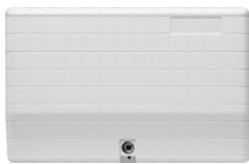


Technical Description


SiRoute™

Wireless Infrastructure for Alarm Systems

With innovative radio technology

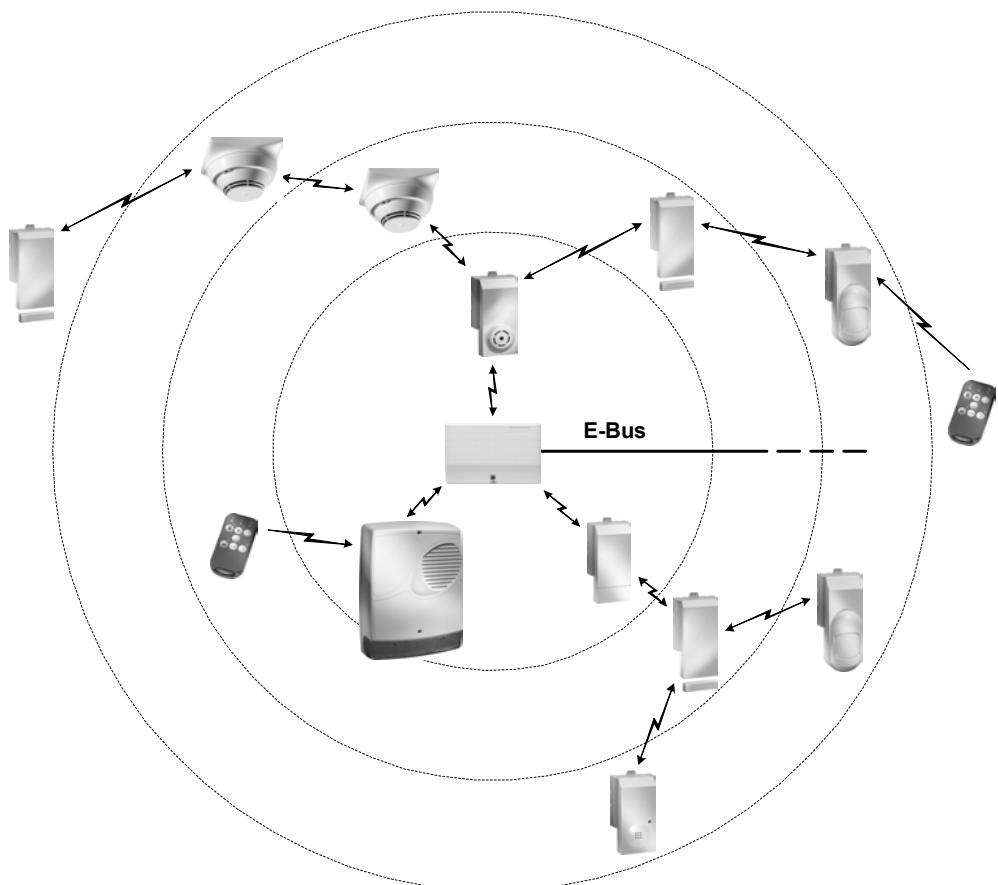
- No range limitation
- Self-configuring wireless network
- Redundant communication links
- Battery lifetime up to 4 years
- Very good reliability
- “White collar” installation
- Higher security
- One remote control for alarm system, emergency and home automation control
- Reduced inventory costs
- Family look blends with all environments
- Simple addressing

System overview

E-Gateway
(E-Bus radio gateway for SI series control panels)

Radio module standard

Radio module for round detectors
(e.g. smoke detectors)



Universal
mounting base

The new wireless infrastructure SiRoute™ brings a complete range of devices with an innovative and reliable radio technology, which offers an unlimited transmission range and a higher security. The SiRoute™ technology is unique, based on an 914MHz bidirectional radio transmission. It features a patented routing mechanism named EasyRouting. The SiRoute™ peripheral devices can be used with Siemens hardwired systems series SI100/200/300/400 thanks to a new radio gateway.

- **No range limitation, self-configuring wireless network and redundant communication links**

The patented telegram routing algorithm EasyRouting passes on the information from the wireless participants to the radio controller in the gateway and vice versa. The communication works by passing telegrams from one participant to the radio controller via other participants if a direct radio communication is not possible. In case of radio disturbances EasyRouting automatically searches for an alternative route between the participant and the radio controller.

- **Battery lifetime up to 4 years**

The SiRoute™ devices have such a low power consumption that the batteries can lead up to 4 years. The batteries are included in the supplied packages.

- **Very good reliability**

The redundancy of the routing mechanism and the high performance of the bidirectional radio technique make the SiRoute™ wireless infrastructure a very reliable product.

W7OP303
(shown with W7BT21)

W7IR90
(shown with W7BT20)

W7GB650
(shown with W7BT20)

W7MK100
(shown with W7BT20)

Smoke detector

The SiRoute™ wireless optical smoke detector is based on light scattering by smoke particles. Designed for low power consumption it is powered by the batteries of the radio module. The smoke sensitivity is 2.5%/m. An LED indicates the alarm state in test mode.

PIR motion detector

The standard 12m wide-angle Fresnel lens can be quickly replaced by an optional 18m long-range lens. Corner mounting is possible using the optional bracket W7UM20 (5pcs set). The PIR (passive-infrared) detector has an LED, which indicates the alarm state in walk test mode.

Acoustic glass-break detector

In contrast to magnet contacts and vibration detectors, which must be mounted on all windows, the SiRoute™ acoustic glassbreak detector can monitor the windows of a whole room with a detection range up to 8m. It works with all glass types. An LED indicates the alarm state in test mode.

Door contact

The SiRoute™ wireless door contact has 3 reed contacts. This allows different positions of the housing for a great flexibility when installing the contact. The contact is designed for use on doors. One magnet is supplied with the contact. Spare contacts W7MK105 are available (5pcs set).

Technical data

Operating voltage (battery supply)	from W7BT21	from W7BT20	from W7BT20	from W7BT20
Battery lifetime	up to 4 years	up to 4 years	up to 4 years	up to 4 years
Specific data	Smoke sensitivity: 2.5%/m	Detection range: 12m volumetric (standard), 18m long range (optional)	Detection range: 8m radius	Detection type: magnetic contact (max. 10mm between contact and magnet)
Settings	-	Sensitivity: high / low / remote selectable by jumper	Sensitivity: high (up to 8m) / low (up to 4m) / remote selectable by jumper	-
Ambient conditions				
– Operating temperature	-10 ... +55°C	-10 ... +55°C	-10 ... +55°C	-10 ... +55°C
– Storage temperature	-20 ... +60°C	-20 ... +60°C	-20 ... +60°C	-20 ... +60°C
– Air humidity (EN60721)	<95% r.h., non-cond.	<95% r.h., non-cond.	<95% r.h., non-cond.	<95% r.h., non-cond.
– Housing protection (EN60529)	IP 44	IP 42	IP 31	IP 31
Housing Material	ABS	ABS	ABS	ABS
Radio module	W7BT21	W7BT20	W7BT20	W7BT20
– Frequency	913.85MHz	913.85MHz	913.85MHz	913.85MHz
– Transmission type	bidirectional	bidirectional	bidirectional	bidirectional
– Transmission range	unlimited (EasyRouting)	unlimited (EasyRouting)	unlimited (EasyRouting)	unlimited (EasyRouting)
Approvals	-			
	-			

