

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	1/78

Baseband section

This document provides a description of the baseband section of the MEGA4. Most design decisions are explained, but no detailed calculations are included. Total chip solutions(MT6228, MT6318, MT6120) except for RF Power Amplifier(RF3166) are from Media Tek, Taiwan.

I. MT6228 (GSM/GPRS Baseband Processor)

1. System Over View

The Revolutionary MT6228 is a leading edge single-Chip solution for GSM/GPRS mobile phones targeting the emerging applications in digital audio and video. Based on 32bit ARM7EJ-S™ RISC processor, MT6228 not only features high performance GPRS Class 12 MODEM, but also provides comprehensive and advanced solutions for handheld multi-media. But, the MEGA4 just supports GPRS Multi-slot Class 8 and GPRS MODE CLASS B.

The Figure 1 is shown Typical Application for MT6228.

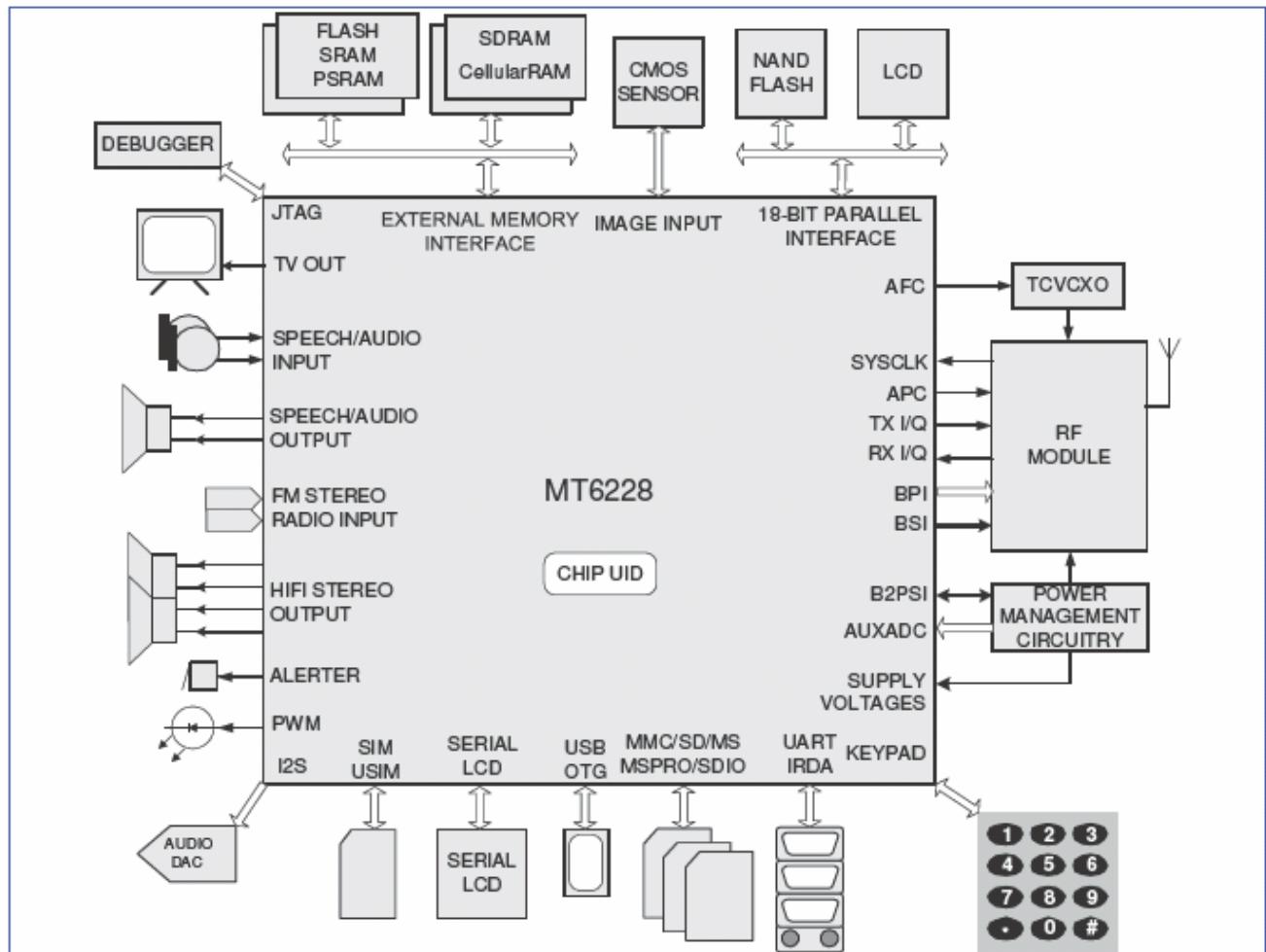


Figure 1 : Typical Application for MT6228

1.1 Platform Feature

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	2/78

- General

- Integrated voice-band, audio-band and base-band analog front ends.
- TFBGA 13mm x 13mm, 314balls, 0.65mm pitch package.

- MCU Subsystem

- ARM7EJ-S 32bit RISC processor
- High Performance Multi-layer AMBA bus
- Java hardware acceleration for fast Java-based games and applets.
- Operating frequency : 25/52/104Mhz
- Dedicated DMA Bus
- 14 DMA channels
- 1M bits on-chip SRAM
- 1M bits MCU dedicated Tightly Coupled memory
- 256K bits CODE cache
- 64K bits DATA cache
- On-chip boot ROM for factory flash programming
- Watchdog timer for system crash recovery
- 3sets of General purpose timer
- Circuit Switch Data coprocessor
- Division coprocessor
- PPP Framer coprocessor

- External Memory Interface

- Supports up to 4 external devices
- Supports 8-bit or 16-bit memory components with maximum size of up to 64M bytes each.
- Supports Mobile RAM and Cellular RAM
- Supports Flash and SRAM/PSRAM with page mode or burst mode
- Industry standard Parallel LCD interface
- Supports Multi-media companion chips with 8/16bits data width.
- Flexible I/O voltage of 1.8V ~ 2.8V for memory interface.

- User Interface

- 6-row x 7-column keypad controller with hardware scanner.
- Supports multiple key presses for gaming.
- SIM/USIM controller with hardware T=0/T=1 protocol control.
- Real Time Clock(RTC) operating with a separate power supply.
- General Purpose I/Os (GPIOs)
- 2sets of Pulse Width Modulation(PWM) output.
- Alerter Output with enhanced PWM or PDM.
- 8 external interrupt lines.

- Security

- Cipher : supports AES, DES/3DES

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	3/78

- Hash : Supports MD5, SHA-1
- Supports security key and 2kit chip unique ID
- Connectivity
 - 3 UARTs with hardware flow control and speed up to 921600pbs.
 - IrDA modulator/Demodulator with hardware framer. Supports SIR/MIR/FIR operating Speeds.
 - Full speed USB 1.1 OTG capability. Support Device mode, limited host mode and dual-role OTG mode.
 - Multi Media Card, Secure Digital Memory Card, Memory Stick, Memory Stick Pro Host Controller with flexible I/O Voltage power.
 - Supports SDIO interface for SDIO peripherals as well as WIFI connectivity.
 - DAI/PCM and I2S interface for Audio application.
- Power Management
 - Power Down Mode for analog and digital circuits.
 - Procesor Sleep Mode
 - Pause Mode of 32Khz clocking in Standby state
 - 7 channel Auxiliary 10bit A/D converter for charger and battery monitoring and photo sensing.
- Test and Debug
 - Built-in digital and analog loop back modes for both Audio and baseband front-end.
 - DAI port complying with GSM Rec.11.10
 - JTAG port for debugging embedded MCU.

1.2 Model Feature

- Radio Interface and Baseband Front End
 - GMSK Modulator with analog I and Q channel outputs.
 - 10-bit D/A convert for Uplink baseband I and Q signals.
 - 14bit high resolution A/D converter for downlink baseband I and Q signals.
 - Calibration mechanism of offset and gain mismatch for baseband A/D converter and D/A converter.
 - 10bit D/A converter for Automatic Power Control(APC)
 - 13bit high resolution D/A converter for Automatic frequency Control(AFC)
 - Programmable Radio RX filter.
 - 2 channels Baseband Serial Interface(BSI) with 3-wire control.
 - Bi-Directional BSI interface. RF chip register read access with 3-wire or 4-wire interface
 - 10 pin Baseband Parallel Interface(BPI) with programmable driving strength.
 - Multi-band Support (GSM850, GSM900, DCS1800, PCS1900)
- Voice and Model Codec
 - Dial tone Generation.
 - Voice memo
 - Noise reduction
 - Echo suppression
 - Advanced sidetone Oscillation Reduction.
 - Digital sidetone generator with programmable gain.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	4/78

- Two programmable acoustic compensation filters.
- GSM/GPRS quad vocoders for adaptive multirate(AMR), enhanced full rate(EFR), full rate(FR) and half rate(HR).
- GSM channel coding, equalization and A5/1 and A5/2 ciphering.
- GPRS GEA1 and GEA2 ciphering.
- Programmable GSM/GPRS model.
- Packet Switched data with CS1/CS2/CS3/CS4 coding schemes.
- GSM circuit switch data.
- GPRS Class 12.
- Voice Interface and Voice Front End.
 - Two microphone inputs sharing one low noise amplifier with programmable gain and automatic gain control(AGC) mechanisms.
 - Voice power amplifier with programmable gain.
 - 2'nd order Sigma-Delta A/D converter for voice uplink path.
 - D/A Converter for Voice downlink path.
 - Supports Half-duplex hands-free operation.
 - Compliant with GSM 03.50.

1.3 Multimedia Feature

- LCD/NAND Flash Interface

- Dedicated Parallel Interface supports 3 external devices with 8/16 bits NAND flash interface, 8/9/16/18 bit Parallel interface and serial interface for LCM.
- Built-in NAND flash controller with 1 bit ECC for mass storage.

- LCD Controller

- Supports simultaneous connection to up to 3 parallel LCD and 2 serial LCD modules.
- Supports LCM format : RGB332, RGB444, RGB565, RGB666, RGB888.
- Supports LCD Module with maximum resolution up to 800x600 at 24bpp.
- Per pixel alpha channel.
- True colour engine
- Supports hardware display rotation.
- Capable of combining display memories with up to 6 blending layers.

