

Test of GATE-1100-A

This covers the following Product Series:

GATE-1100, XTEN-1100, XTEN-1100-W, XBRG-1100
To: FCC 47 CFR Part 15.407 & IC RSS-210

Test Report Serial No.: TRIL04-U3 Rev A

TEST REPORT
FROM
MiCOM Labs

Test of GATE-1100-A
This covers the following Product Series:
GATE-1100, XTEN-1100, XTEN-1100-W, XBRG-1100
To FCC 47 CFR Part 15.407 & IC RSS-210

Test Report Serial No.: TRIL04-U3 Rev A

Note: this report contains data with regard to the 5,150 to 5,250 MHz band for Trilliant Connector Wireless LAN Access Point. 5.8 GHz test data is reported in MiCOM Labs test report TRIL04-U1.

This report supersedes None

Applicant: Trilliant Networks, Inc
1100 Island Drive
Redwood City
CA 94065

Product Function: SecureMesh™ Wireless WAN 5 GHz
Mesh Backhaul

Copy No: pdf Issue Date: 5th June 2012

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.
440 Boulder Court, Suite 200
Pleasanton, CA 94566 USA
Phone: +1 (925) 462-0304
Fax: +1 (925) 462-0306
www.micomlabs.com

TEST CERTIFICATE #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Title: GATE-1100-A
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: TRIL04-U3 Rev A
Issue Date: 5th June 2012
Page: 3 of 63

This page has been left intentionally blank

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF CONTENTS

ACCREDITATION, LISTINGS & RECOGNITION	5
TESTING ACCREDITATION	5
RECOGNITION.....	6
PRODUCT CERTIFICATION.....	7
1. TEST RESULT CERTIFICATE	9
2. REFERENCES AND MEASUREMENT UNCERTAINTY	10
2.1. Normative References	10
2.2. Test and Uncertainty Procedures	11
3. PRODUCT DETAILS AND TEST CONFIGURATIONS	12
3.1. Technical Details	12
3.2. Scope of Test Program.....	13
3.3. Equipment Model(s) and Serial Number(s)	17
3.4. Antenna Details	17
3.5. Cabling and I/O Ports	17
3.6. Test Configurations.....	18
3.7. Equipment Modifications.....	19
3.8. Deviations from the Test Standard	19
3.9. Subcontracted Testing or Third Party Data	19
4. TEST SUMMARY	20
5. TEST RESULTS	22
5.1. Device Characteristics	22
5.1.1. <i>26 dB and 99 % Bandwidth</i>	22
5.1.2. <i>Transmit Output Power</i>	27
5.1.3. <i>Peak Power Spectral Density</i>	32
5.1.4. <i>Peak Excursion Ratio</i>	37
5.1.5. <i>Frequency Stability</i>	42
5.1.6. <i>Maximum Permissible Exposure</i>	43
5.1.7. <i>Radiated Emissions</i>	44
5.1.8. <i>AC Wireline Conducted Emissions (150 kHz – 30 MHz)</i>	57
6. PHOTOGRAPHS	60
6.1. Radiated Test Setup Below 1 GHz - Test Setup	60
6.2. Radiated Emissions Above 1 GHz - Test Setup	61
7. TEST EQUIPMENT DETAILS.....	62

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: TRIL04-U3 Rev A
Issue Date: 5th June 2012
Page: 5 of 63

ACCREDITATION, LISTINGS & RECOGNITION

TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <http://www.a2la.org/scopepdf/2381-01.pdf>

The American Association for Laboratory Accreditation

World Class Accreditation

Accredited Laboratory

A2LA has accredited

MICOM LABS

Pleasanton, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 *General Requirements for the Competence of Testing and Calibration Laboratories*. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 27th day of March 2012.

President & CEO
For the Accreditation Council
Certificate Number 2381.01
Valid to November 30, 2013

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: TRIL04-U3 Rev A
Issue Date: 5th June 2012
Page: 6 of 63

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	TCB	-	Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	Listing #: 4143A-2
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	210
	VCCI	--	--	No. 2959
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	US0159
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

**APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

N/A – Not Applicable

**EU MRA – European Union Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB – Notified Body

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: TRIL04-U3 Rev A
Issue Date: 5th June 2012
Page: 7 of 63

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <http://www.a2la.org/scopepdf/2381-02.pdf>

The American Association for Laboratory Accreditation

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA

for technical competence as a

Product Certification Body

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC Guide 65:1996 *General requirements for bodies operating product certification systems*. This accreditation demonstrates technical competence for a defined scope and the operation of a quality management system.

Presented this 27th day of March 2012.

President & CEO
For the Accreditation Council
Certificate Number 2381.02
Valid to November 30, 2013

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation

USA Telecommunication Certification Body (TCB) - TCB Identifier – US0159

Industry Canada Certification Body - CAB Identifier – US0159

European Notified Body - Notified Body Identifier - 2280

Japan – Recognized Certification Body (RCB) - RCB Identifier - 210

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: TRIL04-U3 Rev A
Issue Date: 5th June 2012
Page: 8 of 63

DOCUMENT HISTORY

Document History		
Revision	Date	Comments
Draft		
Rev A	5 th June 2012	Initial release.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: TRIL04-U3 Rev A
Issue Date: 5th June 2012
Page: 9 of 63

1. TEST RESULT CERTIFICATE

Applicant:	Trilliant Networks, Inc 1100 Island Drive Redwood City CA 94065	Tested By:	MiCOM Labs, Inc. 440 Boulder Court Suite 200 Pleasanton California, 94566, USA
EUT:	802.11a Wireless WAN Mesh Node	Tel:	+1 925 462 0304
Model:	GATE-1100-A The results of testing reported in this report cover the following Product Series: GATE-1100, XTEN-1100, XTEN-1100-W, XBRG-1100	Fax:	+1 925 462 0306
S/N:	FL07120012		
Test Date(s):	March 8th to 30th April 2012	Website:	www.micomlabs.com

STANDARD(S)	TEST RESULTS
FCC 47 CFR Part 15.407 & IC RSS-210	EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.
2. Details of test methods used have been recorded and kept on file by the laboratory.
3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

TESTING CERTIFICATE #2381.01

Graeme Grieve
Quality Manager MiCOM Labs,

Gordon Hurst
President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: TRIL04-U3 Rev A
Issue Date: 5th June 2012
Page: 10 of 63

2. REFERENCES AND MEASUREMENT UNCERTAINTY

2.1. Normative References

Ref.	Publication	Year	Title
i.	FCC 47 CFR Part 15.407	2010	Code of Federal Regulations
ii.	FCC 06-96	June 2006	Memorandum Opinion and Order
iii.	FCC OET KDB 662911	4 th April 2011	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
iv.	Industry Canada RSS-210	2010	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands): Category 1 Equipment
v.	FCC OET KDB 662911	4 th April 2011	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
vi.	FCC 47 CFR Part 15, Subpart B	2010	47 CFR Part 15, SubPart B; Unintentional Radiators
vii.	ICES-003	2004	Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard Digital Apparatus; Issue 4
viii.	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ix.	CISPR 22/ EN 55022	2008 2006+A 1:2007	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
x.	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
xi.	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
xii.	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
xiii.	A2LA	March 2012	Reference to A2LA Accreditation Status – A2LA Advertising Policy

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor $k = 2$, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description
Purpose:	Test of the GATE-1100-A in the frequency ranges 5,150 to 5,250 MHz to FCC Part 15.407 and Industry Canada RSS-210 regulations.
Applicant:	Trilliant Networks, Inc 1100 Island Drive Redwood City CA 94065
Manufacturer:	Extron Logistics Inc
Laboratory performing the tests:	MiCOM Labs, Inc. 440 Boulder Court, Suite 200 Pleasanton, California 94566 USA
Test report reference number:	TRIL04-U3 Rev A
Date EUT received:	8 th March 2012
Standard(s) applied:	FCC 47 CFR Part 15.407 & IC RSS-210
Dates of test (from - to):	March 8th to 30th April 2012
No of Units Tested:	One
Type of Equipment:	802.11a Wireless WAN Mesh Node
Product Name:	SecureMesh™ Wireless WAN
Model:	GATE-1100-A
Hardware Release	Rev 6
Software Release	2.1
Declared Frequency Range(s):	5150 - 5250 MHz
Type of Modulation:	Per 802.11 -CCK, BPSK, QPSK, DSSS, OFDM
Declared Nominal Average Output Power:	802.11a:Leg. +5.76 dBm,
EUT Modes of Operation:	Legacy 802.11a
Transmit/Receive Operation:	Half Duplex
Rated Input Voltage and Current:	POE Adaptor Rated: 100 – 240V Current: 1Amp max, Output 24V 2Amps.
Operating Temperature Range:	Declared range -40° to +70°C
ITU Emission Designator:	5150 – 5250 MHz 802.11a 16M8D1D
Equipment Dimensions:	Base Diameter 12", Height 25"
Weight:	15 lbs
Primary function of equipment:	Wireless WAN Mesh Backhaul

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: TRIL04-U3 Rev A
Issue Date: 5th June 2012
Page: 13 of 63

3.2. Scope of Test Program

The scope of the test program was to test the Trilliant Networks Inc GATE-1100-A Wireless WAN Mesh Node in the frequency range of 5150 – 5250 MHz for compliance against FCC 47 CFR Part 15.407 and Industry Canada RSS-210 specifications.

EUT

Trilliant Inc. supplied a SecureMesh™ Wireless WAN GATE-1100-A device that contains an 802.11a mesh backhaul radio as being representative of operation in the 5 GHz bands for all of the GATE-1100, XTEN-1100, XTEN-1100-W, XBRG-1100 Series products.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Trilliant Networks Inc
802.11a Wireless WAN Mesh Node

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: TRIL04-U3 Rev A
Issue Date: 5th June 2012
Page: 15 of 63

The customer supplied the following information about the products that are represented by the radio product.

There are no hardware differences between the 802.11a 5 GHz mesh radios. Differences between models are country specific, regulatory settings that are incorporated in the software.