Input/output module 2/2	Indoor siren	Outdoor siren	Remote control	Radio modules
<p>The SiRoute™ wireless input/output module 2/2 provides 2 inputs, which can be set with a jumper for either NO or NC operation. The device provides also 2 potential free outputs controlled by the radio module. The housing provides cable entries and strain relieves.</p>	<p>The SiRoute™ indoor siren has a small size but offers a high sound level of 80dB at 3m distances. It is powered by the radio module battery.</p>	<p>The SiRoute™ outdoor siren is self-powered and integrates the radio module. The siren provides also a strobe. Several settings are possible with jumpers: the strobe can be activated separately (Out1 of the radio module), can follow the siren activation (Out2 of the radio module) or can be disabled. The siren can be activated with no time limit, during max 3min or can be disabled. The housing is weatherproof.</p>	<p>The multifunctional remote control SiRoute™ is smaller than a credit card and only few mm thick, with indications by 3 LEDs. It has 7 keys for standard controls as well as emergency (panic alarm). This handheld can be secured by programming a PIN code.</p>	<p>The SiRoute™ radio modules W7BT20 and W7BT21 use the same bidirectional transceiver board. W7BT21 has only a different socket for round detectors (e.g. smoke detectors). W7BT20 and W7BT21 use the universal mounting base, which is part of the radio module package.</p>

from W7BT20 up to 4 years 2 inputs, NO/NC selectable by jumpers (default NO) 2 outputs, potential free contacts, max. 40VDC / 1A / 30W	from W7BT20 up to 4 years Sound level: 80dB@3m	4 x 1.5V type D up to 4 years Sound level: 100dB@3m	1 x 3V Li CR2032 up to 5 years 7 operation keys 3 indication LEDs	3 x 1.5V type AA - -
-	-	Siren: on-Out2 / on-Out2 3min / off Strobe: on-Out2 / on-Out1 / off selectable by jumpers	-	-
-10 ... +55°C -20 ... +60°C <95% r.h., non-cond. IP 42 ABS W7BT20 913.85MHz bidirectional unlimited (EasyRouting)	-10 ... +55°C -20 ... +60°C <95% r.h., non-cond. IP 31	-10 ... +55°C -20 ... +60°C <95% r.h., non-cond. IP 34 PE / PC	-10 ... +55°C -20 ... +60°C <95% r.h., non-cond. IP 55 ABS / PC	-10 ... +55°C -20 ... +60°C <95% r.h., non-cond. IP 55 ABS

- **“White collar” installation**

The SiRoute™ wireless devices can be installed without the use of screws and pegs. A universal mounting base is fixed to the wall or ceiling with either a staple gun or double side adhesive tape. This allows a very quick and clean installation. Screws can also be used if really wanted. Once all mounting bases are fixed no tools are needed anymore. The devices simply can be plugged on the mounting bases by hand.

- **Higher security**

The security of the SiRoute™ wireless infrastructure is very high thanks to the reliable radio transmission. The transmission is bidirectional and the frequency used is 913.85 MHz.

- **One remote control for alarm system, emergency and home automation control**

Beside the standard controls of a burglar alarm system like full set, part set, unset, the SiRoute™ remote control has a panic key and an on/off button for home automation control. Advanced controls allow putting the control panel in the walk test mode. The remote control can be used to either operate the entire system or a selected partition. The remote control can be secured by a 4 digits PIN code, which is easily programmed, changed or disabled.

- **Reduced inventory cost**

All available participants use only 2 different radio modules. One radio module is dedicated to round detectors (e.g. smoke detectors). The number of radio modules and the number of elements can be managed independently as they are supplied in separated packages.

- **Family looks blends with all environments**

The family design of the SiRoute™ peripherals supports its modular structure. The SiRoute™ devices blend in private homes as well as in commercial premises.

- **Simple addressing**

A SiRoute™ wireless device is automatically enrolled in the control panel in two steps. Step 1: insert the batteries in the radio module. Step 2: plug the peripheral of your choice onto the radio module. Addressing the remote control is even easier: just press the Panic button.

Details for ordering

Type	Part no	Designation	Dimensions (mm)	Weight ²
W7OP303	A5Q00001898	SiRoute™ smoke detector ¹	H 100 x L 100 x P 42 ¹	0.062kg ¹
W7IR90	A5Q00001849	SiRoute™ PIR motion detector ¹	H 155 x L 58 x P 44 ¹	0.062kg ¹
W7GB650	A5Q00001900	SiRoute™ acoustic glassbreak detector ¹	H 126 x L 58 x P 23 ¹	0.042kg ¹
W7MK100	A5Q00001901	SiRoute™ door contact ¹	H 126 x L 58 x P 20 ¹	0.040kg ¹
W7IO22	A5Q00001903	SiRoute™ input/output module 2/2 ¹	H 126 x L 58 x P 24 ¹	0.055kg ¹
W7SR10	A5Q00001904	SiRoute™ indoor siren ¹	H 126 x L 58 x P 30 ¹	0.045kg ¹
W7SR25	A5Q0000????	SiRoute™ outdoor siren	H 323 x L 240 x P 97	2.600kg
W7RC20	A5Q00004860	SiRoute™ remote control	H 83 x L 40 x P 7	0.020kg
W7BT20	A5Q00004856	SiRoute™ radio module standard	H 92 x L 68 x P 32	0.130kg
W7BT21	A5Q00004857	SiRoute™ radio module for round detectors	H 103 x L 103 x P 40	0.150kg
W7EG20	A5Q00004858	SiRoute™ E-Gateway Radio gateway for E-Bus	H 86 x L 135 x P 27	0.122kg
W7MK105	A5Q00002782	SiRoute™ magnet for W7MK100 (5 pcs.) Spare/replacement part for W7MK100	H 15-23 x L 54 x P 13 ³	0.160kg ⁴
W7UM10	A5Q00003601	SiRoute™ universal mounting base (10 pcs.) Spare/replacement part for W7BT20/21	H 92 x L 63 x P 22 ³	0.125kg ⁴
W7UM20	A5Q00003624	SiRoute™ corner mounting bracket (5 pcs.) Option for W7BT20 typically used together with PIR motion detector W7IR90	H 61 x L 51 x P 51 ³	0.075kg ⁴
-	502922	Long range Fresnel lens (3 pcs.) Option for PIR motion detector W7IR90	H 65 x L 52 x P 2 ³	0.005kg ⁴

¹ excl. radio module

² approx. net weight (excl. package)

³ dimensions for one piece

⁴ weight for one set of pieces

Technical Data Novum Bi-directional Version USA

Radio Hardware

Frequency 913,850 MHz
Tx bandwidth: 300 kHz
Bit rate: 16.3 kBd
Modulation: frequency modulation
Receiver type: superhet, class 2 (EN 300 220)
Sensitivity: approx. -95 dBm
Transmitter output power: < -1dBm
Attenuation budget: 90 dB (attenuation reserve included)
Module to module distance: min 1 m
Temperature range: -10 to +55 °C

Data Exchange

Data transmission: bi-directional (half duplex)
Data check: checksum
Telegram security: telegram acknowledgment and repeating in case of failure
System integrity test: approx. every two hours (configurable between 9 min and 18 h)

