SAR TEST REPORT

No. 2007SAR00045

for

Amoi Mobile Co., Ltd.

Tri-band GSM Digital Mobile Phone

N810

With

Hardware Version: V1.0

Software Version: N810_V3.0.0_070930_BYD_CHS

Issued Date: 2007-10-26

No. DAT-P-114/01-01

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of Ministry of Information Industry

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100083.

Tel:+86(0)10-62303288-2105, Fax:+86(0)10-62304793 Email:welcome@emcite.com. www.emcite.com

TABLE OF CONTENT

1 TEST LABORATORY	4
1.1 TESTING LOCATION 1.2 TESTING ENVIRONMENT 1.3 PROJECT DATA	4
2 CLIENT INFORMATION	
2.1 APPLICANT INFORMATION	4
3 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	5
3.1 ABOUT EUT	5
4 OPERATIONAL CONDITIONS DURING TEST	6
4.1 SCHEMATIC TEST CONFIGURATION 4.2 SAR MEASUREMENT SET-UP 4.3 DASY4 E-FIELD PROBE SYSTEM 4.4 E-FIELD PROBE CALIBRATION 4.5 OTHER TEST EQUIPMENT 4.6 EQUIVALENT TISSUES 4.7 SYSTEM SPECIFICATIONS	
5 CHARACTERISTICS OF THE TEST	10
5.1 APPLICABLE LIMIT REGULATIONS	
5.2 APPLICABLE MEASUREMENT STANDARDS	
6 CONDUCTED OUTPUT POWER MEASUREMENT	
6.1 SUMMARY	
7 TEST RESULTS	
7.1 DIELECTRIC PERFORMANCE	
7.1 DIELECTRIC PERFORMANCE	
7.3 SUMMARY OF MEASUREMENT RESULTS	
7.4 CONCLUSION	
8 MEASUREMENT UNCERTAINTY	
9 MAIN TEST INSTRUMENTS	14
ANNEX A: MEASUREMENT PROCESS	15
ANNEX B: TEST LAYOUT	16
ANNEX C: GRAPH RESULTS	20
ANNEX D: SYSTEM VALIDATION RESULTS	56
ANNEX E: PROBE CALIBRATION CERTIFICATE	57
ANNEX F: DIPOLE CALIBRATION CERTIFICATE	66

信息产业部通信计量中心

Telecommunication Metrology Center of MII

SAR TEST REPORT

Test report No.	2007SAR00045	Date of report	October 26 th , 2007
Test laboratory	TMC Beijing, Telecommunication Metrology Center of MII	Client	Amoi Mobile Co., Ltd.
Test device	Model type: N810	GSM Digital Mobile Phone	e Our Our Our La Our Our Our La Our Our Our Our
Test reference documents	EN 50360–2001: Product standar human exposure to electromagnetic EN 50361–2001: Basic standard for exposure to electromagnetic fields ANSI C95.1–1999: IEEE Standar Frequency Electromagnetic Fields IEEE 1528–2003: Recommended Absorption Rate (SAR) in the Human Techniques. OET Bulletin 65 (Edition 97-01) Evaluating Compliance of Mobile at IEC 62209-1: Human exposure to communication devices — Human determine the specific absorption in (frequency range of 300 MHz to 3 IEC 62209-2 (Draft): Human exposure to determine the Specific Human devices Procedure to determine the Specific Handheld and Body-Mounted Devices	ic fields from mobile phones. or the measurement of Specific A from mobile phones. d for Safety Levels with Respect 3 kHz to 300 GHz. d Practice for Determining the nan Body Due to Wireless Commu- and Supplement C (Edition 0 and Portable Devices with FCC Li radio frequency fields from hand- models, instrumentation, and p rate (SAR) for hand-held devices of GHz) osure to radio frequency fields fro — Human models, instrumentati ic Absorption Rate (SAR)in the he ices used in close proximity to the	bsorption Rate related to human at to Human Exposure to Radio Peak Spatial-Average Specific Inications Devices: Experimental 1-01): Additional Information for mits. held and body-mounted wireless rocedures —Part 1:Procedure to used in close proximity to the ear mand-held and body-mounted tion, and procedures — Part 2: ead and body for 30MHz to 6GHz e Body
Test conclusion	Localized Specific Absorption been measured in all cases rething the test report. Maximum local relevant standards cited in Cl. General Judgment: Pass	equested by the relevant star ocalized SAR is below expo	ndards cited in Clause 5.2 of
Signature	Lu Bingsong Deputy Director of the laboratory (Approved for this report)	Sun Qian SAR Project Leader (Reviewed for this report)	Lin Hao SAR Test Engineer (Prepared for this report)

1 Test Laboratory

1.1 Testing Location

Company Name: TMC Beijing, Telecommunication Metrology Center of MII Address: No 52, Huayuan beilu, Haidian District, Beijing, P.R.China

Postal Code: 100083

Telephone: 00861062303288 Fax: 00861062304793

1.2 Testing Environment

Temperature: Min. = 15 °C, Max. = 30 °C Relative humidity: Min. = 30%, Max. = 70%

Ground system resistance: $< 0.5 \Omega$

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

1.3 Project Data

Project Leader: Sun Qian Test Engineer: Lin Hao

Testing Start Date: October 18, 2007
Testing End Date: October 18, 2007

2 Client Information

2.1 Applicant Information

Company Name: Amoi Mobile Co., Ltd.

