

A RADIO TEST REPORT

FOR

HAMILTON & PALMER INSTALLATIONS Ltd

ON

3D TAG DRIVER ID CHALLENGE AND RESPONSE SYSTEM

DOCUMENT NO. TRA-009740-W-NA-2

TRaC Wireless Test Report: TRA-009740-W-NA-2

Applicant: Hamilton & Palmer Installations Ltd

Apparatus: 3D TAG

Specification(s) : CFR47 Part 15 & RSS-210

Purpose of Test : Certification

FCCID : RW4-TAG1

Certification Number : 10877A-TAG1

Authorised by

: Radio Product Manager

John Charters

Issue Date :11th December 2013

Authorised Copy Number : *PDF*

Contents

4
4
5
5
5
6
7
7
8
8
10
10
11
12
14
16
20
26
27
28

Section 1: Introduction

1.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on samples submitted to the Laboratory.

Test performed by: TRaC Global []

Unit E

South Orbital Trading Park

Hedon Road Hull, HU9 1NJ. United Kingdom.

Telephone: +44 (0) 1482 801801 Fax: +44 (0) 1482 801806

TRaC Global [X]

Unit 1

Pendle Place Skelmersdale

West Lancashire, WN8 9PN

United Kingdom

Telephone: +44 (0) 1695 556666 Fax: +44 (0) 1695 577077

Email: test@tracglobal.com
Web site: http://www.tracglobal.com

Tests performed by: D. Winstanley

Report author: D. Winstanley

This report must not be reproduced except in full without prior written permission from TRaC Global.

1.2 Tests Requested By

This testing in this report was requested by :

Hamilton & Palmer Installations Ltd F1 Chaucer Business Park Watery Lane Kemsing Sevenoaks Kent TN15 6PL

1.3 Manufacturer

As Above

1.4 Apparatus Assessed

The following apparatus was assessed between 13th – 19th December 2012

3D TAG Driver ID Challenge and Response System

The 3D TAG is 433 MHZ transmitter that is activated by a 125 kHz transmitter, FCCID covered under test report TRA-009740-W-US-1

1.5 Test Result Summary

Full details of test results are contained within Appendix A. The following table summarises the results of the assessment.

The statements relating to compliance with the standards below apply ONLY as qualified in the notes and deviations stated in sections 1.6 to 1.7 of this test report.

Full details of test results are contained within Appendix A. The following table summarises the results of the assessment.

	Reg	gulation	Measurement		
Test Type	RSS-210 Issue 8 December 2010	Title 47 of the CFR: Part 15 Subpart (c)	standard	Result	
Spurious Emissions Radiated <1000MHz	A1.1.2 RSS-Gen 7.2.5	15.231(b) & 15.209	ANSI C63.10:2009	Pass	
Spurious Emissions Radiated >1000MHz	A1.1.2 RSS-Gen 7.2.5	15.231(b) & 15.209	ANSI C63.10:2009	Pass	
AC Power conducted emissions	RSS-GEN Issue 3 Annex 7, 7.2.4	15.207	ANSI C63.10:2009	N/A	
Transmission times	A.1.1.1	15.231(a)	ANSI C63.10:2009	Pass	
Intentional Emission Frequency	A1.1.2 RSS-Gen 7.2.5	15.231(b)	ANSI C63.10:2009	Pass	
Intentional Emission Field Strength	A1.1.2 RSS-Gen 7.2.5	15.231(b)	ANSI C63.10:2009	Pass	
Intentional Emission Band Occupancy	A1.1.3 RSS-Gen 4.6.1	15.215	ANSI C63.10:2009	Pass	
Intentional Emission ERP (mW)	N/A	N/A	ANSI C63.10:2009	N/A	
Unintentional Radiated Spurious Emissions	RSS-GEN Issue 3 7.2.2(c)	15.109	ANSI C63.10:2009	N/A	
Antenna Arrangements Integral:	RSS-Gen 7.1.2	15.203	-	Pass	
Antenna Arrangements External Connector	RSS-Gen 7.1.2	15.204	-	N/A	
Restricted Bands	RSS-Gen 7.2.2	15.205	-	Pass	
Maximum Frequency of Search	RSS-Gen 4.3	15.33	-	Pass	
Extrapolation Factor	RSS-Gen 7.2.7	15.31(f)	-	Pass	

Abbreviations used in the above table:

ANSI C 63.10:2009 is outside the scope of the laboratories UKAS accreditation.

