAL

Classification: FCC Part 15.207

5.2 Radiated Emission Test (Stand-by and Receive Mode)

Radiated emissions form 30 MHz to 1000 MHz were measured with a bandwidth of 120 kHz according to the methods defines in FCC Part 15.209. The EUT was placed on a nonmetallic stand in the open-field site, 0.8 meter above the ground plane. The interface cables and equipment positions were varied within limits of reasonable applications to determine the positions producing maximum radiated emissions.

5.2.1 Test Condition

Frequency Range of Test : 30 MHz to 1000 MHz

Test Standard : FCC Part 15.209

Test Date : April 16, 2008

Temperature/Humidity : 24 °C/ 40 %

5.2.2 Test Standard

Frequency Range	Limit (dBuV)		
(MHz)	Quasi-Peak	Average-Peak	
30 ~ 88	40.0	N/A	
88 ~ 216	43.5	N/A	
216 ~ 960	46.0	N/A	
Above 960	54.0	N/A	

5.2.3 Test Equipment List

Equipment Type	Model	Model Manufacture		Cal Due Date
Bilog Antenna	VULB 9160	SCHWARZBECK	9160-3122	12. 29. 2008
Open Site Cable	N/A	N/A	N/A	N/A
Antenna Mast	JAC-3	DAIL EMC	N/A	N/A
Antenna Turntable Controller	JAC-2	JAEMC	N/A	N/A
EMI Receiver	ESVN30	ROHDE & SCHWARZ	832854/010	07. 13. 2008

5.2.4 Test Result of Radiated Emission

EUT SP7102

Test distance 3 m

Radiated Emission Test Result: PASS

Test data sheets follow.

Frequency [MHz]	Reading [dB μ V]	Polarization [*H/**V]	Ant.Factor [dB/m]	Cable Loss [dB]	Limit [dB ᠘V/m]	Emission Level [dB ᠘//m]	Margin [dB]
		1:	st Channel :	136.025 MF	lz		
182.375	20.60	V	11.80	3.00	43.50	35.40	8.10
182.375	21.50	Н	11.80	3.00	43.50	36.30	7.20
364.750	17.33	V	12.00	4.27	46.00	33.60	12.40
364.750	15.52	Н	12.31	4.27	46.00	32.10	13.90
		2r	nd Channel	: 155.025 MI	Ηz		
201.375	22.50	V	10.14	3.16	43.50	35.80	7.70
201.375	22.80	Н	10.14	3.16	43.50	36.10	7.40
402.750	10.19	V	15.85	4.56	46.00	30.60	15.40
402.750	12.19	Н	15.85	4.56	46.00	32.60	13.40
		31	rd Channel	: 173.975 MH	łz		
220.325	23.74	V	10.36	3.30	46.00	37.40	8.60
220.325	24.44	Н	10.36	3.30	46.00	38.10	7.90
440.650	9.66	V	16.71	4.73	46.00	31.10	14.90
440.650	8.76	Н	16.71	4.73	46.00	30.20	15.80

Notes:

- * H : Horizontal polarization , ** V : Vertical polarization
 Emission Level = Reading + Antenna factor + Cable loss
- 3. Margin value = Emission Level Limit
- 4. All other emissions not reported were more than 25dB below the permitted limit.
- 5. Measurement uncertainty estimated at ±4.08 dB.

The measurement uncertainty is given with a confidence of 95.45 % with the coverage factor, k=2.

5.3 RF Power Output (Conducted)

5.3.1 Specification

FCC Rules Part 2, Section 2.1046 FCC Rules Part 90, Section 90.205 Industry Canada, RSS-119 Section 5.4

5.3.2 Method of Measurement

ANSI/TIA-603-B-2002 Section 2.2.1

5.3.3 Measurement Set-Up

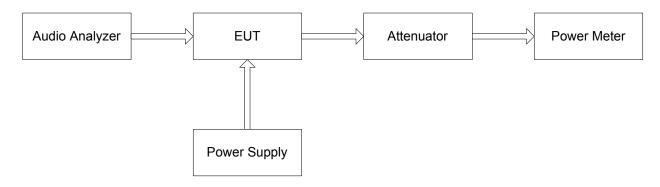


Fig.1

5.3.4 Test Equipment List

Equipment	Model Name	Manufacturer
EUT	SP7102	Maxon CIC Corp.
Power Supply	IPS-30B03DD	INTERACT
Audio Analyzer	8903B	Agilent
Attenuator	33-30-33	WEINSCHEL
Power Sensor	8481A	Agilent
Power Meter	E4418A	Agilent

5.3.5 Test Procedure

- -. The unit was turn-up in accordance with the alignment procedure stated in the FIG. 1, and was loaded into a 50 ohm resistive termination.
- -. The unit was powered though its normally accompanied power cord by a DC power supply.
- -. Power supply voltage was set to nominal voltage at the power supply terminals with transmitter off.
- -. The unit was operated for three consecutive test cycles of 15 minutes standby and 5 minutes in transmitting.
- -. The EUT was aligned for transmitter operation on three frequencies(Fo) at full rated power per the tune-up procedure outlined in the Product Specification. This represents frequencies at the 1st, 2nd, 3rd and 4th end of the EUT operating frequency band.

Report No: BWS-08-RF-0003 15 of 102 Page Number: **FCC Test Report** April 18, 2008 Data of Issue:

16 of 102

April 18, 2008

5.3.6 Test Result

Frequency (MHz)	Measured Power (dBm)	Rated Power (Watts)					
	Low Power (Ref. 1 Watt)						
136.025	29.93	0.98					
155.025	29.74	0.94					
173.975	29.97	0.99					
	High Power (Ref. 5 Watts)						
136.025	37.00	5.02					
155.025	36.95	4.96					
173.975	36.95	4.96					

Page Number:

Data of Issue:

5.4 Modulation Characteristics – Audio Frequency Response

5.4.1 Specification

FCC Rules Part 2, Section 2.1047(a) FCC Rules Part 90, Section 90.207 Industry Canada, RSS-119 Section 5.13

5.4.2 Method of Measurement

ANSI/TIA-603-B-2002 Section 2.2.6

5.4.3 Measurement Set-Up

Fig.2

5.4.4 Test Equipment List

Equipment	Model Name	Manufacturer
EUT	SP7102	Maxon CIC Corp.
Power Supply	IPS-30B03DD	INTERACT
Audio Analyzer	8903B	Agilent
Modulation Analyzer	8901B	Agilent
Attenuator	33-30-33	WEINSCHEL

5.4.5 Test Procedure

- -. The unit was turn-up in accordance with the alignment procedure stated in the FIG. 2, and was loaded into a 50 ohm resistive termination.
- -. The audio analyzer was connected to the audio input circuit/microphone of the EUT.
- -. The audio signal input was adjusted to obtain 20% modulation at 1 kHz, and this point was taken as the 0 dB reference level.
- -. With input levels held constant and below limiting at all frequencies, the audio signal generator was varied from 100 Hz to 10 kHz.
- -. The response in dB relative to 1 kHz was then measured, using the HP 8901A Modulation Analyzer.
- -. No limit is required by the FCC for audio frequency response. The measured audio response data shows the role-off curve at 3 kHz.

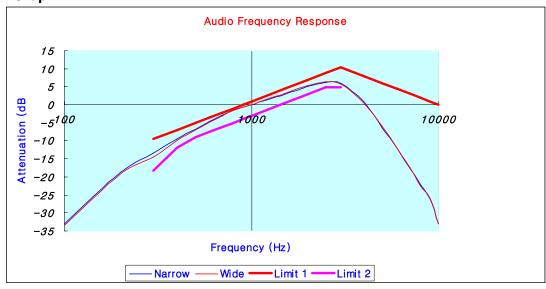
5.4.6 Test Results

5.4.6.1 Test Data 1

FCC Rules: Part 2 §2.1047(a) & §90.207

RSS-119 Section 5.13 IC Rules:

Operating Frequency: 136.025 MHz


Channel: 1st Channel

7.4 VDC Reference Voltage:

5 Watts Power Output:

Audio Input Fraguency (Hz)	Attenuat	ion (dB)
Audio Input Frequency (Hz)	Channel Spacing: 12.5 kHz	Channel Spacing: 25 kHz
100	-33.0	-33.4
200	-18.6	-19.1
300	-13.5	-14.5
400	-9.4	-9.9
500	-6.8	-7.0
600	-4.7	-4.9
700	-2.9	-3.0
800	-1.6	-1.5
900	-0.7	-0.7
1000	0	0
1500	+2.8	+3.0
2000	+5.0	+5.3
2500	+6.2	+6.4
3000	+6.0	+5.8
4000	+0.8	+0.5
5000	-6.3	-6.0
6000	-12.2	-12.0
7000	-17.5	-17.3
8000	-22.1	-22.4
9000	-26.0	-25.8
10000	-33.0	-33.0

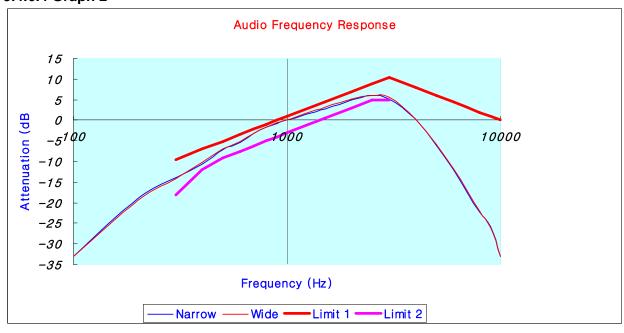
5.4.6.2 Graph 1

Page Number: Data of Issue:

5.4.6.3 Test Data 2

FCC Rules : Part 2 §2.1047(a) & §90.207
IC Rules : RSS-119 Section 5.13

Operating Frequency : 155.025 MHz


Channel : 2nd Channel

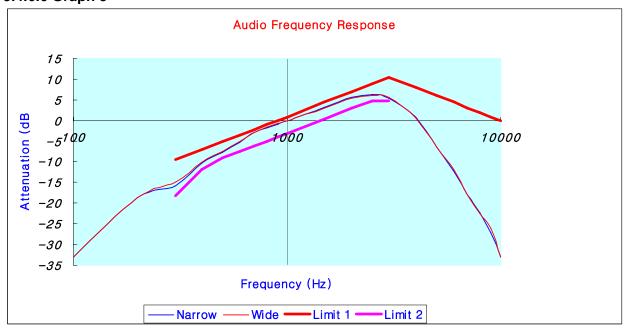
Reference Voltage : 7.4 VDC

Power Output : 5 Watts

Audio Input Frequency (Hz)	Attenuation (dB)				
Audio iliput Frequency (nz)	Channel Spacing: 12.5 kHz	Channel Spacing: 25 kHz			
100	-33.0	-33.1			
200	-19.0	-19.4			
300	-14.0	-14.1			
400	-10.6	-10.2			
500	-7.1	-6.9			
600	-5.4	-5.1			
700	-3.3	-3.1			
800	-1.7	-1.6			
900	-0.8	-0.6			
1000	0	0			
1500	+2.8	+3.1			
2000	+4.9	+5.1			
2500	+5.9	+6.1			
3000	+5.1	+5.6			
4000	+0.4	+0.2			
5000	-6.0	-5.8			
6000	-11.9	-11.8			
7000	-17.5	-17.0			
8000	-22.3	-22.0			
9000	-25.7	-26.0			
10000	-33.0	-33.0			

5.4.6.4 Graph 2

5.4.6.5 Test Data 3


FCC Rules: Part 2 §2.1047(a) & §90.207 IC Rules: RSS-119 Section 5.13 Operating Frequency: 173.975 MHz

3rd Channel Channel:

Reference Voltage: 7.4 VDC Power Output : 5 Watts

Audio Input Frequency (Hz)	Attenuation (dB)				
Audio iliput Frequency (HZ)	Channel Spacing: 12.5 kHz	Channel Spacing: 25 kHz			
100	-33.0	-33.1			
200	-18.6	-18.7			
300	-15.7	-15.0			
400	-10.4	-10.1			
500	-7.6	-7.4			
600	-5.3	-5.0			
700	-3.0	-2.8			
800	-1.9	-1.6			
900	-1.0	-0.8			
1000	0	0			
1500	+3.3	+3.1			
2000	+5.7	+5.4			
2500	+6.3	+6.1			
3000	+5.5	+5.7			
4000	+0.7	+0.6			
5000	-6.5	-6.3			
6000	-12.3	-11.9			
7000	-18.0	-18.0			
8000	-22.4	-22.5			
9000	-27.1	-26.0			
10000	-33.0	-33.0			

5.4.6.6 Graph 3

5.5 Modulation Characteristics – Audio Low pass Filter Response

5.5.1 Specification

FCC Rules Part 2, Section 2.1047(a) FCC Rules Part 90, Section 90.207 Industry Canada, RSS-119 Section 5.13

5.5.2 Method of Measurement

ANSI/TIA-603-B-2002 Section 2.2.15

5.5.3 Measurement Set-Up

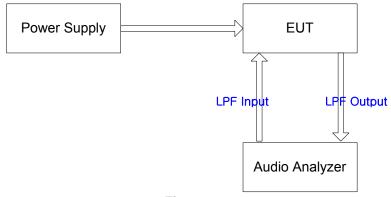


Fig.3

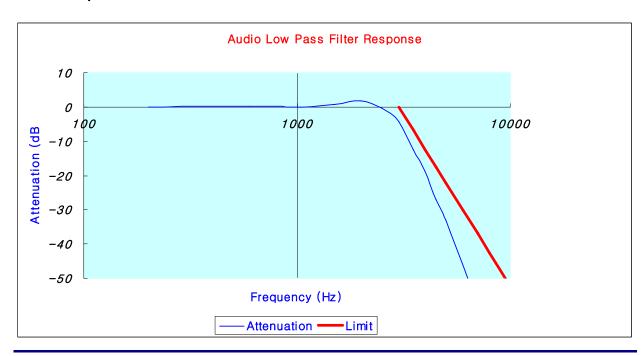
5.5.4 Test Equipment List

Equipment	Model Name	Manufacturer
EUT	SP7102	Maxon CIC Corp.
Power Supply	IPS-30B03DD	INTERACT
Audio Analyzer	8903B	Agilent

5.5.5 Test Procedure

- -. The unit was turn-up in accordance with the alignment procedure stated in the FIG. 3, and was loaded into a 50 ohm resistive termination.
- -. To measure the audio low pass filter response, an audio analyzer were connected to the actual Printed Circuit Board of the transmitter.
- -. Audio analyzer monitored the output of the audio filter.
- -. An AF input level was maintained constant at least 10 dB below the saturation level at 1 kHz tone.
- -. Record the dB level of the 1 kHz tone of the audio analyzer.
- -. Set the audio input frequency to desired test frequency between 3 kHz and upper low pass filter limit.
- -. Record dB level on the audio analyzer.
- -. Calculate the audio frequency response as LPF response = LEV_{FREQ} LEV_{REF}
- -. Audio frequencies in 3 kHz to 15 kHz: Minimum Attenuation to reference point shell be greater than 40log(f/3) dB, above 15 kHz, at least 28dB attenuation. ("f" in kHz)

Report No: BWS-08-RF-0003 21 of 102 Page Number: **FCC Test Report** Data of Issue: April 18, 2008



5.5.5 Test Result

5.5.5.1 Data

Audio Input Frequency (Hz)	Attenuation (dB)	Limit (dB)
100	-0.4	-
200	0	-
400	+0.2	-
600	+0.2	-
800	+0.2	-
1000	0	-
1500	+0.8	-
2000	+1.8	-
2500	-0.4	-
3000	-4.2	0
3500	-12.4	-6.7
4000	-18.8	-12.5
4500	-27.0	-17.6
5000	-33.2	-22.2
6000	-46.2	-30.1
7000	-57.6	-36.8
8000	« -42.6	-42.6
9000	« -47.7	-47.7
10000	« -52.3	-52.3

5.5.5.2 Graph

Report No: BWS-08-RF-0003 **BWS TECH Inc.**

FCC Test Report

Page Number : Data of Issue : 22 of 102

April 18, 2008

5.6 Modulation Characteristics - Modulation Limiting

5.6.1 Specification

FCC Rules Part 2, Section 2.1047(b) FCC Rules Part 90, Section 90.207 Industry Canada, RSS-119 Section 5.13

5.6.2 Method of Measurement

ANSI/TIA-603-B-2002 Section 2.2.3

5.6.3 Measurement Set-Up

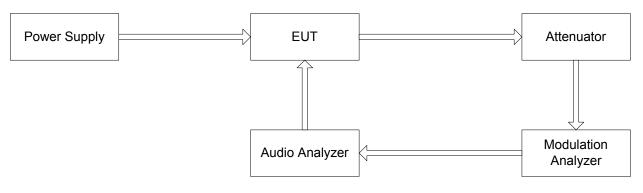
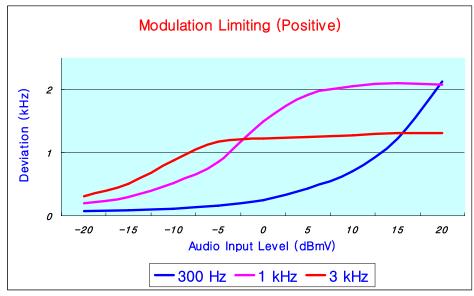


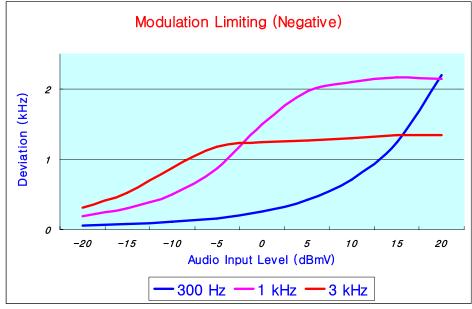
Fig.4

5.6.4 Test Equipment List

Equipment	Model Name	Manufacturer
EUT	SP7102	Maxon CIC Corp.
Power Supply	IPS-30B03DD	INTERACT
Audio Analyzer	8903B	Agilent
Modulation Analyzer	8901B	Agilent
Attenuator	33-30-33	WEINSCHEL

5.6.5 Test Procedure

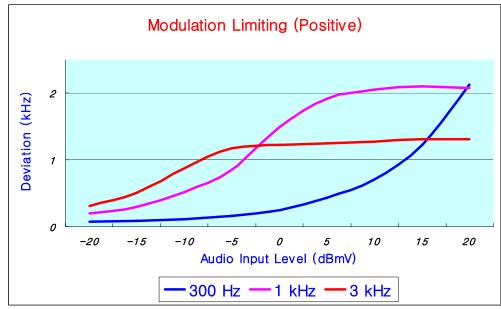

- -. The unit was turn-up in accordance with the alignment procedure stated in the FIG. 4, and was loaded into a 50 ohm resistive termination.
- -. Apply an 1kHz modulating signal to EUT from the audio frequency analyzer, and adjust the level to obtain 60% of full rated system deviation.
- -. Increase the level from the AF generator by \pm 20 dB in one step.
- -. Measure the steady-state deviation.
- -. With the AF generator level hold constant, vary the audio frequency from 300 Hz to 3000 Hz. Record the maximum deviation.
- -. Set the modulation analyzer to measure the peak negative deviation and repeat the test above.