Address / Post: 102 Xiaguang Road, Haicang district, Xiamen City, Fujian Province

City: Xiamen
Postal Code: 361022
Country: P. R. China

Telephone: +86-592-6516777-3316

Fax: +86-592-6516007

2.2 Manufacturer Information

Company Name: Amoi Mobile Co., Ltd.

Address /Post: 102 Xiaguang Road, Haicang district, Xiamen City, Fujian Province

City: Xiamen
Postal Code: 361022
Country: P. R. China

Telephone: +86-592-6516777-3316

Fax: +86-592-6516007

3 Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1 About EUT

Description: Tri-band GSM Digital Mobile Phone

Model: N810 Frequency Band: 1900MHz

Picture 1: Constituents of the sample (Lithium Battery is in the Handset)

3.2 Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	
EUT1	358439010000519	V1.0	N810_V3.0.0_070930_BYD_0	CHS
*EUT ID: is use	ed to identify the test sample i	n the lab internally.		

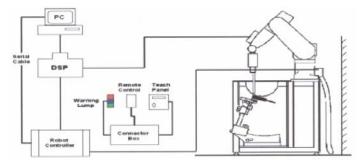
3.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Travel Adapter	TA7-UL	UTS0727002521	Danyang Chenyang
				Tech-Electorn Co., Ltd.
AE2	Battery	NO.4P+	\	BYD Co.,Ltd

^{*}AE ID: is used to identify the test sample in the lab internally.

4 OPERATIONAL CONDITIONS DURING TEST

4.1 Schematic Test Configuration


During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 512, 661 and 810 respectively in the case of PCS 1900 MHz. The EUT is commanded to operate at maximum transmitting power.

The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 30 dB.

4.2 SAR Measurement Set-up

These measurements were performed with the automated near-field scanning system DASY4 Professional from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m), which positions the probes with a positional repeatability of better than ± 0.02mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length =300mm) to the data acquisition unit.

A cell controller system contains the power supply, robot controller, teaches pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the Micron Pentium III 800 MHz computer with Windows 2000 system and SAR Measurement Software DASY4 Professional, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

Picture 2: SAR Lab Test Measurement Set-up

The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

4.3 Dasy4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the standard procedure with an accuracy of better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB.

ET3DV6 Probe Specification

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection

System(ET3DV6 only)

Built-in shielding against static charges PEEK enclosure material(resistant to

organic solvents, e.q., glycol)

Calibration In air from 10 MHz to 2.5 GHz

In brain and muscle simulating tissue at frequencies of 450MHz, 900MHz and 1.8GHz

(accuracy±8%)

Calibration for other liquids and frequencies

upon request

Frequency I 0 MHz to > 6 GHz; Linearity: ±0.2 dB

(30 MHz to 3 GHz)

Directivity ±0.2 dB in brain tissue (rotation around probe axis)

 $\pm 0.4~\text{dB}$ in brain tissue (rotation normal probe axis)

Dynamic Range 5u W/g to > 100mW/g; Linearity: ±0.2dB

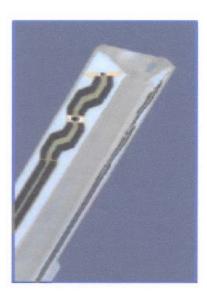
Surface Detection ±0.2 mm repeatability in air and clear liquids

over diffuse reflecting surface(ET3DV6 only)

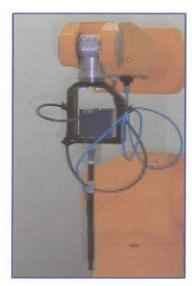
Dimensions Overall length: 330mm

Tip length: 16mm

Body diameter: 12mm


Tip diameter: 6.8mm

Distance from probe tip to dipole centers: 2.7mm


Application General dosimetry up to 3GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

Picture 3: ET3DV6 E-field Probe

Picture 4: ET3DV6 E-field

4.4 E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

Note: Please check Annex E to see the Probe Certificate.

Picture 5: Device Holder

4.5 Other Test Equipment

4.5.1 Device Holder for Transmitters

In combination with the Generic Twin Phantom V3.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatably positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

4.5.2 Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the

evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the

robot.

Shell Thickness 2±0. I mm
Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W)

Available Special

Picture 6: Generic Twin Phantom

4.6 Equivalent Tissues

The liquid used for the frequency range of 800-2000 MHz consisted of water, sugar, salt and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table 1 and 2 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528.

Table 1. Composition of the Head Tissue Equivalent Matter

	•				
MIXTURE %	FREQUENCY 1900MHz				
Water	55.242				
Glycol monobutyl	44.452				
Salt	0.306				
Dielectric Parameters Target Value	f=1900MHz ε=40.0 σ=1.40				

Table 2. Composition of the Body Tissue Equivalent Matter

MIXTURE %	FREQUENCY 1900MHz				
Water	69.91				
Glycol monobutyl	29.96				
Salt	0.13				
Dielectric Parameters Target Value	f=1900MHz ε=53.3 σ=1.52				

4.7 System Specifications

4.7.1 Robotic System Specifications

Specifications

Positioner: Stäubli Unimation Corp. Robot Model: RX90L

Repeatability: ±0.02 mm

No. of Axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Pentium III Clock Speed: 800 MHz

Operating System: Windows 2000

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY4 software

Connecting Lines: Optical downlink for data and status info.