CFR : Code of Federal Regulations ANSI : American National Standards Institution REFE : Radiated Electric Field Emissions PLCE : Power Line Conducted Emissions

1.6 Notes Relating To The Assessment

With regard to this assessment, the following points should be noted:

The results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 1.7 of this test report (Deviations from Test Standards).

For emissions testing, throughout this test report, "Pass" indicates that the results for the sample as tested were below the specified limit (refer also to Section 2, Measurement Uncertainty).

Where relevant, the apparatus was only assessed using the monitoring methods and susceptibility criteria defined in this report.

All testing with the exception of testing at the Open Area Test Site was performed under the following environmental conditions:

Temperature : 17 to 23 °C Humidity : 45 to 75 % Barometric Pressure : 86 to 106 kPa

All dates used in this report are in the format dd/mm/yy.

This assessment has been performed in accordance with the requirements of ISO/IEC 17025.

1.7 Deviations from Test Standards

There were no deviations from the standards tested to.

Section 2:

Measurement Uncertainty

2.1 Measurement Uncertainty Values

For the test data recorded in accordance with note (iii) of Section 2.1 the following measurement uncertainty was calculated:

Radio Testing – General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95% confidence where no required test level exists.

[1] Adjacent Channel Power

Uncertainty in test result = 1.86dB

[2] Carrier Power

Uncertainty in test result (Power Meter) = **1.08dB**Uncertainty in test result (Spectrum Analyser) = **2.48dB**

[3] Effective Radiated Power

Uncertainty in test result = 4.71dB

[4] Spurious Emissions

Uncertainty in test result = 4.75dB

[5] Maximum frequency error

Uncertainty in test result (Power Meter) = **0.113ppm**Uncertainty in test result (Spectrum Analyser) = **0.265ppm**

[6] Radiated Emissions, field strength OATS 14kHz-18GHz Electric Field

```
Uncertainty in test result (14kHz - 30MHz) = 4.8dB, Uncertainty in test result (30MHz - 1GHz) = 4.6dB, Uncertainty in test result (1GHz - 18GHz) = 4.7dB
```

[7] Frequency deviation

Uncertainty in test result = 3.2%

[8] Magnetic Field Emissions

Uncertainty in test result = 2.3dB

[9] Conducted Spurious

```
Uncertainty in test result – Up to 8.1GHz = 3.31dB
Uncertainty in test result – 8.1GHz – 15.3GHz = 4.43dB
Uncertainty in test result – 15.3GHz – 21GHz = 5.34dB
Uncertainty in test result – Up to 26GHz = 3.14dB
```

[10] Channel Bandwidth

Uncertainty in test result = 15.5%

[11] Amplitude and Time Measurement - Oscilloscope

Uncertainty in overall test level = 2.1dB, Uncertainty in time measurement = 0.59%, Uncertainty in Amplitude measurement = 0.82%

[12] Power Line Conduction

Uncertainty in test result = 3.4dB

[13] Spectrum Mask Measurements

Uncertainty in test result = 2.59% (frequency)
Uncertainty in test result = 1.32dB (amplitude)

[14] Adjacent Sub Band Selectivity

Uncertainty in test result = 1.24dB

[15] Receiver Blocking - Listen Mode, Radiated

Uncertainty in test result = 3.42dB

[16] Receiver Blocking - Talk Mode, Radiated

Uncertainty in test result = 3.36dB

[17] Receiver Blocking - Talk Mode, Conducted

Uncertainty in test result = 1.24dB

[18] Receiver Threshold

Uncertainty in test result = 3.23dB

[19] Transmission Time Measurement

Uncertainty in test result = 7.98%

Section 3: Modifications

3.1 Modifications Performed During Assessment

No modifications were performed during the assessment

Appendix A:

Formal Emission Test Results

Abbreviations used in the tables in this appendix:

Spec : Specification ALSR : Absorber Lined Screened Room

Freq

: Frequency

Mod : Modification OATS : Open Area Test Site ATS : Alternative Test Site

EUT : Equipment Under Test
SE : Support Equipment Ref : Reference

L : Live Power Line
N : Neutral Power Line MD : Measurement Distance

E : Earth Power Line SD : Spec Distance

Pk: Peak DetectorPol: PolarisationQP: Quasi-Peak DetectorH: Horizontal PolarisationAv: Average DetectorV: Vertical Polarisation