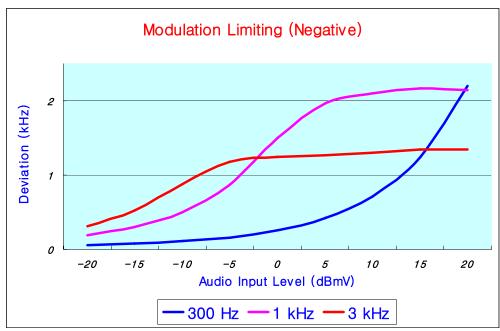


5.6.6 Test Result

5.6.6.1 Narrow Band, 1st Channel

Audio Input Level	Positive	Peak Deviat	ion (kHz)	Negative	Peak Deviat	ion (kHz)
(dB)	300 Hz	1 kHz	3 kHz	300 Hz	1 kHz	3 kHz
-20	0.07	0.20	0.31	0.06	0.19	0.31
-15	0.09	0.30	0.51	0.08	0.30	0.52
-10	0.11	0.52	0.88	0.11	0.50	0.88
-5	0.16	0.86	1.17	0.16	0.87	1.18
0	0.25	1.50	1.23	0.26	1.50	1.25
+5	0.43	1.92	1.25	0.42	1.97	1.27
+10	0.71	2.05	1.28	0.71	2.10	1.30
+15	1.23	2.10	1.31	1.24	2.17	1.34
+20	2.13	2.08	1.31	2.20	2.14	1.34

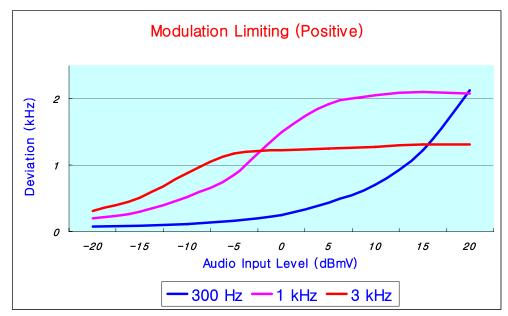

Page Number: 24 of 102

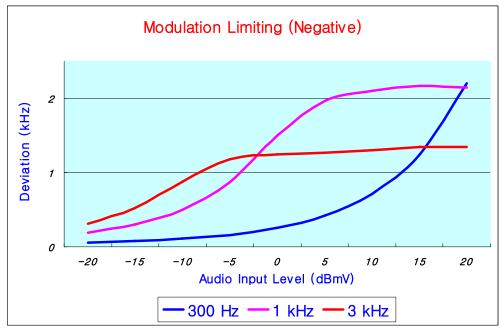

Data of Issue:

5.6.6.2 Narrow Band, 2nd Channel

Audio Input Level	Positive	Peak Deviat	ion (kHz)	Negative	Peak Deviat	ion (kHz)
(dB)	300 Hz	1 kHz	3 kHz	300 Hz	1 kHz	3 kHz
-20	0.08	0.19	0.31	0.07	0.19	0.31
-15	0.09	0.30	0.50	0.08	0.30	0.50
-10	0.12	0.50	0.87	0.11	0.50	0.87
-5	0.17	0.86	1.16	0.17	0.86	1.16
0	0.26	1.50	1.22	0.26	1.50	1.23
+5	0.42	1.90	1.25	0.42	1.94	1.26
+10	0.71	2.05	1.28	0.71	2.08	1.28
+15	1.23	2.10	1.31	1.23	2.14	1.32
+20	2.13	2.09	1.31	2.16	2.11	1.33

Report No: BWS-08-RF-0003 **BWS TECH Inc.**


FCC Test Report

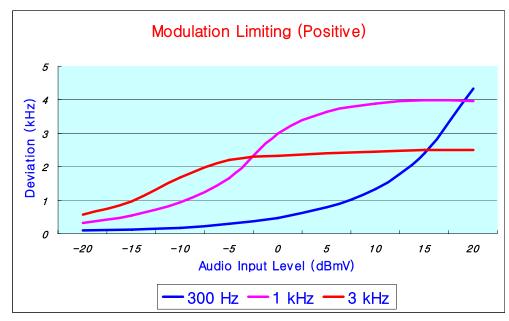

Page Number : Data of Issue : 25 of 102 April 18, 2008

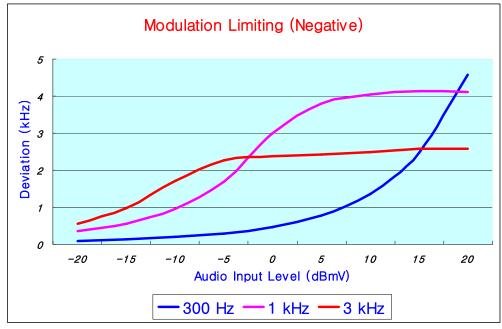
5.6.6.3 Narrow Band, 3rd Channel

Audio Input Level	Positive	Peak Deviat	ion (kHz)	Negative Peak Deviation (kHz)		ion (kHz)
(dB)	300 Hz	1 kHz	3 kHz	300 Hz	1 kHz	3 kHz
-20	0.09	0.21	0.32	0.10	0.21	0.32
-15	0.11	0.33	0.52	0.11	0.32	0.52
-10	0.13	0.51	0.88	0.14	0.52	0.89
-5	0.19	0.88	1.18	0.19	0.88	1.19
0	0.30	1.50	1.25	0.29	1.50	1.26
+5	0.45	1.97	1.28	0.45	1.94	1.30
+10	0.75	2.08	1.31	0.75	2.10	1.31
+15	1.30	2.13	1.31	1.27	2.17	1.29
+20	2.19	2.13	1.30	2.19	2.13	1.29

Report No: BWS-08-RF-0003
BWS TECH Inc.

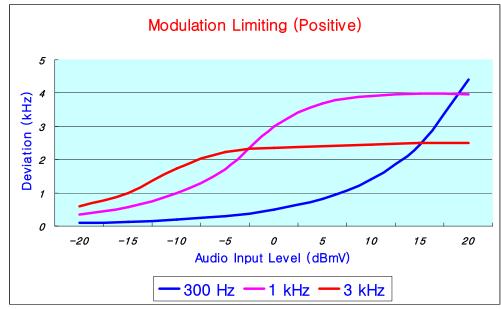
FCC Test Report

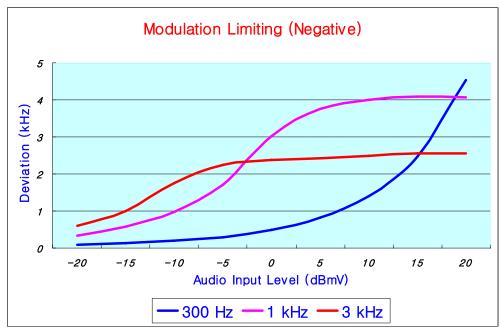

Page Number : Data of Issue : 26 of 102


April 18, 2008

5.6.6.4 WideBand, 1st Channel

Audio Input Level	Positive	Peak Deviat	ion (kHz)	Negative	Peak Deviat	ion (kHz)
(dB)	300 Hz	1 kHz	3 kHz	300 Hz	1 kHz	3 kHz
-20	0.09	0.32	0.56	0.10	0.35	0.56
-15	0.12	0.55	0.97	0.13	0.55	0.98
-10	0.18	0.95	1.69	0.19	0.96	1.71
-5	0.29	1.66	2.21	0.29	1.68	2.26
0	0.46	3.00	2.33	0.46	3.00	2.38
+5	0.79	3.65	2.39	0.78	3.80	2.43
+10	1.34	3.89	2.44	1.35	4.04	2.49
+15	2.39	3.98	2.50	2.46	4.14	2.57
+20	4.33	3.95	2.49	4.57	4.12	2.58


Page Number: 27 of 102

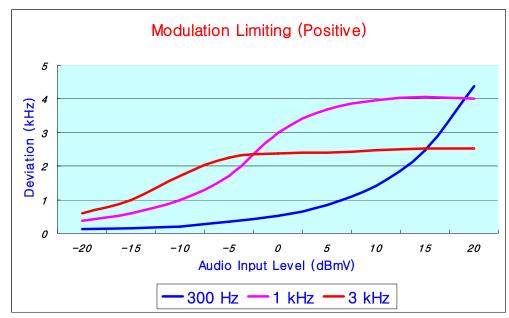

Data of Issue:

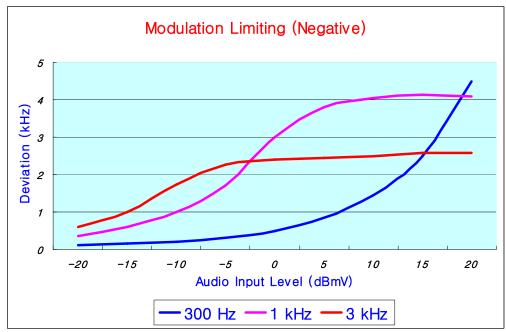
5.6.6.5 WideBand, 2nd Channel

Audio Input Level	Positive	Peak Deviat	ion (kHz)	Negative	Peak Deviat	ion (kHz)
(dB)	300 Hz	1 kHz	3 kHz	300 Hz	1 kHz	3 kHz
-20	0.10	0.34	0.59	0.10	0.34	0.59
-15	0.13	0.57	1.00	0.13	0.57	1.00
-10	0.20	0.98	1.74	0.19	0.98	1.75
-5	0.30	1.70	2.23	0.30	1.71	2.25
0	0.49	3.00	2.34	0.49	3.02	2.37
+5	0.82	3.68	2.40	0.82	3.76	2.42
+10	1.40	3.91	2.45	1.41	4.00	2.49
+15	2.44	3.99	2.51	2.47	4.09	2.55
+20	4.40	3.97	2.51	4.53	4.06	2.56

Report No: BWS-08-RF-0003 **BWS TECH Inc.**

FCC Test Report


Page Number : Data of Issue :


28 of 102 April 18, 2008

5.6.6.6 WideBand, 3rd Channel

Audio Input Level	Positive	Peak Deviat	ion (kHz)	Negative Peak Deviation (kHz)		
(dB)	300 Hz	1 kHz	3 kHz	300 Hz	1 kHz	3 kHz
-20	0.12	0.36	0.59	0.12	0.36	0.60
-15	0.16	0.59	1.00	0.15	0.59	1.01
-10	0.21	0.98	1.72	0.21	0.99	1.74
-5	0.34	1.70	2.25	0.32	1.71	2.27
0	0.51	3.00	2.37	0.50	3.00	2.39
+5	0.84	3.70	2.41	0.84	3.79	2.44
+10	1.42	3.97	2.47	1.44	4.04	2.50
+15	2.47	4.05	2.52	2.50	4.13	2.57
+20	4.37	4.02	2.52	4.48	4.09	2.58

Report No: BWS-08-RF-0003 **BWS TECH Inc.**

FCC Test Report

Page Number : Data of Issue : 29 of 102 April 18, 2008

5.7 Occupied Bandwidth

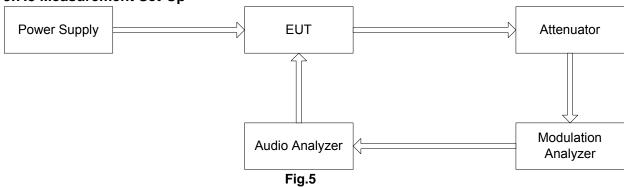
The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission. pecified limits according to the emission mask per section 90.210 is as below.

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be below the unmodulated carrier power (P) as follows:

- (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 per-cent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized band-width: At least 43 + 10 log (P) dB.

Emission Mask D. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- (1) On any frequency from the center of the authorized bandwidth f0 to 5.625 kHz removed from f0: Zero dB.
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(fd '2.88 kHz) dB.
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.


5.7.1 Specification

FCC Rules Part 2, Section 2.1049 FCC Rules Part 90, Section 90.210 Industry Canada, RSS-119 Section 5.5 Industry Canada, RSS-119 Section 5.8

5.7.2 Method of Measurement

ANSI/TIA-603-B-2002 Section 2.2.11

5.7.3 Measurement Set-Up

 Report No: BWS-08-RF-0003
 FCC Test Report
 Page Number : 30 of 102

 BWS TECH Inc.
 Data of Issue : April 18, 2008

5.7.4 Test Equipment List

Equipment	Model Name	Manufacturer
EUT	SP7102	Maxon CIC Corp.
Power Supply	IPS-30B03DD	INTERACT
Audio Analyzer	8903B	Agilent
Spectrum Analyzer	FSP7	Rohde & Shwarz
Attenuator	33-30-33	WEINSCHEL

5.7.5 Measurement Procedure

- -. The unit was turn-up in accordance with the alignment procedure stated in the FIG. 5 , and was loaded into a 50 ohm resistive termination.
- -. The radio transmitter was modulated by a 2500 Hz tone at an input level 16 dB greater than that necessary to produce 50 percent modulation. The input level shall be established at the frequency of maximum response of the audio modulating circuit.
- -. The occupied bandwidth data is obtained for 25kHz and 12.5 kHz channel bandwidth.