Optical uplink for commands and clock

5 CHARACTERISTICS OF THE TEST

5.1 Applicable Limit Regulations

EN 50360–2001: Product standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones.

It specifies the maximum exposure limit of **2.0 W/kg** as averaged over any 10 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

EN 50361–2001: Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones.

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

OET Bulletin 65 (Edition 97-01) and Supplement C (Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

IEC 62209-1-2005: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)

IEC 62209-2 (Draft): Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices — Human models, instrumentation, and procedures — Part 2: Procedure to determine the Specific Absorption Rate (SAR)in the head and body for 30MHz to 6GHz Handheld and Body-Mounted Devices used in close proximity to the Body

They specify the measurement method for demonstration of compliance with the SAR limits for such equipments.

6 CONDUCTED OUTPUT POWER MEASUREMENT

6.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU-200) to ensure the maximum power transmission and proper modulation. This result contains conducted output power and ERP for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

6.2 Conducted Power

6.2.1 Measurement Methods

The EUT was set up for the maximum output power. The channel power was measured with Agilent Spectrum Analyzer E4440A.

6.2.2 Measurement result

Table 3: Conducted Power Measurement Results

1900MHZ	Conducted Power (dBm)					
	Channel 810 Channel 661 (1909.8MHz) (1880MHz)					
Before SAR Test	27.1	28.0	29.4			
After SAR Test	27.2	28.1	29.2			

6.2.3 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 7 and 8 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

7 TEST RESULTS

7.1 Dielectric Performance

Table 4: Dielectric Performance of Head Tissue Simulating Liquid

Measurement is made at temperature 23.3 °C and relative humidity 49%.

Liquid temperature during the test: 22.5°C

/ Frequency Permittivity ε Conductivity σ (S/m)

Target value 1900 MHz 40.0 1.40

Measurement value (Average of 10 tests)

1900 MHz 40.9 1.38

Table 5: Dielectric Performance of Body Tissue Simulating Liquid

Measurement is made at temperature 23.3 °C and relative humidity 49%.								
Liquid temperature during the test: 22.5°C								
/ Frequency Permittivity ε Conductivity σ (S/m)								
Target value	1900 MHz	53.3	1.52					
Measurement value (Average of 10 tests) 1900 MHz 52.2 1.49								

7.2 System Validation

Table 6: System Validation

Measurement is made at temperature 23.3 °C, relative humidity 49%, input power 250 mW. Liquid temperature during the test: 22.5°C

Elquid temperature during the test. 22.5 o								
Liquid parameters		Frequency		Permittivity ε (Conductivity	Conductivity σ (S/m)	
		1900 MHz		40.9		1.38		
Erogueno		Target va	lue (W/kg)	Measured value (W/kg		//kg) Deviation		
Verification	Frequency	10 g	1 g	10 g	1 g	10 g	1 g	
results		Average	Average	Average	Average	Average	Average	
	1900 MHz	5.09	9.73	5.27	9.91	3.3%	1.9%	

Note: Target values are the data of the dipole validation results, please check Annex F for the Dipole Calibration Certificate.

7.3 Summary of Measurement Results

Table 7: SAR Values (1900MHz-Head)

Limit of SAR (W/kg)	10 g Average	1 g Average	
	2.0	1.6	Power
Test Case	Measureme	ent Result	Drift
	(W/k	(g)	(dB)
	10 g	1 g	
	Average	Average	
Left hand, Touch cheek, Top frequency(See Fig.1)	0.081	0.148	0.049
Left hand, Touch cheek, Mid frequency(See Fig.3)	0.106	0.191	0.200
Left hand, Touch cheek, Bottom frequency(See Fig.5)	0.155	0.278	0.200
Left hand, Tilt 15 Degree, Top frequency(See Fig.7)	0.085	0.154	0.082
Left hand, Tilt 15 Degree, Mid frequency(See Fig.9)	0.101	0.185	-0.127
Left hand, Tilt 15 Degree, Bottom frequency(See Fig.11)	0.151	0.272	-0.200
Right hand, Touch cheek, Top frequency(See Fig.13)	0.066	0.110	-0.047
Right hand, Touch cheek, Mid frequency(See Fig.15)	0.078	0.132	-0.107
Right hand, Touch cheek, Bottom frequency(See Fig.17)	0.110	0.186	-0.116
Right hand, Tilt 15 Degree, Top frequency(See Fig.19)	0.114	0.192	-0.030
Right hand, Tilt 15 Degree, Mid frequency(See Fig.21)	0.142	0.238	0.020
Right hand, Tilt 15 Degree, Bottom frequency(See Fig.23)	0.204	0.346	0.200

Table 8: SAR Values (1900MHz-Body)

Limit of SAR (W/kg)	10 g Average	1 g Average	Power
Test Case	Measureme (W/k	Drift (dB)	
	10 g Average	1 g Average	
Body, Towards Phantom, Top frequency(See Fig.25)	0.063	0.102	-0.141
Body, Towards Phantom, Mid frequency(See Fig.27)	0.067	0.107	-0.200
Body, Towards Phantom, Bottom frequency(See Fig.29)	0.081	0.130	-0.198
Body, Towards Ground, Top frequency(See Fig.31)	0.216	0.352	0.013
Body, Towards Ground, Mid frequency(See Fig.33)	0.229	0.373	-0.061
Body, Towards Ground, Bottom frequency(See Fig.35)	0.279	0.448	-0.200

7.4 Conclusion

Localized Specific Absorption Rate (SAR) of this fixed terminal station has been measured in all cases requested by the relevant standards cited in Clause 5.2 of this report. Maximum localized SAR is below exposure limits specified in the relevant standards cited in Clause 5.1 of this test report.