Networking

Type of network: radio controller (master) oriented peer to peer
Routing mechanism: easy routing
Max number of hops: 15 (limited to 3)
Number of participants: 49 bi-directional (including radio controller)
10 unidirectional (additional)
Range of network: radio range x number of hops
Transmission time: 600 ms per hop
Network participants: bi-directional radio participant (detector)
bi-directional radio controller (gateway)
unidirectional control device (Remote Control)

Power Supply Participant

Battery Type: 3 batteries of 1,5 V type AA (alkali manganese)
Average current: approx. 90 µA (without debug)
Peak current: 40 mA
Battery lifetime: approx. 3 years (without detector)

Power Supply Radio Controller

Input voltage range: 3.25V to 10V
Average current: approx. 150 µA
Peak current: 40 mA

Module Numbers

(PCB)

bi-directional radio participant: S24218-A71-A402
bi-directional radio controller: S24218-A71-A422

Prüfpflichtenheft NOVUM-Funkmodul-USA

A24218-A71-A402 und A24218-A71-A422

1. Allgemeines

1.1 Vorbemerkung

Das vorliegende Prüfpflichtenheft beschreibt die notwendigen Prüfmittel und Prüfschritte für die Funktionsprüfung des Novum-USA Funkmoduls.

1.2 Prüfvoraussetzungen

1.2.1 PC und Funkmodul mit Prüfprogrammen

Der gesamte Prüf- und Inbetriebnahme-Ablauf erfolgt PC-gesteuert. Das Funkmodul verfügt über einen eigenen Prozessor, welcher im Normalbetrieb die Ablaufsteuerung übernimmt, sowohl die übergeordnete Systemsteuerung (Application- Layer) als auch die Steuerung des HF-Transceivers beim Senden und Empfangen (Physical- Layer). Diese Systemauslegung erfordert zwangsläufig, dass die Prüfablauf- Software aus einer Kombination von PC-Steuersoftware und Prüfsoftware im Prüfling selbst besteht.

1.2.2 HF-Prüfgerät

Zur Prüfung der HF-Funktionen ist ein HF-Prüfgerät erforderlich, welches über folgende Leistungsmerkmale verfügen muss:

- Statische Frequenzmessung im Bereich 868 ... 930 MHz

Der für die Messung verfügbare Pegel liegt im Bereich -10..10 DBM
Die erforderliche Messgenauigkeit beträgt 500 Hz

- Leistungsmessung 868..930 MHz

Der Pegelbereich umfasst -10..10 DBM, Messgenauigkeit 0.5 DB

- CW- Sender 868..930 MHz

Pegelbereich -100...-30 DBM, Frequenzgenauigkeit 500 Hz

- Sender mit programmierbarer Frequenzmodulation 868...930 MHz

Pegelbereich -100..-30 DBM
Frequenzhub ± 40 kHz

Copyright (C) Siemens AG 2003 All Rights Reserved

.				Datum: 30.09.2003	<p>Prüfspezifikation für NOVUM Participant und Controller</p>	
				Name: Eckardt		
				Dst: SGS F PCC 3		
02	03AA0085	24.11.03	Ha	SIEMENS AG		
Zust	Mitteilung	Datum	Name			
				A24218-A71-A402-*-24		Blatt 1/16

Datenrate	16384 Hz
Frequenzgenauigkeit	500 Hz

Der geforderte Frequenzbereich für das HF-Prüfgerät umfasst das 869 MHz-Band sowie den Frequenzbereich 903..928 MHz (USA, Australien ...).

1.2.3 Netzwerk- Analysator

Zum Test der Antennenabstimmung ist ein Netzwerk- Analysator erforderlich, geeignet für Amplituden - S11- Messungen, näheres s. an Ende der Beschreibung

1.2.4 Gleichspannungs-Prüfautomat

In der Fertigung üblicher PC-gesteuerter Meßautomat mit Einstellmöglichkeiten für Betriebsspannungen, Meßmöglichkeiten für Spannungen und Strömen.

Der Prüfautomat muss außerdem eine definiert einstellbare Versorgungsspannung für den Prüfling liefern können

Einstellbereich	3...4 V
Einstellgenauigkeit	10 mV
Strombedarf Funkmodul	0...60 mA

1.2.5 Software im Prüfling

Vor Beginn der Prüfung müssen im Prüfling sowohl Applikations- Software als auch die Prüfsoftware geladen sein. Die Prüfsoftware im Prüfling besteht aus folgenden wesentlichen Modulen:

- COM1-Treiber für serielle Schnittstelle
- Port- Einstellungs- und Leseprogramm
- Statischer Empfänger-Test
- Statischer Sender-Test
- Batterie- Grenztest
- Ruhestromtest
- Telegramm Senden
- Telegramm Empfangen
- Antenne tunen

Die Module Telegramm Senden und Telegramm Empfangen sind Aufrufprogramme für die im Applikationsprogramm residenten Programmmodul RPLPut/ RPLGet des Physical-Layers.

Das Laden dieser Programme ist in den Dokumenten NOVUM_Prüfkonzept.DOC sowie NOVUM_Prüfroutinen.DOC beschrieben.

Copyright (C) Siemens AG 2003 All Rights Reserved

.				Datum: 30.09.2003	Prüfspezifikation für NOVUM Participant und Controller		
				Name: Eckardt			
				Dst: SGS F PCC 3			
02	03AA0085	24.11.03	Ha	SIEMENS AG			
Zust	Mitteilung	Datum	Name				
				A24218-A71-A402-*-24			
				Blatt 2/16			

HF-Abgleich und Batteriespannungsabgleich des Prüflings

Vor Start der Prüfung müssen der HF- Transceiver sowie die Batteriespannungs- Kontrolle abgeglichen sein. Für Details sei wiederum auf die beiden obigen Dokumente verwiesen.

1.2.7 Eichung der Strahlungs- Einfügungsdämpfung

Wie im folgenden Abschnitt beschrieben erfolgt die Verbindung Prüfling- HF- Prüfgerät strahlungsgekoppelt. Eine genaue Messung der Sendeleistung und der Empfängerempfindlichkeit erfordert Kenntnis der Einfügungsdämpfung zwischen dem Fußpunkt der Funkmodulantenne und der Koppelantenne im HF-Prüfgerät. Alle folgenden DBM- Angaben beziehen sich auf den Fußpunkt der Funkmodul- Antenne.

1.3 Prüfaufbau (Bild 1)

Der Prüfaufbau besteht aus PC, HF-Prüfgerät, NF-Prüf-Automat und Prüfling. Das HF- Prüfgerät dient zur HF-Prüfung, der Prüf-Automat (Spannungsmesser, Strommesser, Einstelleinrichtungen für Speisespannung etc.) zur Gleichspannungsprüfung.

Im NOVUM- Funkmodul- Layout sind aus Platz- und Aufwandsgründen keine Prüfpunkte für Nadeladapter implementiert. Zur Prüfung ist ausschließlich der Stecker S1 verfügbar. Die Verbindung Prüfling – PC erfolgt über PIN 1,2,3 in Form einer seriellen V24- Schnittstelle. Diese Schnittstelle wird von der Systemauslegung des FLASH- Prozessors MSP430F14X unterstützt. Der Pegelwandler setzt den V24-Pegel auf den Pegel des Prüflings 0/3V um

Die verbleibenden PIN des Steckers sind mit dem Prüfautomaten verbunden.

Die Verbindungen von Prüfautomaten und HF-Gerät zum Steuer – PC hängen von den Spezifikationen der Prüfgeräte ab.