- Image Signal Processor

- 8/10 bit Bayer format image input.
- YUV422 format image input.
- Capable of processing image of size up to 3M pixels.
- Colour correction matrix.
- Gamma correction.
- Automatic exposure(AE) control.
- Automatic focus control.
- Automatic white balance(AWB) control.
- Programmable AE/AEB windows.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	5/78

- Edge enhancement support.
- Shading compensation.
- Defect Pixel compensation.
- Graphic Compression.
 - GIF decoder, PNG Decoder.
 - JPEG Decoder
 - ISO/IEC 10918-1 JPEG Baseline and Progressive modes.
 - Supports all possible YUV formats, Including gray scale format.
 - Supports all DC/AC Huffman table parsing.
 - Supports all quantization table parsing.
 - Supports a restart interval
 - Supports SOS, DHT, DQT and DRI marker parsing.
 - IEEE Std 1180-1990 IDCT standards compliance
 - Supports progressive image processing to minimize storage space requirement.
 - Supports reload-able DMA for VLD stream.
 - JPEG Encoder
 - ISO/IEC 10918-1 JPEG baseline mode.
 - ISO/IEC 10918-2 compliance
 - Supports YUV422 and YUV420 and grayscale formats.
 - Supports JFIF.
 - Standard DC and AC Huffman tables.
 - Provides 4 levels of encode quality.
 - Supports continuous shooting.
 - Image Data Processing.
 - Supports Digital Zoom.
 - Supports RGB888/565, YUV444 image processing.
 - High throughput hardware scaler. Capable of tailoring an image to an arbitrary size.
 - Horizontal scaling in averaging method.
 - Vertical scaling in bilinear method.
 - Simultaneous scaling for MPEG-4 encode and LCD display.
 - YUV and RGB color space conversion.
 - Pixel format transform.
 - Boundary padding.
 - Pixel processing : hue/saturation/intensity/color adjustment, Gamma correction and grayscale/invert/sepi-tone effects.
 - Programmable spatial filtering : linear filter, non-linear filter and multi-pass artistic effects.
 - Hardware accelerated image editing.
 - Photo frame capability.
 - RGB thumbnail data output.
 - MPEG-4/H.263 CODEC

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	6/78

- Hardware Video CODEC.
- ISO/IEC 14496-2 simple profile :
 - Decode @ level 0/1/2/3
 - Encode @ level 0.
- ITU-T H.263 profile 0 @level 10.
- Max decode speed is VGA @15fps.
- Max encode speed is CIF@15fps.
- Support VGA mode encoding.
- Horizontal and vertical de-blocking filter in video playback.
- Encoder resync marker and HEC.
- Support visual tools for decoder : I-VOP, P-VOP, AC/DC Prediction, 4-MV, Unrestricted MV, Error Resilience, Short Header.
- Error Resilience for decoder : Slice Re-synchronization, Data Partitioning, Reversible VLC.
- Supported visual tools for encoder : I-VOP, P-VOP, Half-Pel, DC Prediction, Unrestricted MV, Reverible VLC, Short Header.
- Supports encoding motion vector of range up to -64/+63.5 pixels.
- HE-AAC decode support.
- AAC/AMR/WB-AMR audio decode support
- AMR/WB-AMR audio encode support.

● TV-OUT

- Supports NTSC/PAL formats(interlaced mode)
- 10bit video DAC with 2x over sampling.
- Supports one composite video output.

● Audio CODEC

- Supports HE-AAC codec decode
- Supports AAC codec decode
- Wavetable synthesis with up to 64 tones
- Advanced wavetable synthesizer capable of generating simulated stereo
- Wavetable including GM full set of 128 instruments and 47 sets of percussions
- PCM Playback and Record
- Digital Audio Playback

● Audio Interface and Audio Front End

- Supports I2S interface
- High resolution D/A Converters for Stereo Audio playback
- Stereo analog input for stereo audio source
- Analog multiplexer for stereo audio
- Stereo to mono conversion

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	7/78

Figure 2 is shown the Block Diagram of MT6228 for detail.

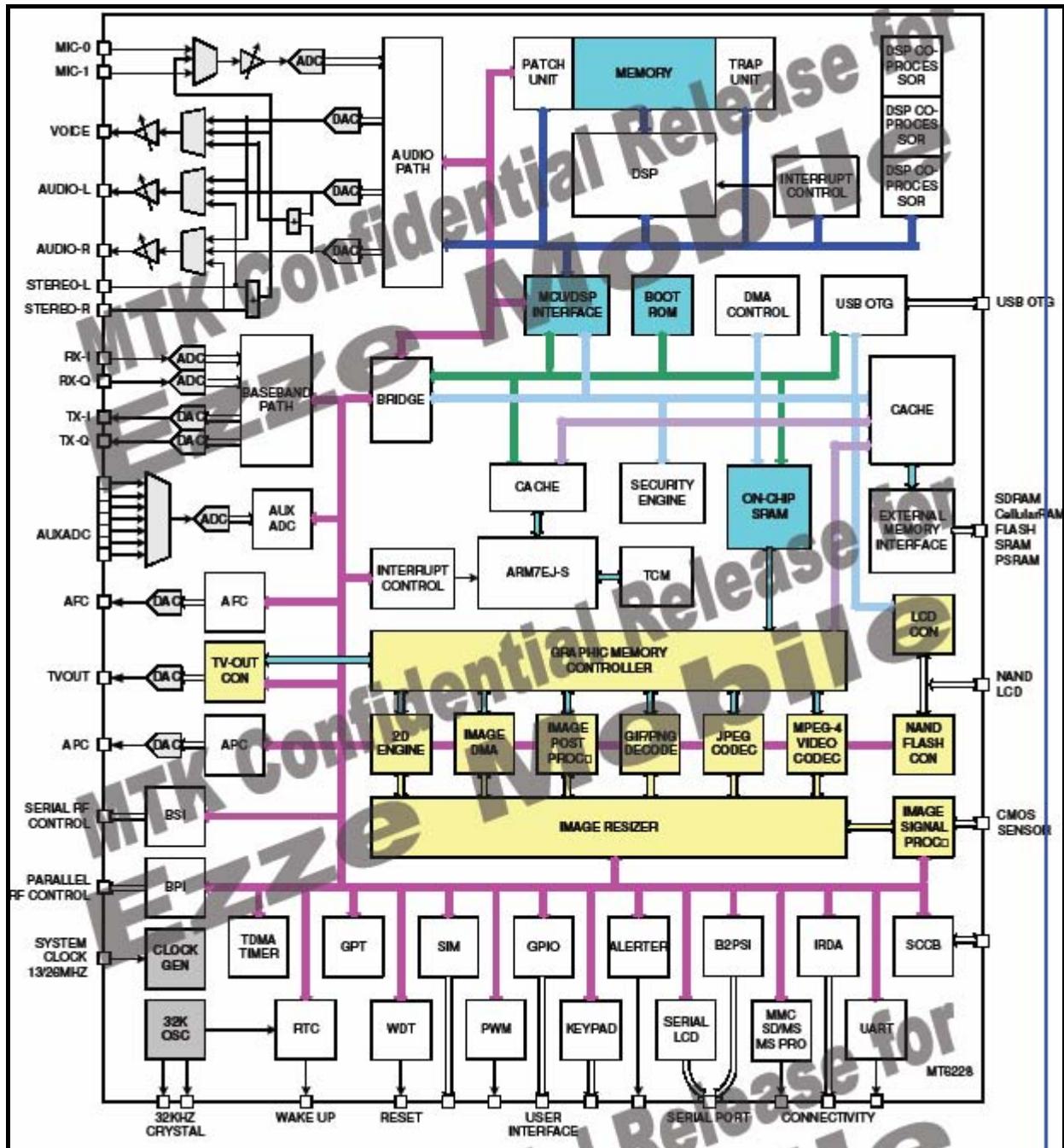


Figure 2 : Block Diagram of MT6228

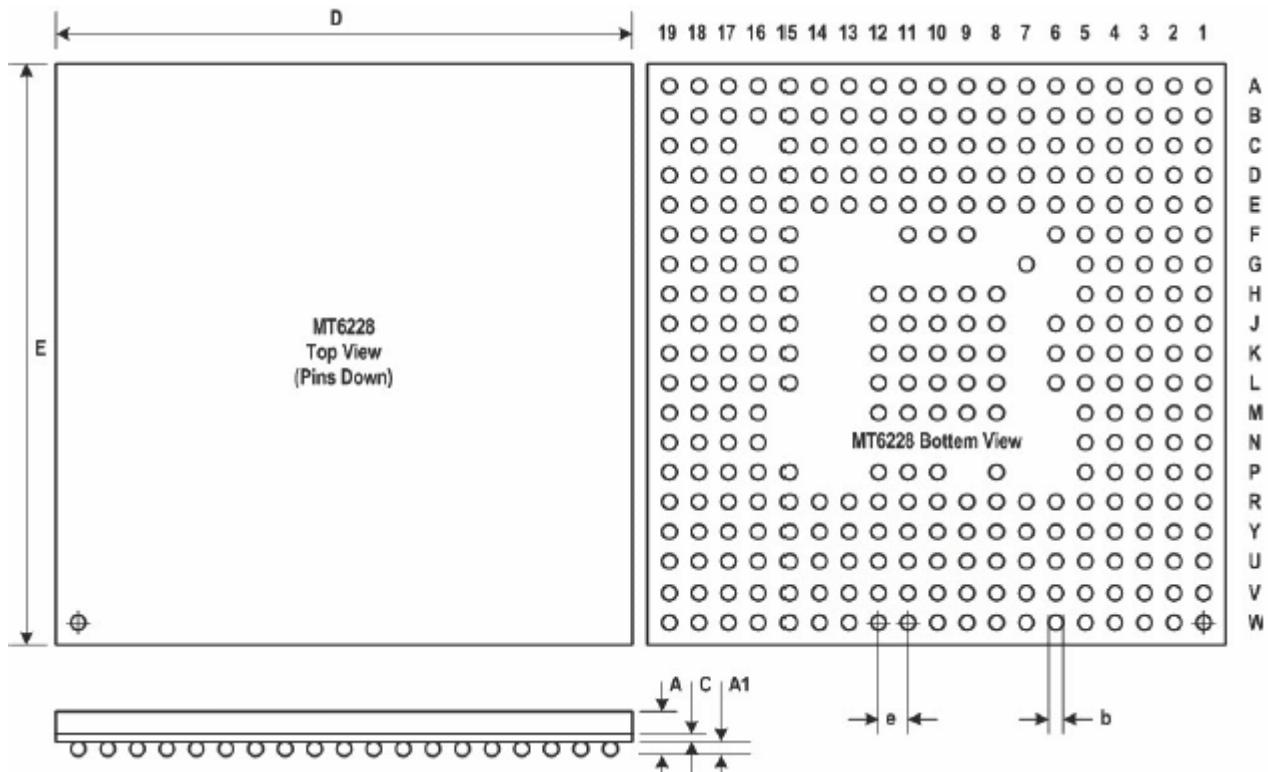
2. Product Description

Pin Outs

One type of Package for this product, TFBGA 13x13mm, 296balls, 0.65mm pitch package, is offered.