CDN : Coupling & decoupling network

A1 Transmitter Intentional Emission Radiated

Test Details:			
Regulation	CFR47 Part 15.231, RSS-210 Annex 1, A1.1		
Measurement standard	ANSI C63.10:2009		
EUT sample number	S08		
Modification state	0		
SE in test environment	None		
SE isolated from EUT	None		
EUT set up	Refer to Appendix C		
Temperature	21°C		
Photographs (Appendix F)	1 & 2		

FREQ. (MHz)	MEASUREMENT Rx. READING (dBµV)	CABLE LOSS (dB)	ANT FACTOR (dB/m)	PRE AMP (dB)	FIELD STRENGTH (dBµV/m)	FIELD STRENGTH (mV/m)
433.99	54.8	2.5	16.3	N/A	73.6	4.78
	Limit value @ fc			10.999	mV/m @ 3m	
			f lo	wer	f h	nigher
Ban	d occupancy @ -20	dBc	433.947	564 MHz	434.00	1250 MHZ
				53.	685 kHz	
			f lo	wer	f h	nigher
Ва	and occupancy @ 99	9%	433.899038 MHz 434.038461		8461 MHz	
				139	.423 kHz	
Limit		0.25% of	the centre	Frequency =	1082.5 kHz	
Cause Of Transmission		Length Of T	ransmissio	n Requ	uirement	
Transmitter on time during manual trigger		30.86	65 ms		On release utton #	
Transmitter on time during automatic trigger		102.8	38 ms		5 seconds ctivation	

^{*} hold over time of upto 5 seconds is permitted.

Notes:

- 1 Results quoted are extrapolated as indicated
- 2 Receiver detector @ fc = Quasi Peak 120 kHz bandwidth
- 3 When battery powered the EUT was powered with new batteries

Test Method:

- 1 As per Radio Noise Emissions, ANSI C63.10:2009
- 2 Measuring distances 3m
- 3 EUT 0.8 metre above ground plane
- 4 Emissions maximised by rotation of EUT, on an automatic turntable. Raising and lowering the receiver antenna between 1m & 4m. Horizontal and vertical polarisations, of the receive antenna. EUT orientation in three orthagonal planes.

Maximum results recorded

A2 Radiated Electric Field Emissions

Preliminary scans were performed using a peak detector with the RBW = 100 kHz. The radiated electric filed emission test applies to all spurious emissions and harmonics emissions. The EUT was set to transmit as required.

The following test site was used for fir	nal measurements	as specified by the stand	dard tested to:
3m open area test site :		3m alternative test site :	X

The effect of the EUT set-up on the measurements is summarised in note (c) below.

Test Details:		
Regulation	Part 15.209 & 15.231 (b) and RSS-210 Annex 1 A1.1	
Measurement standard	ANSI C63.10:2009	
Frequency range	9kHz – 1000MHz	
EUT sample number	S08	
Modification state	0	
SE in test environment	None	
SE isolated from EUT	None	
EUT set up	Refer to Appendix C	
Temperature	21°C	
Photographs (Appendix F)	1 & 2	

The worst case radiated emission measurements for spurious emissions and harmonics are listed below:

Ref No.	FREQ. (MHz)	MEAS Rx (dBμV)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	FIELD ST'GH (dBµV/m)	FIELD ST'GH (μV/m)	LIMIT (μV/m)
1	867.96	14.3	3.4	20.6	N/A	38.3	82.22	1250

Limit level of 1250 μ V/m as per 15.231 (b) and RSS-201 Annex 1, A1.1, Table 1

No further significant emissions were detected within 20 dB of the limit.

Notes:

- Any testing performed below 30 MHz was performed using a magnetic loop antenna in accordance with ANSI C63.10: section 4.5, Table 1 For emissions below 30MHz the cable losses are assumed to be negligible.
- In accordance with 15.35(b), above 1 GHz, emissions measured using a peak detector shall not exceed a level 20 dB above the average limit.
- Testing was performed with the EUT orientated in three orthogonal planes and the maximum emissions level recorded. In addition, the EUT antenna was varied within its range of motion in order to maximise emissions.
- For Frequencies below 1 GHz, RBW= 120 kHz, testing was performed with CISPR16 compliant test receiver with QP detector. Above 1 GHz tests were performed using a spectrum analyser using the following settings:

Peak RBW= 1MHz, $VBW \ge RBW$ Average RBW= 1MHz, $VBW \ge RBW$

The upper and lower frequency of the measurement range was decided according to 47 CFR Part 15 Clause 15.33(a) and 15.33(a)(1).