Die Verbindung Prüfling – HF-Prüfgerät erfolgt strahlungsgekoppelt über die Antenne des Prüflings einerseits und eine Koppelantenne im HF-Prüfgerät andererseits. Die Koppelantenne muss so gestaltet sein, dass beispielsweise beim Senden des Prüflings die Sendeleistung im HF-Prüfgerät mit einer reproduzierbaren Dämpfung (z.B. 10 DB) draht gebunden weiterverarbeitet werden kann.

1.4 Starten des Prüfprogramms

Nach Verbinden des Prüflings mit dem PC und Anlegen der Speisespannung an den PIN 5 des Steckers S1 wird das Prüfprogramm gestartet. Durch eine spezielle Startsequenz muss der Prüfling in den Status Prüfen geschaltet werden.

Copyright (C) Siemens AG 2003 All Rights Reserved

.				Datum: 30.09.2003	<p>Prüfspezifikation für NOVUM Participant und Controller</p>	
				Name: Eckardt		
				Dst: SGS F PCC 3		
02	03AA0085	24.11.03	Ha	SIEMENS AG		
Zust	Mitteilung	Datum	Name			
A24218-A71-A402-*-24						Blatt 3/16

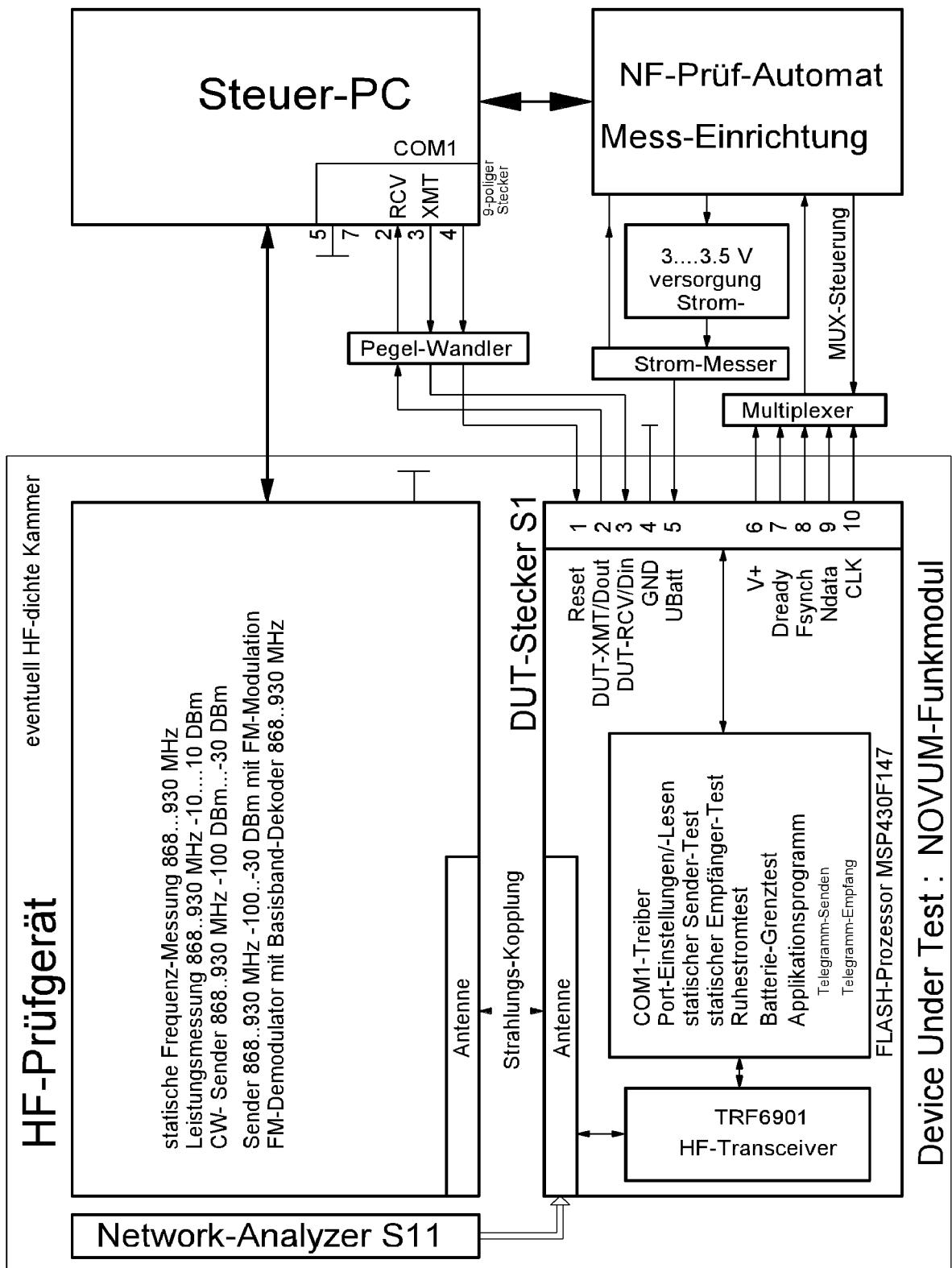


Bild 1 : Blockschaltbild Prüfaufbau NOVUM- Funkmodul

Copyright (C) Siemens AG 2003 All Rights Reserved

.				Datum: 30.09.2003	Prüfspezifikation für NOVUM Participant und Controller	
				Name: Eckardt		
				Dst: SGS F PCC 3		
02	03AA0085	24.11.03	Ha	SIEMENS AG		
Zust	Mitteilung	Datum	Name			
				A24218-A71-A402-*-24		
						Blatt 4/16

2 Gleichspannungsprüfungen ohne HF-Prüfgerät

2.1 Betriebsspannung und Standby- Strom des Funkmoduls

Die Spannung am Ausgang des Reglers IC2 muß gemessen werden:

V+ (Stecker S1/6) 3 V \pm 3%

Standby -Strom nach Umschaltung in den Prüfbetrieb:

I - Ubatt (Stecker S1/5) 1.4 \pm 0.2 mA

2.2 Test Interface-Anschlüsse (Interface-Stecker S1)

Der Test soll den ordnungsgemäßen Datenaustausch zwischen Funkmodul und angeschlossenen Alarmkomponenten sicherstellen

2.2.1 Interface-Pins RESET(S1/1) Din (S1/3) Dout(S1/2)

Diese Interface-Pins werden beim Prüfvorgang als Verbindung zum Rechner benutzt. Die Funktionsfähigkeit ist Voraussetzung für den Prüfvorgang, so daß sich ein spezieller Test dieser Pins erübrigt.

2.2.2 Interface-Pins Dready (S1/7), Fsynch (S1/8), Ndata (S1/9), CLK (S1/10)

Über das Port- Einstellungsprogramm werden die diesen PIN zugeordneten Prozessorports (P1.0, P1.1, P1.2, P1.3) als Prozessor-Ausgang geschaltet und wechselweise LOW / HIGH gesteuert. Die zugehörigen Ausgangsspannungen müssen folgende Spannungswerte liefern:

Stellung LOW	0V	\pm 20 mV
Stellung HIGH	V+(S1/6)	\pm 20 mV

2.2.3 Test Fsynch(S1/8) als Input

Über das Port- Einstellungsprogramm wird der Port P1.1 als Ausgang und der Port P6.3 als Eingang geschaltet und gelesen. Ein HIGH/LOW Wechsel des Ports P1.1 muss sich am Leseport P6.3 abbilden.