Pin outs and the top view are illustrated in Figure 3,4.

MODEL	MEGA4						VERSION						V_1.00					
PREPARED BY	H/W						DATE						16/05/2008					
SUBJECT	TECHNICAL MANUAL						PAGE						8/78					


- Pin Out

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
A	AVDD _{PLL}	TVOUT	V8833	AFC _{BYP}	AUXA _{DIN6}	AUXA _{DIN3}	AVDD _{RFE}	BUPAI _N	BDLAI _N	AU _{VI} _{N1_P}	AGND _{AFE}	AU _O _{UT0_P}	AV88 _{BUF}	AU _F _{MINR}	AU _M _{OUTR}	V8833	GPIO9	GPIO8	GPIO6	
B	8Y8CL _K	AVDD _{TV}	VDD33	AFC	AUXA _{DIN5}	AUXA _{DIN2}	APC	BUPAI _P	BDLAI _N	AU _{VI} _{N1_N}	AU _{VR} _{EF_P}	AU _O _{UT0_N}	AVDD _{BUF}	AU _F _{MINL}	AU _M _{OUTL}	V8833	MFIO	GPIO7	VDD33	
C	AV88 _{PLL}	FRE8	AV88 _{TV}	AUX _{LR} _{EF}	AUXA _{DIN4}	AUXA _{DIN1}	AV88 _{RFE}	BUPA _{QN}	BDLA _{QN}	AU _{VI} _{N0_N}	AU _{VR} _{EF_N}	AU _{MI} _{CBIA8_P}	AU _O _{UT1_N}	AU _M _{BYP}	AVDD _{MBUF}	NC	GPIO5	GPIO4	GPIO3	
D	XIN	XOUT	AVDD _{RTC}	VDD33	V8833	AUXA _{DIN0}	AVDD _{G8MR_FTX}	BUPA _{QP}	BDLA _{QP}	AU _{VI} _{N0_P}	AVDD _{AFE}	AU _{MI} _{CBIA8_N}	AU _O _{UT1_P}	AV88 _{MBUF}	E8DM _{_CK}	DAIPC _{MIN}	GPIO2	DAI8Y _{NC}	DAI8 _T	
E	BBWA _{KEUP}	V8833	VDDK	JTR8T _#	TE8TM _{ODE}	VDD33	V8833	AV88 _{G8MR_FTX}	AGND _{RFE}	AV88 _{AFE}	VDD33	V8833	VDD33	V8833	VDD33	KROW ₁	KROW ₀	DAICL _K	DAIPC _{MOUT}	
F	JRTCK	JTDO	JTM8	JTDI	JTCK	PLLOU _T		VDD33	V8833	VDDK						KROW ₄	KROW ₃	KROW ₂	VDDK	V8833
G	BPLB _{U83}	VDD33	BPLB _{U82}	BPLB _{U81}	BPLB _{U80}		NLD17									KCOL3	KCOL2	KCOL1	KCOL0	KROW ₅
H	V8833	BPLB _{U88}	BPLB _{U87}	BPLB _{U86}	BPLB _{U85}			CMDA _{T9}	CMPC _{LK}	CMMC _{LK}	CMHR _{EF}	CMVR _{EF}				IRDA _{TXD}	IRDA _{PDN}	KCOL6	KCOL5	KCOL4
J	L8CK	B8I _C _{LK}	B8I _C _{ATA}	B8I _C ₈₀	BPLB _{U89}	BPLB _{U84}		CMDA _{T8}	NLD16	NLD14	NLD11	CMR8 _T				UTXD2	URXD3	UTXD3	VDD33	IRDA _{RxD}
K	VDD33	L8CE1 _#	L8CE0 _#	L8DA	L8A0	LPCE1 _#		CMDA _{T7}	NLD15	NLD12	NLD9	CMPD _N				URXD1	UTXD1	UCT81	URT81	URXD2
L	LWR _#	LPA0	LRD _#	LR8T _#	LPCE0 _#	NLD7		CMDA _{T6}	NLD13	NLD10	NLD8	CMDA _{T0}				V8833	8IMCL _K	8IMVC _C	8IM3E _L	8IMDA _{TA}
M	V8833	VDDK	NLD4	NLD5	NLD6			CMDA _{T5}	CMDA _{T4}	CMDA _{T3}	CMDA _{T2}	CMDA _{T1}				MCWP	MCIN8	MCCK	8IMR8 _T	
N	NIRNB	NLD0	NLD1	NLD2	NLD3			MT6228 TFBGA Top_View												VDD33 _{_AUX1}
P	NCE _#	NRE _#	NWE _#	NALE	NCLE			EA11		EA0	EC82 _#	ERD _#				VDDK	VDD33 _{_AUX2}	MCCM0	MCDA0	MCDA1
R	VDD33	ALERT _{ER}	PWM2	PWM1	EA19	V8833 _{_EMI}	EA12	EA8	EA4	VDD33 _{_EMI}	EC83 _#	V8833 _{_EMI}	ECKE	EWAIT	ED0	WATC _{HDOG}	V8833	U8B_D _P	U8B_D _M	
T	8RCL _{KENA_N}	8Y8R8 _{T#}	8RCL _{KENA}	8RCL _{KENA}	EA20	EA16	VDD33 _{_EMI}	EA9	EA5	EA1	EPDN _#	EWR _#	EDCL _K	ECA8 _#	ED13	ED10	VDD33 _{_EMI}	ED2	ED1	
U	GPIO1	EINT0	GPIO0	MIRQ	EA21	EA17	EA13	V8833 _{_EMI}	EA6	EA2	V8833 _{_EMI}	EC80 _#	VDD33 _{_EMI}	V8833 _{_EMI}	ED14	ED11	ED8	ED4	ED3	
V	EINT1	EINT3	VDD33 _{_EMI}	EA24	EA22	VDD33 _{_EMI}	EA14	VDDK	EA7	V8833 _{_EMI}	ECLK	EC81 _#	ELB _#	VDDK	VDD33 _{_EMI}	ED12	VDD33 _{_EMI}	V8833 _{_EMI}	ED5	
W	EINT2	V8833 _{_EMI}	EA25	EA23	V8833 _{_EMI}	EA18	EA15	EA10	VDD33 _{_EMI}	EA3	EADN _#	VDD33 _{_EMI}	EUB _#	ERA8 _#	ED15	V8833 _{_EMI}	ED9	ED7	ED6	

Figure 3 . MT6228(7) Pin Out.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	9/78

- Top and Bottom View

Body Size	Ball Count	Ball Pitch	Ball Dia.	Package Thk.	Stand Off	Substrate Thk.	
D 13	E 13	N 314	E 0.65	B 0.35	A (Max.) 1.2	A1 0.3	C 0.36

Top Masking Definition

MT6228T: Part No.
DDDD: Date Code
##: Subcontractor Code
LLLLL: U1 Die Lot No.
KKKKK: U2 Die Lot No.
S: Special Code

Figure 4. Top masking definition

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	10/78

Pin Description

JTAG Port										
E4	JTRST#	I	JTAG test port reset input						PD	Input
F5	JTCK	I	JTAG test port clock input						PU	Input
F4	JTDI	I	JTAG test port data input						PU	Input
F3	JTMS	I	JTAG test port mode switch						PU	Input
F2	JTDO	O	JTAG test port data output						0	
F1	JRTCK	O	JTAG test port returned clock output						0	
RF Parallel Control Unit										
G5	BPI_BUS0	O	RF hard-wire control bus 0						0	
G4	BPI_BUS1	O	RF hard-wire control bus 1						0	
G3	BPI_BUS2	O	RF hard-wire control bus 2						0	
G1	BPI_BUS3	O	RF hard-wire control bus 3						0	
J6	BPI_BUS4	O	RF hard-wire control bus 4						0	
H5	BPI_BUSS	O	RF hard-wire control bus 5						0	
H4	BPI_BUS6	IO	RF hard-wire control bus 6	GPIO16	BPI_BUS6				PD	Input
H3	BPI_BUS7	IO	RF hard-wire control bus 7	GPIO17	BPI_BUS7	13MHz	26MHz	PD	Input	
H2	BPI_BUS8	IO	RF hard-wire control bus 4	GPIO18	BPI_BUS8	6.5MHz	32KHz	PD	Input	
J5	BPI_BUS9	IO	RF hard-wire control bus 5	GPIO19	BPI_BUS9	BSI_CS1	BFEPRB O	PD	Input	
RF Serial Control Unit										
J4	BSI_CS0	O	RF 3-wire interface chip select 0						0	
J3	BSI_DATA	O	RF 3-wire interface data output						0	
J2	BSI_CLK	O	RF 3-wire interface clock output						0	
PWM Interface										
R4	PWM1	IO	Pulse width modulated signal 1	GPIO32	PWM1	TBTXFS	DSP_TID 2	PD	Input	
R3	PWM2	IO	Pulse width modulated signal 2	GPIO33	PWM2	TBRXEN	DSP_TID 3	PD	Input	
R2	ALERTER	IO	Pulse width modulated signal for buzzer	GPIO34	ALERTER	TBRXFS	DSP_TID 4	PD	Input	
Serial LCD/PM IC Interface										
J1	LSCK	IO	Serial display interface data output	GPIO20	LSCK	TDMA_C K	TBTXEN	PU	Input	
K5	LSA0	IO	Serial display interface address output	GPIO21	LSA0	TDMA_D1	TDTIRQ	PU	Input	
K4	LSDA	IO	Serial display interface clock output	GPIO22	LSDA	TDMA_D0	TCTIRQ2	PU	Input	
K3	LSCE0#	IO	Serial display interface chip select 0 output	GPIO23	LSCE0#	TDMA_FS	TCTIRQ1	PU	Input	
K2	LSCE1#	IO	Serial display interface chip select 1 output	GPIO24	LSCE1#	LPCE2#	TEVTVA L	PU	Input	
Parallel LCD/NAND-Flash Interface										
K6	LPCE1#	IO	Parallel display interface chip select 1 output	GPIO25	LPCE1#	NCE1#	DSP_TID 0	PU	Input	
L5	LPCE0#	O	Parallel display interface chip select 0 output						1	
L4	LRST#	O	Parallel display interface Reset Signal						1	
L3	LRD#	O	Parallel display interface Read Strobe						1	