8 Measurement Uncertainty

SN	а	Туре	С	d	e = f(d,k)	f	h = cxf/e	k
	Uncertainty Component		Tol. (± %)	Prob Dist.	Div.	c _i (1 g)	1 g u _i (±%)	Vi
1	System repetivity	Α	0.5	N	1	1	0.5	9
	Measurement System							
2	Probe Calibration	В	5	N	2	1	2.5	∞
3	Axial Isotropy	В	4.7	R	√3	(1-cp) ^{1/}	4.3	∞
4	Hemispherical Isotropy	В	9.4	R	√3	$\sqrt{c_p}$		∞
5	Boundary Effect	В	0.4	R	√3	1	0.23	∞
6	Linearity	В	4.7	R	√3	1	2.7	× ×
7	System Detection Limits	В	1.0	R	√3	1	0.6	∞
8	Readout Electronics	В	1.0	N	1	1	1.0	∞
9	RF Ambient Conditions	В	3.0	R	√3	1	1.73	∞
10	Probe Positioner Mechanical Tolerance	В	0.4	R	√3	1	0.2	∞

11	Probe Positioning with respect to Phantom Shell	В	2.9	R	√3	1	1.7	∞
12	Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	√3	1	2.3	∞
	Test sample Related							
13	Test Sample Positioning	Α	4.9	N	1	1	4.9	N-1
14	Device Holder Uncertainty	Α	6.1	N	1	1	6.1	N-1
15	Output Power Variation - SAR drift measurement	В	5.0	R	√3	1	2.9	8
	Phantom and Tissue Parameters							
16	Phantom Uncertainty (shape and thickness tolerances)	В	1.0	R	√3	1	0.6	∞
17	Liquid Conductivity - deviation from target values	В	5.0	R	√3	0.64	1.7	∞
18	Liquid Conductivity - measurement uncertainty	В	5.0	N	1	0.64	1.7	М
19	Liquid Permittivity - deviation from target values	В	5.0	R	√3	0.6	1.7	8
20	Liquid Permittivity - measurement uncertainty	В	5.0	N	1	0.6	1.7	М
	Combined Standard Uncertainty			RSS			11.25	
	Expanded Uncertainty (95% CONFIDENCE INTERVAL)			K=2			22.5	

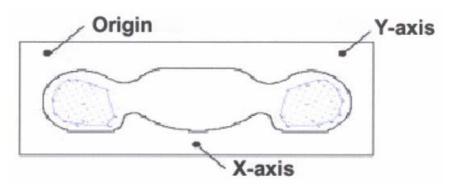
9 MAIN TEST INSTRUMENTS

Table 9: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	HP 8753E	US38433212	August 30,2007	One year	
02	Power meter	NRVD	101253	June 21, 2007	One year	
03	Power sensor	NRV-Z5	100333	June 21, 2007		
04	Power sensor	NRV-Z6	100011	September 2, 2007	One year	
05	Signal Generator	E4433B	US37230472	September 4, 2007	One Year	
06	Amplifier	VTL5400	0505	No Calibration Requested		
07	BTS	CMU 200	105948	August 15, 2007	One year	
80	E-field Probe	SPEAG ET3DV6	1736	December 1, 2006	One year	
09	DAE	SPEAG DAE4	777	July 12, 2007	One year	
10	Dipole Validation Kit	SPEAG D1900V2	541	February 20, 2007	Two years	

ANNEX A: MEASUREMENT PROCESS

The evaluation was performed with the following procedure:


Step 1: Measurement of the SAR value at a fixed location above the reference point was measured and was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of the phantom was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the flat phantom and the horizontal grid spacing was 10 mm x 10 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point, a volume of 30 mm \times 30 mm \times 30 mm was assessed by measuring 7 \times 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

- a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
- b. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot"-condition (in $x \sim y$ and z-directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
- c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation is repeated.

Picture A: SAR Measurement Points in Area Scan

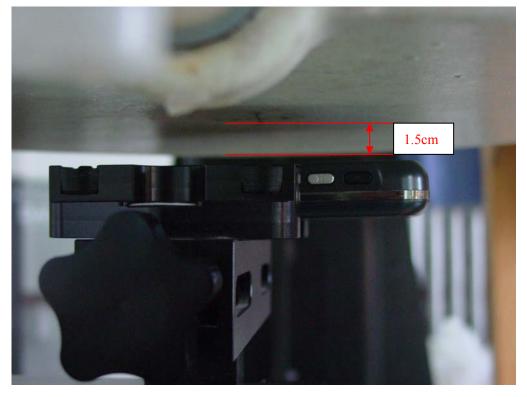
ANNEX B: TEST LAYOUT


Picture B1: Specific Absorption Rate Test Layout

Picture B2 Liquid depth in the Flat Phantom (1900MHz)