2.3 Test Sabotageschalter

Port P3.0 wird als Ausgang geschaltet, Port P6.7 als Eingang.

Bei geschlossenem Schalter (Schalter verbindet) müssen sich HIGH/LOW- Wechsel übertragen, bei offenem Schalter bleibt P6.7 immer LOW.

Copyright (C) Siemens AG 2003 All Rights Reserved

.				Datum: 30.09.2003	<p>Prüfspezifikation für NOVUM Participant und Controller</p>	
				Name: Eckardt		
				Dst: SGS F PCC 3		
02	03AA0085	24.11.03	Ha	SIEMENS AG		
Zust	Mitteilung	Datum	Name			
A24218-A71-A402-* -24					Blatt 5/16	

2.4 Test Pin-Diodenstrom für die Antennenumschaltung

Zur Vermeidung von Nadeladapters erfolgt dieser Test über eine Strommessung. Mit dem Port- Einstellungsprogramm werden nacheinander die Prozessor- PIN P4.6 (PIN- Diodenzweig Senden) und P4.7 (PIN- Diodenzweig Empfangen) auf HIGH gelegt. Der Standby- Strom steigt dabei an

Stromanstieg bei Einschaltung Sende/Empfangsantenne: 1.4 ± 0.2 mA

2.5 Ruhestromtest

Der Prozessor wird in Standby- Betrieb mit minimalem Betriebsstrom geschaltet. Vor Ausführung dieses Tests müssen die Ports P3.4 P3.5 P1.0 P1.1 P1.2, P1.3 auf OUTPUT- LOW geschaltet werden. Vor der Strommessung müssen alle Stecker- PIN mit Ausnahme MASSE(4), Versorgung(5) und Stecker-Pin Nr 1 abgetrennt werden. Stecker – Pin Nr 1 (RESET) muss auf LOW geschaltet werden.

Maximal zulässiger Strom im SLEEP-MODE : $70 \mu\text{A}$

2.6 Überprüfung der Batteriespannungs- Überwachung

Die Batterieüberwachung arbeitet mit einem unteren Grenzwert von 3.25 V und einer Hysteres von 100 mV. Die äquivalenten Digitalwerte für 3.25 V und 3.35 V werden beim Batterie-Abgleich ermittelt und im Parameterblock des Funkmodul- FLASH-Speichers hinterlegt. Bei der Batteriespannungsprüfung wird der Port P6.2 als ADW-Eingang geschaltet und der Port P1.4 als Ausgang HIGH gesetzt. Anschließend wird nacheinander die Versorgungsspannung im Bereich 3.25V und 3.45 V variiert unter laufender DA- Wandlung der Eingangsspannung am Port P6.2. Die gewandelten Werte werden mit den abgespeicherten Grenzwerten verglichen. Entscheidend ist die Grenzspannung, bei welcher der AD- Messwert gleich dem abgespeicherten Grenzwert wird.

gespeicherter Grenzwert 3.25 V : Versorgung 3.25 ± 0.015 V

gespeicherter Grenzwert 3.45 V : Versorgung 3.45 ± 0.015 V

.				Datum: 30.09.2003	<p>Prüfspezifikation für NOVUM Participant und Controller</p> <p>SIEMENS AG</p>	
				Name: Eckardt		
				Dst: SGS F PCC 3		
02	03AA0085	24.11.03	Ha			
Zust	Mitteilung	Datum	Name			
A24218-A71-A402-*-24						Blatt 6/16

3 HF-Prüfungen in Zusammenarbeit mit dem HF-Prüfgerät

3.1 Statischer Sendertest

Der Befehl **Sendertest** schaltet das Funkmodul in den Betriebszustand **CW-Senden**

3.1.1 Stromverbrauch beim Senden: $40 \pm 4\text{mA}$

3.1.2 Messung der Sendefrequenz

Es werden die Sendefrequenzen in den Modulationsstellungen DATA_0 und DATA_1 gemessen. Hierzu wird der Port P4.5 als Ausgang geschaltet.

Freq_0 (Low-Frequenz)	DATA = 0	P4.5 LOW
Freq_1 (High-Frequenz)	DATA = 1	P4.5 HIGH

Die zugehörigen Sendefrequenzen müssen in folgendem Toleranzbereich liegen:

$$\begin{array}{lll} \text{Mittenfrequenz} & (F\text{req}_0+F\text{req}_1)/2 = & 913,895 \text{ MHz} \pm 15 \text{ kHz} \\ \text{Frequenzhub} & F\text{req}_1-F\text{req}_0 = & 80 \text{ kHz} \pm 5 \text{ kHz} \end{array}$$

3.1.3 Messung der Senderamplitude

Minimaler Wert für Sendeleistung Fußpunkt Funkmodulantenne: 6 DBM

Copyright (C) Siemens AG 2003 All Rights Reserved

.				Datum: 30.09.2003	<p>Prüfspezifikation für NOVUM Participant und Controller</p> <p>SIEMENS AG</p>	
				Name: Eckardt		
				Dst: SGS F PCC 3		
02	03AA0085	24.11.03	Ha			
Zust	Mitteilung	Datum	Name			
A24218-A71-A402-*-24					Blatt 7/16	

3.2 Statischer Empfangsbetrieb

Der Funkmodulempfänger wird eingeschaltet und die Ausgangswerte des Empfängers im Funkmodulprozessor mit 3V Referenzwert digitalisiert.

Frequenzwert	FM	Port-Eingang P6.0
Amplituden-Wert	RSSI	Port-Eingang P6.1

3.2.1 Stromverbrauch beim Empfangen: 23 ± 2 mA

3.2.2 Überprüfung der Empfängereigenschaften

Die Überprüfung des Empfangszweigs muß mit großer Sorgfalt durchgeführt werden. Die Erfahrung hat gezeigt, daß bei oberflächlicher Prüfung des Empfangspfades Fertigungsfehler leicht übersehen werden. Es ist vor allem sehr schwierig, Bestückungsfehler von reaktiven Bauteilen (Induktivitäten und HF-Kondensatoren) sicher auszuschließen. Sie können zu einer Degradation der Empfangseigenschaften führen, die erst bei kleiner Empfangsamplitude offenbar werden.