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	11/78

L2	LPA0	O	Parallel display interface address output						1
L1	LWR#	O	Parallel display interface Write Strobe						1
G7	NLD17	IO	Parallel LCD/NAND-Flash Data 17	GPIO11	NLD17	MCDA4	DSP_TID 1	PD	Input
J9	NLD16	IO	Parallel LCD/NAND-Flash Data 16	GPIO10	NLD16	MCDA5	DID	PD	Input
K9	NLD15	IO	Parallel LCD/NAND-Flash Data 15	NLD15	GPIO61		DIMS	PD	Input
J10	NLD14	IO	Parallel LCD/NAND-Flash Data 14	NLD14	GPIO60		DICK	PD	Input
L9	NDL13	IO	Parallel LCD/NAND-Flash Data 13	NLD13	GPIO59		SWDBGP KT	PD	Input
K10	NLD12	IO	Parallel LCD/NAND-Flash Data 12	NLD12	GPIO58		SWDBG WR	PD	Input
J11	NLD11	IO	Parallel LCD/NAND-Flash Data 11	NLD11	GPIO57		SWDBGR D	PD	Input
L10	NLD10	IO	Parallel LCD/NAND-Flash Data 10	NLD10	GPIO56		SWDBGR OE	PD	Input
K11	NLD9	IO	Parallel LCD/NAND-Flash Data 9	NLD9	GPIO55		SWDBGA 0	PD	Input
L11	NLD8	IO	Parallel LCD/NAND-Flash Data 8	NLD8	GPIO54		SWDBGA 1	PD	Input
L6	NLD7	IO	Parallel LCD/NAND-Flash Data 7					PD	Input
M5	NLD6	IO	Parallel LCD/NAND-Flash Data 6					PD	Input
M4	NLD5	IO	Parallel LCD/NAND-Flash Data 5					PD	Input
M3	NLD4	IO	Parallel LCD/NAND-Flash Data 4					PD	Input
N5	NLD3	IO	Parallel LCD/NAND-Flash Data 3					PD	Input
N4	NLD2	IO	Parallel LCD/NAND-Flash Data 2					PD	Input
N3	NLD1	IO	Parallel LCD/NAND-Flash Data 1					PD	Input
N2	NLD0	IO	Parallel LCD/NAND-Flash Data 0					PD	Input
N1	NRNB	IO	NAND-Flash Read/Busy Flag	NRNB	GPIO26	USBSESS VLD	SWDBGD 2	PU	

P5	NCLE	IO	NAND-Flash Command Latch Signal	NCLE	GPIO27	USBVBUS VLD	SWDBGD 1	PD	
P4	NALE	IO	NAND-Flash Address Latch Signal	NALE	GPIO28	USBSESS END	SWDBGD 0	PD	
P3	NWE#	IO	NAND-Flash Write Strobe	NWE#	GPIO29			PU	
P2	NRE#	IO	NAND-Flash Read Strobe	NRE#	GPIO30	USBVBUS DSC	SWDBGC K	PU	
P1	NCE#	IO	NAND-Flash Chip select output	NCE#	GPIO31			PU	

SIM Card Interface

M19	SIMRST	O	SIM card reset output						0
L16	SIMCLK	O	SIM card clock output						0
L17	SIMVCC	O	SIM card supply power control						0
L18	SIMSEL	O	SIM card supply power select	GPIO48	SIMSEL			PD	Input
L19	SIMDATA	IO	SIM card data input/output						0

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	12/78

Dedicated GPIO Interface										
U3	GPIO0	IO	General purpose input/output 0	GPIO0	CMFLAS H			DSP_TID	5	Input
U1	GPIO1	IO	General purpose input/output 1	GPIO1	BSL_RFIN			PD		Input
D17	GPIO2	IO	General purpose input/output 2	GPIO2	SCL			PU		Input
C19	GPIO3	IO	General purpose input/output 3	GPIO3	SDA			PU		Input
C18	GPIO4	IO	General purpose input/output 4	GPIO4	EDICK	URXD2	SWDBGD	7		
C17	GPIO5	IO	General purpose input/output 5	GPIO5	EDIWS	UTXD2	SWDBGD	6		
A19	GPIO6	IO	General purpose input/output 6	GPIO6	EDIDAT		SWDBGD			
							5			
B18	GPIO7	IO	General purpose input/output 7	GPIO7		USBVBUS ON	SWDBGD	4		
A18	GPIO8	IO	General purpose input/output 19	GPIO8	32KHz	USBVBUS CHG	SWDBGF			
A17	GPIO9	IO	General purpose input/output 21	GPIO9	26MHz	13MHz	SWDBGE			

Miscellaneous										
T2	SYSRST#	I	System reset input active low							Input
R16	WATCHDO G#	O	Watchdog reset output							1
T1	SRCLKENA N	O	External TCXO enable output active low	GPO1	SRCLKENAN					0
T4	SRCLKENA	O	External TCXO enable output active high	GPO0	SRCLKENA					1
T3	SRCLKENAI	IO	External TCXO enable input	GPIO35	SRCLKENAI			PD		Input
E5	TESTMODE	I	TESTMODE enable input					PD		Input
D15	ESDM_CK	O	Internal Monitor Clock							

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	13/78

Keypad Interface										
H17	KCOL6	I	Keypad column 6						PU	Input
H18	KCOL5	I	Keypad column 5						PU	Input
H19	KCOL4	I	Keypad column 4						PU	Input
G15	KCOL3	I	Keypad column 3						PU	Input
G16	KCOL2	I	Keypad column 2						PU	Input
G17	KCOL1	I	Keypad column 1						PU	Input
G18	KCOL0	I	Keypad column 0						PU	Input
G19	KROW5	O	Keypad row 5	KROW5	GPIO44	ARM CK	TV CK	0		
F15	KROW4	O	Keypad row 4	KROW4	GPIO45	AHB CK	DSP CK	0		
F16	KROW3	O	Keypad row 3	KROW3	GPIO46	FTV CK	SLOW CK	0		
F17	KROW2	O	Keypad row 2	KROW2	GPIO47	FMCU CK	FUSB CK	0		
E16	KROW1	O	Keypad row 1							0
E17	KROW0	O	Keypad row 0							0

External Interrupt Interface

U2	EINT0	I	External interrupt 0						PU	Input
V1	EINT1	I	External interrupt 1						PU	Input
W1	EINT2	I	External interrupt 2						PU	Input
V2	EINT3	I	External interrupt 3						PU	Input
U4	MIRQ	I	Interrupt to MCU	GPIO36	MIRQ	6.5MHz	32KHz	PU	Input	
B17	MFIQ	I	Interrupt to MCU	GPIO63	MFIQ	USBID	SWDBGD	PU	Input	3

External Memory Interface

R15	ED0	IO	External memory data bus 0							Input
T19	ED1	IO	External memory data bus 1							Input
T18	ED2	IO	External memory data bus 2							Input
U19	ED3	IO	External memory data bus 3							Input
U18	ED4	IO	External memory data bus 4							Input
V19	ED5	IO	External memory data bus 5							Input
W19	ED6	IO	External memory data bus 6							Input
W18	ED7	IO	External memory data bus 7							Input
U17	ED8	IO	External memory data bus 8							Input
W17	ED9	IO	External memory data bus 9							Input
T16	ED10	IO	External memory data bus 10							Input
U16	ED11	IO	External memory data bus 11							Input

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	14/78

V16	ED12	IO	External memory data bus 12						Input
T15	ED13	IO	External memory data bus 13						Input
U15	ED14	IO	External memory data bus 14						Input
W15	ED15	IO	External memory data bus 15						Input
P12	ERD#	O	External memory read strobe						1
T12	EWR#	O	External memory write strobe						1
U12	ECS0#	O	External memory chip select 0						1
V12	ECS1#	O	External memory chip select 1						1
P11	ECS2#	O	External memory chip select 2						1
R11	ECS3#	O	External memory chip select 3						1
R14	EWAIT	O	Flash, PSRAM and CellularRAM data ready					PU	Input
T14	ECAS#	O	MobileRAM column address						1
W14	ERAS#	O	MobileRAM row address						1
R13	ECKE	O	MobileRAM clock enable						1
T13	EDCLK	O	MobileRAM clock						
V13	ELB#	O	External memory lower byte strobe						1
W13	EUB#	O	External memory upper byte strobe						1
T11	EPDN#	O	PSRAM power down control	GPO2	EPDN#	26Mhz	13MHz		0
W11	EADV#	O	Flash, PSRAM and CellularRAM address valid						1
V11	ECLK	O	Flash, PSRAM and CellularRAM clock						0
P10	EA0	O	External memory address bus 0						0
T10	EA1	O	External memory address bus 1						0
U10	EA2	O	External memory address bus 2						0
W10	EA3	O	External memory address bus 3						0
R9	EA4	O	External memory address bus 4						0
T9	EA5	O	External memory address bus 5						0
U9	EA6	O	External memory address bus 6						0
V9	EA7	O	External memory address bus 7						0
R8	EA8	O	External memory address bus 8						0
T8	EA9	O	External memory address bus 9						0
W8	EA10	O	External memory address bus 10						0
P8	EA11	O	External memory address bus 11						0
R7	EA12	O	External memory address bus 12						0
U7	EA13	O	External memory address bus 13						0
V7	EA14	O	External memory address bus 14						0
W7	EA15	O	External memory address bus 15						0
T6	EA16	O	External memory address bus 16						0
U6	EA17	O	External memory address bus 17						0
W6	EA18	O	External memory address bus 18						0
R5	EA19	O	External memory address bus 19						0
T5	EA20	O	External memory address bus 20						0
U5	EA21	O	External memory address bus 21						0
V5	EA22	O	External memory address bus 22						0
W4	EA23	O	External memory address bus 23						0
V4	EA24	O	External memory address bus 24						0
W3	EA25	O	External memory address bus 25						0

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	15/78

USB Interface							
R18	USB_DP	IO	USB D+ Input/Output				
R19	USB_DM	IO	USB D- Input/Output				

Memory Card Interface							
P17	MCCM0	IO	SD Command/MS Bus State Output				PU/ PD
P18	MCDA0	IO	SD Serial Data IO 0/MS Serial Data IO				PU/ PD
P19	MCDA1	IO	SD Serial Data IO 1				PU/ PD
N17	MCDA2	IO	SD Serial Data IO 2				PU/ PD
N18	MCDA3	IO	SD Serial Data IO 3				PU/ PD
M18	MCCK	O	SD Serial Clock/MS Serial Clock Output				
N19	MCPWRON	O	SD Power On Control Output				
M16	MCWP	I	SD Write Protect Input				PU/ PD
M17	MCINS	I	SD Card Detect Input				PU/ PD

UART/IrDA Interface							
K15	URXD1	I	UART 1 receive data				PU
K16	UTXD1	O	UART 1 transmit data				1
K17	UCTS1	I	UART 1 clear to send				PU
K18	URTS1	O	UART 1 request to send				1
K19	URXD2	IO	UART 2 receive data	GPIO37	URXD2	UCTS3	PU
J15	UTXD2	IO	UART 2 transmit data	GPIO38	UTXD2	URTS3	PU
J16	URXD3	IO	UART 3 receive data	GPIO39	URXD3		PU
J17	UTXD3	IO	UART 3 transmit data	GPIO40	UTXD3		DSP_TID 6
J19	IRDA_RXD	IO	IrDA receive data	GPIO41	IRDA_RX D	UCTS2	SWDBGD 15
H15	IRDA_TXD	IO	IrDA transmit data	GPIO42	IRDA_TX D	URTS2	SWDBG1 4
H16	IRDA_PDN	IO	IrDA Power Down Control	GPIO43	IRDA_PD N		SWDBG1 3

