

Human Exposure Report FCC ID: RWO-RZ020493

Project No. : 2409C254

Equipment: GAMING MOUSE MAT

Brand Name

RAZER,

Test Model : RZ02-0493

Series Model : RZ02-0493XXXX-XXXX(X can be 0-9 or A-Z)

Applicant: Razer Inc.

Address : 9 Pasteur, Suite 100, Irvine, CA92618, USA

Manufacturer : RAZER (ASIA-PACIFIC) PTE. LTD.

Address:Razer SEA HQ, 1 One-north Crescent, #02-01, Singapore 138538Factory:RAZER TECHNOLOGY AND DEVELOPMENT (SHENZHEN)CO., LTDAddress:East Wing, 3rd Floor, Block 2, Phase 1 of Vision ShenzhenBusiness Park

Keji South Road, Hi-Tech IndustrialPark, Shenzhen 518057, China

Date of Receipt : Oct. 11, 2024

Date of Test : Oct. 11, 2024 ~ Dec. 27, 2024

Issued Date : Jan. 24, 2025

Report Version : R01

Test Sample : Engineering Sample No.: DG2024101118
Standard(s) : 47 CFR PART 1, Subpart I, Section 1.1310
KDB 680106 D01 Wireless Power Transfer v04

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by

Evan Yang

Approved by

Chav Cai

Room 108-116, 309-310, Building 2, No.1, Yile Road, Songshan Lake Zone, Dongguan City, Guangdong, People's Republic of China.

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl qa@newbtl.com

Table of Contents	Page
REPORT ISSUED HISTORY	3
1 . GENERAL INFORMATION	4
1.1 TEST FACILITY	4
1.2 MEASUREMENT UNCERTAINTY	4
2 . APPLICABLE STANDARD	5
2.1 LIMITS	5
3 . MEASUREMENT INSTRUMENTS LIST	5
4 . TEST PROCEDURE	6
5. TEST RESULTS	7
6 . TEST PHOTOS	9

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-3-2409C254	R00	Original Report.	Jan. 06, 2025	Invalid
BTL-FCCP-3-2409C254	R01	Modified the comments.	Jan. 24, 2025	Valid

1. GENERAL INFORMATION

1.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of 1-2/F, 4/F, Building A, 1-2/F, Building B, 3/F, Building C, No.3, Jinshagang 1st Road, Dalang Town, Dongguan City, Guangdong People's Republic of China.

BTL's Registration Number for FCC: 747969 BTL's Designation Number for FCC: CN1377

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2))

The BTL measurement uncertainty as below table:

Test Items	U
Magnetic Field strength (HF 3061(NBM), 300 kHz - 30 MHz)	14.190%
Electrical Field strength (EF 0391(NBM), 100 kHz - 3 GHz)	13.288%

2. APPLICABLE STANDARD

2.1 LIMITS

For 47 CFR PART 1, Subpart I, Section 1.1310:

• •	- сапранти, стоит				
Frequency range	Electric field	Magnetic field	Power density	Averaging time	
(MHz)	strength (V/m)	strength (A/m)	(m/W/cm ²)	(minutes)	
	(A) Limits	for Occupational / Con	trolled Exposures		
0.3-3.0	614	1.63	*(100)	6	
3.0-30	1842/f	4.89/f	*(900/f ²)	6	
30-300	61.4	0.163	1.0	6	
300-1500	/	1	f/300	6	
1500-100000	/	1	5	6	
(B) Limits for General Population / Uncontrolled Exposures					
0.3-1.34	614	1.63	*(100)	30	
1.34-30	824/f	2.19/f	*(180/f ²)	30	
30-300	27.5	0.073	0.2	30	
300-1500	/	1	f/1500	30	
1500-100000	/	1	1.0	30	

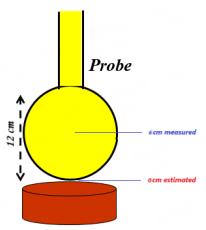
F=frequency in MHz

RF exposure compliance will need to be determined with respect to 1.1307(c) and (d) of the FCC rules. The emissions should be within the limits at 300kHz in Table 1 of 1.1310 (use the 300kHz limits for 150kHz: 614V/m, 1.63A/m).

3. MEASUREMENT INSTRUMENTS LIST

	Human Exposure						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	H-Field Probe	Narda Safety Test Solutions GmbH	HF 3061(NBM)	A-0067	Jul. 19, 2025		
2	NARDA Broadband Field Meter	Narda Safety Test Solutions GmbH	NBM-520	B-0138	Jul. 29, 2025		
	E-Field Probe	Narda Safety Test Solutions GmbH	EF 0391(NBM)	A-0253	Jul. 29, 2025		

Remark:


(1) All calibration period of equipment list is one year.

^{*=}Plane-wave equivalent power density

4. TEST PROCEDURE

(a) Test setup example diagram:

- (b) Test performed with all the radiating structures operating at maximum power at the same time.
- (c) Evaluate each edge surface of the host/client pair and identify the worst surface.
- (d) Measurements are taken along worst surface the device from 0cm~20cm in 2cm minimum increment.
- (e) Proceed to collect the 11 measurement points that will be used to build the predictive model by curve-fitting. For polynomial regression models, the order of the model shall be increased until signs of over fitting become evident.
- (f)Using polynomial regression techniques to predict estimated values at touch position (0 cm).
- (g) For validation purposes: If the value to show a 30% agreement between the mode and the probe measurements for the two closest points to the device surface, and with 2cm increments. Then this extrapolation method is reasonable.