Radiated emission limits 47 CFR Part 15: Clause 15,209 for all emissions:

Frequency of emission (MHz)	Field strength μV/m	Measurement Distance m	Field strength dBμV/m
0.009-0.490	2400/F(kHz)	300	67.6/F (kHz)
0.490-1.705	24000/F(kHz)	30	87.6/F (kHz
1.705-30	30	30	29.5
30-88	100	3	40.0
88-216	150	3	43.5
216-960	200	3	46.0
Above 960	500	3	54.0

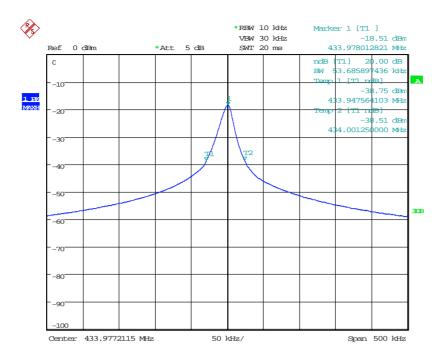
(a) Where results have been measured at one distance, and a signal level displayed at another, the results have been extrapolated using the following formula:

Extrapolation (dB) =
$$20 \log_{10} \left(\frac{\text{measurement distance}}{\text{specification distance}} \right)$$

- (b) The levels may have been rounded for display purposes.
- (c) The following table summarises the effect of the EUT operating mode, internal configuration and arrangement of cables / samples on the measured emission levels :

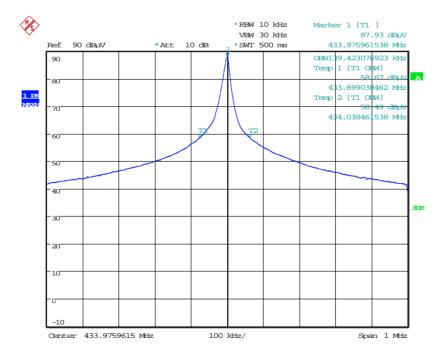
	See (i)	See (ii)	See (iii)	See (iv)
Effect of EUT operating mode on emission levels	✓			
Effect of EUT internal configuration on emission levels	✓			
Effect of Position of EUT cables & samples on emission levels	✓			

- (i) Parameter defined by standard and / or single possible, refer to Appendix D
- (ii) Parameter defined by client and / or single possible, refer to Appendix D
- (iii) Parameter had a negligible effect on emission levels, refer to Appendix D
- (iv) Worst case determined by initial measurement, refer to Appendix D

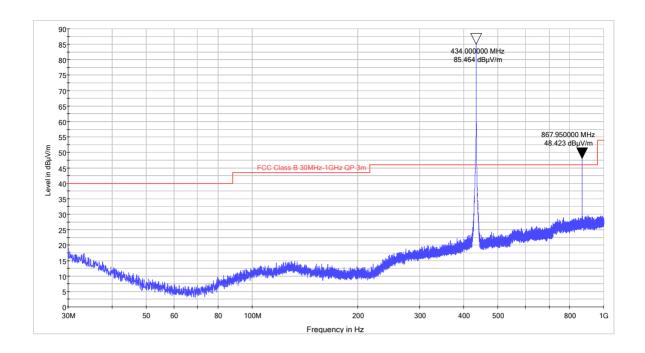

Appendix B:

Supporting Graphical Data

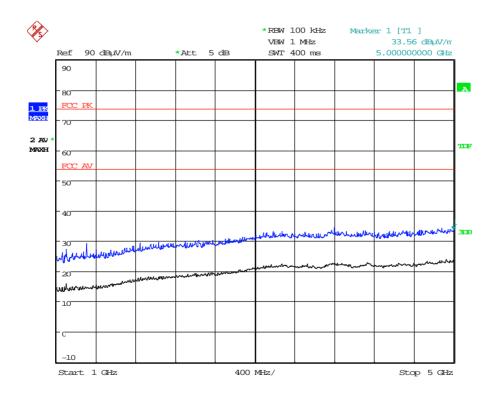
This appendix contains graphical data obtained during testing.


Notes:

- (a) The radiated electric field emissions and conducted emissions graphical data in this appendix is preview data. For details of formal results, refer to Appendix A and Appendix B.
- (b) The time and date on the plots do not necessarily equate to the time of the test.
- (c) Where relevant, on power line conducted emission plots, the limit displayed is the average limit, which is stricter than the quasi peak limit.
- (d) Appendix C details the numbering system used to identify the sample and its modification state.
- (e) The plots presented in this appendix may not be a complete record of the measurements performed, but are a representative sample, relative to the final assessment.