EEROM-Abgleichwerte: Abgleich-C=4 frqmit=1447 Grundschwelle 596

2

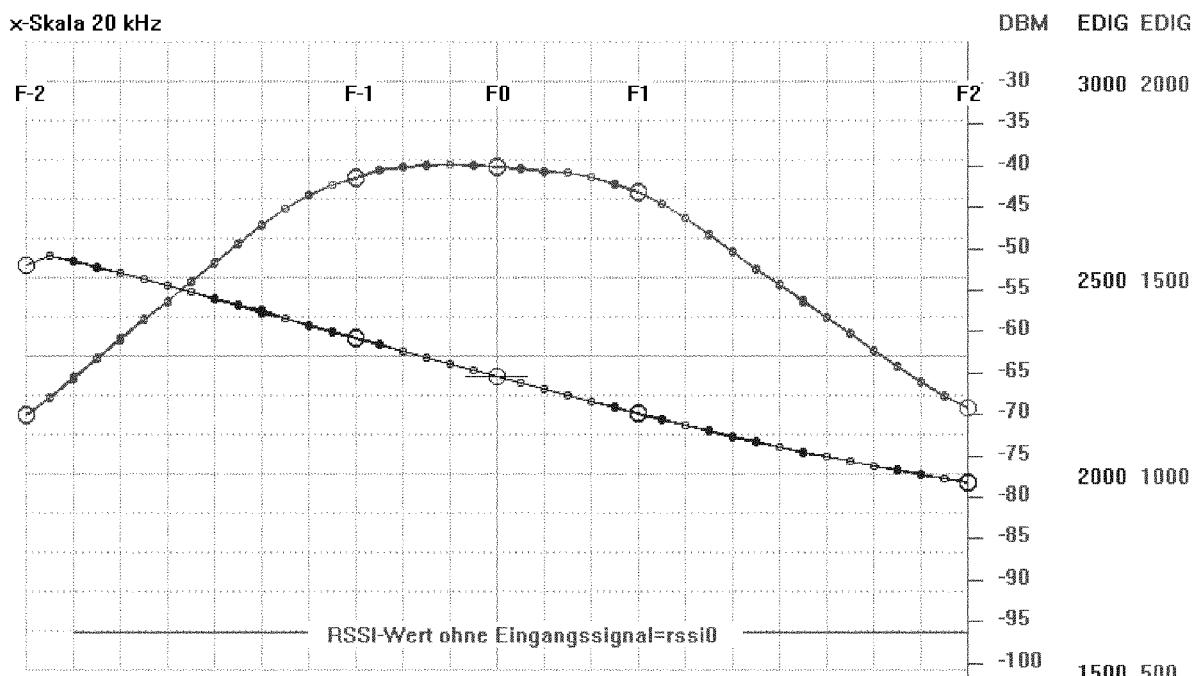


Bild 3: Selektions- und Diskriminatorkurve des Funkmodul-Empfängers

Copyright (C) Siemens AG 2003 All Rights Reserved

.				Datum: 30.09.2003	<p>Prüfspezifikation für NOVUM Participant und Controller</p> <p>SIEMENS AG</p>	
				Name: Eckardt		
				Dst: SGS F PCC 3		
02	03AA0085	24.11.03	Ha			
Zust	Mitteilung	Datum	Name			
A24218-A71-A402-*-24				Blatt 8/16		

Zur Überprüfung der ordnungsgemäßen Funktion werden FM- Wert und RSSI- Wert bei 5 Empfangsfrequenzen gemessen und anschließend geprüft, ob die im Folgenden aufgeführten Pflichtenheft- Forderungen eingehalten werden. Die Problematik wird zunächst anhand von Bild 3 erläutert. Es stellt die Messkurven des FM- und RSSI- Wertes dar mit folgenden Messparametern:

Eingangsleistung (Antennenfußpunkt) -40 DBM
 Frequenzbereich 913.870 ... 913.920 MHz, 10kHz Schritte

Die blaue Kurve zeigt den FM- Messwert in Einheiten des Funkmodul- AD- Wandlers (EDIG, blaue Skala am rechten Bildrand), die rote Kurve zeigt den RSSI- Wert in Einheiten EDIG und DBM. Die RSSI- Kurve stellt zugleich die Selektionskurve des Empfängers dar. Die rote Linie am unteren Bildrand entspricht dem RSSI- Wert bei fehlendem Eingangssignal. Am oberen Bildrand sind die im EEROM hinterlegten Abgleichswerte dargestellt:

Abgleich C	Digital- Wert des Abstimmungskondensators im Transceiver
frqmit	FM- Wert Mittenfrequenz F0 in Einheiten EDIG
	s. kurzer waagegerechter blauer Strich auf der FM- Kurve
rssi0	Grundschwelle (rote untere Linie)

Für die Prüfung wichtig sind nun folgende fünf Frequenzwerte, gekennzeichnet in der oberen Bildhälfte:

F0	Mittenfrequenz	913.895 MHz
F-1	Untergrenze Durchlassbereich	913.835 MHz
F1	Obergrenze Durchlassbereich	913.955 MHz
F-2	Untergrenze Sperrbereich	913.695 MHz
F2	Obergrenze Sperrbereich	914.095 MHz

Für die Funktionsprüfung zu messen sind demnach bei Eingangssignal -40 DBM

FM (F-1)	FM-Wert	Untergrenze Durchlassbereich	Einheit EDIG
FM (F0)	FM-Wert	Mittenfrequenz Durchlassbereich	Einheit EDIG
FM (F1)	FM-Wert	Obergrenze Durchlassbereich	Einheit EDIG
RSSI(F-2)	RSSI-Wert	Untergrenze Sperrbereich	Einheit EDIG
RSSI(F-1)	RSSI-Wert	Untergrenze Durchlassbereich	Einheit EDIG
RSSI(F0)	RSSI-Wert	Mittenfrequenz	Einheit EDIG
RSSI(F1)	RSSI-Wert	Obergrenze Durchlassbereich	Einheit EDIG
RSSI(F2)	RSSI-Wert	Obergrenze Sperrbereich	Einheit EDIG
RSSI0	RSSI-Wert bei fehlendem Eingangssignal		Einheit EDIG

Copyright (C) Siemens AG 2003 All Rights Reserved

.				Datum: 30.09.2003	Prüfspezifikation für NOVUM Participant und Controller	
				Name: Eckardt		
				Dst: SGS F PCC 3		
02	03AA0085	24.11.03	Ha	SIEMENS AG		
Zust	Mitteilung	Datum	Name			
				A24218-A71-A402-*-24		Blatt 9/16

Diese Messwerte müssen nun folgende Forderungen erfüllen:

3.2.2.1 Überprüfung der EEROM-Werte

Maximale Abweichung frqmit und Grundschwelle:

frqmit	2100	\pm 800	EDIG
frqmit - FM(F0)	<	\pm 50	EDIG
Grundschwelle	600	\pm 80	EDIG
Grundschwelle- RSSI0	<	\pm 50	EDIG

3.2.2.2 Überprüfung der FM- Diskriminatorsteilheit

$$FM(F1) - FM(F-1) = 200 \pm 30 \quad EDIG$$

3.2.2.3 Überprüfung Empfängerempfindlichkeit und Selektion

RSSI(F0) -	RSSI0	>	800	EDIG
RSSI(F1) -	RSSI(F0)	<	\pm 100	EDIG
RSSI(F-1) -	RSSI(F0)	<	\pm 100	EDIG
RSSI(F0) -	RSSI(F-2)	>	500	EDIG
RSSI(F0) -	RSSI(F2)	>	500	EDIG

3.3 Telegramm-Senden

An die beiden beschriebenen statischen Prüfungen für Senden und Empfangen schließen sich die dynamischen Prüfungen an.

Bei Prüfbetrieb Telegramm-Senden sendet das Funkmodul 32 8-Byte-Datentelegramme mit variablem Dateninhalt an das HF-Prüfgerät. Das HF-Prüfgerät liefert das empfangene Telegramm zurück zum PC. Die Prüfsoftware muss dabei das Physical - Layer - Applikationsprogramm RPLPut mit den erforderlichen Übergabeparametern aktivieren.