5.7.6 Data

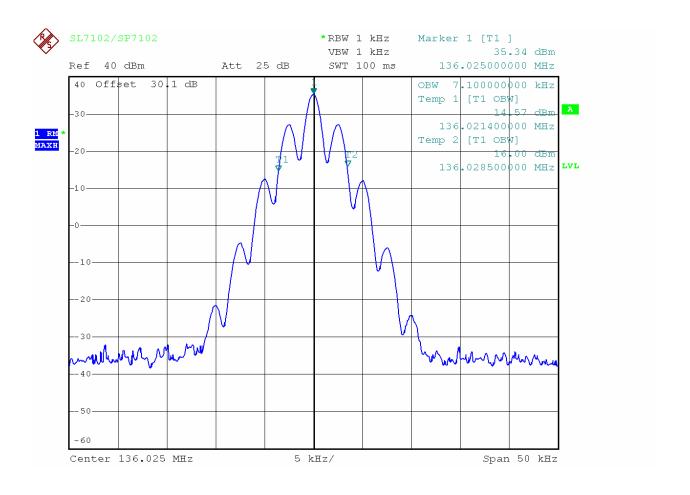
Frequency (MHz)	Channel Spacing	Mask Type	99% Bandwidth (kHz)		Maximum Authorized
			Low Power	High Power	Bandwidth (KHz)
136.025 MHz	Narrow	D	7.1	7.1	11.25
	Wide	В	11.4	11.4	20.00
155.025 MHz	Narrow	D	7.1	7.1	11.25
	Wide	В	11.4	11.4	20.00
173.975 MHz	Narrow	D	7.1	7.1	11.25
	Wide	В	11.5	11.5	20.00

5.7.7 99% Bandwidth

5.7.7.1 Plot 1

FCC Rules : Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.5


Operating Frequency: 136.025 MHz

Channel: 1st Channel
Power Output: 5 Watts

Channel Spacing : Narrow Band

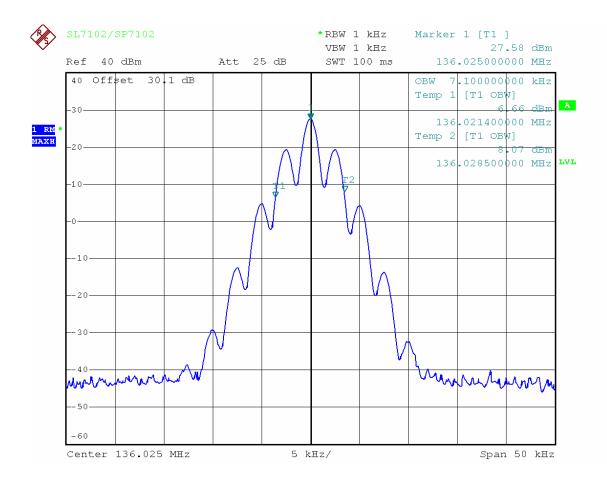
Modulation Signal: FM modulation with 2.5kHz sine wave signal

Emission Mask : 99% Bandwidth

5.7.7.2 Plot 2

FCC Rules: Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.5


Operating Frequency : 136.025 MHz

Channel: 1st Channel
Power Output: 1 Watts

Channel Spacing: Narrow Band

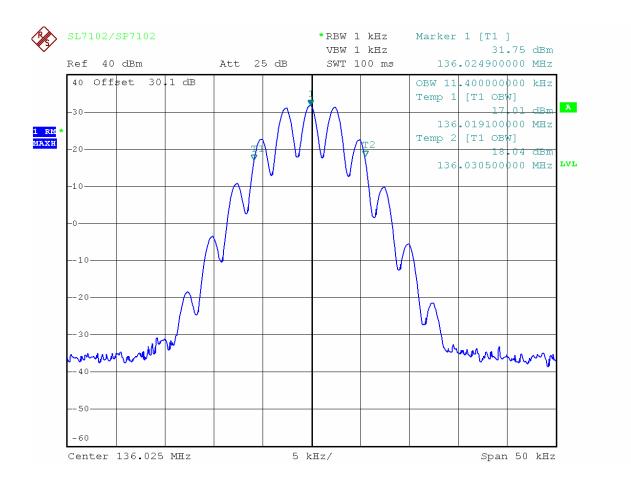
Modulation Signal: FM modulation with 2.5kHz sine wave signal

Emission Mask: 99% Bandwidth

5.7.7.3 Plot 3

FCC Rules: Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.5


Operating Frequency : 136.025 MHz

Channel: 1st Channel
Power Output: 5 Watts

Channel Spacing : WideBand

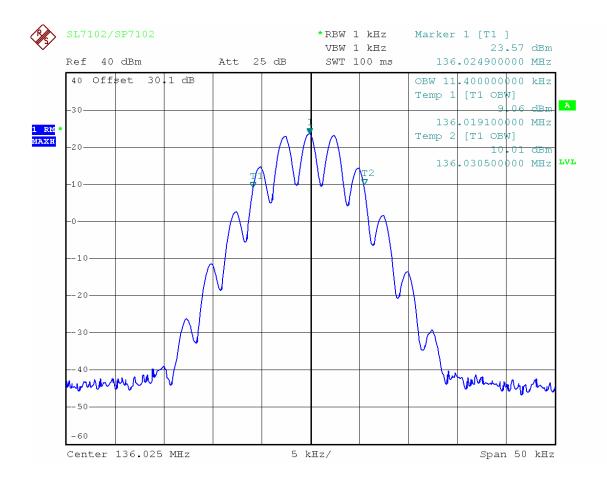
Modulation Signal : FM modulation with 2.5kHz sine wave signal

Emission Mask : 99% Bandwidth

5.7.7.4 Plot 4

FCC Rules: Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.5


Operating Frequency : 136.025 MHz

Channel: 1st Channel

Power Output : 1 Watts
Channel Spacing : WideBand

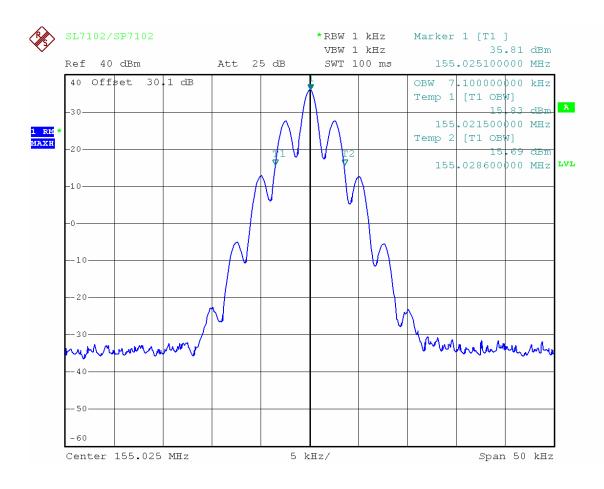
Modulation Signal: FM modulation with 2.5kHz sine wave signal

Emission Mask : 99% Bandwidth

5.7.7.5 Plot 5

FCC Rules: Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.5


Operating Frequency : 155.025 MHz

Channel: 2nd Channel

Power Output : 5 Watts
Channel Spacing : Narrow Band

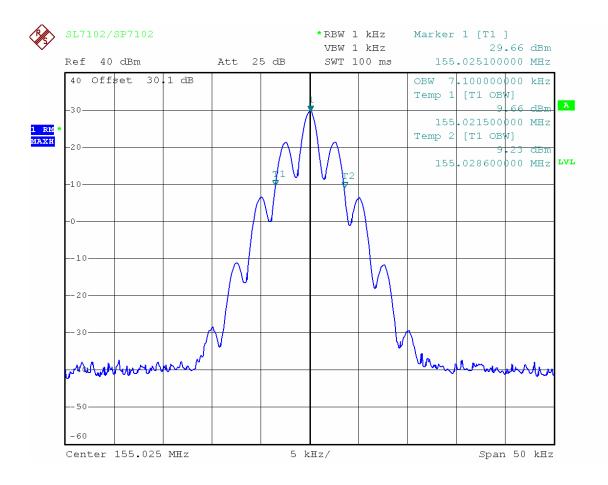
Modulation Signal: FM modulation with 2.5kHz sine wave signal

Emission Mask: 99% Bandwidth

5.7.7.6 Plot 6

FCC Rules: Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.5


Operating Frequency : 155.025 MHz

Channel: 2nd Channel

Power Output : 1 Watts
Channel Spacing : Narrow Band

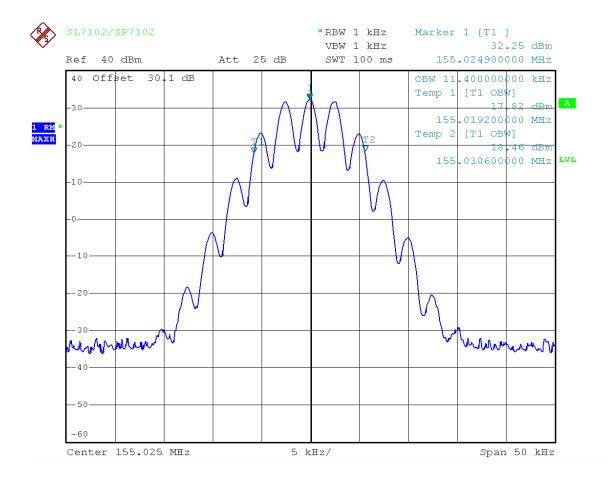
Modulation Signal : FM modulation with 2.5kHz sine wave signal

Emission Mask: 99% Bandwidth

5.7.7.7 Plot 7

FCC Rules : Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.5


Operating Frequency : 155.025 MHz

Channel: 2nd Channel

Power Output : 5 Watts
Channel Spacing : WideBand

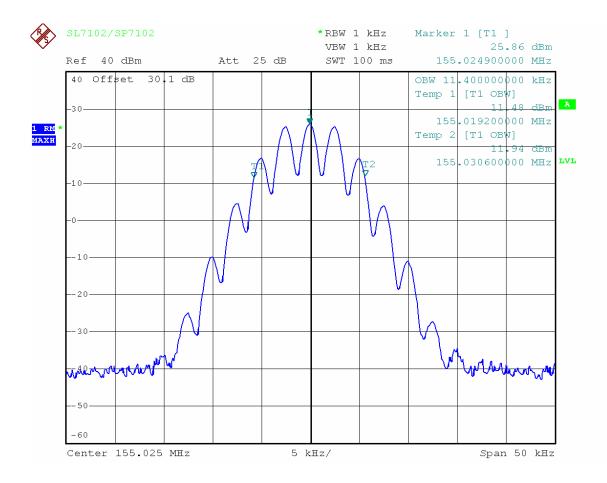
Modulation Signal : FM modulation with 2.5kHz sine wave signal

Emission Mask : 99% Bandwidth

5.7.7.8 Plot 8

FCC Rules : Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.5


Operating Frequency: 155.025 MHz

Channel : 2nd Channel Power Output : 1 Watts

Channel Spacing: WideBand

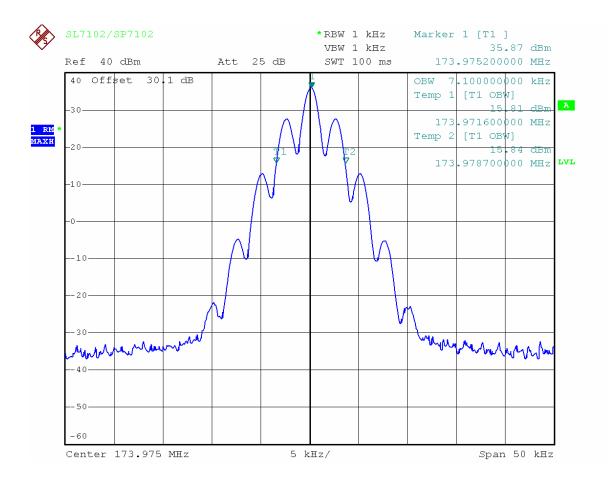
Modulation Signal: FM modulation with 2.5kHz sine wave signal

Emission Mask : 99% Bandwidth

5.7.7.9 Plot 9

FCC Rules: Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.5


Operating Frequency: 173.975 MHz

Channel : 3rd Channel ver Output : 5 Watts

Power Output : 5 Watts
Channel Spacing : Narrow Band

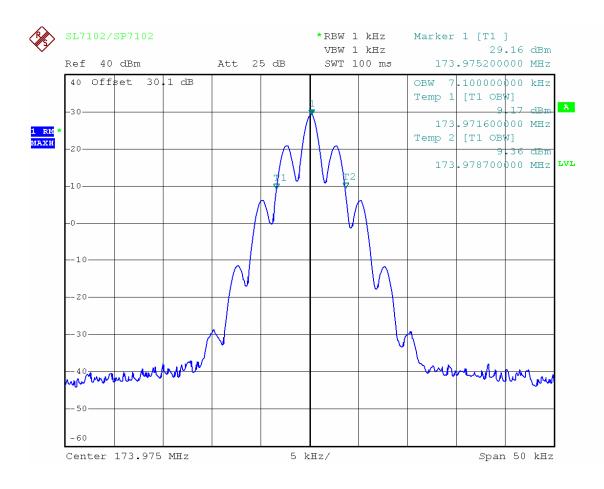
Modulation Signal: FM modulation with 2.5kHz sine wave signal

Emission Mask: 99% Bandwidth

5.7.7.10 Plot 10

FCC Rules: Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.5


Operating Frequency : 173.975 MHz

Channel : 3rd Channel er Output : 1 Watts

Power Output : 1 Watts
Channel Spacing : Narrow Band

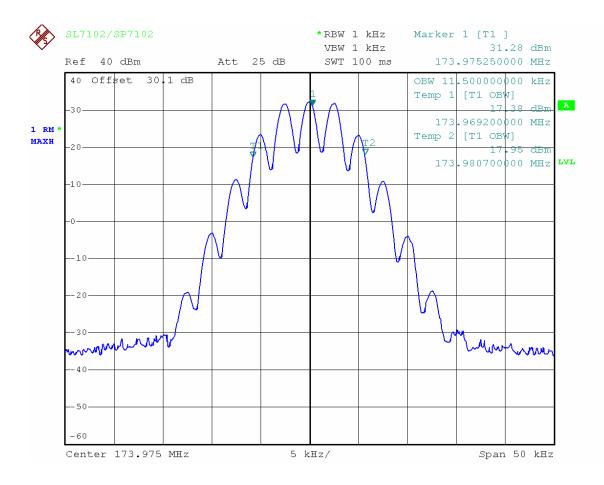
Modulation Signal: FM modulation with 2.5kHz sine wave signal

Emission Mask : 99% Bandwidth

5.7.7.11 Plot 11

FCC Rules: Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.5


Operating Frequency : 173.975 MHz

Channel: 3rd Channel
Power Output: 5 Watts

Channel Spacing : WideBand

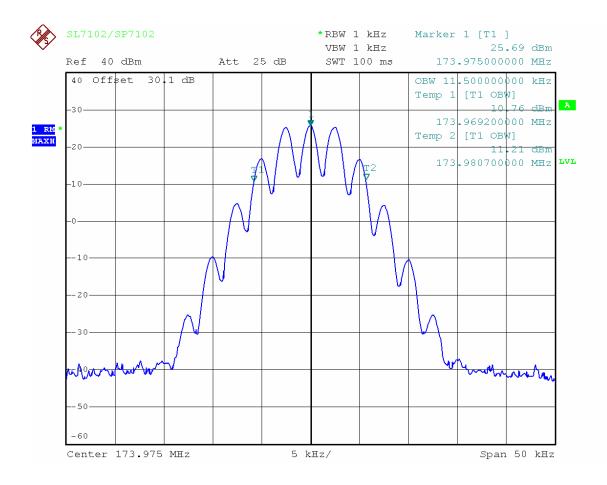
Modulation Signal: FM modulation with 2.5kHz sine wave signal

Emission Mask : 99% Bandwidth

5.7.7.12 Plot 12

FCC Rules: Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.5


Operating Frequency : 173.975 MHz

Channel: 3rd Channel

Power Output : 1 Watts
Channel Spacing : WideBand

Modulation Signal : FM modulation with 2.5kHz sine wave signal

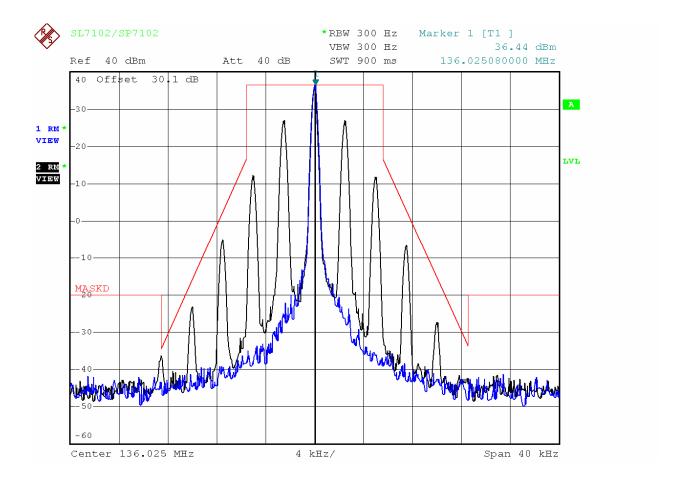
Emission Mask: 99% Bandwidth

5.7.8 Emission Mask

5.5.8.1 Plot 1

FCC Rules : Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.8


Operating Frequency: 136.025 MHz

Channel: 1st Channel
Power Output: 5 Watts

Channel Spacing: Narrow Band

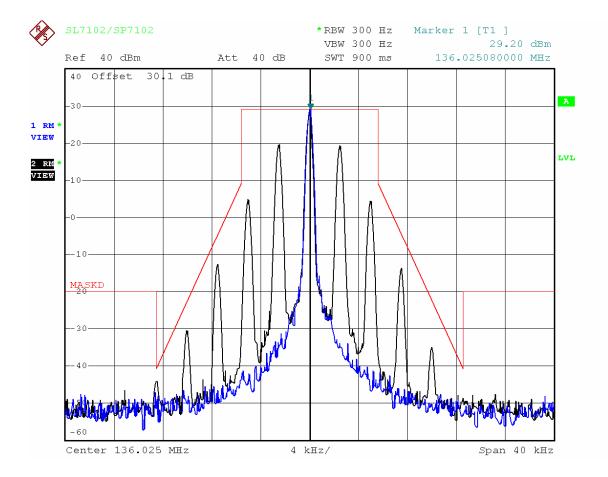
Modulation Signal: FM modulation with 2.5kHz sine wave signal

Emission Mask : Mask D
Reference Voltage : 7.4 VDC

5.7.8.2 Plot 2

FCC Rules : Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.8


Operating Frequency : 136.025 MHz

Channel: 1st Channel
Power Output: 1 Watt

Channel Spacing: Narrow Band

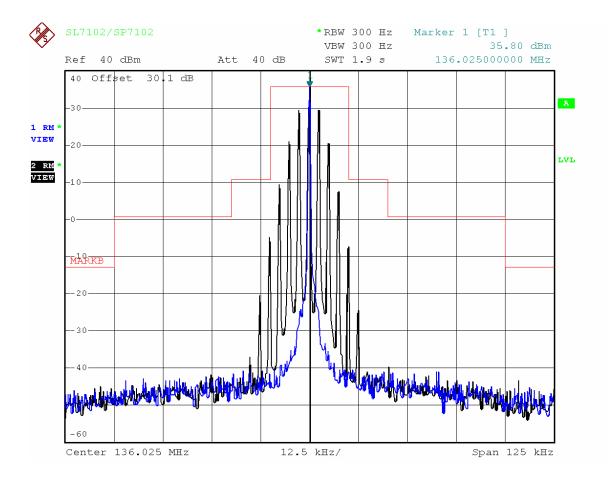
Modulation Signal: FM modulation with 2.5kHz sine wave signal