Picture B3: Left Hand Touch Cheek Position

Picture B4: Left Hand Tilt 15° Position


Picture B5: Right Hand Touch Cheek Position

Picture B6: Right Hand Tilt 15° Position

Picture B7: Body-worn Position (toward phantom, the distance from handset to the bottom of the Phantom is 1.5cm)

Picture B8: Body-worn Position (toward ground, the distance from handset to the bottom of the Phantom is 1.5cm)

ANNEX C: GRAPH RESULTS

1900 Left Cheek High

Date/Time: 2007-10-18 9:43:09

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz new Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: ET3DV6 - SN1736 ConvF(5.4, 5.4, 5.4)

Cheek High/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.169 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.47 V/m; Power Drift = 0.049 dB

Peak SAR (extrapolated) = 0.266 W/kg

SAR(1 g) = 0.148 mW/g; SAR(10 g) = 0.081 mW/g

Maximum value of SAR (measured) = 0.150 mW/g

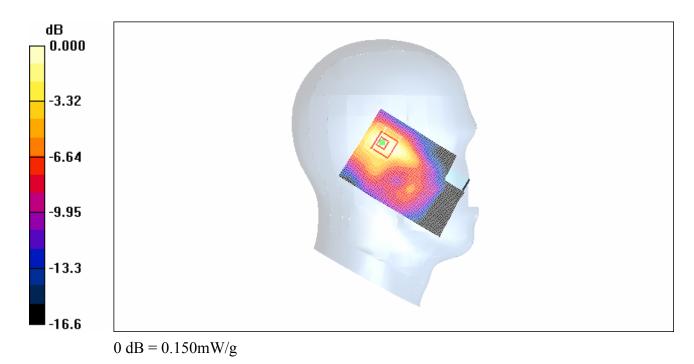


Fig. 1 1900 MHz CH810

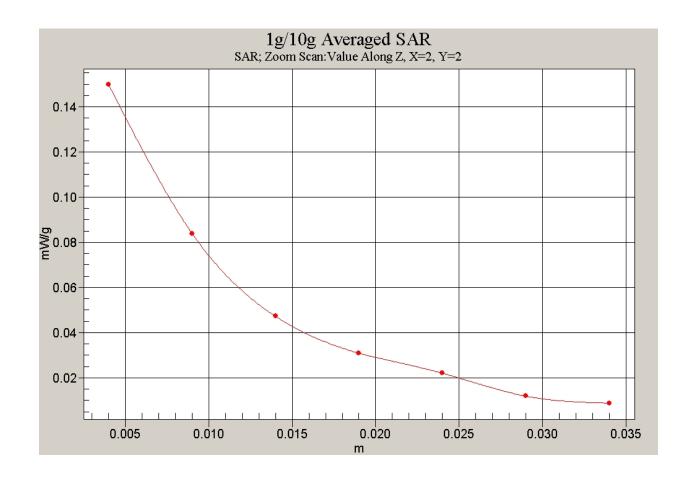


Fig. 2 Z-Scan at power reference point (1900 MHz CH810)

1900 Left Cheek Middle

Date/Time: 2007-10-18 9:56:50

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.37 \text{ mho/m}$; $\varepsilon_r = 41$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz new Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ET3DV6 - SN1736 ConvF(5.4, 5.4, 5.4)

Cheek Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.195 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.13 V/m; Power Drift = 0.200 dB

Peak SAR (extrapolated) = 0.340 W/kg

SAR(1 g) = 0.191 mW/g; SAR(10 g) = 0.106 mW/g

Maximum value of SAR (measured) = 0.190 mW/g

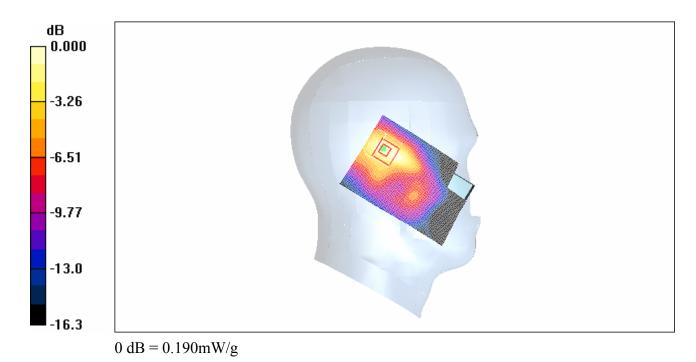


Fig. 3 1900 MHz CH661

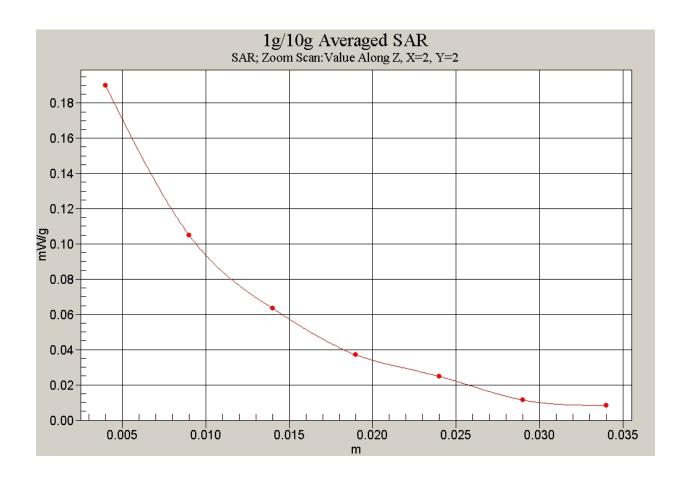


Fig. 4 Z-Scan at power reference point (1900 MHz CH661)