Zulässige Bitfehler beim Telegramm-Senden Funkmodul- HF-Prüfgerät : 0

Copyright (C) Siemens AG 2003 All Rights Reserved

.				Datum: 30.09.2003	<p style="text-align: center;">Prüfspezifikation für NOVUM Participant und Controller</p>	
				Name: Eckardt		
				Dst: SGS F PCC 3		
02	03AA0085	24.11.03	Ha	SIEMENS AG		
Zust	Mitteilung	Datum	Name			
				A24218-A71-A402-*-24		Blatt 10/16

3.4 Dynamischer Empfangsbetrieb

Bei Prüfbetrieb Telegramm-Empfangen sendet das HF-Prüfgerät 32 8-Byte-Datentelegramme mit variablem Dateninhalt an das HF-Prüfgerät. Das Funkmodul liefert das empfangene Telegramm zurück zum PC. Dieser Vorgang wird zweimal mit unterschiedlichen Sendepeginen des HF-Prüfgeräts durchgeführt, einmal mit minimalem Pegel an der Empfindlichkeitsgrenze des Funkmoduls, sowie mit einer um 10 DB erhöhten Sendeleistung. Die Prüfsoftware muss dabei das Physical - Layer - Applikationsprogramm RPLGet mit den erforderlichen Übergabeparametern aktivieren.

Sendepegel	-95 dBm (Antennenfußpunkt)	max. 10 Bitfehler zulässig
Sendepegel	-85 dBm (Antennenfußpunkt)	kein Bitfehler zulässig
Empfangsparameter:	Empfangsschwelle	0
	Bytezahl	8
	Timeout- Zeit	300000 = ca.300 ms
	Betriebsmode	0

3.5 Überprüfung des Antennenabgleichs

3.5.1 Mit dem Networkanalyser (stichprobenmäßig)

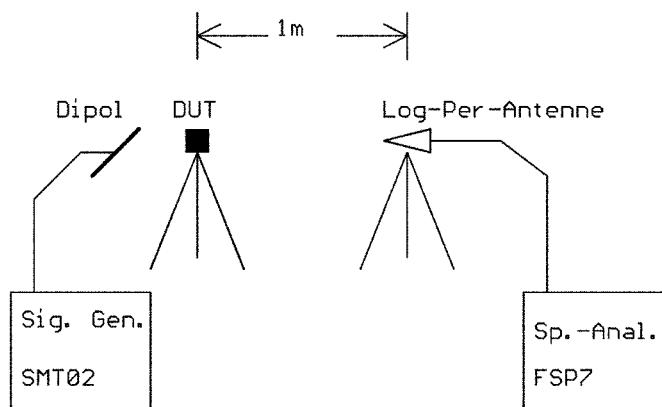
Die korrekte Frequenz-Abstimmung der Antenne ist wesentliche Voraussetzung für die Empfänger-Empfindlichkeit und die korrekte Sende-Abstrahlung.

Die Abgleichkontrolle erfolgt mit einem Netzwerk- Analysator im Messmode

S11-Messung – LOG-MAGNITUDE

Der Netzwerk- Analysator wird über ein Koaxialkabel bei abgeschaltetem Funkmodul mit dem Funkmodul-Antennenanschluß verbunden. Es ergibt sich eine charakteristische Anzeigespitze nach unten, deren Mitte bei **914 MHz** liegen muß.

Zulässige Abweichung der Netzwerk-Analysator- Anzeigespitze: -5 bis +25 MHz
Minimale Reflexionsdämpfung 7 DB


Copyright (C) Siemens AG 2003 All Rights Reserved

.				Datum: 30.09.2003	<p>Prüfspezifikation für NOVUM Participant und Controller</p>	
				Name: Eckardt		
				Dst: SGS F PCC 3		
02	03AA0085	24.11.03	Ha	SIEMENS AG		
Zust	Mitteilung	Datum	Name			
A24218-A71-A402-* -24					Blatt	11/16

3.5.2 Mit dem Spektrumanalyser (jedes Funkmodul wird geprüft)

Die Skizze zeigt den Messaufbau. Die Strecke kann (muss nicht) zuerst mit einem 0dBm-Signal eines Signalgenerators kalibriert. Dann wird die Antenne durch das batteriebetriebene Modul ersetzt, das einen unmodulierten Dauerträger sendet. Das Senden eines unmodulierten Dauerträger wird durch das Aufrufen des N-Befehls im Prüfprogramm-Tool ausgelöst (Antenne tunen).

Alternativ zum Spektrumanalyser kann man einen Powermeter, einen Stabilock von Schlumberger oder im allgemeinen einen Universal Receiver nehmen (Mindest-Empfindlichkeit -50 dBm).

Innerhalb von ± 3 dB sollte die Anzeige im Messgerät liegen. Die Soll-Größe der Sendeleistung kann absolut stimmen, allerdings nachdem man kalibriert hat, oder der einfachheitshalber nur relativ (relativ zum Muster). In beiden Fällen (absolut oder relativ) gelten die Toleranzen von nur ± 3 dB.

.				Datum: 30.09.2003	<p>Prüfspezifikation für NOVUM Participant und Controller</p> <p>SIEMENS AG</p>
				Name: Eckardt	
				Dst: SGS F PCC 3	
02	03AA0085	24.11.03	Ha		
Zust	Mitteilung	Datum	Name		
A24218-A71-A402-*-24					Blatt 12/16

4 Flasch Memory Parameter

4.1 Radio Controller \$1000 to \$10FF Flash memory Bereich

Address	Identifier	Description	Preset Value
\$1000	SNR1	Novum serial number: 1st Byte	See Note 1
\$1001	SNR2	Novum serial number: 2nd Byte	See Note 1
\$1002	SNR3	Novum serial: 3rd Byte	See Note 1
\$1003	SNR4	Novum serial: 4th Byte	See Note 1
\$1004	HWVersion	Hardware Version	See Note 2
\$1005	SWVersion	Software Version	See Note 3
\$1006	SystemId	System ID (LSB)	LSB, See Note 4
\$1007		System ID (MSB)	MSB, See Note 4
\$1008	Subscriber	Participant number in the system	\$01
\$1009	Channel	Frequency change table	\$00
\$100A	HelloTime	Integrity checking period (LSB)	\$00
\$100B		Integrity checking period (MSB)	\$10
\$100C	Threshold	Threshold for reception	\$0A
\$100D	BeginChannel	Channel in which a participant begins searching for its controller	\$00
\$100E	- TestModeEnable	Activation of the test	\$00
\$100F			
\$1010	TestModeL	Test activation (if TestModeEnable set)	\$00
\$1011	TestModeH	Test activation (if TestModeEnable set)	\$00
\$1012	- XMALRSSI	PL: X-times RSSI threshold exceeded	Unused
\$1013			
\$1014	TimeOut	DLL: Time out (LSB)	\$8C
\$1015		DLL: Time out (MSB)	\$0A
\$1016	- EnableDC	Duty cycle regulation enable	\$00
\$1017			
\$1018	- Common_Reserve	Reserved for future set-up data, which is common to RC and RPs	Unused
\$1021			
\$1022	- ParticipantMap	256 Flags show whether each participant in checked for integrity	\$00
\$1041			
\$1042	- Partner	Buffer used for partner's stored words	\$00
\$1045			
\$1046	- UnidirList	List of unidirectional participants	\$00
\$1081			
\$1082	ConfigThreshold	Threshold for reception in +3dB Configuration state	\$14
\$1083	- Ctrl_Reserve	Reserved for future controller set-up data	Unused
\$108C			
\$108D	- Calib_Reserve	Reserved for future calibration data	Unused
\$10F1			
\$10F2	- BATTERY_REF_LO_W	PL: Reference value low threshold for battery measurement	Set during adjustment
\$10F3			
\$10F4	- BATTERY_REF_HIG_H	PL: Reference value high threshold for battery measurement	Set during adjustment
\$10F5			
\$10F6	- TX_XTAL_CSTUNE	PL: Calibration value for transmission	Set during adjustment
\$10F7			