Summary Table of Model Numbers	
Gateways	
GATE-1100-A	
GATE-1100-N	
GATE-1100-E	
GATE-1100-S	
GATE-1100-C	
GATE-1100-P	
GATE-1100-H	
GATE-1100-I	
GATE-1100-J	
GATE-1100-B	
GATE-1100-XX	
(where X is 0 to 9, A to Z or blank)	
Extenders	
XTEN-1100-A	
XTEN-1100-R	
XTEN-1100-XX	
(where X is 0 to 9, A to Z or blank)	
Extender DualBands	
XTEN-1100-W-A	
XTEN-1100-W-N	
XTEN-1100-W-E	
XTEN-1100-W-XX	
(where X is 0 to 9, A to Z or blank)	
Extender Bridges	
XBRG-1100-A	
XBRG-1100-N	
XBRG-1100-E	
XBRG-1100-XX	
(where X is 0 to 9, A to Z or blank)	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: TRIL04-U3 Rev A
Issue Date: 5th June 2012
Page: 16 of 63

Explanation of Model Numbers

Product Name: SecureMesh™ Wireless WAN Gateway Series
Model Numbers: GATE-1100 Series
The SecureMesh™ Wireless WAN Gateway Series consist of the following models:
GATE-1100-A, GATE-1100-B, GATE-1100-C, GATE-1100-E,
GATE-1100-H, GATE-1100-I, GATE-1100-J, GATE-1100-N,
GATE-1100-P, GATE-1100-S, GATE-1100-XX
(where X is 0 to 9, A to Z or blank)

Product Name: SecureMesh™ Wireless WAN Extender Series
Model Numbers: XTEN-1100 Series
The SecureMesh™ Wireless WAN Extender Series consist of the following models:
XTEN-1100-A; XTEN-1100-R; XTEN-1100-XX
(where X is 0 to 9, A to Z or blank)

Product Name: SecureMesh™ Wireless WAN Extender DualBand Series
Model Numbers: XTEN-1100-W Series
The SecureMesh™ Wireless WAN Extender DualBand Series consists of the following models:
XTEN-1100-W-A, XTEN-1100-W-N, XTEN-1100-W-E;
XTEN-1100-W-XX (where X is 0 to 9, A to Z or blank)

Product Name: SecureMesh™ Wireless WAN Extender Bridge Series
Model Numbers: XBRG-1100 Series
The SecureMesh™ Wireless WAN Extender Bridge Series consists of the following models:
XBRG-1100-A, XBRG-1100-N, XBRG-1100-E; XBRG-1100-XX
(where X is 0 to 9, A to Z or blank)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.3. Equipment Model(s) and Serial Number(s)

The following is a description of supporting equipment used with the EUT, see diagram below for the test set-up.

Type (EUT/Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Unique ID or Serial No.
EUT	SecureMesh™ Wireless WAN	Trilliant Networks Inc	GATE-1100-A	FL07120012
Support	Laptop Computer	Dell		

3.4. Antenna Details

The following is a description of the EUT antenna. Each of the (8) antenna elements provides gain in a 45° azimuth beamwidth and a 6° elevation beamwidth. The array of eight directional antennas provides 360° of coverage, with each antenna effectively supporting an independent sector. Only one of the eight antenna elements can be active at a time.

Antenna Type:	Manufacturer	Model	Gain (dBi)	Frequency Range (MHz)
Directional Panel	Trilliant Networks Inc	Integral	17	5150 - 5250

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. RJ45 10/100 Ethernet (x1)
2. RJ45 Serial Port (Console)

3.6. Test Configurations

Testing was performed to determine the highest power level versus bit rate. The variant with the highest power was used to exercise the product.

Operational Mode	Variant	Data Rates with Highest Power	Frequencies (MHz)
802.11a	Legacy	6 MBit/s	5,180/5,200/5,240

Spurious Emission and Band-Edge Test Strategy Band 5,150 – 5,250

11a	KEY:-
SE 5180	SE – Spurious Emissions
SE 5200	BE – Band-Edge
SE 5240	
BE 5150	PK - Peak Emission

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. None.

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

3.9. Subcontracted Testing or Third Party Data

1. NONE

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the **FCC CFR47 Part 15.407** and **Industry Canada RSS-210** and **Industry Canada RSS-Gen**.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.407(a) A9.2(2) 4.4	26dB and 99% Emission BW	Emission bandwidth measurement	Conducted	Complies	5.1.1
15.407(a) A9.2(2) 4.6	Transmit Output Power	Power Measurement	Conducted	Complies	5.1.2
15.407(a) A9.2(2)	Peak Power Spectral Density	PPSD	Conducted	Complies	5.1.3
15.407(a)(6)	Peak Excursion Ratio	<13dB in any 1MHz bandwidth	Conducted	Complies	5.1.4
15.407(g) 15.31 2.1 4.5	Frequency Stability	Limits: contained within band of operation at all times.	Applicant declaration	Complies	5.1.5
15.407(f) 5.5	Radio Frequency Radiation Exposure	Exposure to radio frequency energy levels, Maximum Permissible Exposure (MPE)	Conducted	Complies	5.1.6

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

List of Measurements (continued)

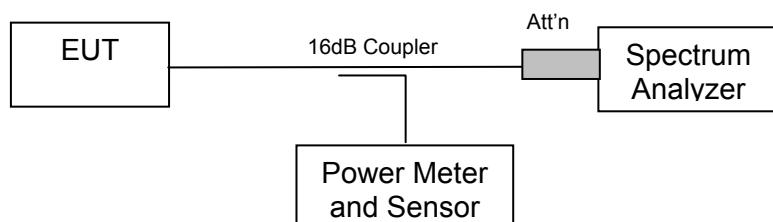
The following table represents the list of measurements required under the **FCC CFR47 Part 15.407** and **Industry Canada RSS-210** and **Industry Canada RSS-Gen**.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.407(b)(2) 15.205(a) 15.209(a) 2.2 2.6 A9.3(2) 4.7	Radiated Emissions		Radiated		5.1.7
	Transmitter Radiated Spurious Emissions	Emissions above 1 GHz		Complies	5.1.7.1
	Radiated Band Edge	Band edge results		Complies	5.1.7.1
Industry Canada only RSS-Gen §4.10, §6	Receiver Radiated Spurious Emissions	Emissions above 1 GHz		Complies	5.1.7.2
15.407(b)(6) 15.205(a) 15.209(a) 2.2	Radiated Emissions	Emissions <1 GHz (30M-1 GHz)		Complies	5.1.7.3
15.407(b)(6) 15.207 7.2.2	AC Wireline Conducted Emissions 150 kHz–30 MHz	Conducted Emissions	Conducted	Complies	5.1.8

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5. **TEST RESULTS**

5.1. Device Characteristics


5.1.1. 26 dB and 99 % Bandwidth

FCC, Part 15 Subpart C §15.407(a)
Industry Canada RSS-210 § A9.2(2)
Industry Canada RSS-Gen 4.4

Test Procedure

The bandwidth at 26 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Test Measurement Set up

Measurement set up for 26 dB and 99 % bandwidth test

Radio Parameters

Duty Cycle: 100%

Output: Modulated Carrier

Power: Maximum Default Power

Title: GATE-1100-A
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: TRIL04-U3 Rev A
Issue Date: 5th June 2012
Page: 23 of 63

Measurement Results for 26 dB and 99 % Operational Bandwidth(s)

Ambient conditions.

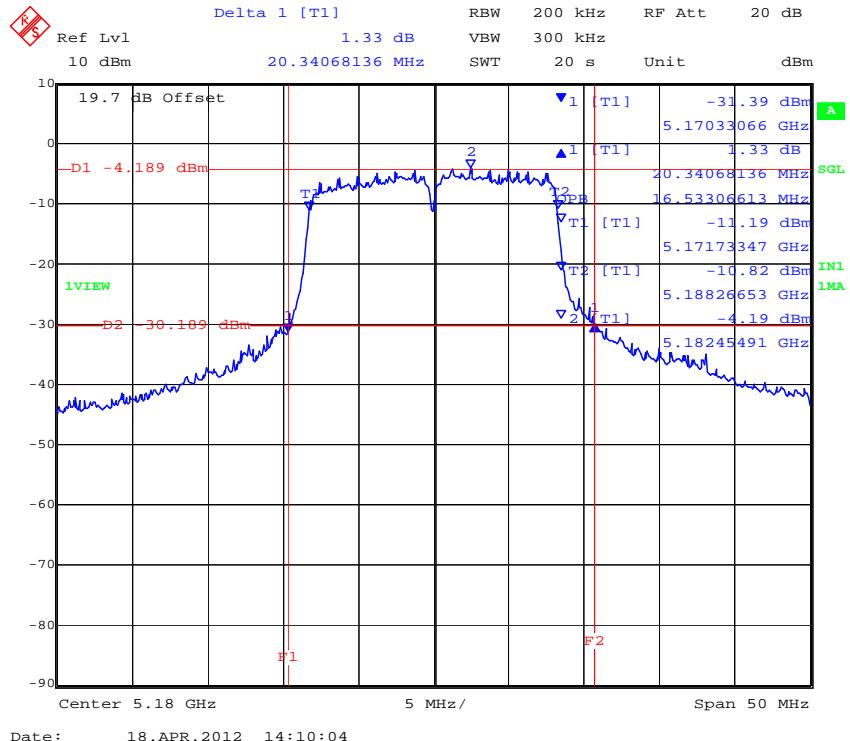
Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS – 802.11a Legacy 5150 – 5250 MHz

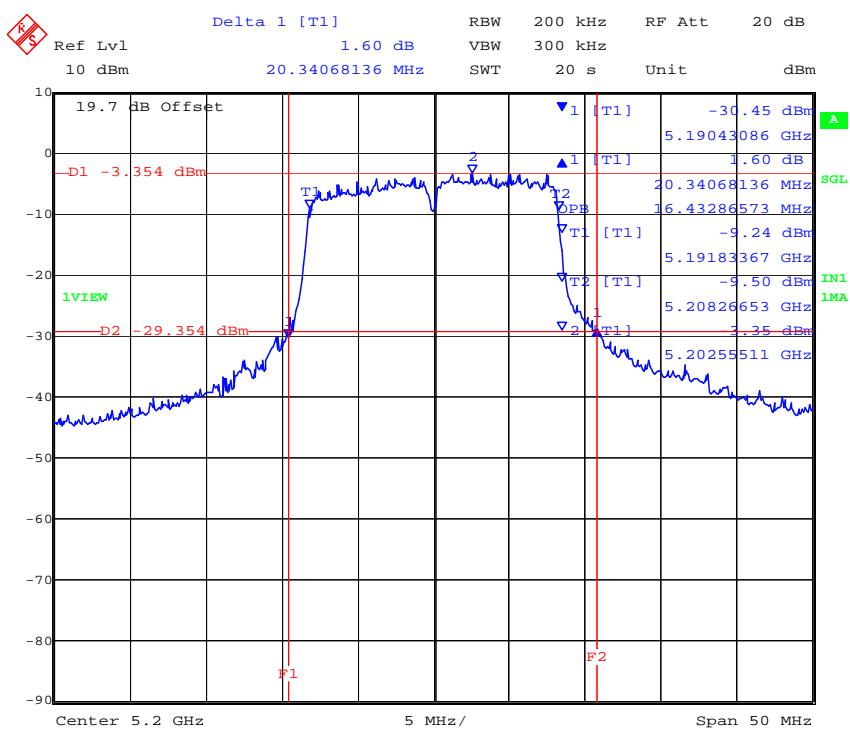
Test Conditions:	15.407 (a)	Rel. Humidity (%):	35 to 42
Variant:	802.11a	Ambient Temp. (°C):	19 to 22
TPC:	HIGH	Pressure (mBars):	998 to 1003
Modulation:	ON	Duty Cycle (x):	100
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	17 dBi
Applied Voltage:	24.0 Vdc		
Notes 1:			
Notes 2:			