5. TEST RESULTS

The field strength results of the probe sensor with a center distance of 6cm~26cm from the surface of the EUT coil are as follows:

Distance (cm)	E-Field (V/m)	H-Field (A/m)
6	18.7	0.2034
8	17.6	0.1956
10	16.9	0.1819
12	16	0.1776
14	15.3	0.1655
16	14.2	0.1537
18	13.1	0.1474
20	12.1	0.1333
22	10.8	0.1214
24	9.7	0.1062
26	8.8	0.0974

Use the polynomial regression techniques to estimate the results of 6cm through 12cm:

E-Field Measure Value (V/m)	E-Field Estimated Value (V/m)	Agreement Ratio	Limits
18.7	17.45	6.68%	30%

As the model is sufficient, the 0cm value can be estimated through the results of 6 cm.

E-Field Estimated Value (V/m)	Limits (V/m)	H-Field Estimated Value (A/m)	Limits (A/m)
20.776	121.53	0.226	0.323

Remark:

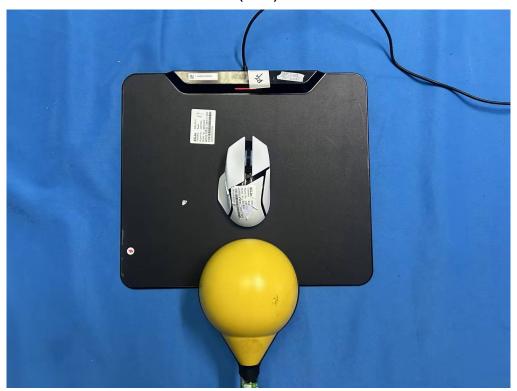
- (1) All surface had been evaluated, the worst surface is Right and recorded.
- (2) The EUT has the maximum average output power when the support unit is in low power and being charged by EUT.
- (3) Analyzing results:

E-Field:

L-I IOIG.	I	I	I
Parameter	Linear Regression Model	Quadratic Regression Model	Cubic Regression Model
Multiple R	0.998	0.999	0.999
R ²	0.995	0.999	0.999
Adjusted R ²	0.995	0.998	0.998
Standard Error (S)*	0.240	0.140	0.147
Number of data points	11	11	11
used	''	11	11
Estimated magnetic field			
strength at touch position	21.884	20.776	20.410
(V/m)			

^{*} The units of the standard error are the units of the measured variable V/m. As shown in the table above, the 2th order regression model produced the lowest standard error. From the model, the estimated E-field strength at touch position 20.776 V/m. Note that the 6th order regression model was not selected as evidence of over fit were shown by the increase of S.

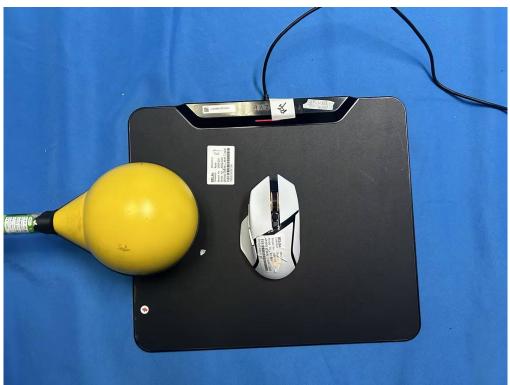
H-Field:


Parameter	Linear Regression Model	Quadratic Regression Model	Cubic Regression Model	4th Order Regression Model
Multiple R	0.99670	0.99853	0.99854	0.99873
R ²	0.99341	0.99706	0.99709	0.99747
Adjusted R ²	0.99268	0.99632	0.99584	0.99578
Standard Error (S)*	0.00304	0.00216	0.00229	0.00231
Number of data points used	11.000000	11.000000	11.000000	11.000000
Estimated magnetic field				
strength at touch position	0.239	0.226	0.229	0.257
(A/m)				

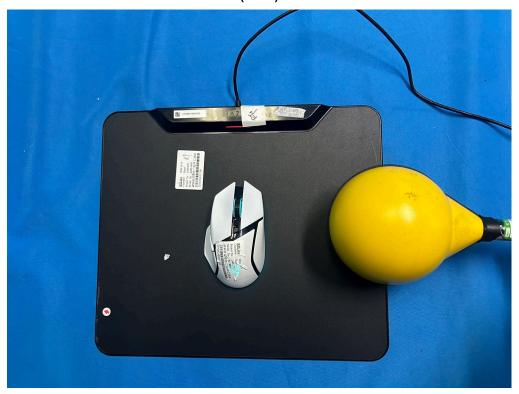
^{*} The units of the standard error are the units of the measured variable A/m. As shown in the table above, the 3th order regression model produced the lowest standard error. From the model, the estimated H-field strength at touch position 0.229 A/m. Note that the cubic regression model was not selected as evidence of over fit were shown by the increase of S.

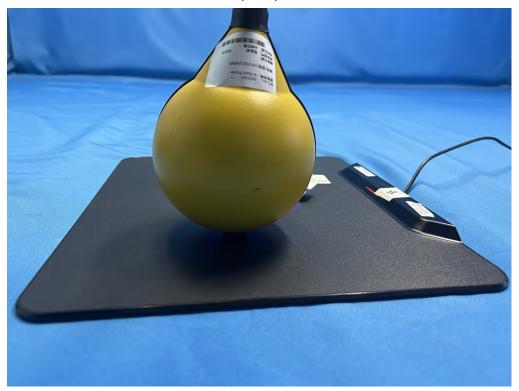
6. TEST PHOTOS

Front Side (0 cm)



Back Side (0 cm)





Right Side (0 cm)

Top (0 cm)

Bottom (0 cm)

End of Test Report