Emission Mask : Mask D
Reference Voltage : 7.4 VDC

5.7.8.3 Plot 3

FCC Rules : Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.8


Operating Frequency : 136.025 MHz

Channel: 1st Channel wer Output: 5 Watts

Power Output : 5 Watts
Channel Spacing : WideBand

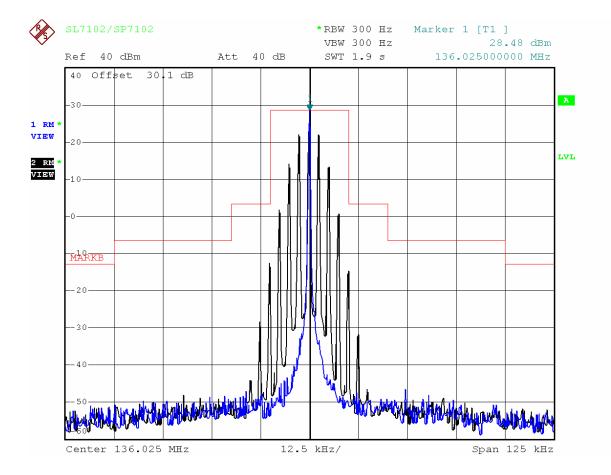
Modulation Signal: FM modulation with 2.5kHz sine wave signal

Emission Mask : Mask B
Reference Voltage : 7.4 VDC

5.7.8.4 Plot 4

FCC Rules : Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.8


Operating Frequency: 136.025 MHz

Channel: 1st Channel
Power Output: 1 Watt

Channel Spacing: WideBand

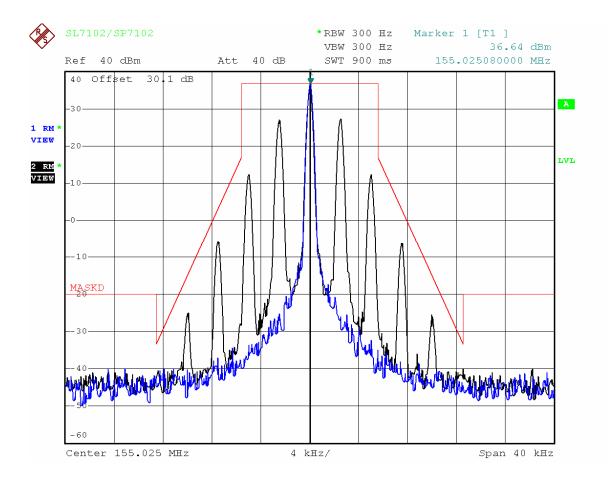
Modulation Signal : FM modulation with 2.5kHz sine wave signal

Emission Mask : Mask B
Reference Voltage : 7.4 VDC

5.7.8.5 Plot 5

FCC Rules : Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.8


Operating Frequency : 155.025 MHz

Channel: 2nd Channel

Power Output : 5 Watts
Channel Spacing : Narrow Band

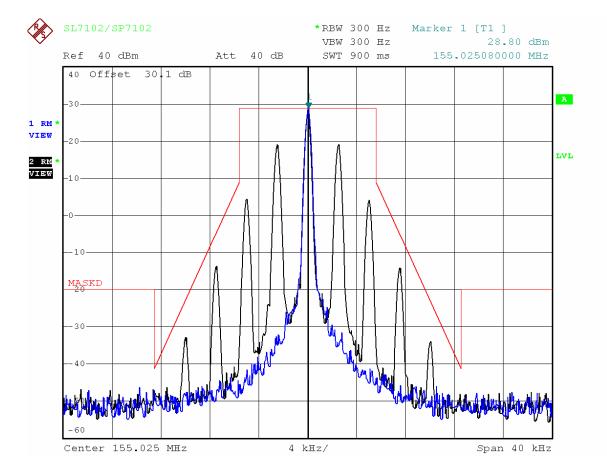
Modulation Signal : FM modulation with 2.5kHz sine wave signal

Emission Mask : Mask D
Reference Voltage : 7.4 VDC

5.7.8.6 Plot 6

FCC Rules : Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.8


Operating Frequency : 155.025 MHz

Channel: 2nd Channel

Power Output : 1 Watt
Channel Spacing : Narrow Band

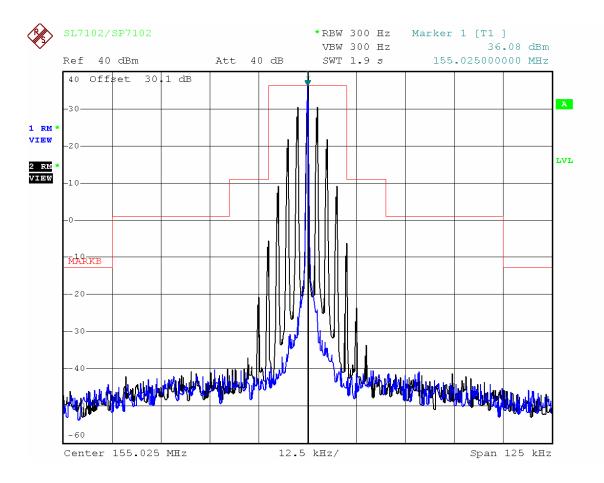
Modulation Signal : FM modulation with 2.5kHz sine wave signal

Emission Mask : Mask D
Reference Voltage : 7.4 VDC

5.7.8.7 Plot 7

FCC Rules : Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.8


Operating Frequency : 155.025 MHz

Channel : 2nd Channel wer Output : 5 Watts

Power Output : 5 Watts
Channel Spacing : WideBand

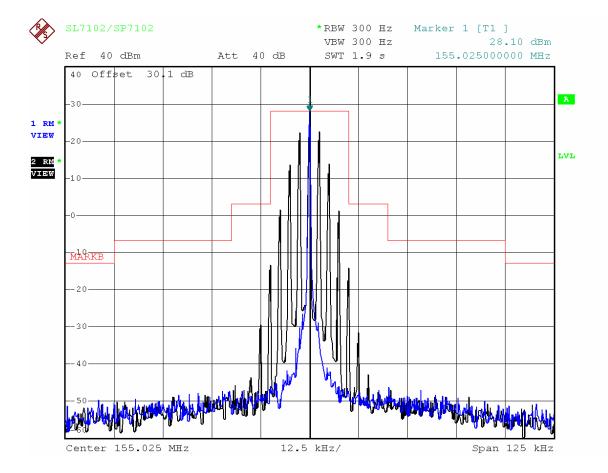
Modulation Signal: FM modulation with 2.5kHz sine wave signal

Emission Mask : Mask B
Reference Voltage : 7.4 VDC

5.7.8.8 Plot 8

FCC Rules : Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.8


Operating Frequency : 155.025 MHz

Channel: 2nd Channel

Power Output : 1 Watt Channel Spacing : WideBand

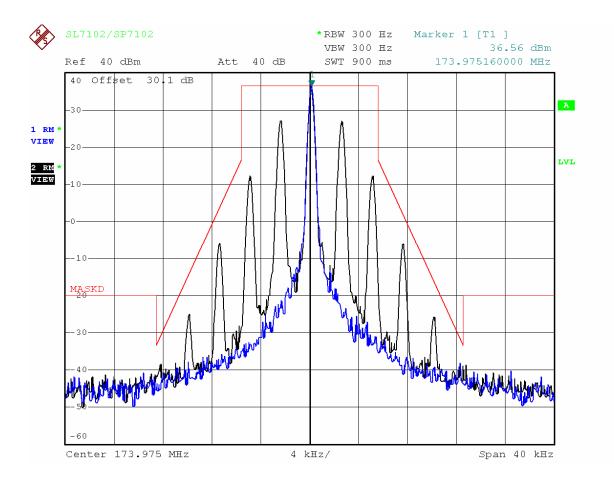
Modulation Signal: FM modulation with 2.5kHz sine wave signal

Emission Mask : Mask B
Reference Voltage : 7.4 VDC

5.7.8.9 Plot 9

FCC Rules : Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.8


Operating Frequency : 173.975 MHz

Channel: 3rd Channel
Power Output: 5 Watts

Channel Spacing : Narrow Band

Modulation Signal: FM modulation with 2.5kHz sine wave signal

Emission Mask : Mask D
Reference Voltage : 7.4 VDC

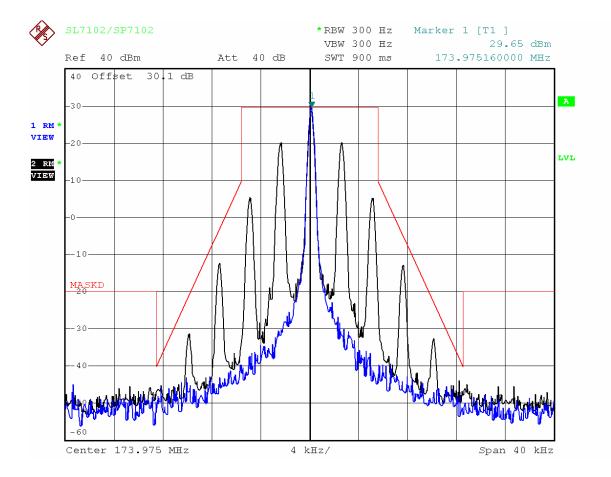
53 of 102

April 18, 2008

5.7.8.10 Plot 10

FCC Rules : Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.8


Operating Frequency : 173.975 MHz

Channel: 3rd Channel
Power Output: 1 Watt

Channel Spacing: Narrow Band

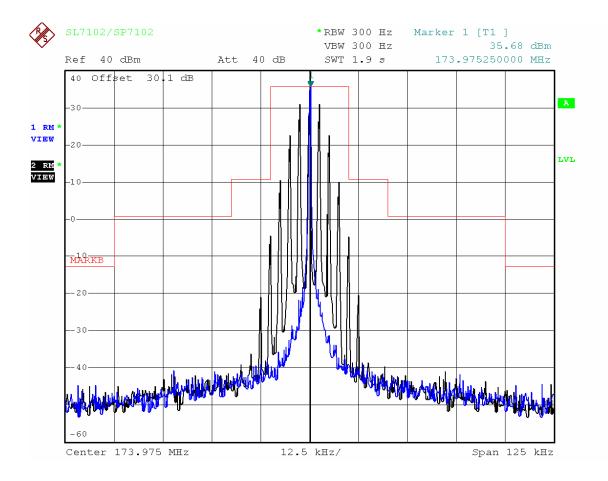
Modulation Signal: FM modulation with 2.5kHz sine wave signal

Emission Mask : Mask D
Reference Voltage : 7.4 VDC

5.7.8.11 Plot 11

FCC Rules : Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.8


Operating Frequency : 173.975 MHz

Channel: 3rd Channel er Output: 5 Watts

Power Output : 5 Watts
Channel Spacing : WideBand

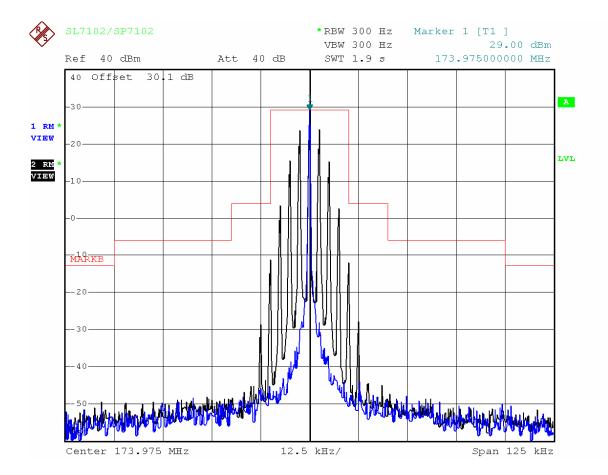
Modulation Signal: FM modulation with 2.5kHz sine wave signal

Emission Mask : Mask B
Reference Voltage : 7.4 VDC

5.7.8.12 Plot 12

FCC Rules : Part 2 §2.1053(a) & §90.210

IC Rules: RSS-119 Section 5.8


Operating Frequency : 173.975 MHz

Channel: 3rd Channel

Power Output : 1 Watt Channel Spacing : WideBand

Modulation Signal : FM modulation with 2.5kHz sine wave signal

Emission Mask : Mask B
Reference Voltage : 7.4 VDC

5.8 Spurious Emissions at Antenna Terminals

Conducted spurious emissions are emissions at the antenna terminals on a frequencity or frequencies which are ourside of band sufficient to ensure transmission or information of required quality for the class of communication desired.

5.8.1 Specification

FCC Rules Part 2, Section 2.1051 FCC Rules Part 90, Section 90.210 Industry Canada, RSS-119 Section 5.8

5.8.2 Method of Measurement

ANSI/TIA-603-B-2002 Section 2.2.13

5.8.3 Measurement Set-Up

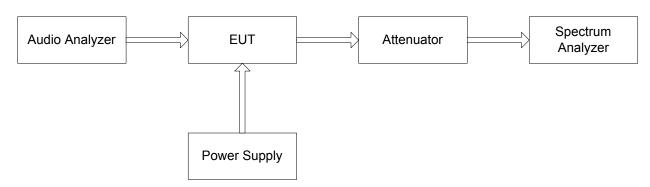


Fig.6

5.8.4 Test Equipment List

Equipment	Model Name	Manufacturer	
EUT	SP7102	Maxon CIC Corp.	
Power Supply	IPS-30B03DD	INTERACT	
Audio Analyzer	8903B	Agilent	
Spectrum Analyzer	FSP7	Rohde & Shwarz	
Attenuator	33-30-33	WEINSCHEL	

5.8.5 Measurement Procedure

- -. The unit was turned-up in accordance with the alignment procedure stated in the FIG. 6, and was loaded into a 50 ohm resistive termination.
- -. The antenna output terminal of the EUT was connected to the input of a 50 ohm spectrum analyzer through a matched 10 dB attenuator and notch filter.
- -. Transmitter was set to the maximum power output condition.
- -. The unit was modulated with a 2.5 kHz audio tone at an input level 16dB greater than that required 50% modulation. The spectrum was scanned from the lowest frequency generated in the equipment to the 10th harmonic of the carrier.
- -. The test performed at worst case mode. (High power and Narrow Band)
- -. The limit was applied according the 50+10log₁₀(P: mean power in Watts) dB.

 Report No: BWS-08-RF-0003
 FCC Test Report
 Page Number:
 56 of 102

 BWS TECH Inc.
 Data of Issue:
 April 18, 2008

5.8.6 Data

(MILE)	Transmitter Spurious Emissions				
Frequency (MHz)	Level (dBm) Limit (dBm)		Margin (dB)		
272.050	-48.6		28.6		
408.075	-52.3		32.3		
544.100	-48.0	-20	28.0		
680.125	-46.1	-20	26.1		
816.150	-49.0		29.0		
952.175	-39.1		19.1		
310.050	-38.1	-20	18.1		
620.100	-47.0		27.0		
930.150	-42.1	-20	22.1		
1085.175	-49.1		29.1		
347.950	-40.6		20.6		
521.925	-49.2	-20	29.2		
695.900	-44.5		24.5		
869.875	-44.5		24.5		
1043.850	-48.0		28.0		

Page Number: 57 of 102

Data of Issue:

April 18, 2008

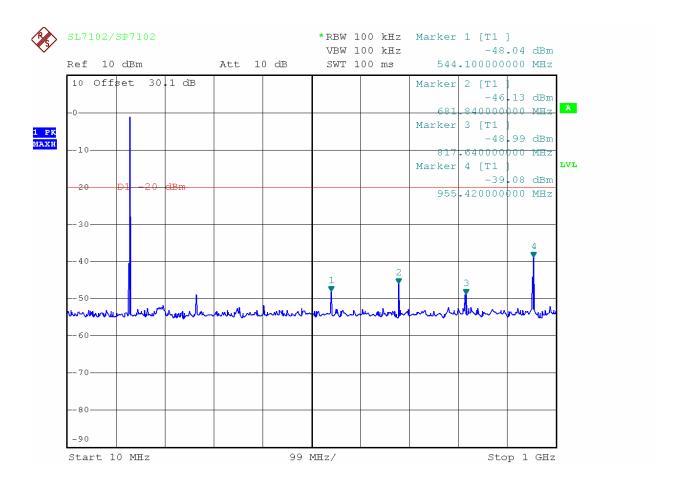
5.8.7 Plots

5.8.7.1 1st Channel

FCC Rules : Part 2 §2.1051 & §90.210

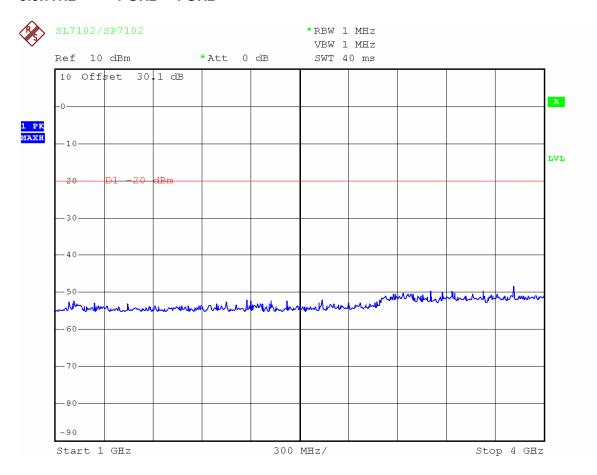
IC Rules: RSS-119 Section 5.8

Operating Frequency: 136.025 MHz


Channel: 1st Channel

Power Output : 5 Watts
Channel Spacing : Narrow Band

Reference Voltage: 7.4 VDC


Limit: $50 + 10\log_{10}P (-20dBm)$

5.8.7.1.1 10 MHz ~ 1 GHz

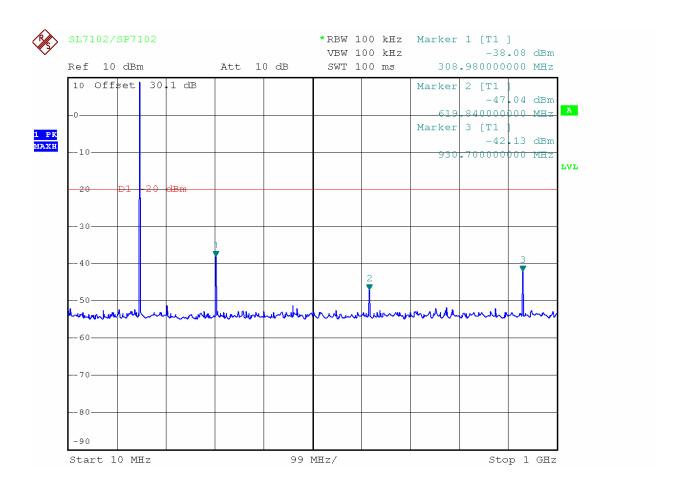
5.8.7.1.2 1 GHz ~ 4 GHz

5.8.7.2 2nd Channel

FCC Rules : Part 2 §2.1051 & §90.210

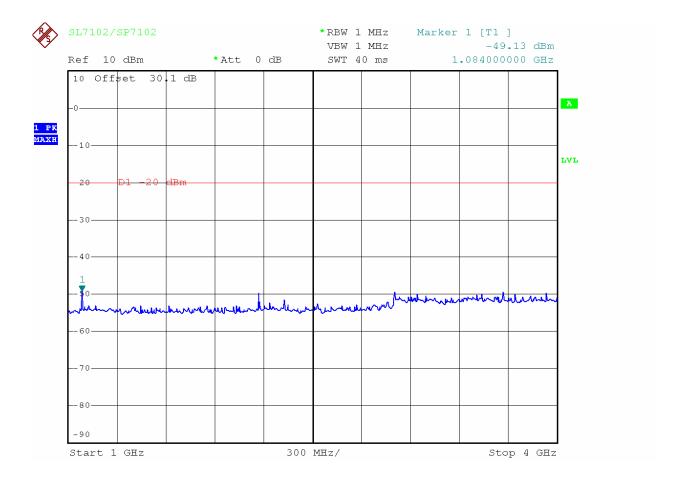
IC Rules : RSS-119 Section 5.8

Operating Frequency : 155.025 MHz


Channel: 2nd Channel
Power Output: 5 Watts

Channel Spacing : Narrow Band

Reference Voltage: 7.4 VDC


Limit: $50 + 10\log_{10}P (-20dBm)$

5.8.7.2.1 10 MHz ~ 1 GHz

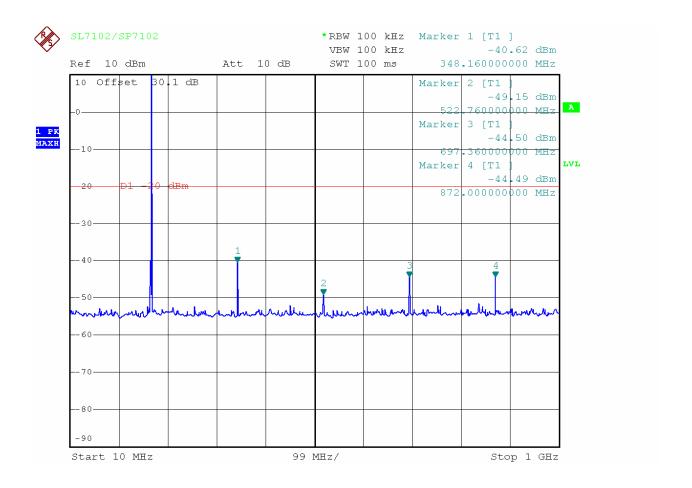
5.8.7.2.2 1 GHz ~ 7 GHz

5.8.7.3 3rd Channel

FCC Rules : Part 2 §2.1051 & §90.210

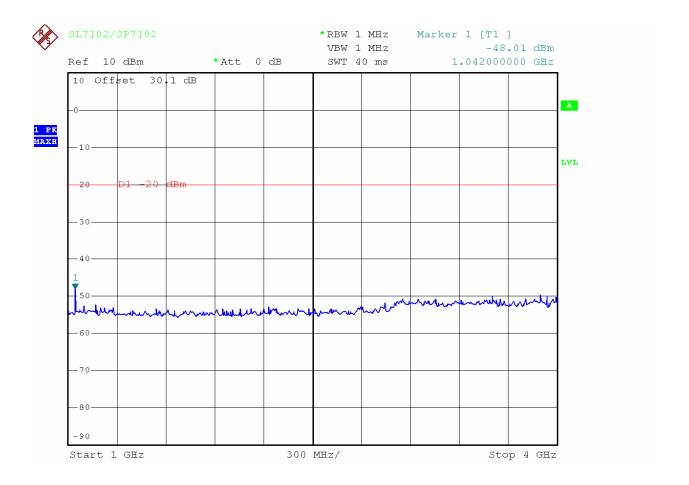
IC Rules : RSS-119 Section 5.8

Operating Frequency : 173.975 MHz


Channel: 3rd Channel

Power Output : 5 Watts
Channel Spacing : Narrow Band

Reference Voltage: 7.4 VDC


Limit: $50 + 10\log_{10}P (-20dBm)$

5.8.7.3.1 10 MHz ~ 1 GHz

5.8.7.3.2 1 GHz ~ 7 GHz

5.9 Field Strength of Spurious Radiation

Radiated spurious emissions are emissions from the equipment when transmitting load on frequency or frequencies which are outside of band sufficient to ensure transmission or information of required quality for the class of communication desired.

5.9.1 Specification

FCC Rules Part 2, Section 2.1053(a) FCC Rules Part 90, Section 90.210 Industry Canada, RSS-119 Section 5.8

5.9.2 Method of Measurement

ANSI/TIA-603-B-2002 Section 2.2.12

5.9.3 Measurement Set-Up

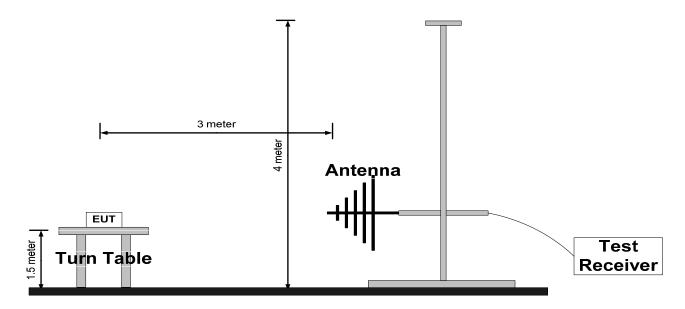


Fig.7

5.9.4 Test Equipment List

Equipment	Model Name	Manufacturer
EUT	SP7102	Maxon CIC Corp.
Power Supply	IPS-30B03DD	INTERACT
Audio Analyzer	8903B	Agilent
Spectrum Analyzer	E7403A	Agilent
Bilog Antenna	VULB9160	SWALZBECK
Horn Antenna	BBHA 9120 D	SWALZBECK

5.9.5 Test Data

FCC Rules: Part 2 §2.1053(a) & §90.210

RSS-119 Section 5.8 IC Rules:

Power Output: 5 Watts Reference Voltage: 7.4 VDC

Channel Spacing: Narrow Band

> Limit: $50 + 10\log_{10}P (-20dBm)$

Frequency [MHz]	Spectrum Reading [dBuV/m]	Ant. Pol. [H/V]	S.G Level [dBm]	Ant. Gain [dBi]	Loss [dB]	Emission Level [dBm]	Limit [dBm]	Margin [dB]
136.025	112.3	V	+15.0	0.9	1.2	+17.1	-	-
272.050	35.0	Н	-68.4	6.7	1.5	-60.2		40.2
408.075	38.7	Н	-65.0	6.8	1.7	-56.5		36.5
544.100	36.3	Н	-67.4	6.7	1.8	-58.9	-20	38.9
680.125	40.5	V	-63.0	6.3	2.0	-54.7	-20	34.7
816.150	51.5	V	-51.6	5.8	2.1	-43.7		23.7
952.175	56.4	V	-46.4	5.5	2.1	-38.8		18.8
155.025	125.2	V	+27.4	1.3	1.3	+30.0	-	-
310.050	36.6	Н	-67.0	6.8	1.6	-58.6	-20	38.6
465.075	36.4	Н	-67.1	6.6	1.7	-58.8		38.8
620.100	37.1	V	-66.3	6.3	1.9	-58.1		38.1
775.125	50.7	V	-53.0	5.9	2.0	-45.1		25.1
930.150	49.1	V	-53.9	5.7	2.1	-46.1		26.1
1085.175	30.8	-	-72.7	6.0	2.3	-64.4		34.4
173.975	117.5	V	+18.2	2.8	1.4	+22.4	-	-
347.950	40.6	Н	-63.1	6.9	1.6	-54.6	20	34.6
521.925	32.1	V	-71.7	6.8	1.8	-63.1		43.1
695.900	40.9	V	-62.6	6.3	2.0	-54.3		34.3
869.875	50.4	V	-53.0	6.1	2.1	-44.8		24.8
1043.850	31.9	-	-71.6	6.0	2.3	-63.3		43.3
1217.825	28.6	-	-76.6	7.5	2.5	-66.6		46.6

Note:

- 1. The spectrum bandwidth was set to RBW 100 kHz (freg. up to 1GHz) and RBW 1 MHz (freg. above 1GHz).
- Transmitter was set to the high power output (5 watts) condition.
- The spectrum was checked from 30 MHz up to the 10th harmonic of the carrier frequency. All emission not reported were found to be more than 20dB below the limit.
- The EUT was positioned through 3 orthogonal axis and worst-case are reported.
- Transmitter was set to the high power output (5 watts) condition because the high power setting is the worst case emission condition.
- 7. The measurement has been made both narrow and wide band but the attached plots are for narrowband. There is no difference in the test result for the bandwidth setting.
- 8. ERP measurements were performed using the standard battery with full charged condition.
- 9. The test performed at worst case mode. (High power and Narrow Band)
- 10. The limit was applied according to the section 90.210(d) 50+10logP or -20dBm or 70dBc whichever is less.

Report No: BWS-08-RF-0003 Page Number: 65 of 102 **FCC Test Report BWS TECH Inc.** Data of Issue: April 18, 2008

5.10 Frequency Stability / Temperature Variation

5.10.1 Specification

FCC Rules Part 2, Section 2.1055 FCC Rules Part 90, Section 90.213 Industry Canada, RSS-119 Section 5.3

5.10.2 Method of Measurement

ANSI/TIA-603-B-2002 Section 2.2.2

5.10.3 Measurement Set-Up

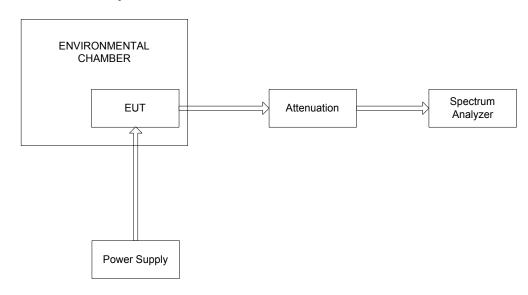


Fig.8

5.10.4 Test Equipment List

Equipment	Model Name	Manufacturer	
EUT	SP7102	Maxon CIC Corp.	
Power Supply	IPS-30B03DD	INTERACT	
Attenuator	33-30-33	WEINSCHEL	
Spectrum Analyzer	FSP7	Rohde & Shwarz	
Environmental Chamber	EN-GLMP-54	ENEX	

5.10.5 Test Procedure

- -. The unit was turn-up in accordance with the alignment procedure stated in the FIG. 8 , and was loaded into a 50 ohm resistive termination.
- -. With all power removed, the temperature was decreased to -30°C and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was noted within one minute.
- -. With power OFF, the temperature was raised in 10°C steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted

within one minute.

- -. The temperature tests were performed for the worst case.
- -. FCC Limits (according to part 90.213): 2.5 x 10⁻⁶ x Frequency

 Report No: BWS-08-RF-0003
 FCC Test Report
 Page Number : 66 of 102

 BWS TECH Inc.
 Data of Issue : April 18, 2008

5.10.6 Test Result 1

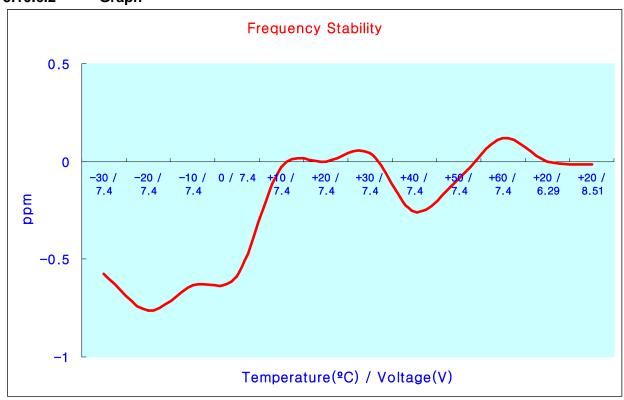
FCC Rules : Part 2 §2.1055 & §90.231

IC Rules: RSS-119 Section 5.3

Operating Frequency : 136.025 MHz

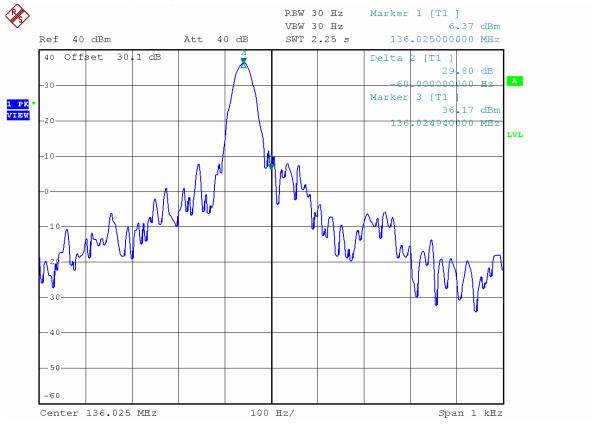
Channel: 1st Channel

Power Output: 5 Watts

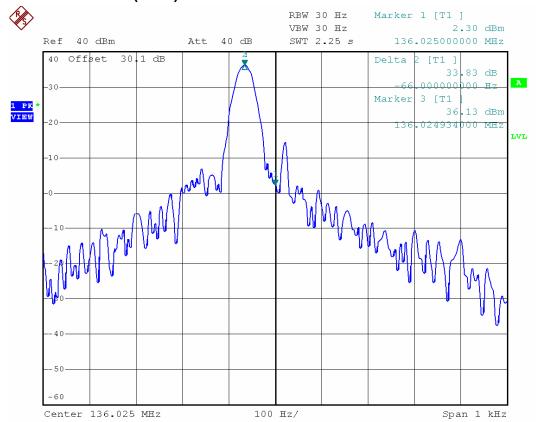

Modulation : Non-Modulation

Reference Voltage : 7.4 VDC

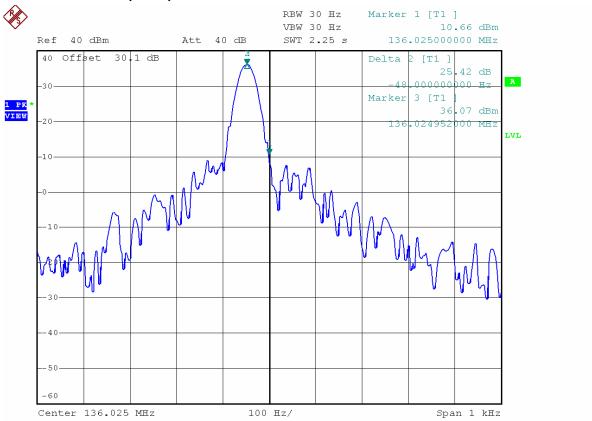
5.10.6.1 Data


Voltage	Power Supply	Temperature	Frequency	Deviation	Limit
(%)	(Vdc)	(°C)	(MHz)	(ppm)	(ppm)
100 %	7.4	-30	136.024960	-0.57	2.5
100 %	7.4	-20	136.024934	-0.76	2.5
100 %	7.4	-10	136.024952	-0.63	2.5
100 %	7.4	0	136.024958	-0.58	2.5
100 %	7.4	+10	136.025034	-0.03	2.5
100 %	7.4	+20 (ref)	136.025038	0	2.5
100 %	7.4	+30	136.025044	+0.04	2.5
100 %	7.4	+40	136.025003	-0.26	2.5
100 %	7.4	+50	136.025026	-0.09	2.5
100 %	7.4	+60	136.025054	+0.12	2.5
85 %	6.52	+20	136.025038	0	2.5
115 %	8.51	+20	136.025036	-0.01	2.5