26 dB Bandwidth

Test Frequency	26 dB Bandwidth				Minimum 6dB Bandwidth Limit		Margin
	MHz						
MHz	a	b	c	d	kHz	MHz	MHz
5180	20.341000	--	--	--	500	0.5	-19.841000
5200	20.341000	--	--	--			-19.841000
5240	20.741000	--	--	--			-20.241000

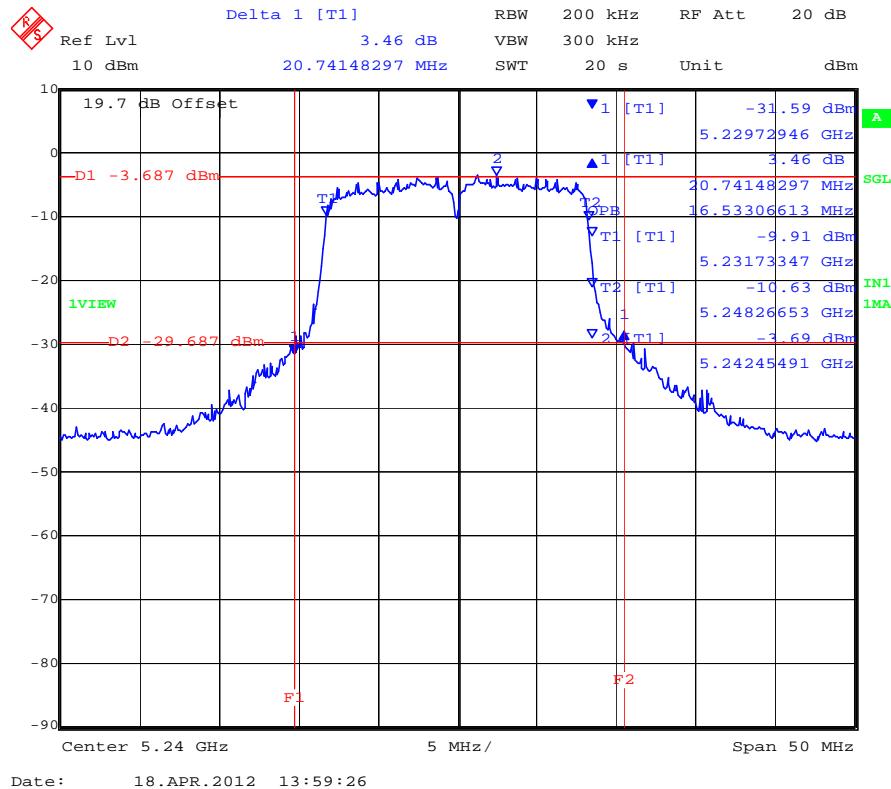

99% Bandwidth

Test Frequency	99 % Bandwidth						
	MHz						
MHz	a	b	c	d			
5180	16.533000	--	--	--			
5200	16.433000	--	--	--			
5240	16.533000	--	--	--			


Measurement uncertainty:	±2.81 dB
---------------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

PORT A 5,180 MHz 802.11a Legacy 26 dB and 99 % Bandwidth



PORT A 5,200 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

PORT A 5,240 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

The EUT was observed to meet the 20dB bandwidth requirement of Section 15.215(c) of the standard at the 5250 MHz band edge.

Specification

Limits

FCC, Part 15 §15.407 (a)(1), (a)(2) and Industry Canada RSS-210 § A9.2(2)

(a)(1) For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or $+4 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(2) For the 5.25-5.35 GHz band the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or $+11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-Gen 4.4

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

Laboratory Measurement Uncertainty for Spectrum Measurement

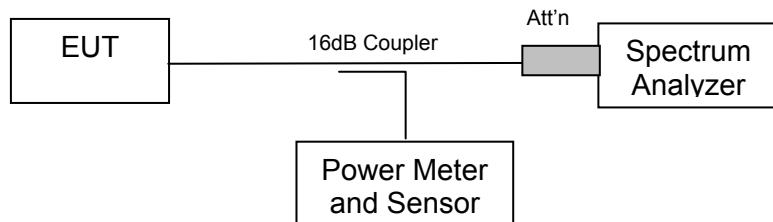
Measurement uncertainty	±2.81 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of RF Spectrum Mask'	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

5.1.2. Transmit Output Power

FCC, Part 15 Subpart C §15.407(a)


Industry Canada RSS-210 §9.9(2)

Industry Canada RSS-Gen 4.6

Test Procedure

The transmitter terminal of EUT was connected to the input of an average power meter. Measurements were made while EUT was operating in a continuous transmission mode i.e. 100 % duty cycle at the appropriate center frequency. All cable losses and offsets were taken into consideration in the measured result.

Test Measurement Set up

Measurement set up for Transmitter Output Power

Title: GATE-1100-A
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: TRIL04-U3 Rev A
Issue Date: 5th June 2012
Page: 28 of 63

Maximum Transmit (Conducted) Power, FCC Limits and Industry Canada Limits

Bands 5150 – 5250 MHz

FCC Limits

Conducted Power Limit lesser of: 50 mW or $4 \text{ dBm} + 10 \log (B) \text{ dBm}$ where B is the 26dB bandwidth.

Mode	Frequency Range (MHz)	Maximum 26 dB Bandwidth (MHz)	4 + 10 Log (B) (dBm)	Limit (dBm)
a	5150 – 5250	20.741	+17.17	+17.00

Industry Canada Limits

EIRP Limit 5150 – 5250 MHz: Lesser of 200 mW or $10 + 10 \log (B) \text{ dBm}$ where B is the 99% bandwidth.

Mode	Frequency Range (MHz)	Maximum 99% Bandwidth (MHz)	10 + 10 Log (B) (dBm)	EIRP Limit (dBm)
a	5150 – 5250	16.533	+22.18	+22.18

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

15. 407 a) Power limits:

(1) For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Operating Frequency Band 5150-5250 MHz

Antenna	Gain (dBi)	Max. Allowable Conducted Peak Power (dBm)	Maximum EIRP (dBm)
Integral Panel	17.0	+6.0	+23.0

Measurement Results for Transmit Output Power

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

EUT parameters.

Power Level: Maximum

Duty Cycle: 100%

Temperature: Ambient

Title: GATE-1100-A
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: TRIL04-U3 Rev A
Issue Date: 5th June 2012
Page: 30 of 63

TABLE OF RESULTS – 802.11a Legacy

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A	Antenna Gain:	17	dBi	
Applied Voltage:	24.0	Vdc			
Notes 1:					
Notes 2:					

Test Frequency	Measured Peak Power				Total Power (dBm)		Limit	Margin
	RF Port (dBm)							
MHz	a	b	c	d	Combined	Calculated	dBm	dB
5180	4.93	--	--	--	N/A	4.93	17.00	-12.07
5200	5.64	--	--	--	N/A	5.64	17.00	-11.36
5240	5.76	--	--	--	N/A	5.76	17.00	-11.24

Measurement uncertainty:	±1.33 dB
---------------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

Limits

FCC, Part 15 §15.407 (a)(1), (a)(2) and Industry Canada RSS-210 § A9.2(2)

(a)(1) For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or $+4 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(2) For the 5.25-5.35 and 5470-5725 MHz GHz band the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or $+11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-210 §A9.2(2)

For the band 5150-5250 MHz, the maximum equivalent isotropically radiated power (e.i.r.p.) shall not exceed 200 mW or $10 + 10 \log_{10} B$, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

For the band 5250-5350 MHz and 5470-5725 MHz, the maximum conducted output power shall not exceed 250 mW or $11 + 10 \log_{10} B$, dBm, whichever power is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 1.0 W or $17 + 10 \log_{10} B$, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.

Industry Canada RSS-Gen 4.4

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

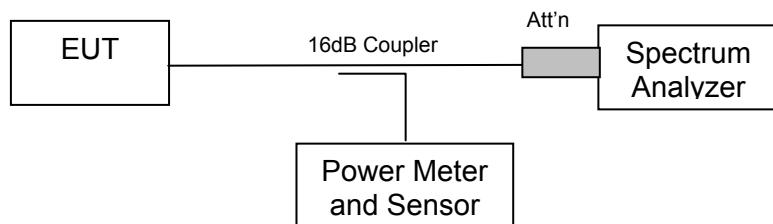
Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5.1.3. Peak Power Spectral Density

FCC, Part 15 Subpart C §15.407(a)
Industry Canada RSS-210 § A9.2(2)

Test Procedure

The transmitter output was connected to a spectrum analyzer and the peak power spectral density measured. Method 2 Sample Detection and power averaging, specified in FCC document DA 02-2138 (Normative Reference (ix) Section 2.1 “Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices”) was used to determine the peak power spectral density of the emission. The Peak Power Spectral Density is the highest level found across the emission in a 1 MHz resolution bandwidth.