1900 Left Cheek Low

Date/Time: 2007-10-18 10:10:32

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz new Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: ET3DV6 - SN1736 ConvF(5.4, 5.4, 5.4)

Cheek Low/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.301 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.1 V/m; Power Drift = 0.200 dB

Peak SAR (extrapolated) = 0.481 W/kg

SAR(1 g) = 0.278 mW/g; SAR(10 g) = 0.155 mW/g

Maximum value of SAR (measured) = 0.277 mW/g

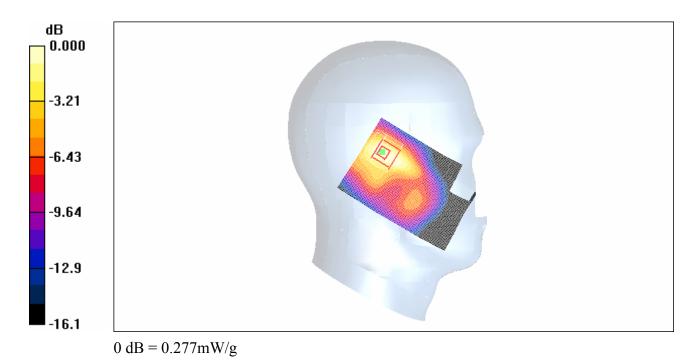


Fig. 5 1900 MHz CH512

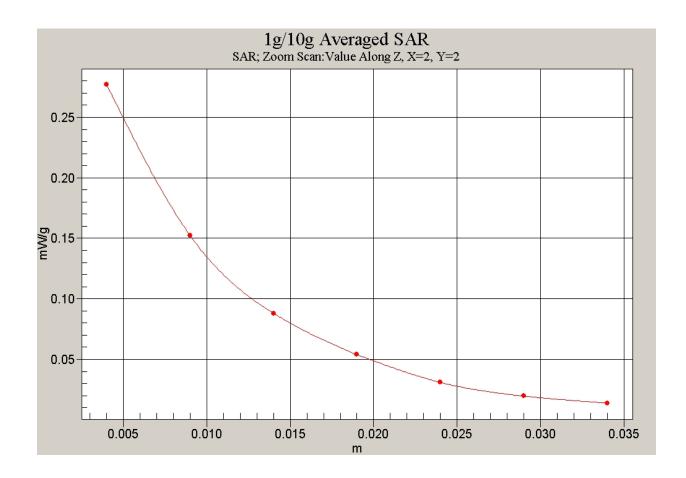


Fig. 6 Z-Scan at power reference point (1900 MHz CH512)

1900 Left Tilt High

Date/Time: 2007-10-18 10:49:58

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz new Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: ET3DV6 - SN1736 ConvF(5.4, 5.4, 5.4)

Tilt High/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.176 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 9.70 V/m; Power Drift = 0.082 dB

Peak SAR (extrapolated) = 0.269 W/kg

SAR(1 g) = 0.154 mW/g; SAR(10 g) = 0.085 mW/g

Maximum value of SAR (measured) = 0.155 mW/g

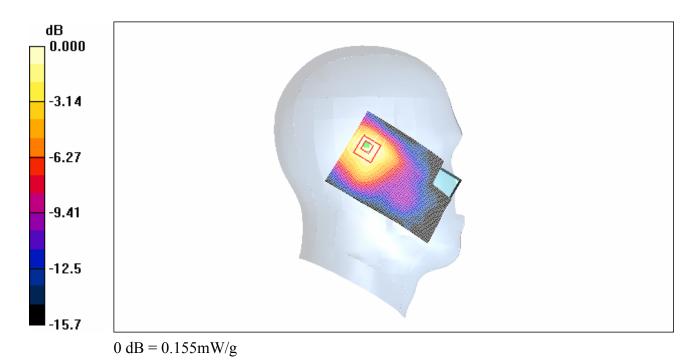


Fig.7 1900 MHz CH810

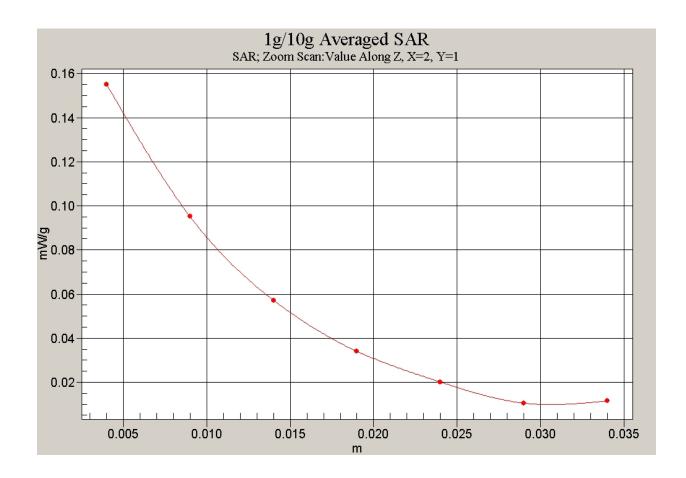


Fig. 8 Z-Scan at power reference point (1900 MHz CH810)