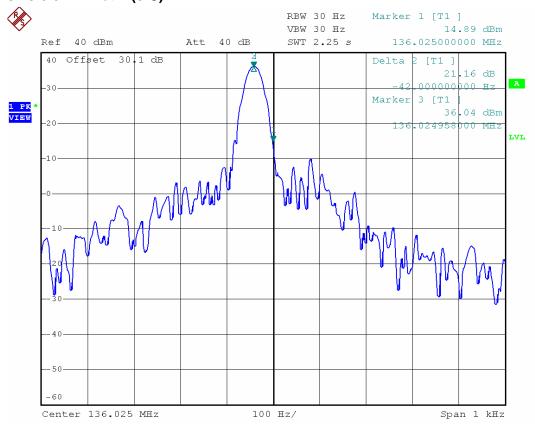
5.10.6.2 Graph



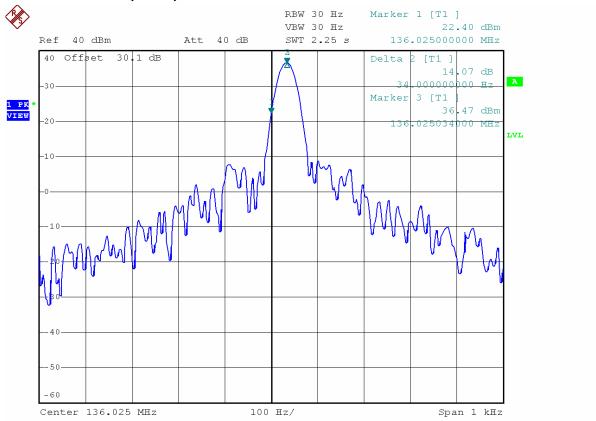
5.10.6.3 Plot 1 (-30°C)

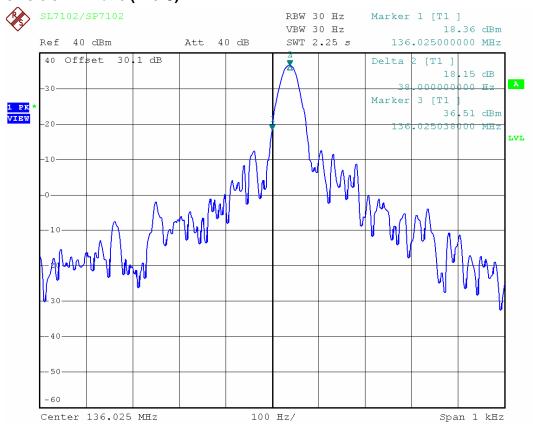


5.10.6.4 Plot 2 (-20°C)



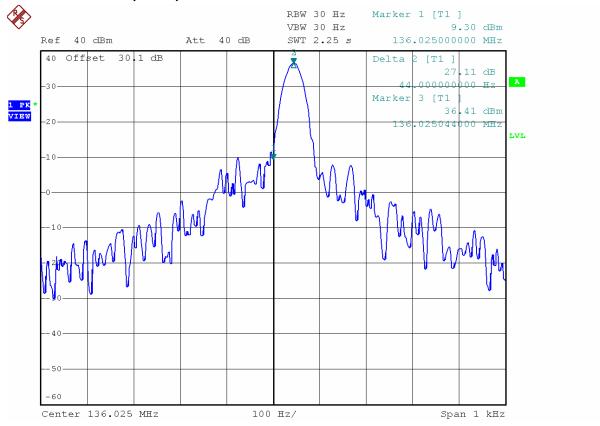
5.10.6.5 Plot 3 (-10°C)


5.10.6.6 Plot 4 (0°C)

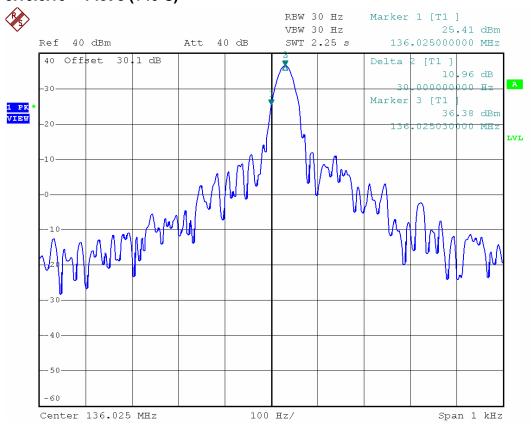

Page Number : Data of Issue :

5.10.6.7 Plot 5 (+10°C)

5.10.6.8 Plot 6 (+20°C)

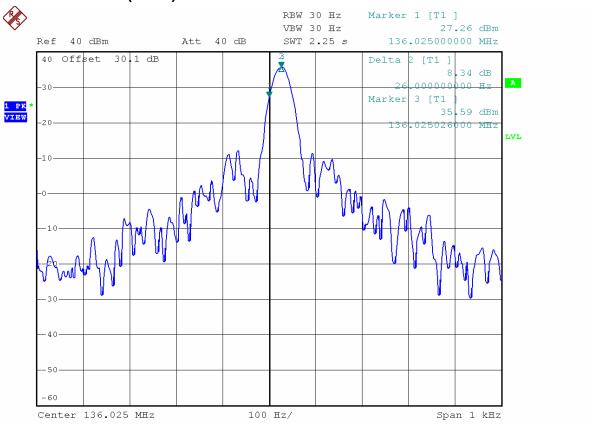

Report No: BWS-08-RF-0003 **BWS TECH Inc.**

FCC Test Report

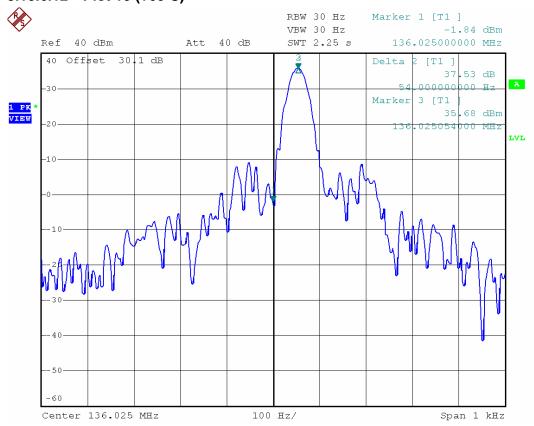

Page Number : Data of Issue :

5.10.6.9 Plot 7 (+30°C)

5.10.6.10 Plot 8 (+40°C)

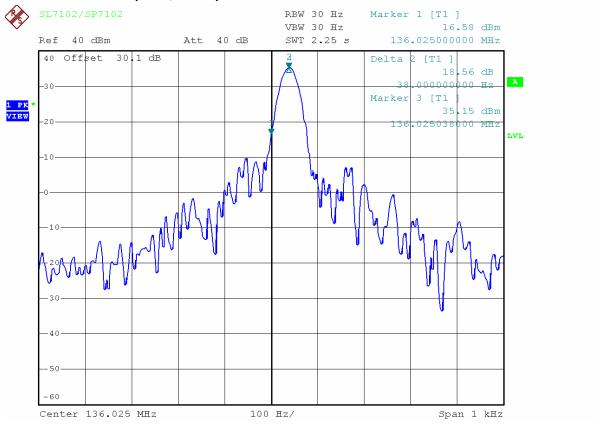

Report No: BWS-08-RF-0003 **BWS TECH Inc.**

FCC Test Report

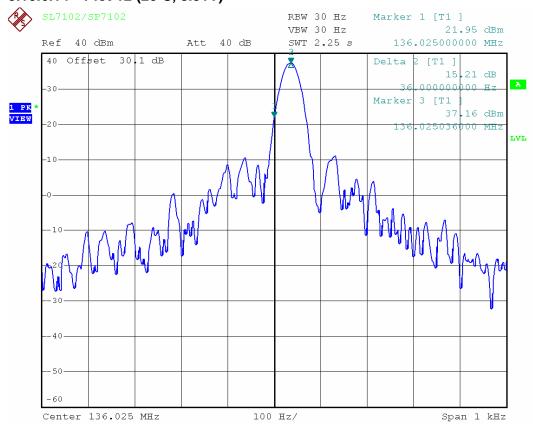

Page Number : Data of Issue :

5.10.6.11 Plot 9 (+50°C)

5.10.6.12 Plot 10 (+60°C)


Report No: BWS-08-RF-0003
BWS TECH Inc.

FCC Test Report


Page Number : Data of Issue :

5.10.6.13 Plot 11 (20°C, 6.29V)

5.10.6.14 Plot 12 (20°C, 8.51V)

Report No: BWS-08-RF-0003 **BWS TECH Inc.**FCC Test Report

Page Number : Data of Issue :

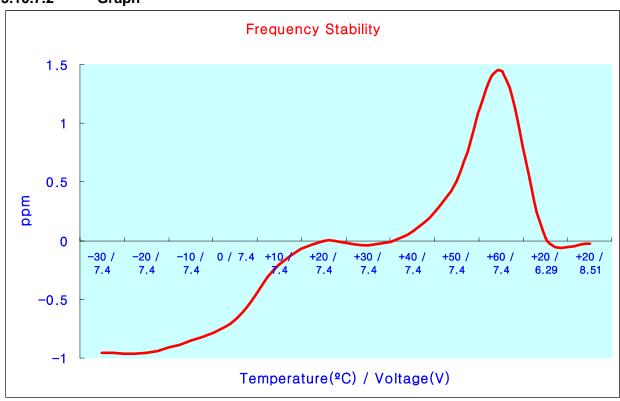
5.10.7 Test Result 2

FCC Rules : Part 2 §2.1055 & §90.231

IC Rules: RSS-119 Section 5.3

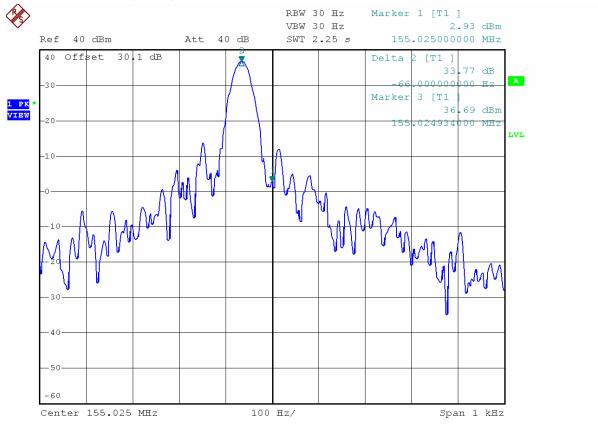
Operating Frequency : 155.025 MHz

Channel: 2nd Channel

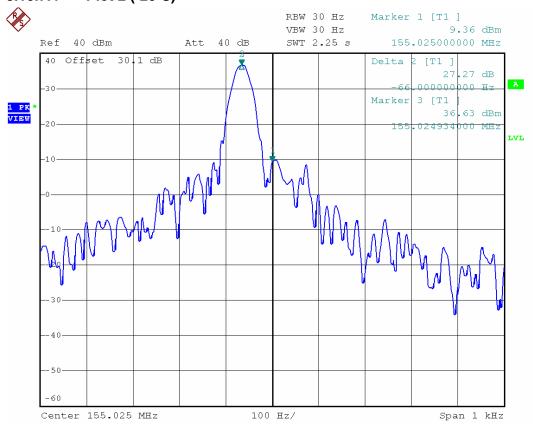

Power Output : 5 Watts

Modulation : Non-Modulation
Reference Voltage : 7.4 VDC

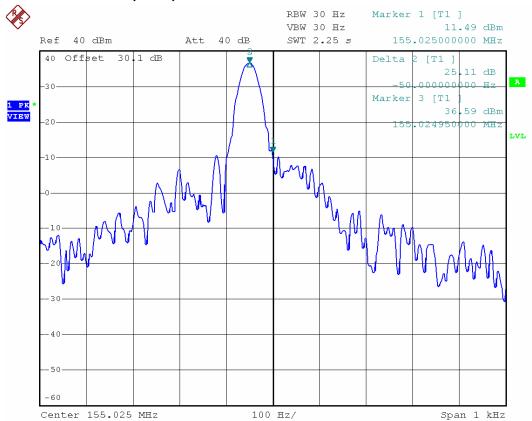
5.10.7.1 Data

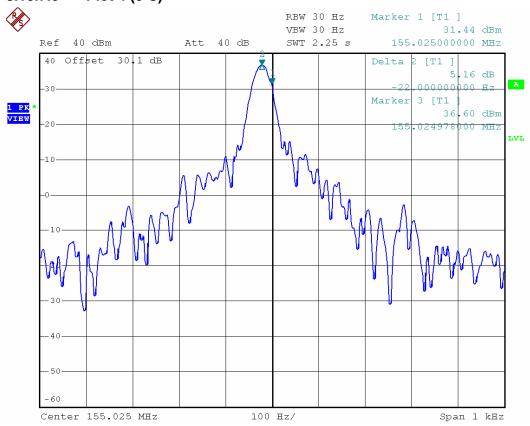

Voltage	Power Supply	Temperature	Frequency	Deviation	Limit
(%)	(Vdc)	(°C)	(MHz)	(ppm)	(ppm)
100 %	7.4	-30	155.024934	-0.95	2.5
100 %	7.4	-20	155.024934	-0.95	2.5
100 %	7.4	-10	155.024950	-0.85	2.5
100 %	7.4	0	155.024978	-0.67	2.5
100 %	7.4	+10	155.025050	-0.21	2.5
100 %	7.4	+20 (ref)	155.025082	0	2.5
100 %	7.4	+30	155.025076	-0.04	2.5
100 %	7.4	+40	155.025094	+0.08	2.5
100 %	7.4	+50	155.025160	+0.50	2.5
100 %	7.4	+60	155.025306	+1.44	2.5
85 %	6.52	+20	155.025086	+0.03	2.5
115 %	8.51	+20	155.025078	-0.03	2.5

5.10.7.2 Graph



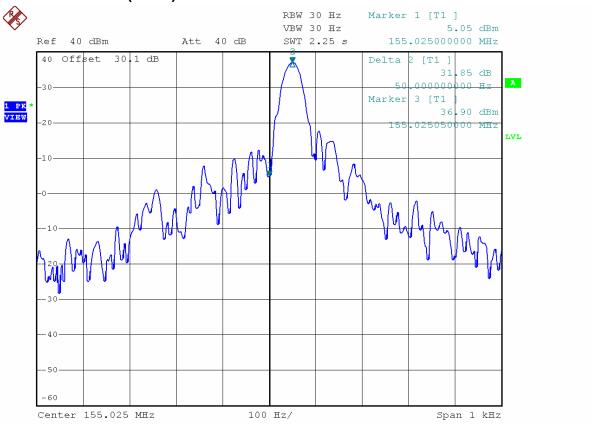
5.10.7.3 Plot 1 (-30°C)


5.10.7.4 Plot 2 (-20°C)

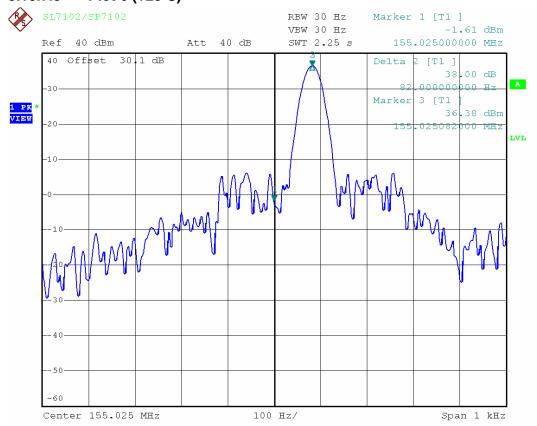

Page Number : Data of Issue :

5.10.7.5 Plot 3 (-10°C)

5.10.7.6 Plot 4 (0°C)

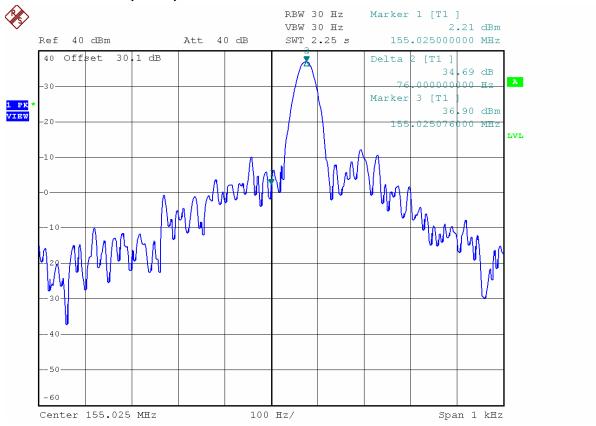

Report No: BWS-08-RF-0003 **BWS TECH Inc.**

FCC Test Report

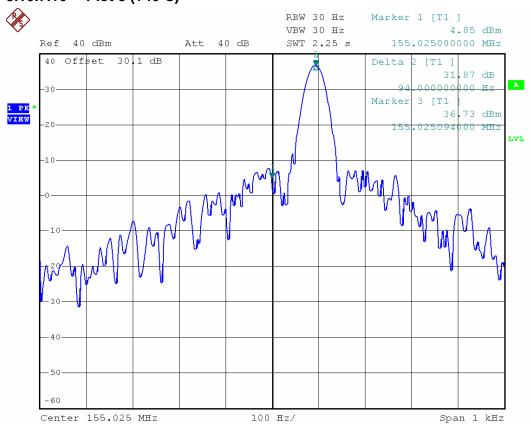

Page Number : Data of Issue :

5.10.7.7 Plot 5 (+10°C)

5.10.7.8 Plot 6 (+20°C)


Report No: BWS-08-RF-0003 **FC**BWS TECH Inc.