Digital Audio Interface							
E18	DAICLK	IO	DAI clock output	GPIO49	DAICLK		SWDBGD 12
E19	DAIPCMOUT	IO	DAI pcm data out	GPIO50	DAIPCMO UT		SWDBGD 11
D16	DAIPCMIN	IO	DAI pcm data input	GPIO51	DAIPCMI N		SWDBGD 10
D19	DAIRST	IO	DAI reset signal input	GPIO52	DAIRST		SWDBG9
D18	DAISYNC	IO	DAI frame synchronization signal output	GPIO53	DAISYNC		SWDBG8

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	16/78

CMOS Sensor Interface										
J12	CMRST	IO	CMOS sensor reset signal output	GPIO12	CMRST				PD	Input
K12	CMPDN	IO	CMOS sensor power down control	GPIO13	CMPDN				PD	Input
H12	CMVREF	I	Sensor vertical reference signal input						PD	Input
H11	CMHREF	I	Sensor horizontal reference signal input						PD	Input
H9	CMPCLK	I	CMOS sensor pixel clock input						PD	Input
H10	CMMCLK	O	CMOS sensor master clock output						0	
H8	CMDAT9	I	CMOS sensor data input 9	CMDAT 9	GPIO74				PD	Input
J8	CMDAT8	I	CMOS sensor data input 8	CMDAT 8	GPIO73				PD	Input
K8	CMDAT7	I	CMOS sensor data input 7	CMDAT	GPIO72				PD	Input
				7						
L8	CMDAT6	I	CMOS sensor data input 6	CMDAT 6	GPIO71				PD	Input
M8	CMDAT5	I	CMOS sensor data input 5	CMDAT 5	GPIO70				PD	Input
M9	CMDAT4	I	CMOS sensor data input 4	CMDAT 4	GPIO69				PD	Input
M10	CMDAT3	I	CMOS sensor data input 3	CMDAT 3	GPIO68				PD	Input
M11	CMDAT2	I	CMOS sensor data input 2	CMDAT 2	GPIO62				PD	Input
M12	CMDAT1	IO	CMOS sensor data input 1	GPIO14	CMDAT1				PD	Input
L12	CMDAT0	IO	CMOS sensor data input 0	GPIO15	CMDAT0				PD	Input

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	17/78

Analog Interface			
B15	AU_MOUL	Audio analog output left channel	
A15	AU_MOUR	Audio analog output right channel	
C14	AU_M_BYP	Audio DAC bypass pin	
B14	AU_FMINL	FM radio analog input left channel	
A14	AU_FMINR	FM radio analog input right channel	
D13	AU_OUT1_P	Earphone 1 amplifier output (+)	
C13	AU_OUT1_N	Earphone 1 amplifier output (-)	
B12	AU_OUT0_N	Earphone 0 amplifier output (-)	
A12	AU_OUT0_P	Earphone 0 amplifier output (+)	
C12	AU_MICBIA_S_P	Microphone bias supply (+)	
D12	AU_MICBIA_S_N	Microphone bias supply (-)	
C11	AU_VREF_N	Audio reference voltage (-)	
B11	AU_VREF_P	Audio reference voltage (+)	
D10	AU_VIN0_P	Microphone 0 amplifier input (+)	
C10	AU_VIN0_N	Microphone 0 amplifier input (-)	
B10	AU_VIN1_N	Microphone 1 amplifier input (-)	
A10	AU_VIN1_P	Microphone 1 amplifier input (+)	
D9	BDLAQP	Quadrature input (Q+) baseband codec downlink	
C9	BDLAQN	Quadrature input (Q-) baseband codec downlink	
A9	BDLAIN	In-phase input (I+) baseband codec downlink	
B9	BDLAIP	In-phase input (I-) baseband codec downlink	
B8	BUPAIP	In-phase output (I+) baseband codec uplink	
A8	BUPAIN	In-phase output (I-) baseband codec uplink	
C8	BUPAQN	Quadrature output (Q+) baseband codec uplink	
D8	BUPAQP	Quadrature output (Q-) baseband codec uplink	
B7	APC	Automatic power control DAC output	
D6	AUXADIN0	Auxiliary ADC input 0	
C6	AUXADIN1	Auxiliary ADC input 1	
B6	AUXADIN2	Auxiliary ADC input 2	
A6	AUXADIN3	Auxiliary ADC input 3	
C5	AUXADIN4	Auxiliary ADC input 4	
B5	AUXADIN5	Auxiliary ADC input 5	
A5	AUXADIN6	Auxiliary ADC input 6	
C4	AUX_REF	Auxiliary ADC reference voltage input	
B4	AFC	Automatic frequency control DAC output	
A4	AFC_BYP	Automatic frequency control DAC bypass capacitance	

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	18/78

VCXO Interface		
B1	SYSCLK	13MHz or 26MHz system clock input
F6	PLLOUT	PLL reference voltage output

RTC Interface		
D1	XIN	32.768 KHz crystal input
D2	XOUT	32.768 KHz crystal output
E1	BBWAKEUP	O Baseband power on/off control
		TV Interface
A2	TVOUT	TV DAC Output
C2	FSRES	

Supply Voltages		
E3	VDDK	Supply voltage of internal logic
M2	VDDK	Supply voltage of internal logic
V8	VDDK	Supply voltage of internal logic
V14	VDDK	Supply voltage of internal logic
F18	VDDK	Supply voltage of internal logic
F11	VDDK	Supply voltage of internal logic
V3	VDD33_EMI	Supply voltage of memory interface driver
V6	VDD33_EMI	Supply voltage of memory interface driver
T7	VDD33_EMI	Supply voltage of memory interface driver
W9	VDD33_EMI	Supply voltage of memory interface driver
R10	VDD33_EMI	Supply voltage of memory interface driver
W12	VDD33_EMI	Supply voltage of memory interface driver
U13	VDD33_EMI	Supply voltage of memory interface driver
V15	VDD33_EMI	Supply voltage of memory interface driver
T17	VDD33_EMI	Supply voltage of memory interface driver
V17	VDD33_EMI	Supply voltage of memory interface driver
W5	VSS33_EMI	Ground of memory interface driver
R6	VSS33_EMI	Ground of memory interface driver
U8	VSS33_EMI	Ground of memory interface driver
V10	VSS33_EMI	Ground of memory interface driver
U11	VSS33_EMI	Ground of memory interface driver
R12	VSS33_EMI	Ground of memory interface driver
U14	VSS33_EMI	Ground of memory interface driver
W16	VSS33_EMI	Ground of memory interface driver
R17	VSS33_EMI	Ground of memory interface driver
V18	VSS33_EMI	Ground of memory interface driver

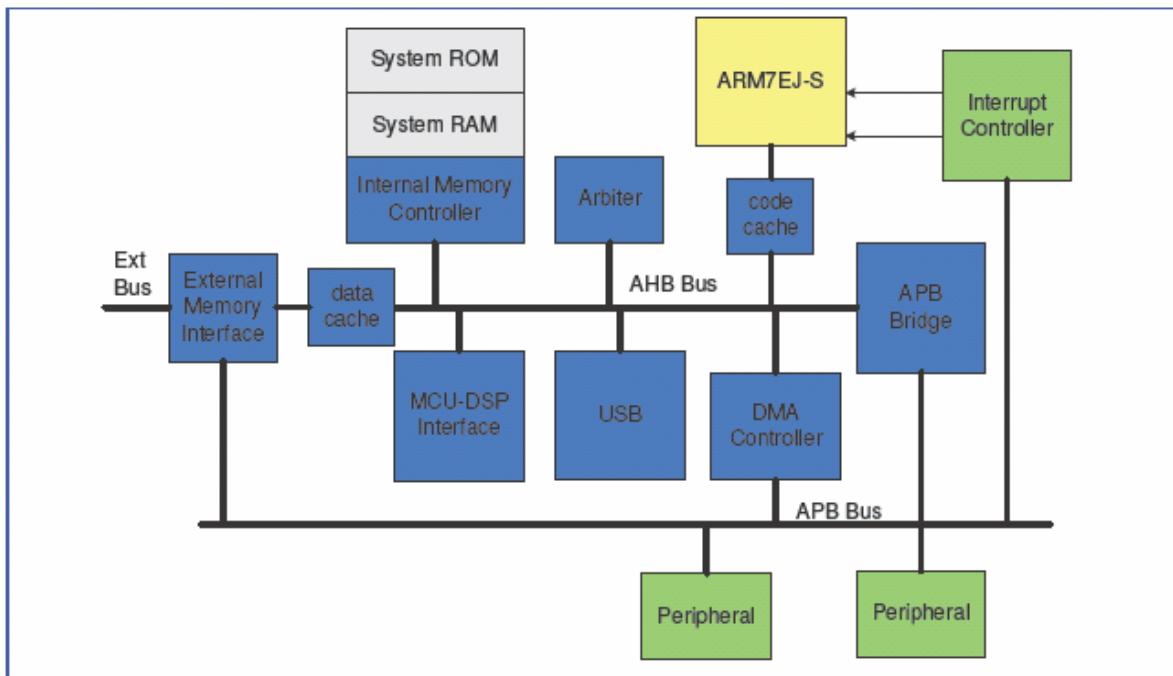
MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	19/78

P16	VDD33_AUX 2	Supply voltage of drivers for USB					
N16	VDD33_AUX 1	Supply Voltage of MS/MMC/SD					
G2	VDD33	Supply voltage of drivers except memory interface, USB and MS/MMC/SD					
K1	VDD33	Supply voltage of drivers except memory interface, USB and MS/MMC/SD					
R1	VDD33	Supply voltage of drivers except memory interface, USB and MS/MMC/SD					
J18	VDD33	Supply voltage of drivers except memory interface, USB and MS/MMC/SD					
B19	VDD33	Supply voltage of drivers except memory interface, USB and MS/MMC/SD					
E15	VDD33	Supply voltage of drivers except memory interface, USB and MS/MMC/SD					
E13	VDD33	Supply voltage of drivers except memory interface, USB and MS/MMC/SD					
E11	VDD33	Supply voltage of drivers except memory interface, USB and MS/MMC/SD					
F9	VDD33	Supply voltage of drivers except memory interface, USB and MS/MMC/SD					
E6	VDD33	Supply voltage of drivers except memory interface, USB and MS/MMC/SD					