1900 Left Tilt Middle

Date/Time: 2007-10-18 10:35:39

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.37 \text{ mho/m}$; $\varepsilon_r = 41$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz new Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ET3DV6 - SN1736 ConvF(5.4, 5.4, 5.4)

Tilt Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.208 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.6 V/m; Power Drift = -0.127 dB

Peak SAR (extrapolated) = 0.347 W/kg

SAR(1 g) = 0.185 mW/g; SAR(10 g) = 0.101 mW/g

Maximum value of SAR (measured) = 0.181 mW/g

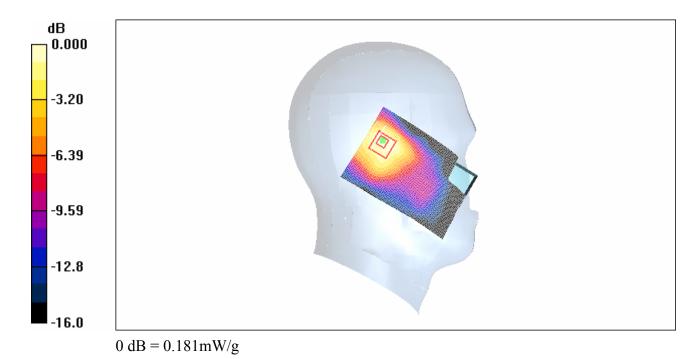


Fig.9 1900 MHz CH661

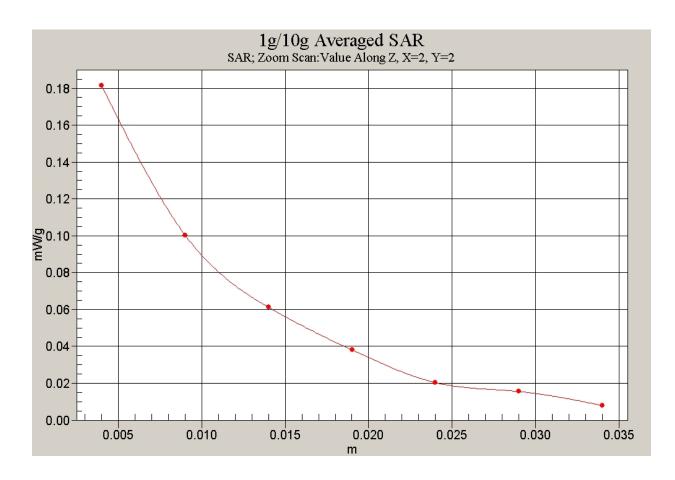


Fig. 10 Z-Scan at power reference point (1900 MHz CH661)

1900 Left Tilt Low

Date/Time: 2007-10-18 10:37:23

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz new Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: ET3DV6 - SN1736 ConvF(5.4, 5.4, 5.4)

Tilt Low/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.329 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.2 V/m; Power Drift = -0.200 dB Peak SAR (extrapolated) = 0.484 W/kg

SAR(1 g) = 0.272 mW/g; SAR(10 g) = 0.151 mW/gMaximum value of SAR (measured) = 0.282 mW/g

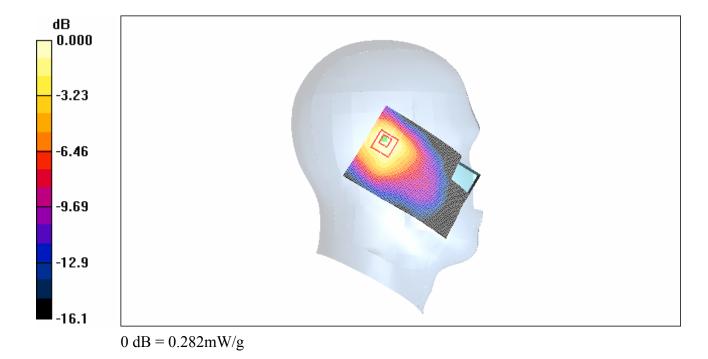


Fig. 11 1900 MHz CH512

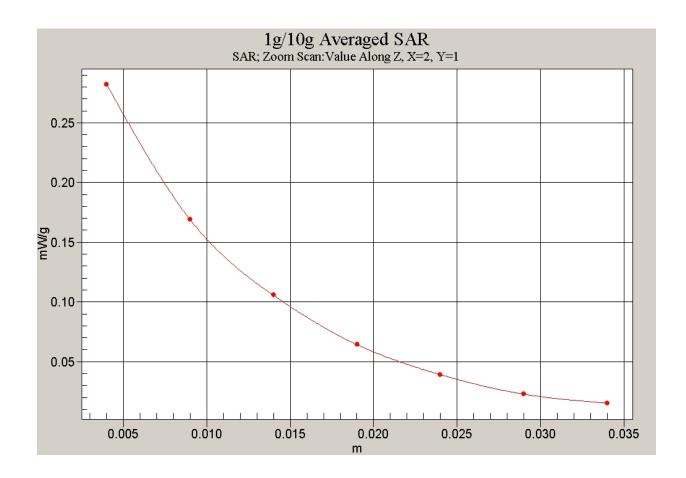


Fig. 12 Z-Scan at power reference point (1900 MHz CH512)