FCC Test Report


Page Number : Data of Issue :

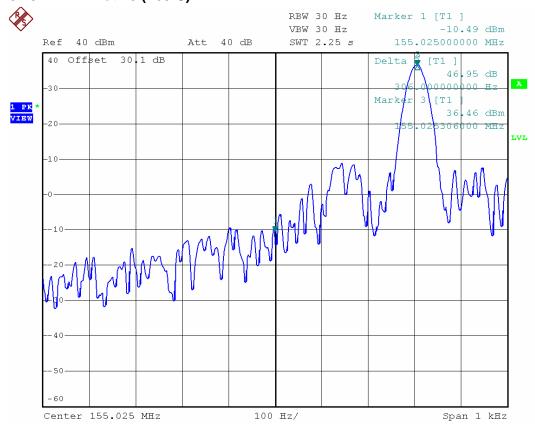
5.10.7.9 Plot 7 (+30°C)

5.10.7.10 Plot 8 (+40°C)

Report No: BWS-08-RF-0003

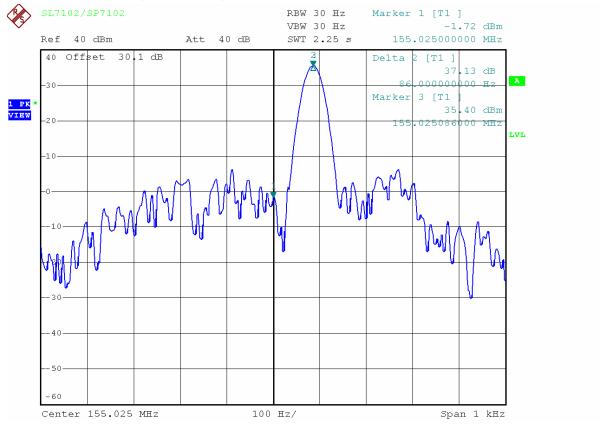

BWS TECH Inc.

FCC Test Report

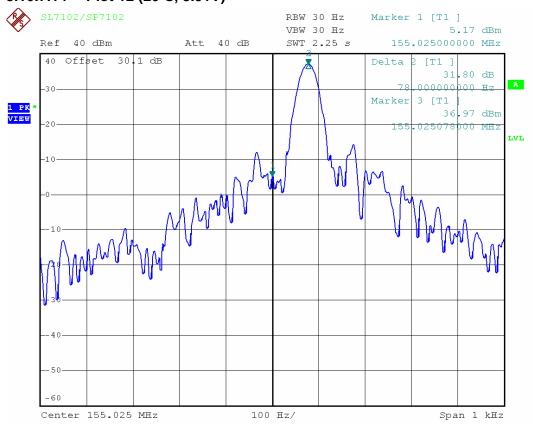

Page Number : Data of Issue :

5.10.7.11 Plot 9 (+50°C)

5.10.7.12 Plot 10 (+60°C)


Report No: BWS-08-RF-0003
BWS TECH Inc.

FCC Test Report


Page Number :
Data of Issue :

5.10.7.13 Plot 11 (20°C, 6.29V)

5.10.7.14 Plot 12 (20°C, 8.51V)

Report No: BWS-08-RF-0003

BWS TECH Inc.

FCC Test Report

Page Number : Data of Issue :

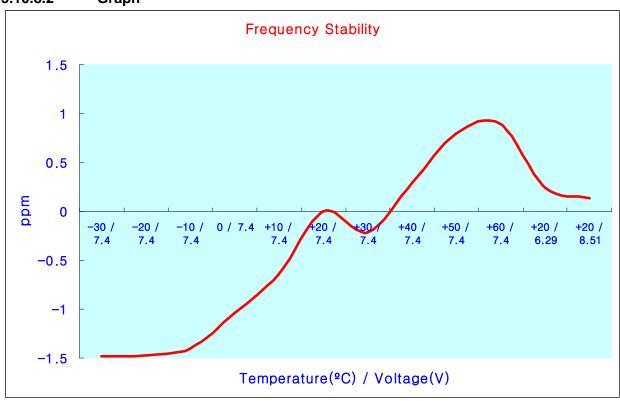
5.10.8 Test Result 3

FCC Rules : Part 2 §2.1055 & §90.231

IC Rules: RSS-119 Section 5.3

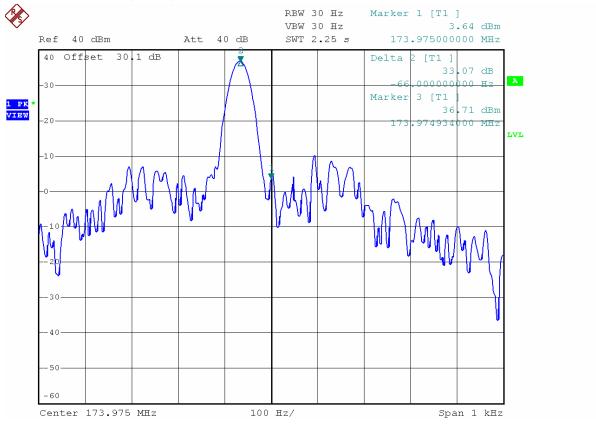
Operating Frequency : 173.975 MHz

Channel: 3rd Channel
Power Output: 5 Watts

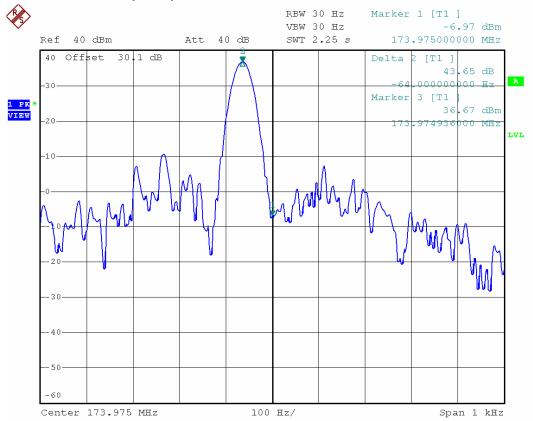

Modulation : Non-Modulation

Reference Voltage : 7.4 VDC

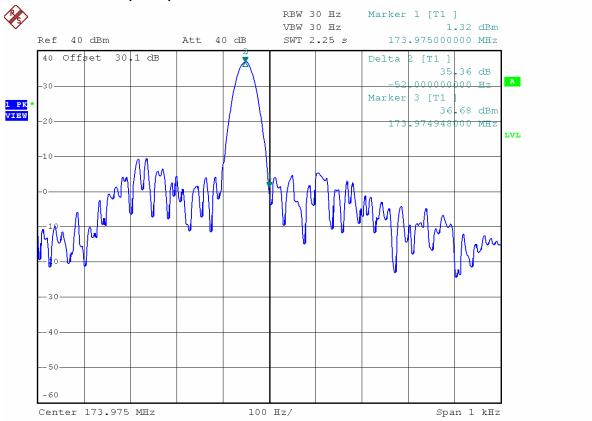
5.10.8.1 Data


Voltage	Power Supply	Temperature	Frequency	Deviation	Limit
(%)	(Vdc)	(°C)	(MHz)	(ppm)	(ppm)
100 %	7.4	-30	173.974934	-1.48	2.5
100 %	7.4	-20	173.974936	-1.47	2.5
100 %	7.4	-10	173.974948	-1.40	2.5
100 %	7.4	0	173.975012	-1.03	2.5
100 %	7.4	+10	173.975080	-0.64	2.5
100 %	7.4	+20 (ref)	173.975192	0	2.5
100 %	7.4	+30	173.975154	-0.21	2.5
100 %	7.4	+40	173.975244	+0.30	2.5
100 %	7.4	+50	173.975330	+0.79	2.5
100 %	7.4	+60	173.975348	+0.90	2.5
85 %	6.52	+20	173.975234	+0.24	2.5
115 %	8.51	+20	173.975216	+0.14	2.5

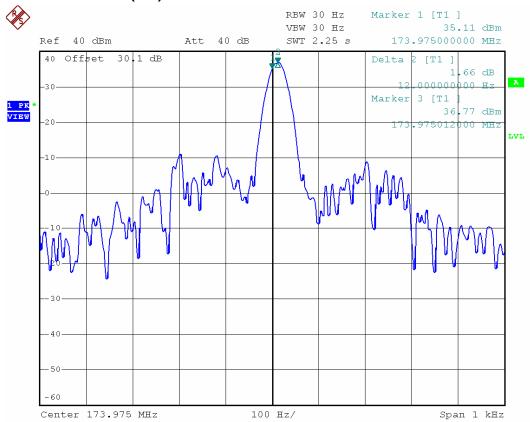
5.10.8.2 Graph



5.10.8.3 Plot 1 (-30°C)

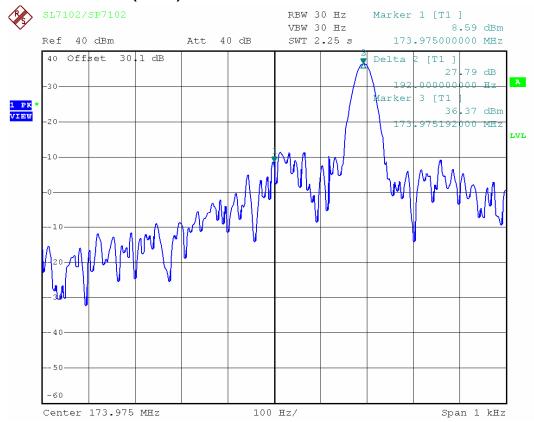


5.10.8.4 Plot 2 (-20°C)

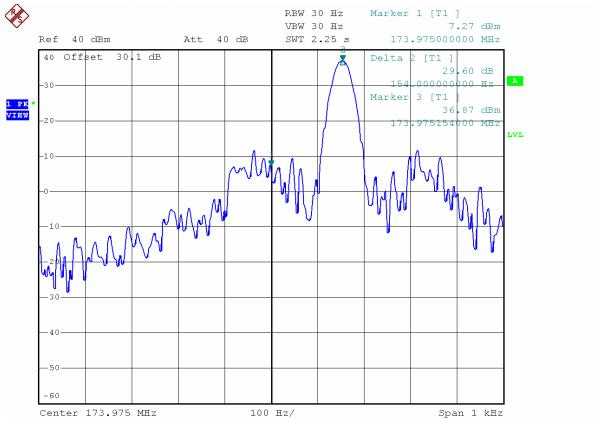


5.10.8.5 Plot 3 (-10°C)

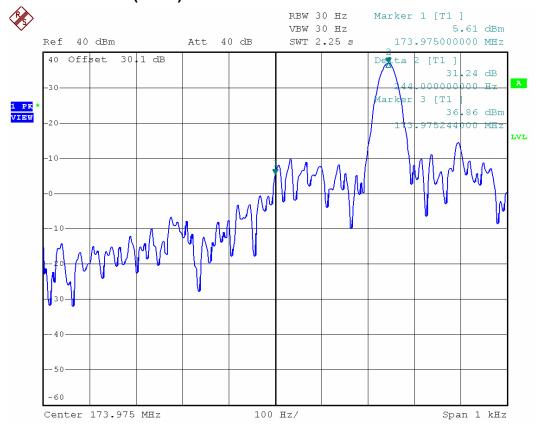
5.10.8.6 Plot 4 (0°C)



5.10.8.7 Plot 5 (+10°C)



5.10.8.8 Plot 6 (+20°C)



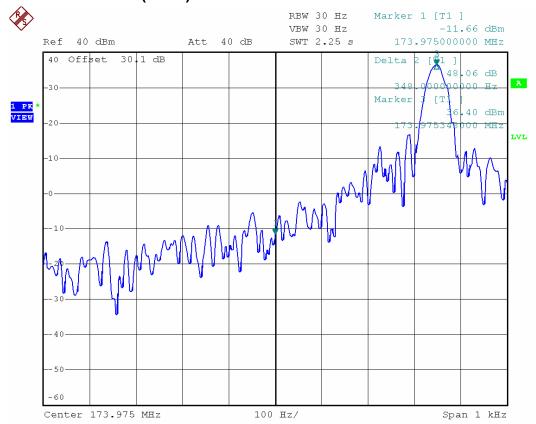
5.10.8.9 Plot 7 (+30°C)

5.10.8.10 Plot 8 (+40°C)

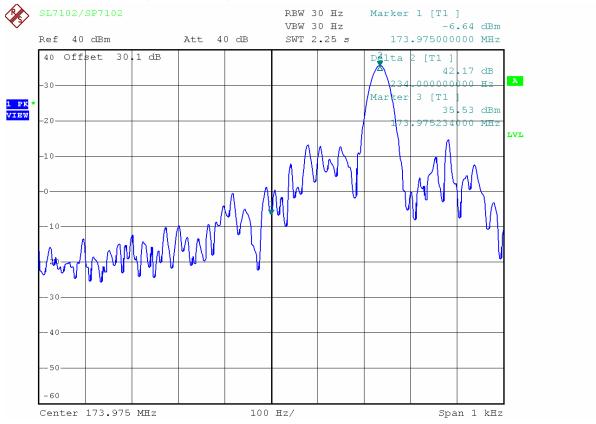
86 of 102


April 18, 2008

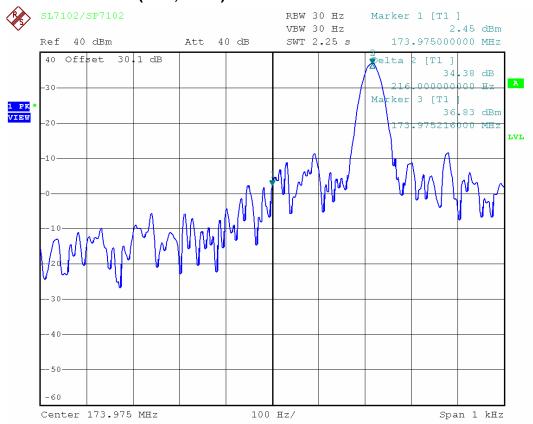
Page Number:


Data of Issue:

5.10.8.11 Plot 9 (+50°C)



5.10.8.12 Plot 10 (+60°C)



5.10.8.13 Plot 11 (20°C, 6.29V)

5.10.8.14 Plot 12 (20°C, 8.51V)

Page Number : Data of Issue :

5.11 Transient Frequency Behavior

5.11.1 Specification

FCC Rules Part 90, Section 90.214 Industry Canada, RSS-119 Section 5.9

5.11.2 Method of Measurement

ANSI/TIA-603-B-2002 Section 2.2.19

5.11.3 Measurement Set-Up

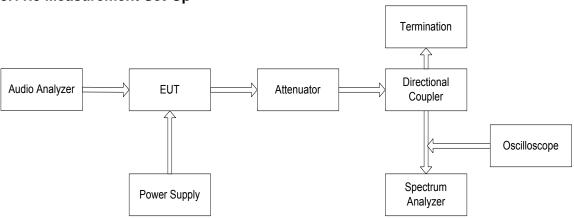


Fig.9

5.11.4 Test Equipment List

Equipment	Model Name	Manufacturer
EUT	SP7102	Maxon CIC Corp.
Power Supply	IPS-30B03DD	INTERACT
Audio Analyzer	8903B	Agilent
Attenuator	33-30-33	WEINSCHEL
Directional Coupler	778D	Agilent
Termination	8173	Bird
Oscilloscope	TDS3032	Tektronix
Spectrum Analyzer	FSP7	Rohde & Shwarz

5.11.5 Test Procedure

- -. The unit was turn-up in accordance with the alignment procedure stated in the FIG. 9, and was loaded into a 50 ohm resistive termination.
- -. Using the variable attenuator the transmitter level was set to 40 dB below the test receivers maximum input level, then the transmitter was turned off.
- -. With the transmitter off the signal generator was set 20dB below the level of the transmitter in the above step, this level will be maintained with the signal generator through-out the test.
- -. Reduce the attenuation between the transmitter and the RF detector by 30 dB.
- -. With the levels set as above the transient frequency behavior was observed & recorded.
- -. Requirements

5.11.6 Limit

Transient Frequency Difference Limits

	Max. Permitted Frequency	Max. Permitted Frequency	
Time Interval	Difference for 25 and 30 kHz	Difference for 12.5 and 15 kHz	
	Channel Spacing (in kHz)	Channel Spacing (in kHz)	
t ₁ or t ₃	25	12.5	
t ₂	12.5	6.25	

Transient Duration Limits

Time Intervals	Frequency Ranges (MHz)			
Frequency	30 to 174	406 to 512	806 to 940	
t ₁	5.0 ms	10.0 ms	20.0 ms	
t ₂	20.0 ms	25.0 ms	50.0 ms	
t ₃	5.0 ms	10.0 ms	10.0 ms	

The transient frequency behavior of the transmitter is the variation in time of the transmitter frequency difference from the nominal frequency of the transmitter when the RF output power is switched on and off.

 t_{on} : according to the method of measurement described the switch-on instant t_{on} of a transmitter is defined by the condition when the output power, measured at the antenna terminal, exceeds 0,1 % of the nominal power.

t₁: period of time starting at t₀n and finishing.

t₂: period of time starting at the end of t1 and finishing.

toff: switch-off instant defined by the condition when the nominal power falls below 0,1 % of the nominal power.

 t_3 : period of time that finishing at t_{off} and starting.