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	20/78

D4	VDD33	Supply voltage of drivers except memory interface, USB and MS/MMC/SD					
B3	VDD33	Supply voltage of drivers except memory interface, USB and MS/MMC/SD					
W2	VSS33	Ground of drivers except memory interface, USB and MS/MMC/SD					
E2	VSS33	Ground of drivers except memory interface, USB and MS/MMC/SD					
H1	VSS33	Ground of drivers except memory interface, USB and MS/MMC/SD					
M1	VSS33	Ground of drivers except memory interface, USB and MS/MMC/SD					
L15	VSS33	Ground of drivers except memory interface, USB and MS/MMC/SD					
F19	VSS33	Ground of drivers except memory interface, USB and MS/MMC/SD					
B16	VSS33	Ground of drivers except memory interface, USB and MS/MMC/SD					
A16	VSS33	Ground of drivers except memory interface, USB and MS/MMC/SD					
E14	VSS33	Ground of drivers except memory interface, USB and MS/MMC/SD					
E12	VSS33	Ground of drivers except memory interface, USB and MS/MMC/SD					

F10	VSS33	Ground of drivers except memory interface, USB and MS/MMC/SD					
E7	VSS33	Ground of drivers except memory interface, USB and MS/MMC/SD					
D5	VSS33	Ground of drivers except memory interface, USB and MS/MMC/SD					
A3	VSS33	Ground of drivers except memory interface, USB and MS/MMC/SD					
A1	AVDD_PLL	Supply voltage for PLL					
C1	AVSS_PLL	Ground for PLL supply					
B2	AVDD_TV	Supply voltage for TV out					
C3	AVSS_TV	Ground for TV out					
D3	AVDD_RTC	Supply voltage for Real Time Clock					


MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	21/78

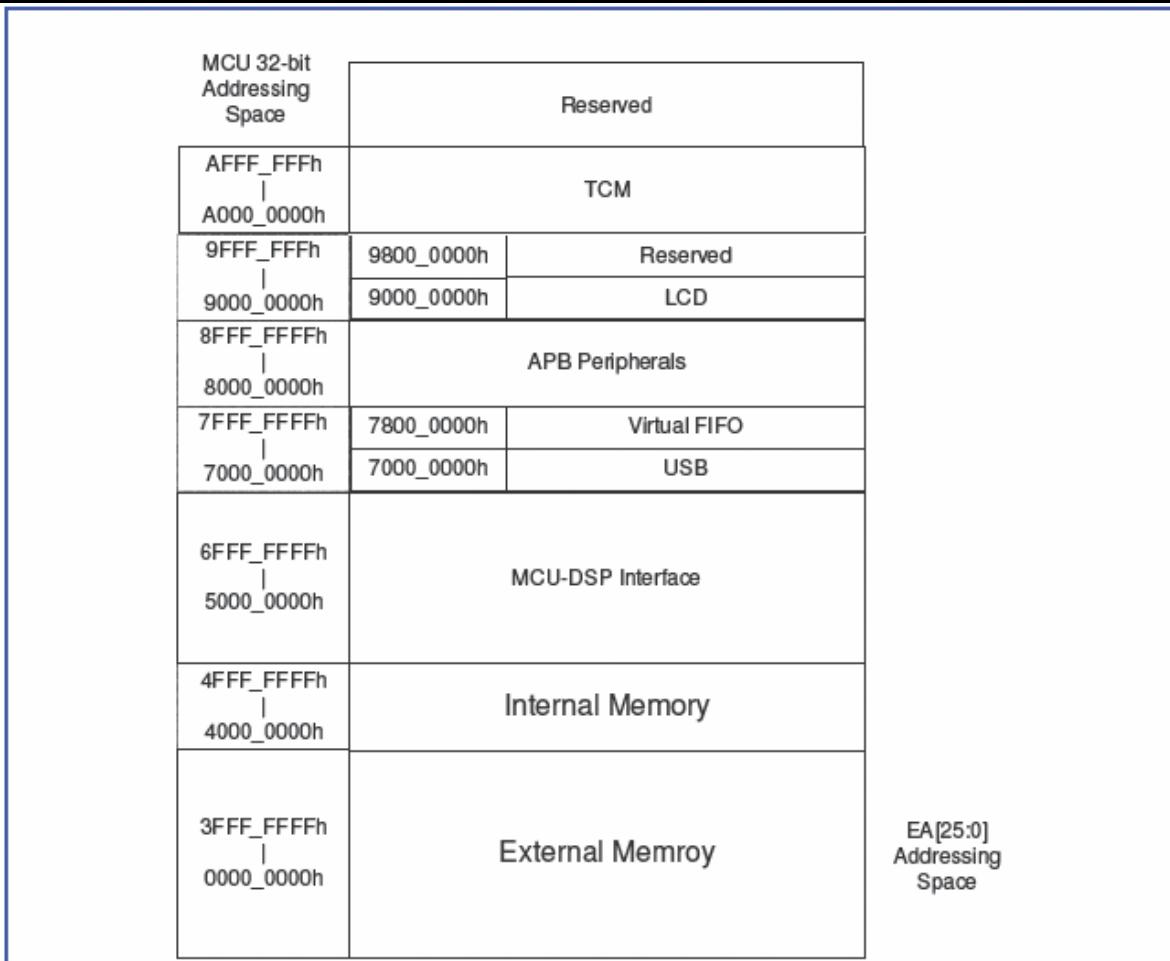
Analog Supplies		
C15	AVDD_MBU_F	Supply Voltage for Audio band section
D14	AVSS_MBUF	GND for Audio band section
B13	AVDD_BUF	Supply voltage for voice band transmit section
A13	AVSS_BUF	GND for voice band transmit section
D11	AVDD_AFE	Supply voltage for voice band receive section
A11	AGND_AFE	GND reference voltage for voice band section
E10	AVSS_AFE	GND for voice band receive section
E9	AGND_RFE	GND reference voltage for baseband section, APC, AFC and AUXADC
E8	AVSS_GSMR_FTX	GND for baseband transmit section
D7	AVDD_GSM_RFTX	Supply voltage for baseband transmit section
C7	AVSS_RFE	GND for baseband receive section, APC, AFC and AUXADC
A7	AVDD_RFE	Supply voltage for baseband receive section, APC, AFC and AUXADC

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	22/78

3. Micro-Controller Unit Subsystem

Figure 5 illustrates the block diagram of the Micro-Controller Unit Subsystem in MT6228. The Subsystem utilizes a main 32-bit ARM7EJ-S RISC processor, which plays the role of the main bus master controlling the whole subsystem. The processor communicates with all the other on-chip modules via the two-level system buses: AHB Bus and APB Bus. All bus transactions originate from bus masters, while slaves can only respond to requests from bus masters. Before data transfer can be established, bus master must ask for bus ownership. This is accomplished by request-grant handshaking protocol between masters and arbiters.

Figure 5. Block Diagram of MCU in MT6228


3.1 Processor Core

The Micro-Controller Unit subsystem in MT6228 uses the 32-bit Arm7EJ-S RISC processor that is based on the Von Neumann architecture with a single 32-bit data bus carrying both instructions and data. The memory interface of ARM7EJ-S is totally compliant to AMBA based bus system, which allows direct connection to the AHB Bus.

3.2 Memory Management

The processor core of MT6228 supports only memory addressing method for instruction fetch and data access. It manages a 32bit address space that has addressing capability up to 4GB. System RAM, System ROM , Registers, MCU Peripherals and external components are all mapped onto such 32-bit address space, as depicted in Figure 7.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	23/78

Figure 6. Memory Layout of MT6228

External Memory Access

To allow external access, the MT6228 outputs 26 bits (A25-A0) of address lines along with 4 selection signals that correspond to associated memory blocks. That is, MT6228 can support up to 4 MCU addressable external components. The data width of internal system bus is fixed at 32-bit wide, while the data width of the external components can be either 8- or 16- bit. Since devices are usually available with varied operating grades, adaptive configurations for different applications are needed.

Factory Programming

The configuration for factory programming is shown in Figure 7. Usually the Factory Programming Host connects with MT6228 via the UART interface. The download speed can be up to 921K bps while MCU is running at 26MHz.

After the system has reset, the Boot Code guides the processor to run the Factory Programming software placed in System ROM. Then, MT6228 starts and polls the UART1 port until valid information is detected. The first information received on the UART1 is used to configure the chip for factory programming. The Flash downloader program is then transferred into System RAM or external SRAM. Further information is detailed in the MT6228 Software Programming Specification.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	24/78