Test Measurement Set up

Measurement set up for Peak Power Spectral Density

Measurement Results for Peak Power Spectral Density

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Radio Parameters

Duty Cycle: 100%

Output: Modulated Carrier

Power: Maximum Default Power

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

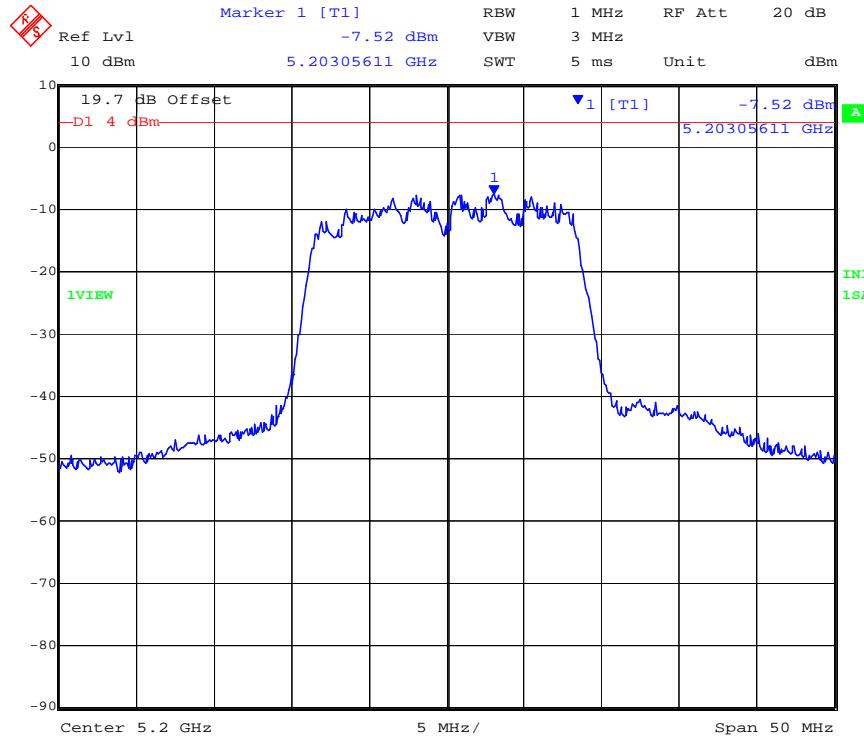
Title: GATE-1100-A
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: TRIL04-U3 Rev A
Issue Date: 5th June 2012
Page: 33 of 63

TABLE OF RESULTS – 802.11a Legacy 5150 – 5250 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A	Antenna Gain:	17 dBi		
Applied Voltage:	24.0	Antenna Ports (N):	1		
Notes 1:					
Notes 2:					

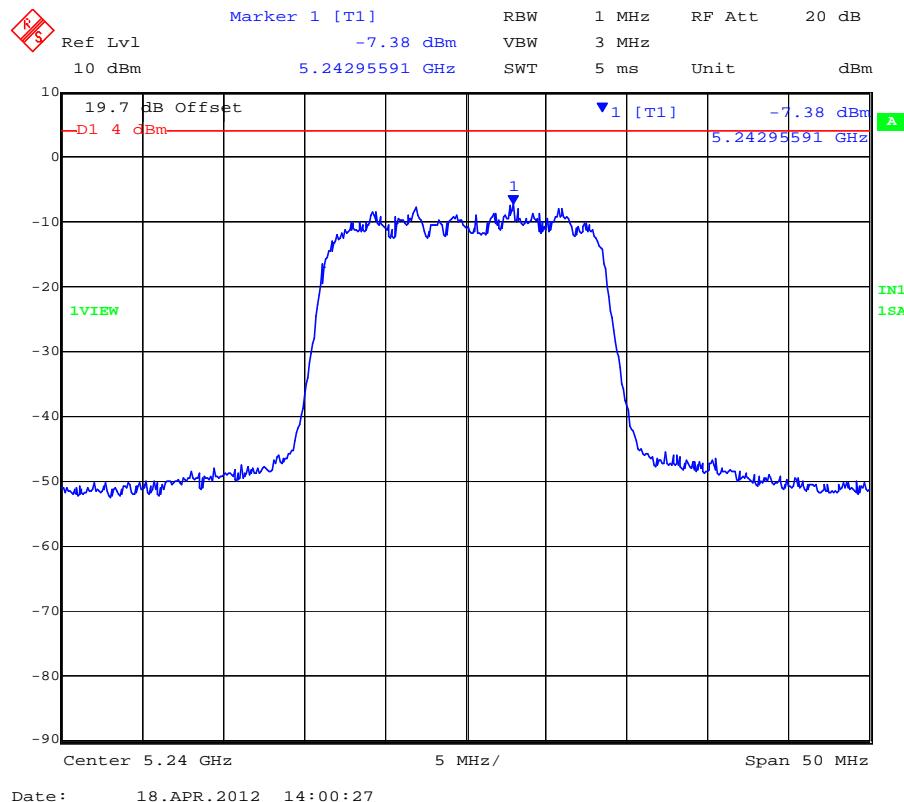
Test Frequency	Measured Peak Power				Correction factor	Peak Power Spectral Density	Limit	Margin
	RF Port (dBm)							
MHz	a	b	c	d	10Log(N)	dBm	dBm	dB
5180	-8.65	--	--	--	0.00	-8.65	4.00	-12.65
5200	-7.52	--	--	--	0.00	-7.52	4.00	-11.52
5240	-7.38	--	--	--	0.00	-7.38	4.00	-11.38

Measurement uncertainty:	±1.33 dB
---------------------------------	----------


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

PORT A 5,180 MHz 802.11a Legacy Power Spectral Density

Date: 18.APR.2012 14:11:01


PORT A 5,200 MHz 802.11a Legacy Power Spectral Density

Date: 18.APR.2012 14:05:54

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

PORT A 5,240 MHz 802.11a Legacy Power Spectral Density

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

FCC, Part 15 §15.407 (a)(1), (a)(2)

5150 – 5250 MHz

(a)(1) The peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

5250 – 5350 MHz & 5470 – 5725 MHz

(a)(2) The peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-210 § A9.2(1), A9.2(2)

5150 – 5250 MHz

§ A9.2(1) The eirp spectral density shall not exceed +10 dBm in any 1 MHz band

5250 – 5350 MHz & 5470 – 5725 MHz

§ A9.2(2) The power spectral density shall not exceed +11 dBm in any 1 MHz band

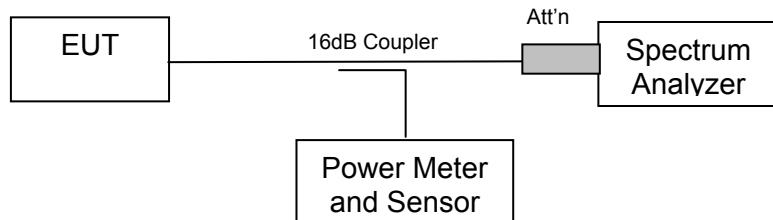
Laboratory Measurement Uncertainty for Spectral Density

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5.1.4. Peak Excursion Ratio

FCC, Part 15 Subpart C §15.407(a)(6)

Test Procedure

Normative Reference (xi) Section 2.1 Measurement Procedure DA 02-2138 "Measurement Procedure Updated for Peak Transmit Power in the UNII Bands" was implemented to determine the Peak Excursion Ratio. This is a conducted measurement using a spectrum analyzer. The Peak Excursion Ratio is the difference in amplitude (dB) between the two traces.

Test Measurement Set up

Measurement set up for Peak Excursion Ratio

Measurement Results for Peak Excursion Ratio

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57% Pressure: 999 to 1012 mbar

Radio Parameters

Duty Cycle: 100%

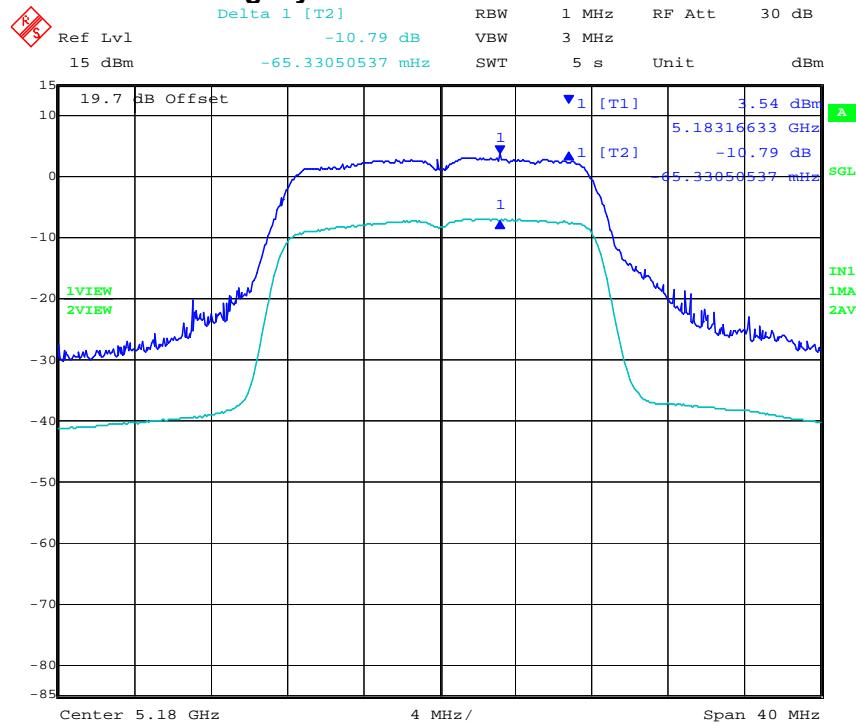
Output: Modulated Carrier

Power: Maximum Default Power

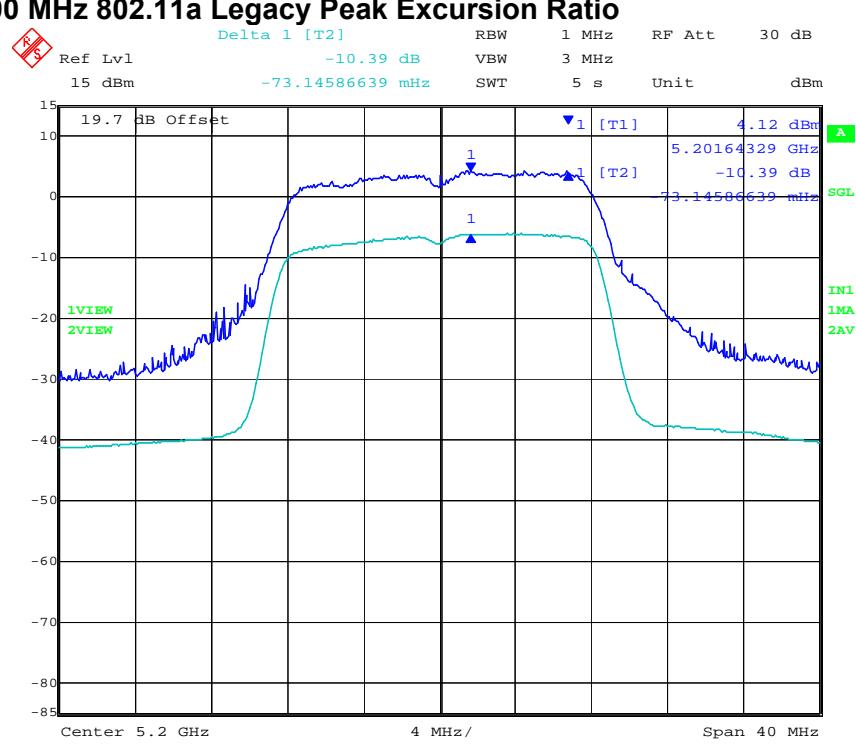
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: TRIL04-U3 Rev A
Issue Date: 5th June 2012
Page: 38 of 63