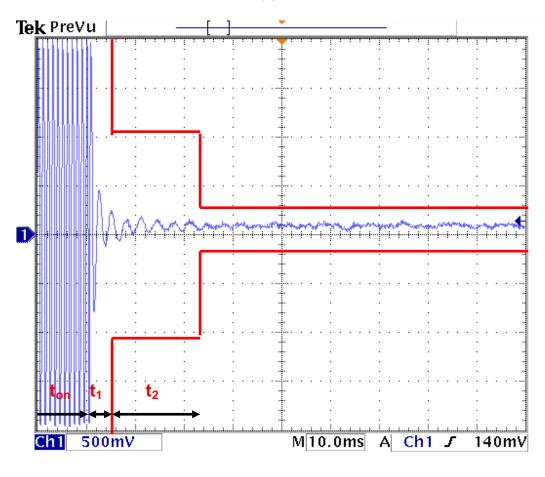
5.11.7 Test Data

Transient Period	Transient Frequency Period (ms)		
t ₁	« 5.0 ms		
t ₂	« 20.0 ms		
t ₃	« 5.0 ms		
Uncertainty (%)	10		

5.11.7 Test Plot 1

FCC Rules : Part 90 §90.231

IC Rules: RSS-119 Section 5.9

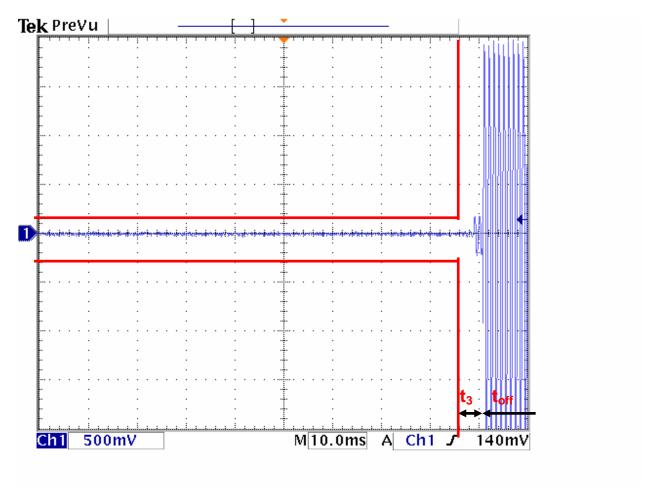

Operating Frequency: 136.025 MHz

Channel: 1st Channel

Power Output : 5 Watts
Channel Spacing : Narrow Band

Reference Voltage: 7.4 VDC

5.11.7.1 Switch on condition t_{on} , t_1 and t_2



91 of 102

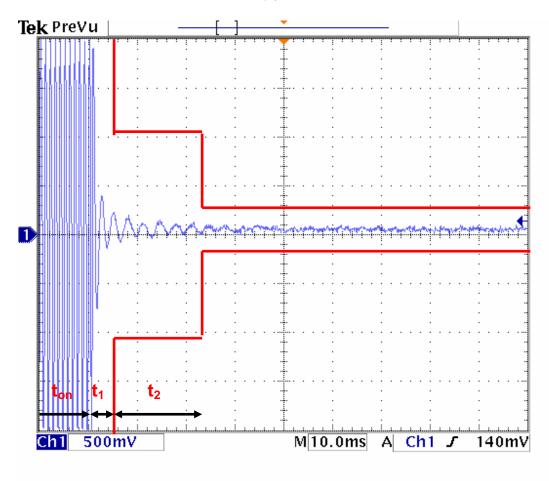
April 18, 2008

5.11.7.2 Switch off condition t3, t_{off}

5.11.8 Test Plot 2

FCC Rules : Part 90 §90.231

IC Rules: RSS-119 Section 5.9


Operating Frequency: 155.025 MHz

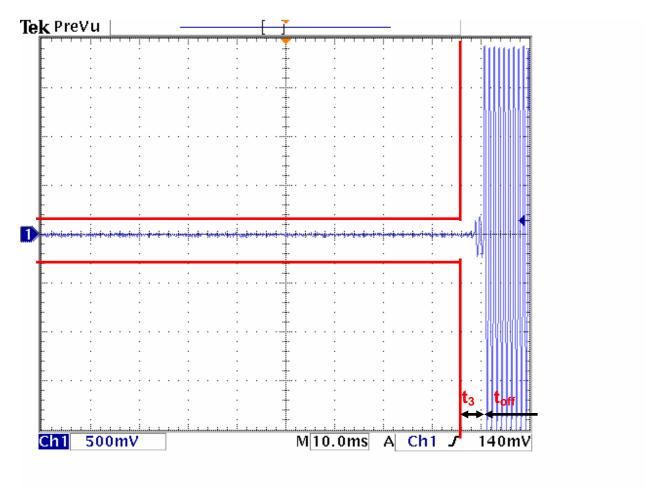
Channel: 2nd Channel

Power Output : 5 Watts
Channel Spacing : Narrow Band

Reference Voltage: 7.4 VDC

5.11.8.1 Switch on condition t_{on} , t_1 and t_2

Page Number: 92 of 102


Data of Issue: April 18, 2008

93 of 102

April 18, 2008

5.11.8.2 Switch off condition t3, t_{off}

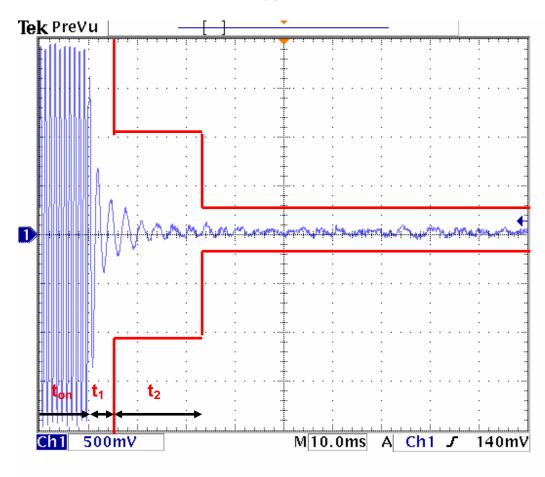
Page Number:

Data of Issue:

5.11.9 Test Plot 3

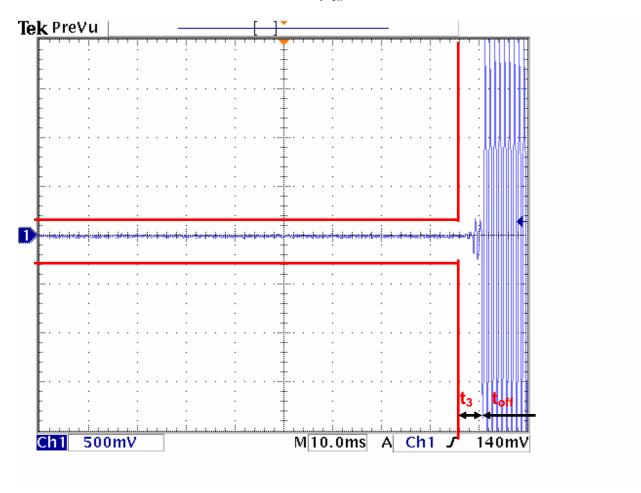
FCC Rules : Part 90 §90.231

IC Rules: RSS-119 Section 5.9


Operating Frequency : 173.975 MHz

Channel: 3rd Channel

Power Output : 5 Watts
Channel Spacing : Narrow Band


Reference Voltage: 7.4 VDC

5.9.9.1 Switch on condition t_{on} , t_1 and t_2

5.11.9.2 Switch off condition t3, t_{off}

Page Number: 95 of 102

Data of Issue:

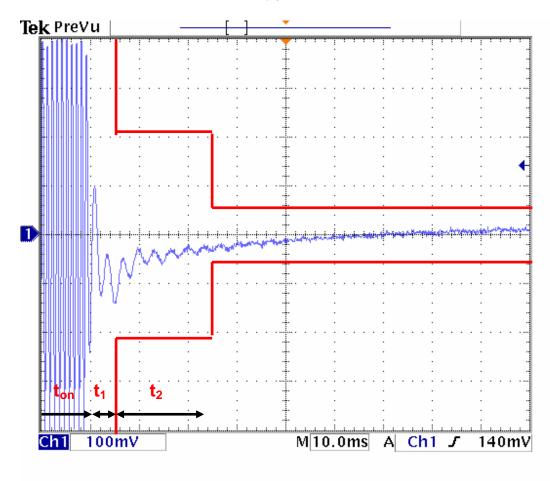
April 18, 2008

96 of 102

5.11.10 Test Plot 5

FCC Rules : Part 90 §90.231

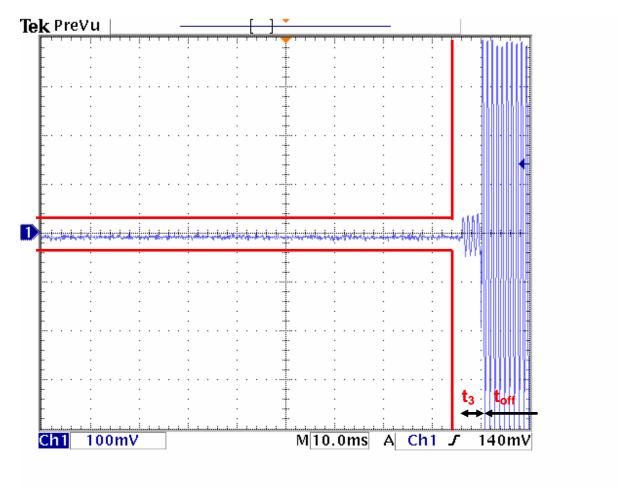
IC Rules: RSS-119 Section 5.9


Operating Frequency: 136.025 MHz

> Channel: 1st Channel

Power Output : 5 Watts Channel Spacing: WideBand

Reference Voltage: 7.4 VDC


5.11.10.1 Switch on condition $t_{\text{on}}, t_{\text{1}} \, \text{and} \, t_{\text{2}}$

BWS TECH Inc.

5.11.10.2 Switch off condition t3, t_{off}

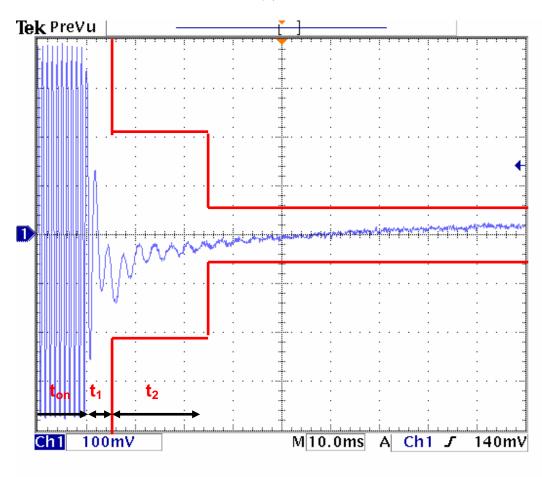
Page Number: 97 of 102

Data of Issue:

5.11.11 Test Plot 6

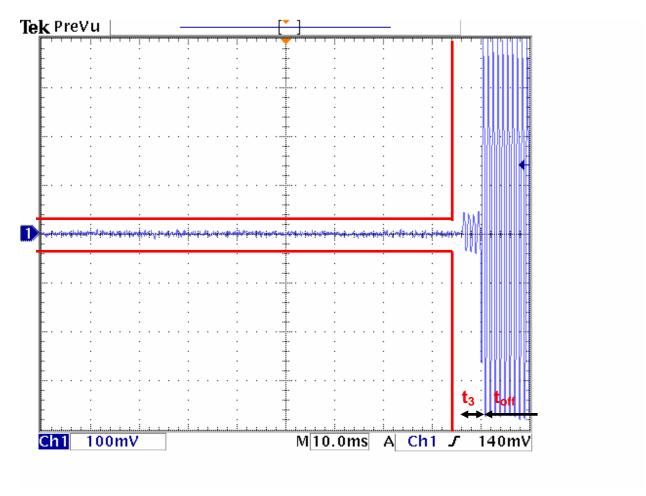
FCC Rules : Part 90 §90.231

IC Rules: RSS-119 Section 5.9


Operating Frequency: 155.025 MHz

Channel: 2nd Channel

Power Output : 5 Watts
Channel Spacing : WideBand


Reference Voltage : 7.4 VDC

5.11.11.1 Switch on condition t_{on} , t_1 and t_2

5.11.11.2 Switch off condition t3, t_{off}

Page Number: 99 of 102

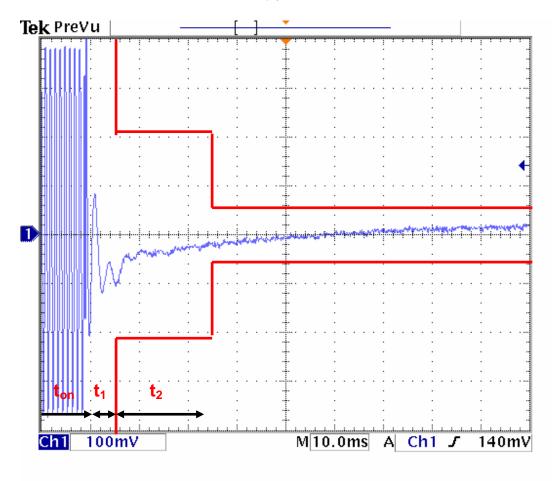
Data of Issue:

April 18, 2008

5.11.12 Test Plot 7

FCC Rules : Part 90 §90.231

IC Rules: RSS-119 Section 5.9

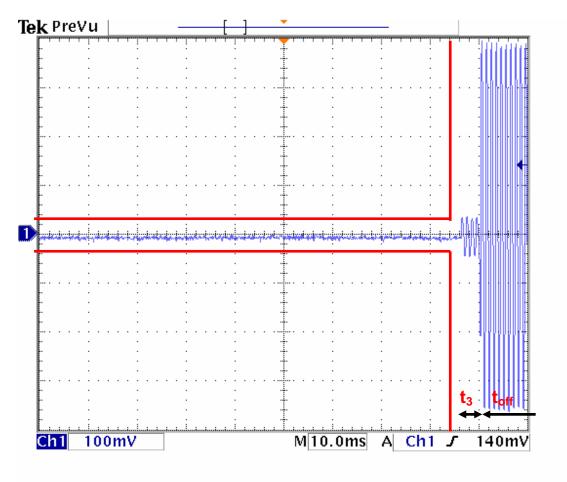

Operating Frequency : 173.975 MHz

Channel: 3rd Channel

Power Output : 5 Watts
Channel Spacing : WideBand

Reference Voltage : 7.4 VDC

5.11.12.1 Switch on condition t_{on} , t_1 and t_2



Page Number: 100 of 102

Data of Issue:

5.11.12.2 Switch off condition t3, t_{off}

Page Number: 101 of 102

Data of Issue:

April 18, 2008

6. TEST EQUIPMENTS LIST

EQUIPMENT		MODEL	MANUFACTURE	SERIAL NUMBER	Calibration Due date
1	Receiver	ESVS30	Rohde & Schwarz	832854/010	06/22/08
2	Spectrum analyzer	FSP7	Rohde & Schwarz	100001	02/22/09
3	Signal Generator	E4432B	Agilent	US40053157	07/15/08
4	Signal Generator	E4438C	Agilent	MY45091894	06/22/08
5	Signal Generator	GT9000	Gigatronics	9604010	02/22/09
6	Signal Generator	2022D	Marconi Instrument	119157/001	11/14/2008
7	Signal Generator	2030D	Marconi Instrument	119330/022	11/16/2008
8	Modulation Analyzer	8901B	Agilent	3028A03124	02/22/09
9	Audio Analyzer	8903B	Agilent	3011A09344	02/22/09
10	Digital Oscilloscope	TDS3032	Tektronix	B019436	11/20/08
11	Frequency Counter	R5372	Advantest	41855204	02/22/09
12	Shield Room (7m x 4m x 3m)	N/A	SJEMC	0004	N/A
13	Turn Table	OSC-30	N/A	BWS-01	N/A
14	Antenna Mast	JAC-3	Dail EMC	N/A	N/A
15	Temperature & Humidity chanber	EN-GLMP-54	Enex	N/A	03/21/09
16	Bilog Antenna	VULB9160	Schwarzbeck	VULB9160-3122	12/29/08
17	Bilog Antenna	VULB9161	Schwarzbeck	VULB9161-4067	12/23/08
18	Bilog Antenna	VULB9161	Schwarzbeck	VULB9161-4068	12/23/08
19	Horn Antenna	BBHA 9120 D	Schwarzbeck	BBHA 9120 D 517	05/09/08
20	Horn Antenna	BBHA 9120 D	Schwarzbeck	BBHA 9120 D 234	03/15/09
21	Horn Antenna	BBHA 9170	Schwarzbeck	BBHA9170157	02/13/09
22	Power Meter	E4418A	Agilent	GB38272621	11/14/08
23	Power Sensor	E9301B	Agilent	US40010238	11/14/08
24	Power supply	IPS-30B03DD	Interact	42052	03/20/09
25	Directional Coupler	778D	Agilent	1144A08477	11/14/08
26	Power Divider/Combiner	11636A	Agilent	05774	11/14/08
27	Power Divider/Combiner	11636A	Agilent	05870	11/14/08

Page Number: 102 of 102

Data of Issue : April 18, 2008