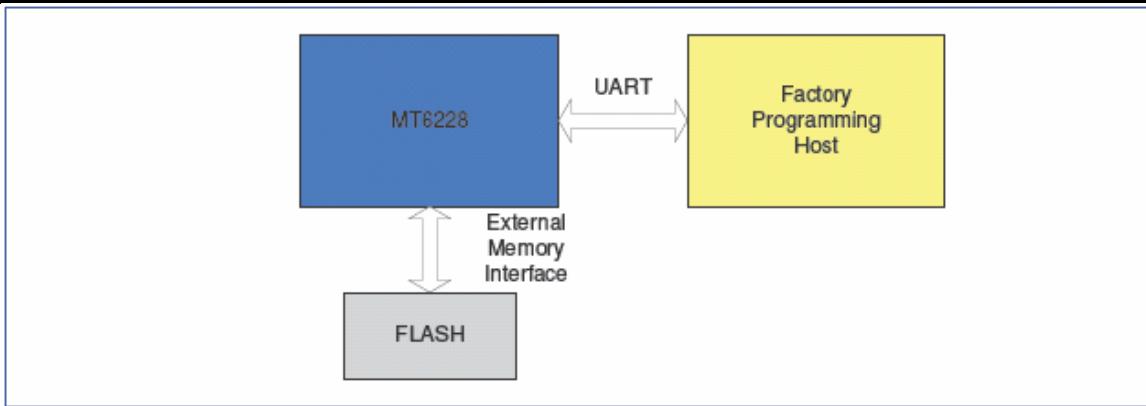


Figure 7. Factory Programming

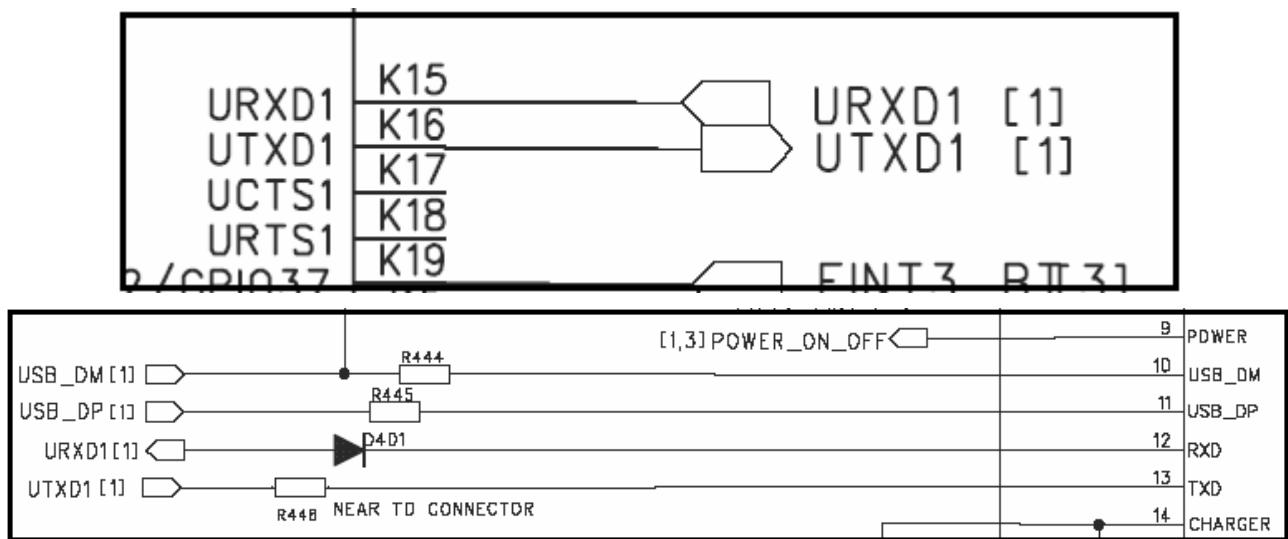


Figure 8. Circuit from MT6228 to I/O Connector

As shown in Figure 8, The UART is minimum UART and The Pin K15, K16 in MT6228 are used. The PL2303 converter IC is used to change USB data to UART data format on Download Cable. When starting Download or interface between PC and MEGA4, The Power key must be pressed.

3.3 Interrupt Controller

External Interrupt

This interrupt is for User interrupts of Accessory or peripheral components. This interrupt controller also integrates an External Interrupt controller that can support up to 4 interrupt requests coming from external sources, the EINT0~3 and 4 wake up interrupt requests. The four external interrupts can be used for different kind of applications, mainly for event detections.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	25/78

MT6228/9 EINT	BB Pin	Pin Name	GPIO MODE 0	GPIO MODE 1	GPIO MODE 2	GPIO MODE 3
EINT0	U2	EINT0	----	----	----	----
EINT1	V1	EINT1	----	----	----	----
EINT2	W1	EINT2	----	----	----	----
EINT3	V2	EINT3	----	----	----	----
EINT4	R18	USB_DP	----	----	----	----
EINT5	T3	SRCLKENAI	GPIO35	SRCLKENAI	----	----
EINT6	K19	URXD2	GPIO37	URXD2	UCTS3	----
EINT7	A18	GPIO8	GPIO8	32kHz	USBVBUSCHG	SWDBGF
EINT8 (6229 only)	B17	MFIQ	GPIO63	MFIQ	USBID	SWDBGD
MIRQ	U4	MIRQ	GPIO36	MIRQ	6.5MHz	32kHz
MFIQ	B17	MFIQ	GPIO63	MFIQ	USBID	SWDBGD

In MEGA4, External interrupts are used as followings.

- EINT 0 : TV Out cable and Headset Detection.
- EINT 1 : Touch Pen
- EINT 2 : Charger/USB Power Detection.
- EINT 3 : LCD_VSYNC
- EINT 4 : USB_DP.
- EINT 6 : Blue Tooth Calling

3.4 External Memory Interface

MT6228 incorporates a powerful and flexible memory controller, External Memory Interface, to connect with a variety of memory components. This controller provides one generic access scheme for Flash Memory, SRAM, PSRAM and CellularRAM and another access scheme for MobileRAM. Up to 4 memory banks can be supported simultaneously, BANK0-BANK3, with a maximum size of 64MB each. Since most of the Flash Memory, SRAM, PSRAM and CellularRAM have similar AC requirements, a generic configuration scheme to interface them is desired. This way, the software program can treat different components by simply specifying certain predefined parameters. All these parameters are based on the cycle time of system clock. The interface definition based on such a scheme is listed in Table 17. Note that, this interface always works with data in Little Endian format for all types of access.

In MEGA4, ECS0# is used for External SDRAM. The other ECSx# not used. Because of the NAND MCP used.

The NAND MCP is HYCOUGE0MF1P_6SHOE(1024Mb NAND Flash x 256Mb SDRAM) from Hynix.

The Ideal PCB design is that The MCP is placed from MT6228 closed.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	26/78

Figure9 : NAND MCP Power supply (DVDD : 2.8V, VMEM : 1.8V)

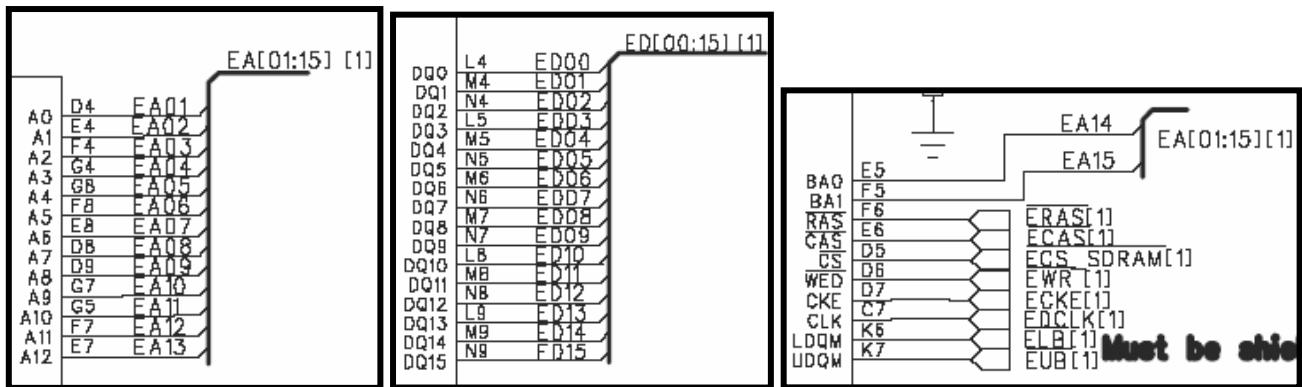


Figure 10 : Circuit for SDRAM of Hynix NAND MCP

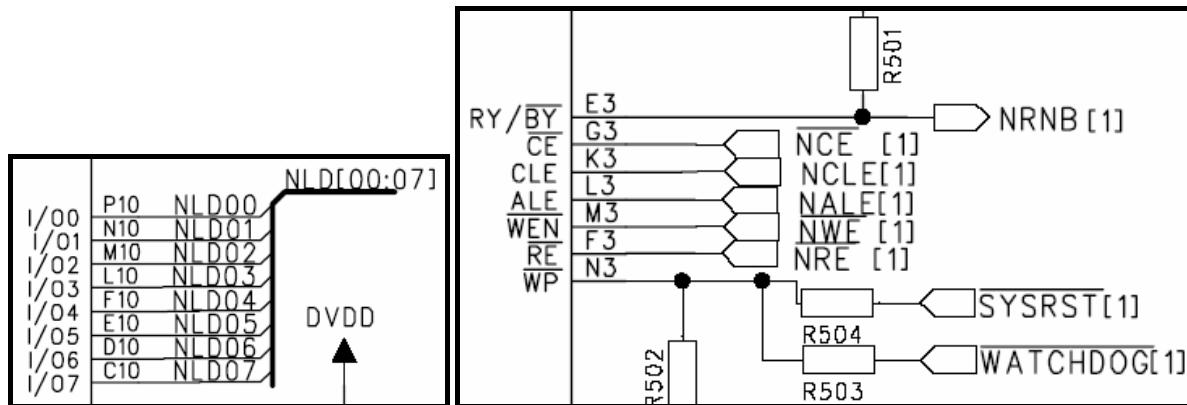


Figure 11 : Circuit for NAND Flash of Hynix NAND MCP

The R501 Pull up resistor is need for Ready for Busy pin. The detail NAND MCP is explained on IV . HVC0UGE0MF1P .

3.5 Internal Memory Interface

System Ram

MT6228 provides one 128 KByte size of on-chip memory modules acting as System RAM for data access with low latency. Such a module is composed of one high speed synchronous SRAMs with AHB Slave Interface connected to the system backbone AHB Bus, The synchronous SRAM operates on the same clock as the AHB Bus and is organized as 32 bits wide

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	27/78

with 4 byte-write signals capable for byte operations. The SRAM macro has limited repair capability. The yield of SRAM is improved if the defects inside it can be repaired during testing.

System ROM

The System ROM is primarily used to store software program for Factory Programming. However, due to its advantageous low latency performance, some of the timing critical codes are also placed in System ROM. This module is composed of high-speed VIA ROM with an AHB Slave Interface connected to a system backbone AHB. The module operates on the same clock as the AHB and has a 32-bit wide organization.

3.6 External Memory Interface

MT6228 incorporates a powerful and flexible memory controller, External Memory Interface, to connect with a variety of memory components. This controller provides one generic access scheme for Flash Memory, SRAM, PSRAM and CellularRAM and another access scheme for MobileRAM. Up to 4 memory banks can be supported simultaneously, BANK0-BANK3, with a maximum size of 64MB each. Since most of the Flash Memory, SRAM, PSRAM and CellularRAM have similar AC requirements, a generic configuration scheme to interface them is desired. This way, the software program can treat different components by simply specifying certain predefined parameters. All these parameters are based on the cycle time of system clock. The interface definition based on such a scheme is listed in Table 17. Note that, this interface always works with data in Little Endian format for all types of access.

Signal Name	Type	Description
EA[25:0]	O	Address Bus
ED[15:0]	I/O	Data Bus
EWR#	O	Write Enable Strobe/MobileRAM Command Input
ERD#	O	Read Enable Strobe
ELB#	O	Lower Byte Strobe/MobileRAM Data Input & Output Mask
EUB#	O	Upper Byte Strobe/MobileRAM Data Input & Output Mask
ECS[3:0]#	O	BANK0~BANK3 Selection Signal
EPDN	O	PSRAM Power Down Control Signal
ECLK	O	Flash, SRAM, PSRAM and CellularRAM Clock Signal
EADV#	O	Flash, SRAM, PSRAM and CellularRAM Address Valid Signal
EWAIT	I	Flash, SRAM, PSRAM and CellularRAM Wait Signal Input
EDCLK	O	MobileRAM Clock Signal
ECKE	O	MobileRAM Clock Enable Signal
ERAS#	O	MobileRAM Row Address Signal
ECAS#	O	MobileRAM Column Address Signal

Table 17 External Memory Interface Signal of MT6228

In MEGA4, ECS0# is used for External SDRAM. The other ECSx# not used. Because of the Nand MCP used.