TABLE OF RESULTS – 802.11a Legacy 5150 – 5250 MHz

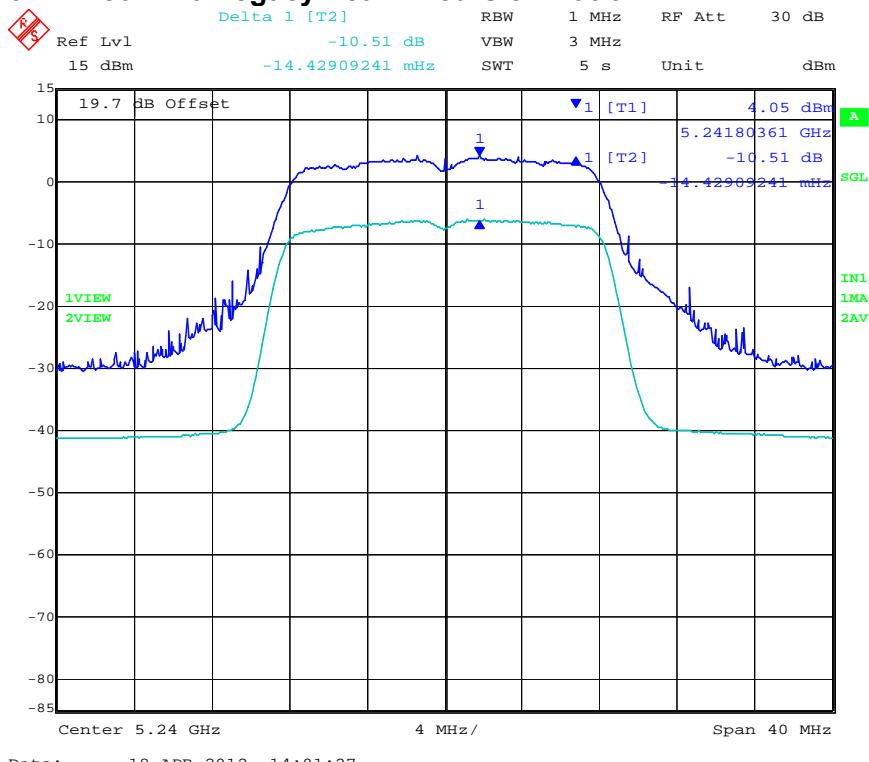

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	17 dBi		
Applied Voltage:	24.0 Vdc				
Notes 1:					
Notes 2:					

Test Frequency	Trace Δ Marker				Limit	Margin
	Port A	Port B	Port C	Port D		
MHz	dB	dB	dB	dB	dB	dB
5180	-10.79	--	--	--		-2.21
5200	-10.39	--	--	--		-2.61
5240	-10.51	--	--	--		-2.49


Measurement uncertainty:	±1.33 dB
---------------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

PORT A 5,180 MHz 802.11a Legacy Peak Excursion Ratio



PORT A 5,200 MHz 802.11a Legacy Peak Excursion Ratio

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

PORT A 5,240 MHz 802.11a Legacy Peak Excursion Ratio

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: TRIL04-U3 Rev A
Issue Date: 5th June 2012
Page: 41 of 63

Specification

Limits

§15.407 (a)(6) The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified in this paragraph) shall not exceed 13dB across any 1MHz bandwidth or the emission bandwidth whichever is less

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement uncertainty	± 2.81dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of RF Spectrum Mask'	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.5. Frequency Stability

FCC, Part 15 Subpart C §15.407(g)
Industry Canada RSS-210 §2.1

Test Procedure

The manufacturer of the equipment is responsible for ensuring that the frequency stability is such that emissions are always maintained within the band of operation under all conditions.

Manufacturer Declaration

The frequency stability of the reference oscillator sets the frequency stability of the RF transceiver signals. Therefore all of the RF signals should have ± 20 ppm stability.

This stability accounts for room temp tolerance of the crystal oscillator circuit, frequency variation across temperature, and crystal ageing.

± 20 ppm at 5.250 GHz translates to a maximum frequency shift of ± 105 KHz. As the edge of the channels is at least one MHz from either of the band edges, ± 105 KHz is more than sufficient to guarantee that the intentional emission will remain in the band over the entire operating range of the EUT.

Specification

Limits

§15.407 (g) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.6. Maximum Permissible Exposure

FCC, Part 15 Subpart C §15.407(f)

Industry Canada RSS-Gen §5.5

Calculations for Maximum Permissible Exposure Levels

$$\text{Power Density} = P_d \text{ (mW/cm}^2\text{)} = \text{EIRP}/(4\pi d^2)$$

$$\text{EIRP} = P * G$$

$$P = \text{Peak output power (mW)}$$

$$G = \text{Antenna numeric gain (numeric)}$$

$$d = \text{Separation distance (cm)}$$

$$\text{Numeric Gain} = 10 ^ {(G \text{ (dBi)})/10}$$

The Trilliant CONNECTOR has a single transmitter.

Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 1.0 mW/cm²

Freq. Band (MHz)	Antenna Gain (dBi)	Numeric Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Calculated Safe Distance @ 1mW/cm ² Limit(cm)	Minimum Separation Distance (cm)
5150 - 5250	17.0	50.1	+5.76	3.77	3.88	20.00

Note: for mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculations indicate the MPE distance to be less.

Specification

Maximum Permissible Exposure Limits

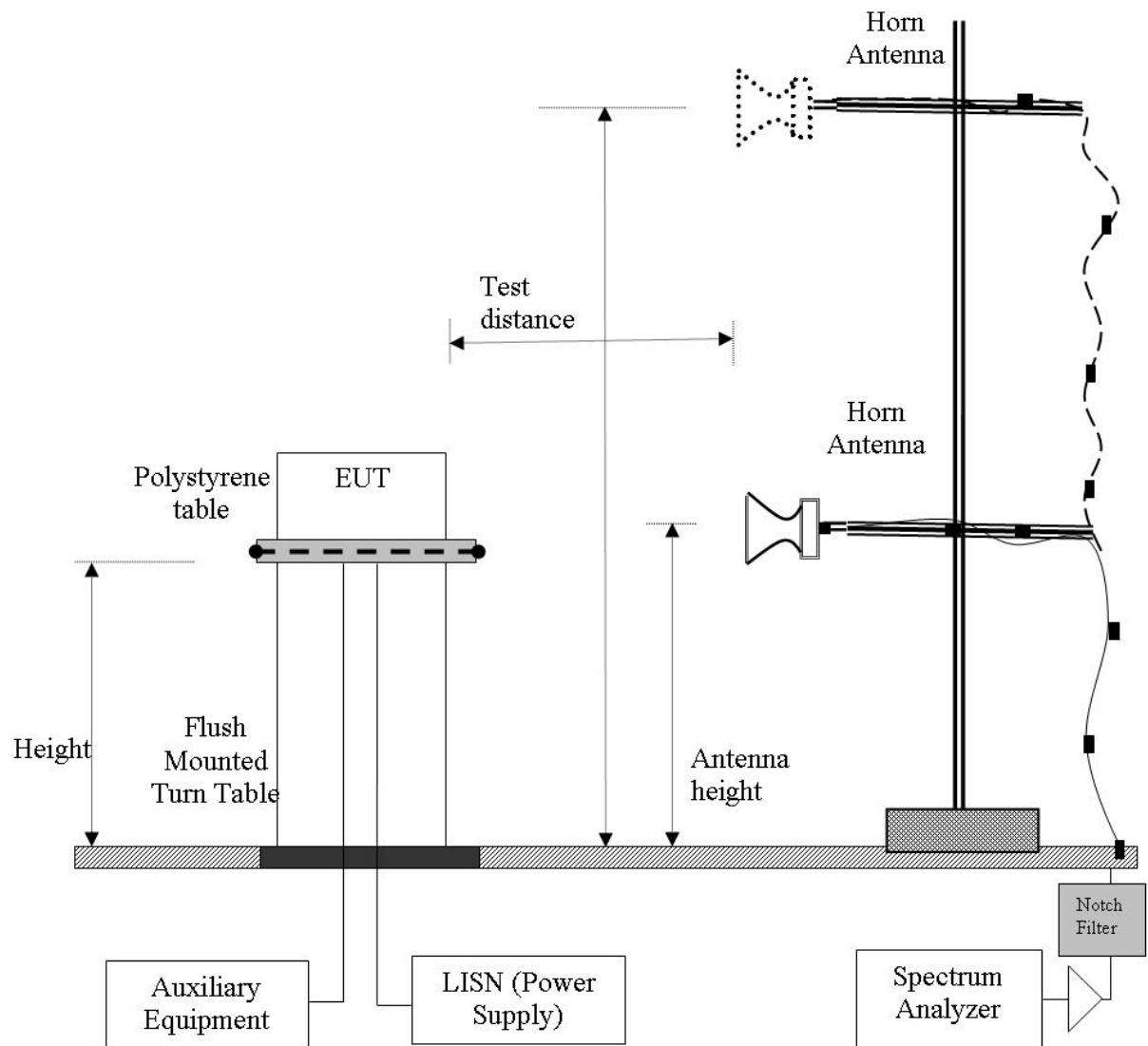
FCC §1.1310 Limit = 1mW / cm² from 1.310 Table 1

RSS-Gen §5.5 Before equipment certification is granted, the application requirements of RSS-102 shall be met.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

5.1.7. Radiated Emissions


FCC, Part 15 Subpart C §15.407(b)(2), §15.205(a)/15.209(a)
Industry Canada RSS-210 §A9.3(2); §2.2; §2.6; RSS-Gen §4.7

Test Procedure

Testing was performed in a 3-meter anechoic chamber. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. Preliminary emissions were recorded with in Spectrum Analyzer mode, using a maximum peak detector while in peak hold mode. Depending on the frequency band spanned a notch filter and/or waveguide filter was used to remove the fundamental frequency.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Radiated Emission Measurement Setup – Above 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

$$\mathbf{FS = R + AF + CORR - FO}$$

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dB}\mu\text{V/m}$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log (level (\mu V/m))}$$

$$40 \text{ dB}\mu\text{V/m} = 100 \mu\text{V/m}$$

$$48 \text{ dB}\mu\text{V/m} = 250 \mu\text{V/m}$$

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength (dB μ V/m);

$$E = 1000000 \times \sqrt{30P} / 3 \mu\text{V/m}$$

where P is the EIRP in Watts

$$\text{Therefore: } -27 \text{ dBm/MHz} = 68.23 \text{ dB}\mu\text{V/m}$$

Note: The data in this Section identifies that the EUT is in compliance with the -27dBm/MHz EIRP limit (68.23 dB μ V/m) for out of band emissions. All out of band emissions are less than 68.23 dB μ V/m.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

Radiated Spurious Emissions

15.407 (b)(2). All emissions outside of the 5,150-5,350MHz band shall not exceed an EIRP of -27dBm/MHz.