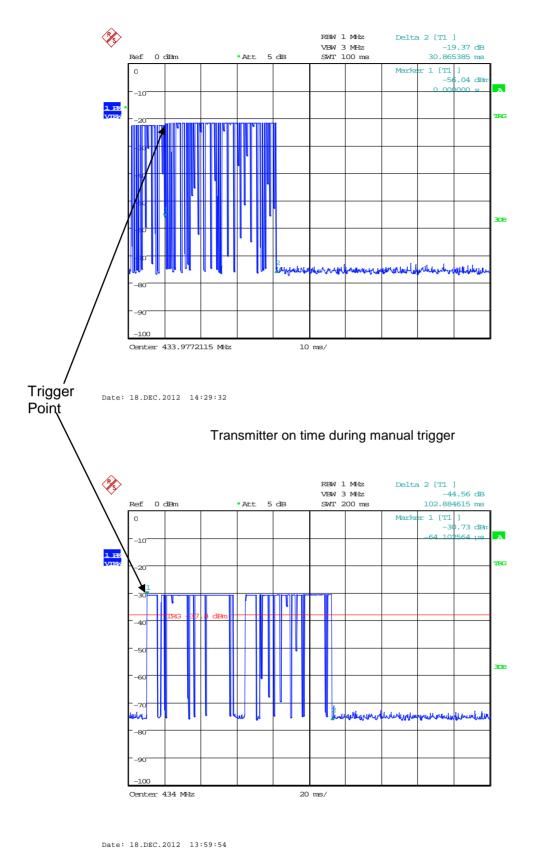

Date: 18.DEC.2012 14:17:52

20dB Bandwidth



Date: 11.JAN.2013 09:42:06

99% Bandwidth



Radiated spurious emissions 30 MHz to 1 GHz

Date: 13.DEC.2012 13:14:44

Radiated spurious emissions 1 GHz to 4 GHz

Date: 18.DEC.2012 13:59:54

Transmitter on time during automatic trigger

Appendix C:

Additional Test and Sample Details

This appendix contains details of:

- 1. The samples submitted for testing.
- 2. Details of EUT operating mode(s)
- 3. Details of EUT configuration(s) (see below).
- 4. EUT arrangement (see below).

Throughout testing, the following numbering system is used to identify the sample and it's modification state:

Sample No: Sxx Mod w

where:

xx = sample number eg. S01 w = modification number eg. Mod 2

The following terminology is used throughout the test report:

Support Equipment (SE) is any additional equipment required to exercise the EUT in the applicable operating mode. Where relevant SE is divided into two categories:

SE in test environment: The SE is positioned in the test environment and is not isolated from the EUT (e.g. on the table top during REFE testing).

SE isolated from the EUT: The SE is isolated via filtering from the EUT. (e.g. equipment placed externally to the ALSR during REFE testing).

EUT configuration refers to the internal set-up of the EUT. It may include for example:

Positioning of cards in a chassis. Setting of any internal switches. Circuit board jumper settings. Alternative internal power supplies.

Where no change in EUT configuration is **possible**, the configuration is described as "single possible configuration".

EUT arrangement refers to the termination of EUT ports / connection of support equipment, and where relevant, the relative positioning of samples (EUT and SE) in the test environment.

For further details of the test procedures and general test set ups used during testing please refer to the related document "EMC Test Methods - An Overview", which can be supplied by TRaC Global upon request.

C1) Test samples

The following samples of the apparatus were submitted by the client for testing:

Sample No.	Description	Identification
S08	Driver Tag	None

The following samples of apparatus were submitted by the client as host, support or drive equipment (auxiliary equipment):

Sample No.	Description	Identification

The following samples of apparatus were supplied by TRaC Global as support or drive equipment (auxiliary equipment):

Identification	Description

C2) EUT Operating Mode During Testing.

During testing, the EUT was exercised as described in the following tables :

Test	Description of Operating Mode:
All tests detailed in this report	EUT is transmitting permanently or triggered as required

C3) EUT Configuration Information.

The EUT was submitted for testing in one single possible configuration.

C4) List of EUT Ports

The tables below describe the termination of EUT ports:

Sample : S08 Tests : All Tests

Port	Description of Cable Attached	Cable length	Equipment Connected
No Ports			

^{*} Only connected during setup.