Copyright (C) Siemens AG 2003 All Rights Reserved

.				Datum: 30.09.2003	Prüfspezifikation für NOVUM Participant und Controller	
				Name: Eckardt		
				Dst: SGS F PCC 3		
02	03AA0085	24.11.03	Ha	SIEMENS AG		
Zust	Mitteilung	Datum	Name			
A24218-A71-A402-*-24						Blatt 13/16

\$10F8	- RX_XTAL_CSTUNE	PL: Calibration value for reception	Set during adjustment
\$10F9	- ADCFRQMIT	PL: Calibration value for data slicer	Set during adjustment
\$10FA	- RSSIOFFSET	PL: Basic noise level + x	Set during adjustment
\$10FD	- Synchwort	PL: Synchronisation word	Set during adjustment
\$10FF			Set during adjustment

4.2 Radio Participant \$1000 to \$10FF Flash memory Bereich

Address	Identifier	Description	Preset Value
\$1000	SNR1	Novum serial number: 1st Byte	See Note 1
\$1001	SNR2	Novum serial number: 2nd Byte	See Note 1
\$1002	SNR3	Novum serial: 3rd Byte	See Note 1
\$1003	SNR4	Novum serial: 4th Byte	See Note 1
\$1004	HWVersion	Hardware Version	See Note 2
\$1005	SWVersion	Software Version	See Note 3
\$1006	SystemId	System ID (LSB)	\$00
\$1007		System ID (MSB)	\$00
\$1008	Subscriber	Participant number in the system	\$00
\$1009	Channel	Frequency change table	\$00
\$100A	HelloTime	Integrity checking period (LSB)	\$00
\$100B		Integrity checking period (MSB)	\$10
\$100C	Threshold	Threshold for reception	\$0A
\$100D	BeginChannel	Channel in which a participant begins searching for its controller	\$00
\$100E	- TestModeEnable	Activation of the test	\$00
\$100F			
\$1010	TestModeL	Test activation (if TestModeEnable set)	\$00
\$1011	TestModeH	Test activation (if TestModeEnable set)	\$00
\$1012	- XMALRSSI	PL: X-times RSSI threshold exceeded	Unused
\$1013			
\$1014	TimeOut	DLL: Time out (LSB)	\$8C
\$1015		DLL: Time out (MSB)	\$0A
\$1016	- EnableDC	Duty cycle regulation enable	\$00
\$1017			
\$1018	- Common_Reserve	Reserved for future set-up data, which is common to RC and RPs	Unused
\$1021			
\$1022	DeadTime1	Dead time for In1	\$00
\$1023	DeadTime2	Dead time for In2	\$00
\$1024	ApplFlags	Flags: b0: In1 active, b1: In2 active	\$00
\$1025	- Part_Reserve	Reserved for future participant set-up data	Unused
\$108C			
\$108D	- Calib_Reserve	Reserved for future calibration data	Unused
\$10F1			
\$10F2	- BATTERY_REF_LOW	PL: Reference value low threshold for battery measurement	Set during adjustment
\$10F3			
\$10F4	- BATTERY_REF_HIGH	PL: Reference value high threshold for battery measurement	Set during adjustment
\$10F5			
\$10F6	- TX_XTAL_CSTUNE	PL: Calibration value for transmission	Set during ad-

Copyright (C) Siemens AG 2003 All Rights Reserved

.				Datum: 30.09.2003	Prüfspezifikation für NOVUM Participant und Controller	
				Name: Eckardt		
				Dst: SGS F PCC 3		
02	03AA0085	24.11.03	Ha	SIEMENS AG		
Zust	Mitteilung	Datum	Name			
				A24218-A71-A402-*-24		Blatt 14/16

\$10F7			justment
\$10F8 - RX_XTAL_CSTUNE	PL: Calibration value for reception		Set during adjustment
\$10F9			Set during adjustment
\$10FA - ADCFRQMIT	PL: Calibration value for data slicer		Set during adjustment
\$10FB			Set during adjustment
\$10FC - RSSIOFFSET	PL: Basic noise level + x		Set during adjustment
\$10FD			Set during adjustment
\$10FE - Synchwort	PL: Synchronisation word		Set during adjustment
\$10FF			

Note 1

The serial number encodes the time, date and location of manufacture and is constructed as follows....

Novum Serial Number															
SNR1				SNR2				SNR3				SNR4			
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
L	Y			D				S							

Assuming the date is given by yyyy/MM/dd and the time is given by hh:mm:ss then...

Location:
served for other locations

L = 0 for development locations, 1 for Mendrisio, 2 and 3 are currently re-

Year:

Y = yyyy - 2002

Day of year:

D = 31*MM + dd

Seconds:

S = 3600*hh + 60*mm + ss

Note 2

The hardware version should be the same number as derived from CADIM and stamped on the PCB (FAVO = \$01)

Note 3

The software version should be the same number as the ES, derived from CADIM, and stuck onto component D1 (ES = \$01).

Note 4

A 16-bit running number that must not have the value 0. After 65535 is reached the number should continue with 1.

Copyright (C) Siemens AG 2003 All Rights Reserved

.				Datum: 30.09.2003	Prüfspezifikation für NOVUM Participant und Controller	
				Name: Eckardt		
				Dst: SGS F PCC 3		
02	03AA0085	24.11.03	Ha	SIEMENS AG		
Zust	Mitteilung	Datum	Name			
				A24218-A71-A402-*-24		Blatt 15/16

5 Benötigte Software

- 5.1 P24218-P41-A1
Programmiertool Abgleichsoftware
- 5.2 P24218-P46-A1
Abgleichsoftware
- 5.3 P24218-P42-A1
Programmiertool Applikationssoftware

Die Applikationssoftware P24218-P44-A1 und P24218-P45-A1 ist den Stücklisten zugeordnet.

Die Programme sind in CADIM vorhanden.

Die Programmdateien müssen von dort mit der letzten Ausgabe und FK230 (bis Serie) und FK330 (ab Serie) heruntergeladen werden.

6 Überprüfung der Applikationssoftware

6.1 Participant

Nach der Fertigstellung ist der Participant einer Funktionskontrolle zu unterziehen. Dazu wird versucht ihm an einer Zelle (Radio Controller) anzumelden, der nicht im Konfig.-Zustand ist. Die Debug –Ausgabe des Radio Controllers wird bewertet.

6.2 Radio Controller

Controller starten und einen Anmeldeversuch eines Participants durchführen. Der Radio Controller darf nicht im Konfig.-Zustand sein. Die Ablehnung des Melders gilt als erfolgreiche Prüfung (mit Debug-Ausgabe überprüfen).

.				Datum: 30.09.2003	<p>Prüfspezifikation für NOVUM Participant und Controller</p>	
				Name: Eckardt		
				Dst: SGS F PCC 3		
02	03AA0085	24.11.03	Ha	SIEMENS AG		
Zust	Mitteilung	Datum	Name			
				A24218-A71-A402-*-24		Blatt 16/16