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

RSS-210 §A9.3(2) For transmitters operating in the 5250-5350 MHz band, all emissions outside the 5150-5350 MHz band shall not exceed -27 dBm/MHz e.i.r.p. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band shall not exceed out of band emission limit of 27 dBm/MHz e.i.r.p. in the 5150-5250 MHz band in order to operate indoor/outdoor, or alternatively shall comply with the spectral power density for operation within the 5150-5250 MHz band and shall be labeled "for indoor use only".

RSS-Gen §4.7 The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz , whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

RSS-Gen §6 Receiver Spurious Emission Standard

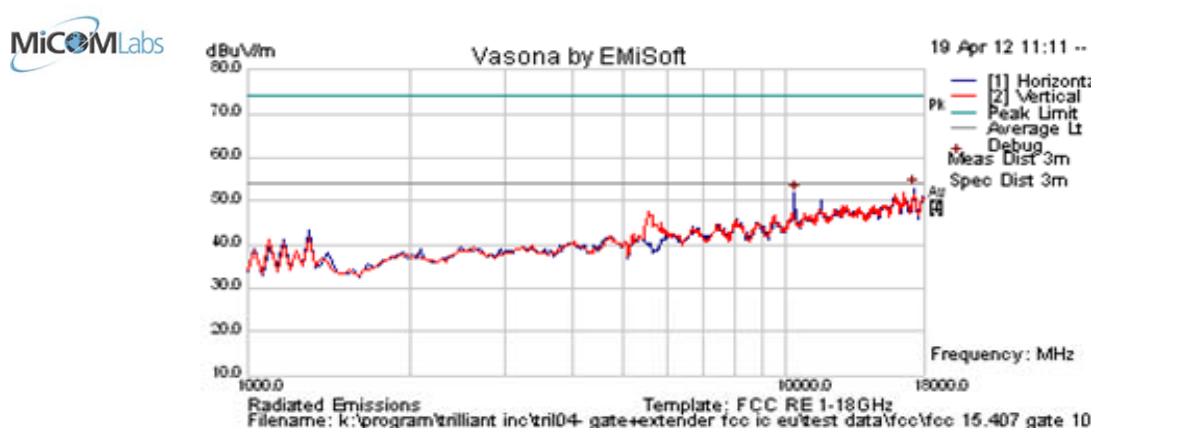
If a radiated measurement is made, all spurious emissions shall comply with the limits of the following Table. The resolution bandwidth of the spectrum analyzer shall be 100 kHz for spurious emission measurements below 1.0 GHz and 1.0 MHz for measurements above 1.0 GHz

Title: GATE-1100-A
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: TRIL04-U3 Rev A
Issue Date: 5th June 2012
Page: 48 of 63

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement Uncertainty	+5.6/ -4.5 dB
--------------------------------	---------------

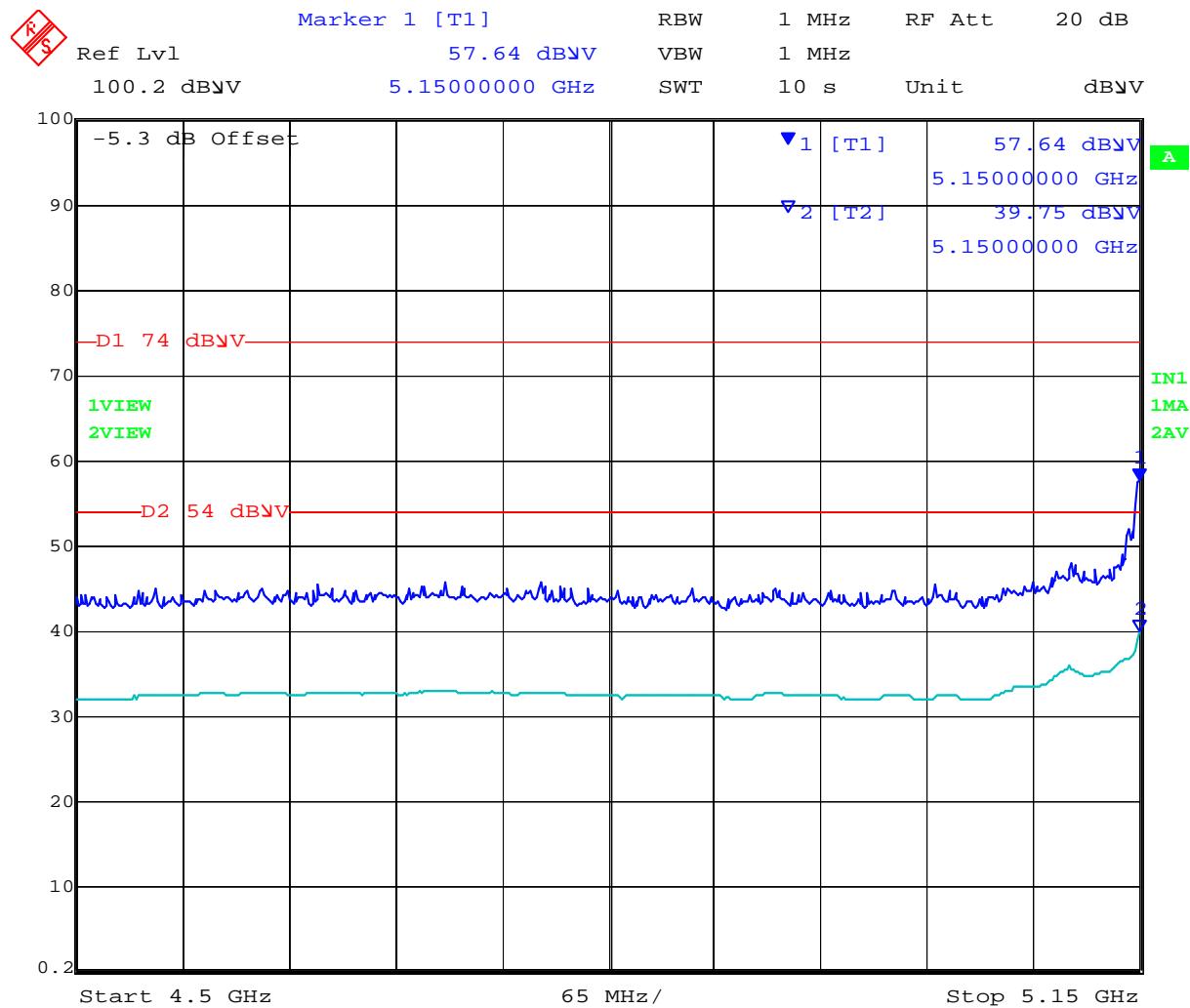
Traceability:


Method	Test Equipment Used
Work instruction WI-03	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.7.1. Integral Antenna

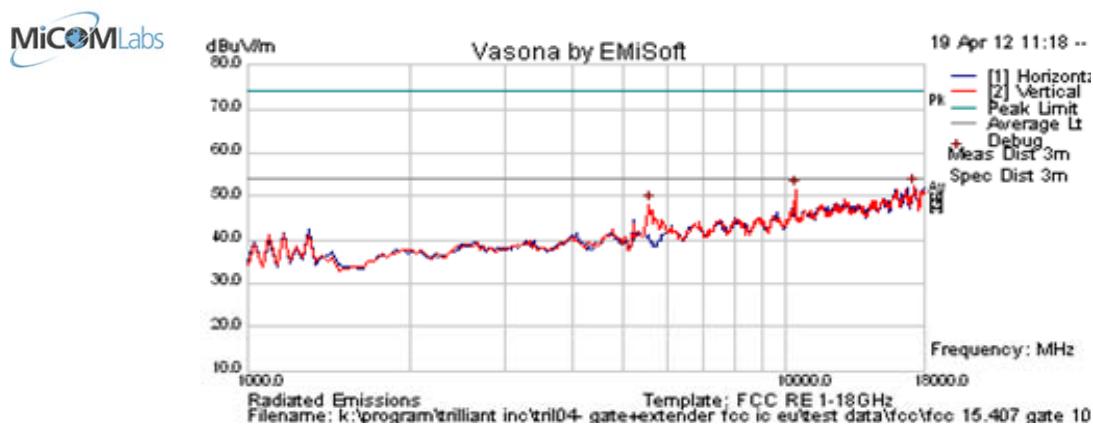
Test Freq.	5180 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23.5
Freq. Range	5150 - 5250 MHz	Rel. Hum. (%)	40
Power Setting	12, 1W Average	Press. (mBars)	1007
Antenna	17 dBi	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			



Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
17216.433	43.3	8.6	0.9	52.7	Peak [Scan]	H	200	0	54.0	-1.3	Pass	NOISE
10368.737	47.5	6.7	-2.5	51.7	Peak [Scan]	H					Pass	NRB
Legend:	TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; BE = Band-Edge											
	RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak											

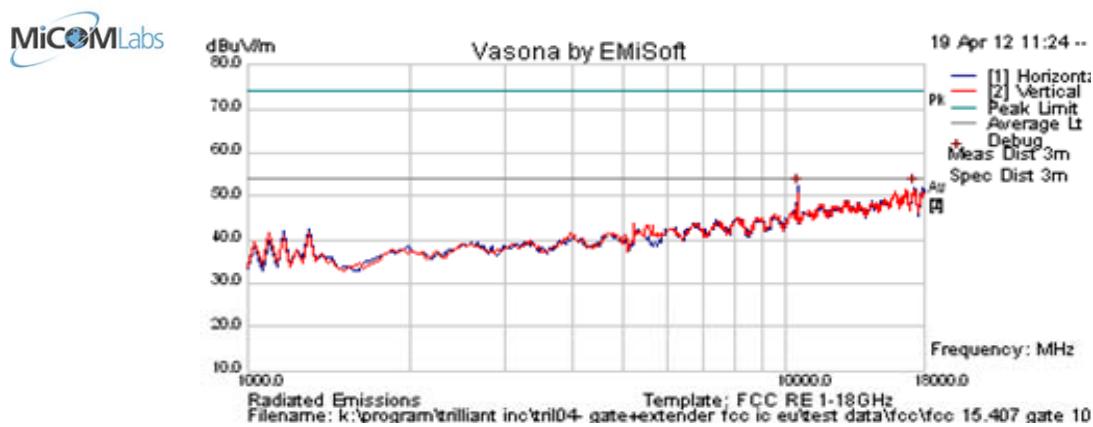
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5150 MHz Band Edge ; Power = 12