1900 Right Cheek High

Date/Time: 2007-10-18 8:21:00

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz new Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: ET3DV6 - SN1736 ConvF(5.4, 5.4, 5.4)

Cheek High/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.124 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.80 V/m; Power Drift = -0.047 dB

Peak SAR (extrapolated) = 0.201 W/kg

SAR(1 g) = 0.110 mW/g; SAR(10 g) = 0.066 mW/g

Maximum value of SAR (measured) = 0.113 mW/g

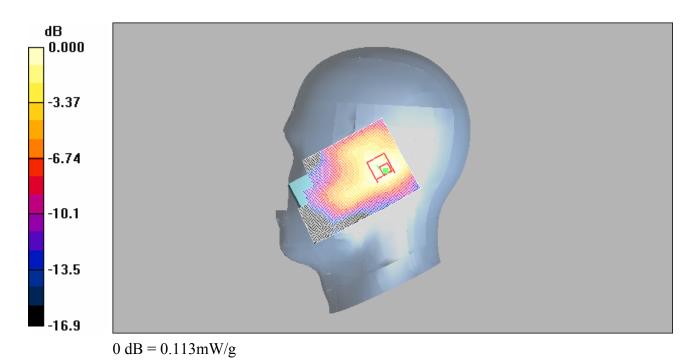


Fig. 13 1900 MHz CH810

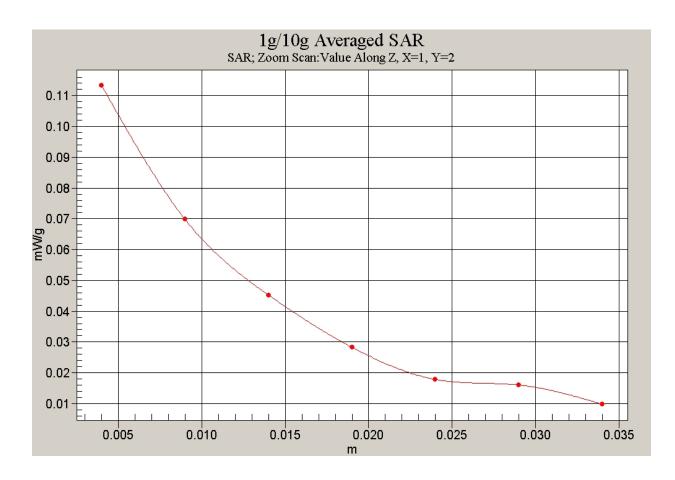


Fig. 14 Z-Scan at power reference point (1900 MHz CH810)

1900 Right Cheek Middle

Date/Time: 2007-10-18 8:32:50

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.37 \text{ mho/m}$; $\varepsilon_r = 41$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz new Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ET3DV6 - SN1736 ConvF(5.4, 5.4, 5.4)

Cheek Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.147 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.64 V/m; Power Drift = -0.107 dB

Peak SAR (extrapolated) = 0.226 W/kg

SAR(1 g) = 0.132 mW/g; SAR(10 g) = 0.078 mW/g

Maximum value of SAR (measured) = 0.136 mW/g

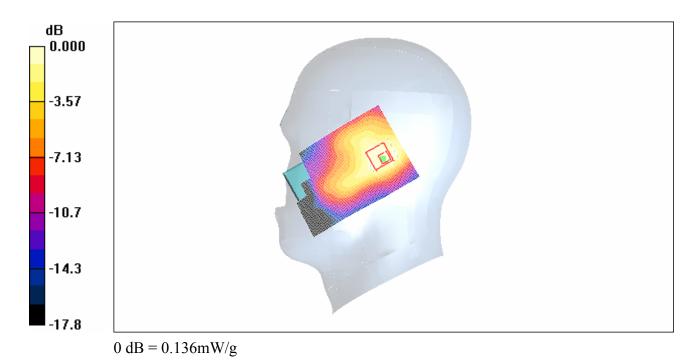


Fig. 15 1900 MHz CH661

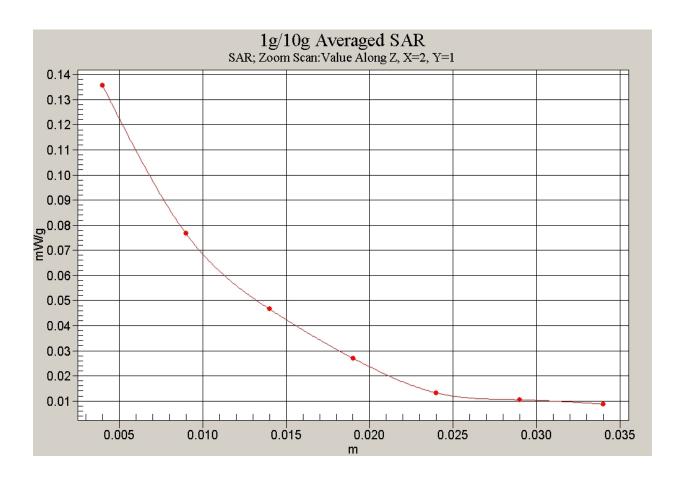


Fig. 16 Z-Scan at power reference point (1900 MHz CH661)