C5 Details of Equipment Used

For Measurements:

TRAC Ref	Туре	Description	Manufacturer	Cal Date.	Period	Cal Due.
UH004	ESVS10	Receiver	R&S	12/01/2012	12	12/01/2013
UH093	CBL6112B	Bilog	Chase	20/06/2011	24	20/06/2013
UH281	FSU46	Spectrum Analyser	R&S	09/02/2012	12	09/02/2013
L138	3115	1-18GHz Horn	EMCO	08/11/2011	24	08/11/2013
L572	8449B	Pre Amp	Agilent	12/12/2012	24	12/12/2014

Appendix D:	Additional Information							
No additional information is included within this test report.								

Appendix E:

Calculation of the duty cycle correction factor

Using a spectrum analyser in zero span mode, centred on the fundamental carrier frequency with a RBW of 1MHz and a video Bandwidth of 1MHz the sweep time was set accordingly to capture the pulse train. The transmit pulsewidths and period was measured. A plots of the pulse train is contained in Appendix B of this test report.

If the pulse train was less than 100 ms, including blanking intervals, the duty cycle was calculated by averaging the sum of the pulsewidths over one complete pulse train. However if the pulse train exceeds 100ms then the duty cycle was calculated by averaging the sum of the pulsewidths over the 100ms width with the highest average value. (The duty cycle is the value of the sum of the pulse widths in one period (or 100ms), divided by the length of the period (or 100ms). The duty cycle correction factor was then expressed in dB and the peak emissions adjusted accordingly to give an average value of the emission.

Correction factor $dB = 20 \times (Log_{10} \text{ Calculated Duty Cycle})$

Therefore the calculated duty cycle was determined:

The pulse train period was greater than >100ms and in as shown from the plots in contained in appendix B of this test report.

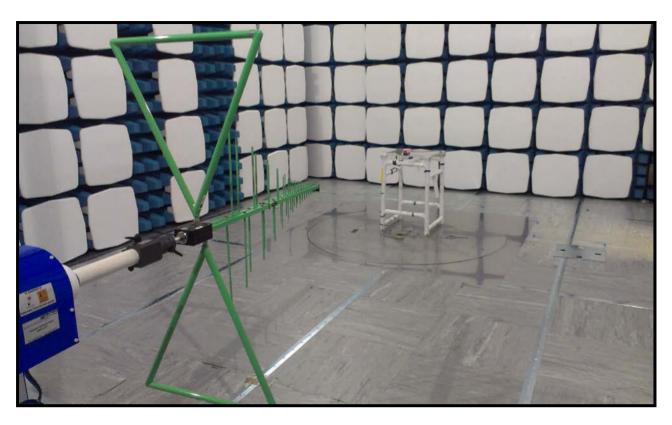
Duty cycle = the sum of the highest average value pulsewidths over 100ms

e.g

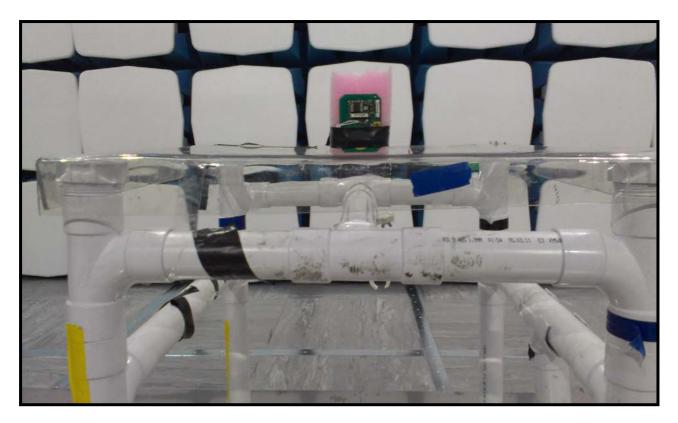
$$=\frac{7.459ms}{100ms}=0.07459$$

0.07459 or 7.459%

Correction factor (dB) = $20 \times (Log_{10} \ 0.07459) = -22.54dB$


Duty cycle correction may not be applicable / required by the device covered in this report. The correction factor above is for example of how the correction is calculated. Any applicable duty cycle used will be recorded in the relevant results sections of this report.

Appendix F:


Photographs and Figures

The following photographs were taken of the test samples:

- Radiated electric field emissions arrangement: Overview. Radiated emissions: Close up 1.
- 2.

Photograph 1

Photograph 2