Date: 19.APR.2012 11:36:21

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Freq.	5200 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23.5
Freq. Range	5150 - 5250 MHz	Rel. Hum. (%)	40
Power Setting	10, 1W Average	Press. (mBars)	1007
Antenna	17 dBi	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			



Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
17250.501	42.5	8.6	1.0	52.2	Peak [Scan]	V	200	0	54.0	-1.9	Pass	NOISE
10402.806	47.4	6.7	-2.5	51.6	Peak [Scan]	H					Pass	NRB
5565.130	53.2	4.7	-9.7	48.1	Peak [Scan]	V					Pass	BE
Legend:	TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; BE = Band-Edge											
	RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak											

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Freq.	5240 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23.5
Freq. Range	5150 - 5250 MHz	Rel. Hum. (%)	40
Power Setting	8, 1W Average	Press. (mBars)	1007
Antenna	17 dBi	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
10470.942	47.8	6.8	-2.5	52.1	Peak [Scan]	H					Pass	NRB
17250.501	42.4	8.6	1.0	52.0	Peak [Scan]	H	150	0	54.0	-2.0	Pass	NOISE
Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission												
RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak												

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.7.2. Radiated Spurious Emissions – 30MHz – 1000MHz

FCC, Part 15 Subpart C §15.205/ §15.209 Industry Canada RSS-210 §2.2

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

$$FS = R + AF + CORR$$

where:

FS = Field Strength

R = Measured Receiver Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss

AG = Amplifier Gain

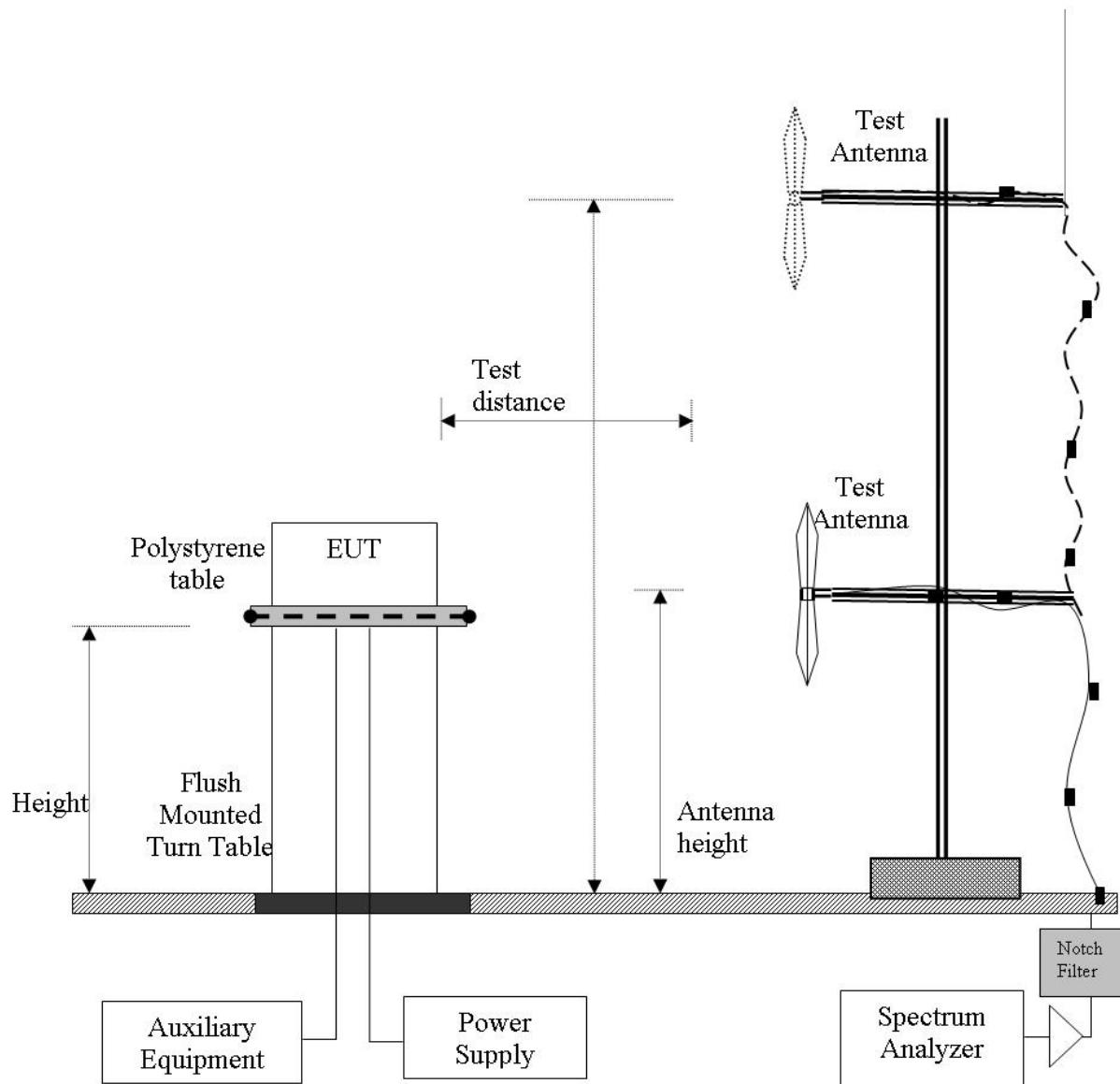
For example:

Given a Receiver input reading of 51.5dB μ V; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

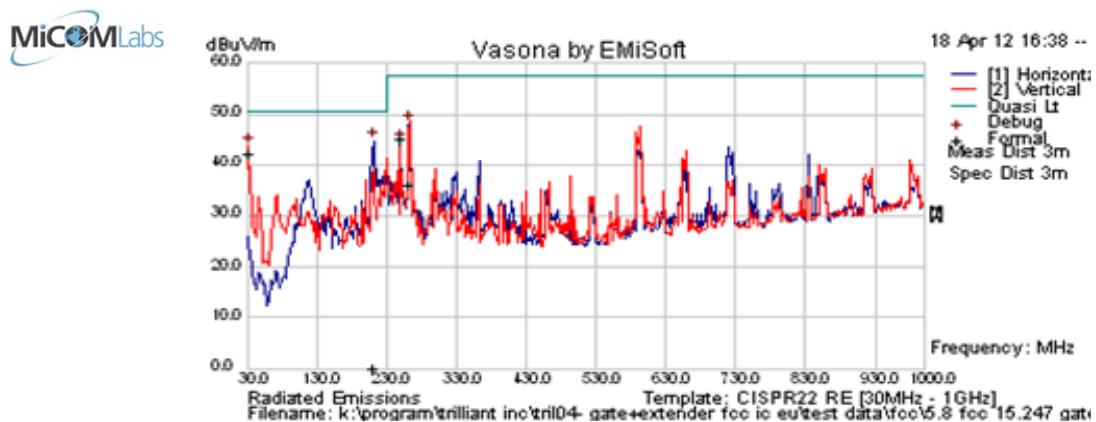
$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3\text{dB}\mu\text{V/m}$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log} (\text{level} (\mu\text{V/m}))$$


$$40 \text{ dB}\mu\text{V/m} = 100\mu\text{V/m}$$

$$48 \text{ dB}\mu\text{V/m} = 250\mu\text{V/m}$$


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Radiated Emission Measurement Setup – Below 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Freq.	N/A	Engineer	GMH
Variant	Digital Emissions CLASS A	Temp (°C)	24
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	41
Power Setting	12, 1W Average	Press. (mBars)	100
Antenna	integral		
Test Notes 1			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
211.068	58.7	4.7	-20.1	43.3	Quasi Max	H	102	167	50.5	-7.2	Pass	
32.997	50.7	3.5	-12.1	42.2	Quasi Max	V	98	345	50.5	-8.4	Pass	
261.393	49.6	4.9	-18.2	36.2	Quasi Max	V	153	120	57.5	-21.3	Pass	
249.991	59.3	4.9	-19.0	45.1	Quasi Max	H	115	77	57.5	-12.4	Pass	
593.875	52.2	6.2	-11.6	46.9	Peak [Scan]	V	102	167	57.5	-10.6	Pass	
720.282	46.3	6.6	-9.8	43.1	Peak [Scan]	H	102	167	57.5	-14.5	Pass	

Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency

NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

§15.209 (a) and RSS-Gen §2.2 Limit Matrix

Frequency(MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

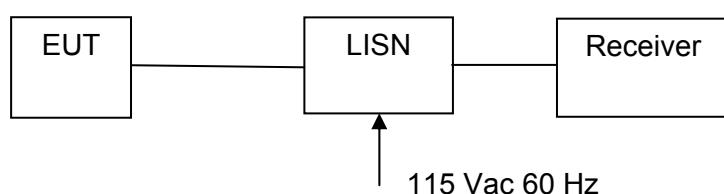
Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5.1.8. AC Wireline Conducted Emissions (150 kHz – 30 MHz)

FCC, Part 15 Subpart C §15.207
Industry Canada RSS-Gen §7.2.2

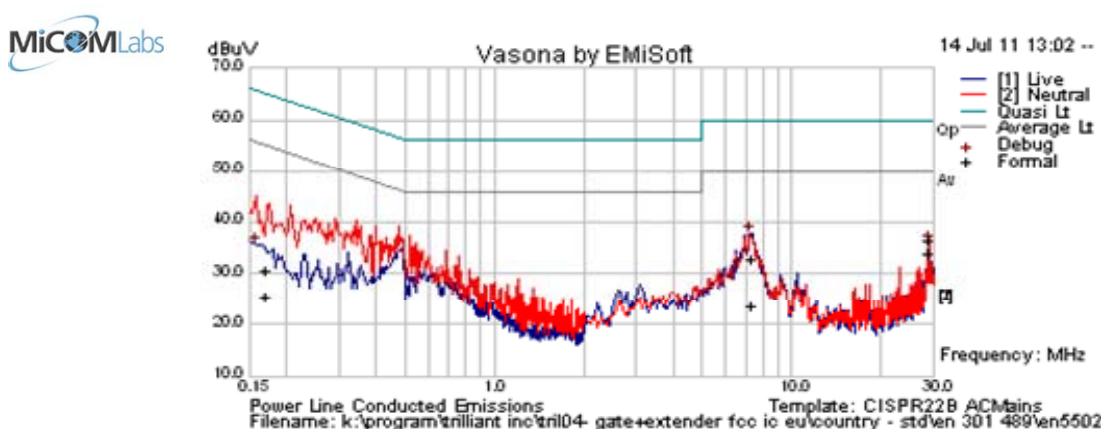
Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)


Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Freq.	N/A	Engineer	GMH
Variant	AC Line Emissions	Temp (°C)	26
Freq. Range	0.150 MHz - 30 MHz	Rel. Hum. (%)	33
Power Setting	N/A	Press. (mBars)	1000
Antenna	N/A		
Test Notes 1	Outdoor POE isolated in test chamber. POE feeds RF extender DB communicating in		
Test Notes 2	control room 2.4 and 5 GHz operation, system passing traffic (pinging)		

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail	Comments
0.171	20.6	9.9	0.1	30.6	Quasi Peak	Live	64.92	-34.4	Pass	
7.344	22.3	10.3	0.3	32.9	Quasi Peak	Neutral	60	-27.1	Pass	
29.234	24.7	10.8	0.9	36.4	Quasi Peak	Neutral	60	-23.6	Pass	
0.171	15.6	9.9	0.1	25.6	Average	Live	54.92	-29.4	Pass	
7.344	13.1	10.3	0.3	23.7	Average	Neutral	50	-26.3	Pass	
29.234	22.2	10.8	0.9	33.9	Average	Neutral	50	-16.1	Pass	

Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency

NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.2

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

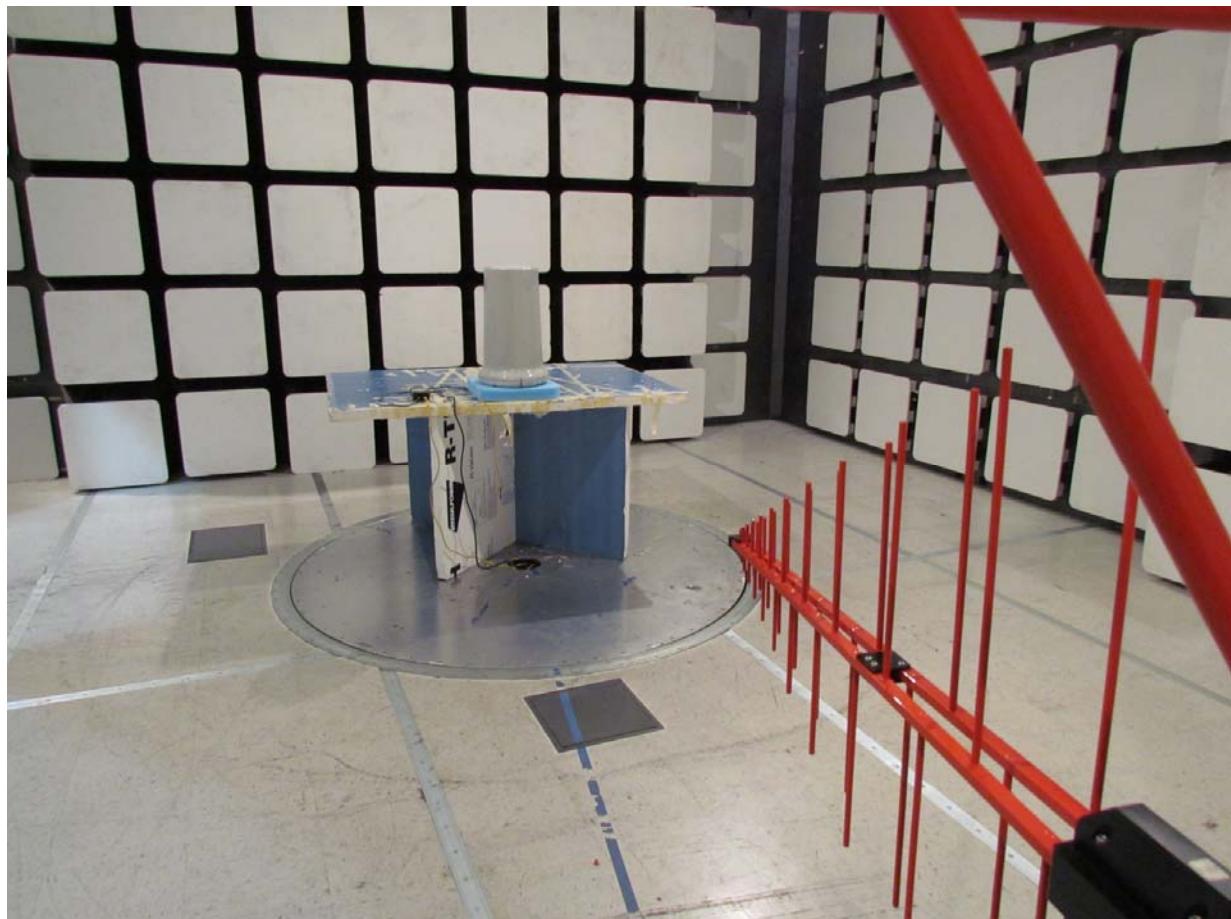
The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

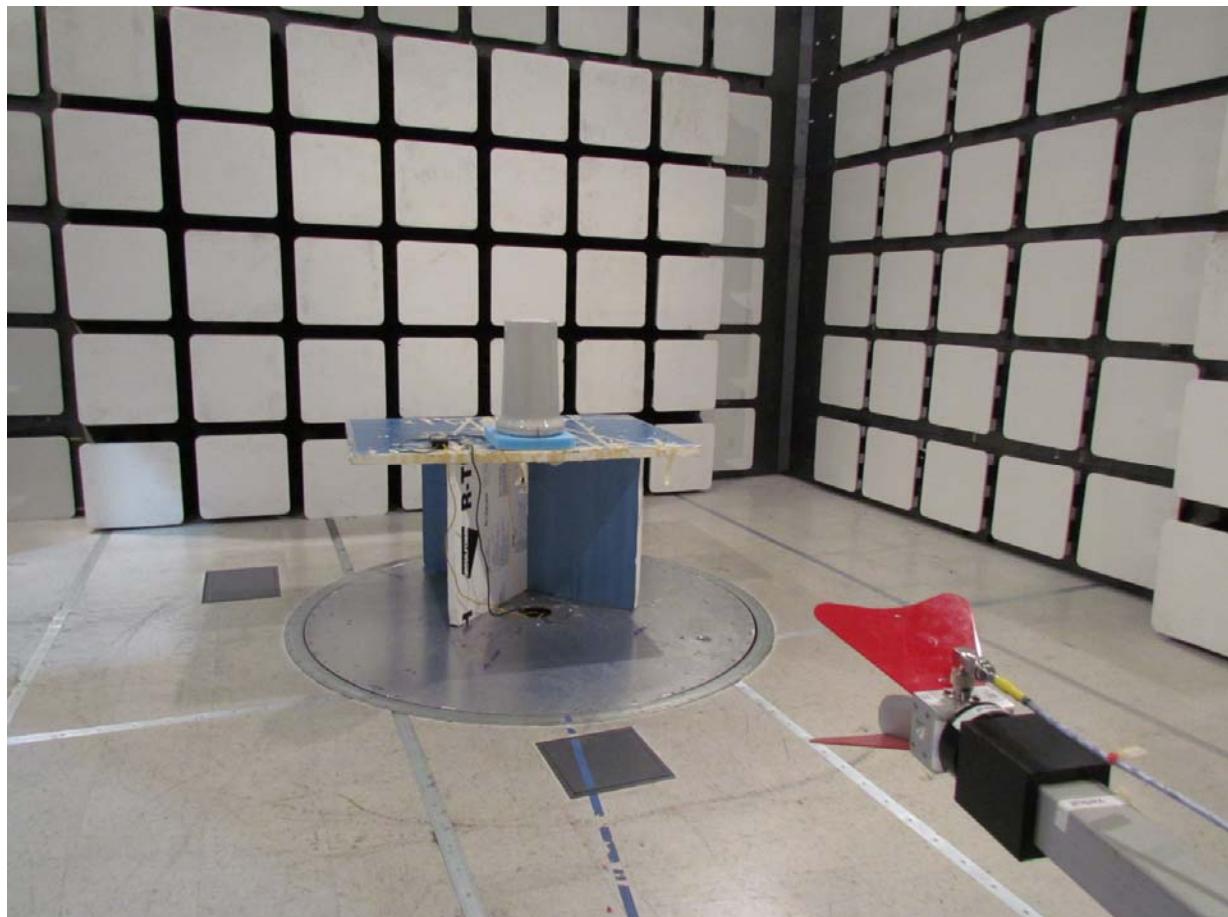
Measurement uncertainty	± 2.64 dB
-------------------------	---------------


Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'	0158, 0184, 0287, 0190, 0293, 0307

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6. PHOTOGRAPHS


6.1. Radiated Test Setup Below 1 GHz - Test Setup

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.2. Radiated Emissions Above 1 GHz - Test Setup

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: GATE-1100-A
To: FCC 47 CFR Part 15.407 & IC RSS-210
Serial #: TRIL04-U3 Rev A
Issue Date: 5th June 2012
Page: 62 of 63

7. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #	Calibration Due Date
0070	Power Meter	Hewlett Packard	437B	3125U11552	28 th Nov 12
0117	Power Sensor	Hewlett Packard	8487D	3318A00371	15 th Nov 12
0223	Power Meter	Hewlett Packard	EPM-442A	US37480256	15 th Nov 12
0374	Power Sensor	Hewlett Packard	8485A	3318A19694	29 th Nov 12
0158	Barometer /Thermometer	Control Co.	4196	E2846	8 th Dec 12
0193	EMI Receiver	Rhode & Schwartz	ESI 7	838496/007	2 nd Dec 12
0287	EMI Receiver	Rhode & Schwartz	ESIB40	100201	16 th Nov 12
0338	30 - 3000 MHz Antenna	Sunol	JB3	A052907	8 th Nov 12
0335	1-18 GHz Horn Antenna	EMCO	3117	00066580	7 th Nov 12
0252	SMA Cable	Megaphase	Sucoflex 104	None	N/A
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001	N/A
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002	N/A
0310	2m SMA Cable	Micro-Coax	UFA210A-0-0787-3G03G0	209089-001	N/A
0312	3m SMA Cable	Micro-Coax	UFA210A-1-1181-3G0300	209092-001	N/A
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623	N/A

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

440 Boulder Court, Suite 200
Pleasanton, CA 94566, USA
Tel: 1.925.462.0304
Fax: 1.925.462.0306
www.micomlabs.com