The Nand MCP is HYCOUGEOMF1P_5SHOE 1Gb Nand Flash x 256Mb SDRAM) from Hynix.

Also, The [HYCOUGEOMF1P-5SH0E\(1GB x 256MB \) CAN BE USED.](#)

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	28/78

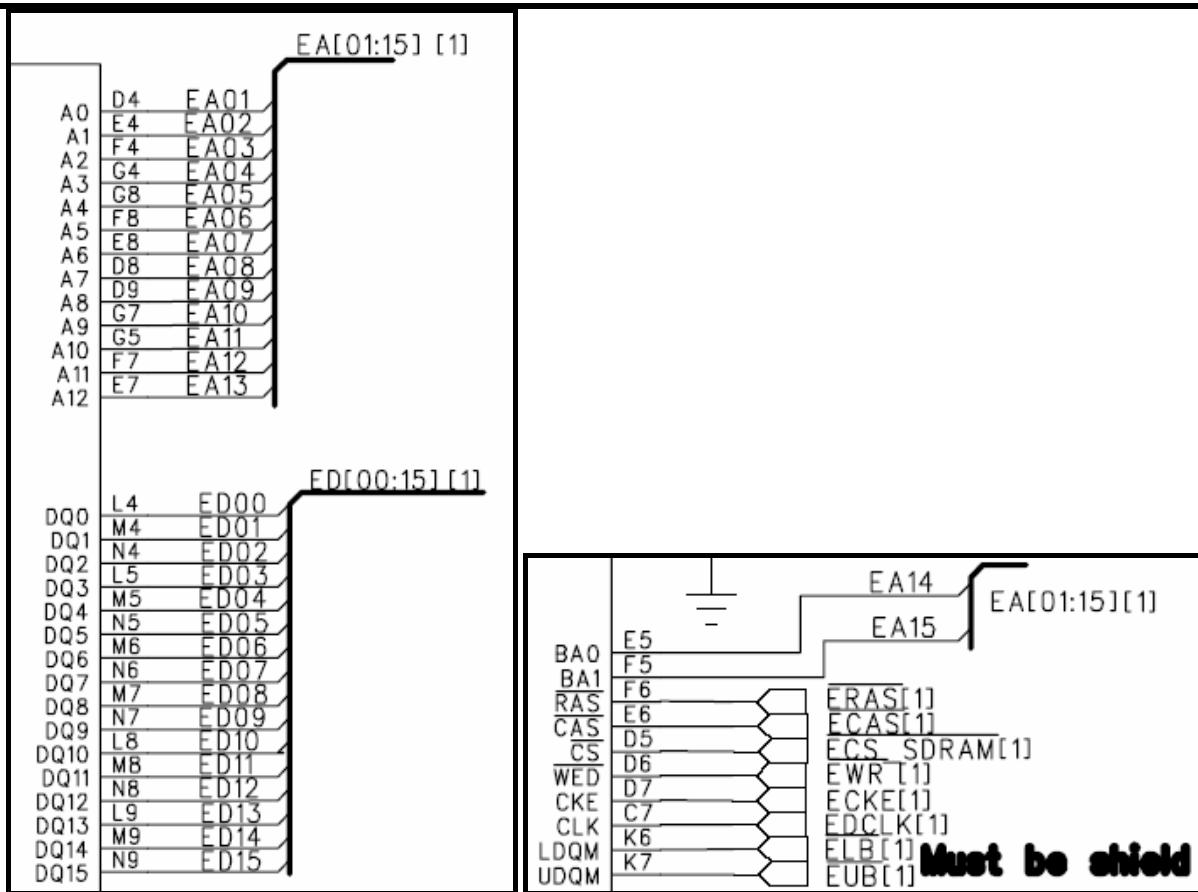


Figure 12 : Hynix Nand MCP Address, Data Bus and control Signals of SDRAM.

4. Microcontroller Peripherals

Microcontroller(MCU) Peripherals are devices that are under direct control of the Microcontroller. Most of the devices are attached to the Advanced Peripheral Bus(APB) of the MCU subsystem, and serve as APB slaves. Each MCU peripheral must be accessed as a memory-mapped I/O device: that is, the MCU or the DMA bus master reads from or writes to the specific peripheral by issuing memory-addressed transactions.

Pulse-Width Modulation Outputs.

Two generic Pulse-Width Modulators are implemented to generate pulse sequences with programmable frequency and duty cycle for LCD backlight or charging purpose. The duration of the PWM output signal is low as long as the internal counter value is greater than or equal to the threshold value.

In MEGA4, PWM1 is used for LCD Module Backlight Enable and PWM2 is used for Flash LED Enable for GPIO mode.

SIM Interface

The MT6228 contains a dedicated smart card interface to allow the MCU access to the SIM card. It can operate via 5 terminals, using SIMVCC, SIMSEL, SIMRST, SIMCLK and SIMDATA.

The SIMVCC is used to control the external voltage supply to the SIM card and SIMSEL determines the regulated smart card supply voltage. SIMRST is used as the SIM card reset signal. Besides, SIMDATA and SIMCLK are used for data exchange purpose. Basically, the SIM interface acts as a half duplex asynchronous communication port and its data format is composed of ten consecutive bits: a start bit in state Low, eight information bits and a tenth bit used for parity checking.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	29/78

In MEGA4, Only 3V SIM interface is used. As Figure 13 shown, The External Level Shift is in PM(MT6318).

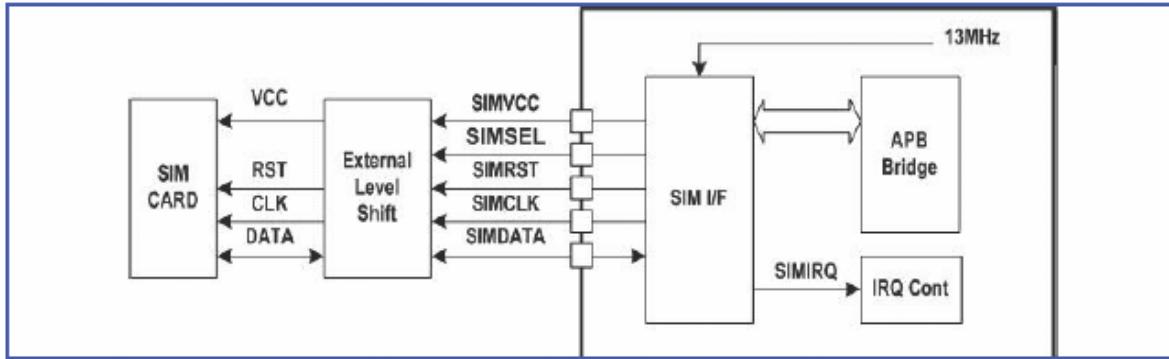


Figure 13. SIM interface

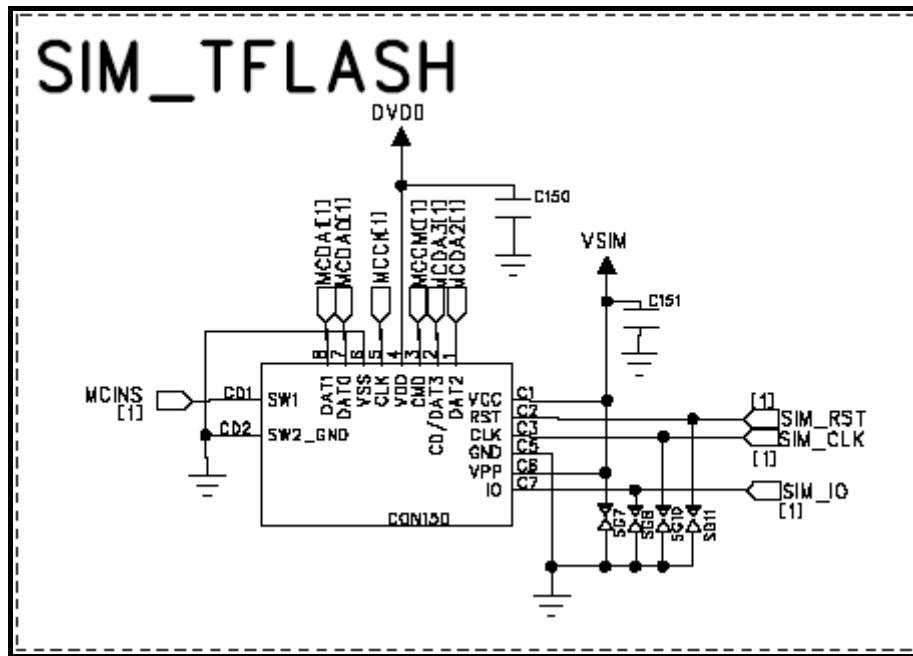


Figure 14. SIM/TFLASH Connector Circuit

In MEGA4, The SIM Connector is soldered on PCB with T-Flash Connector as above Figure 14.

Keypad Scanner

The keypad is interface including 7 columns and 6 rows. The key is detection block which provides key pressed, key released and de-bounce mechanism. Each time the key is pressed or released, i.e. something different in the 7x6 matrix, the key detection block will sense it, and it will start to recognize if it is a key pressed or key released event. Whenever the key status changes and is stable, a KEYPAD IRQ will be issued. The MCU can then read the key pressed directly in KP_HI_KEY, KP_MID_KEY and KP_LOW_KEY register.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	30/78

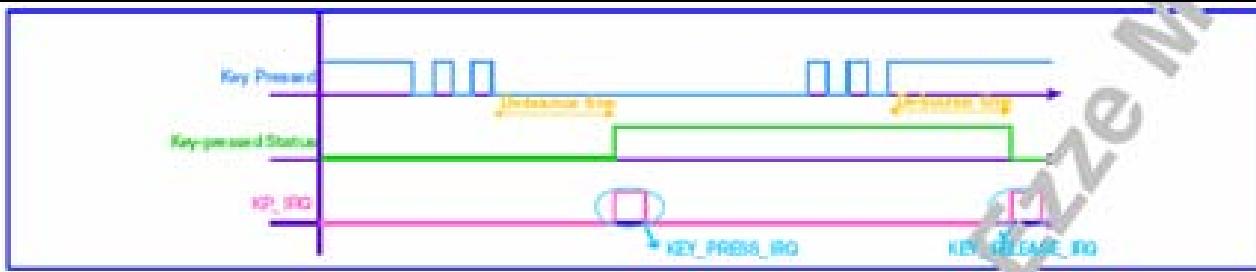


Figure 15. Key pressed with de-bounce mechanism

In MEGA4, The 6 Rows are used (Row0 ~Row5) and The 7 Columns are used (Col 0~6)

The Figure 16 shows the circuit.

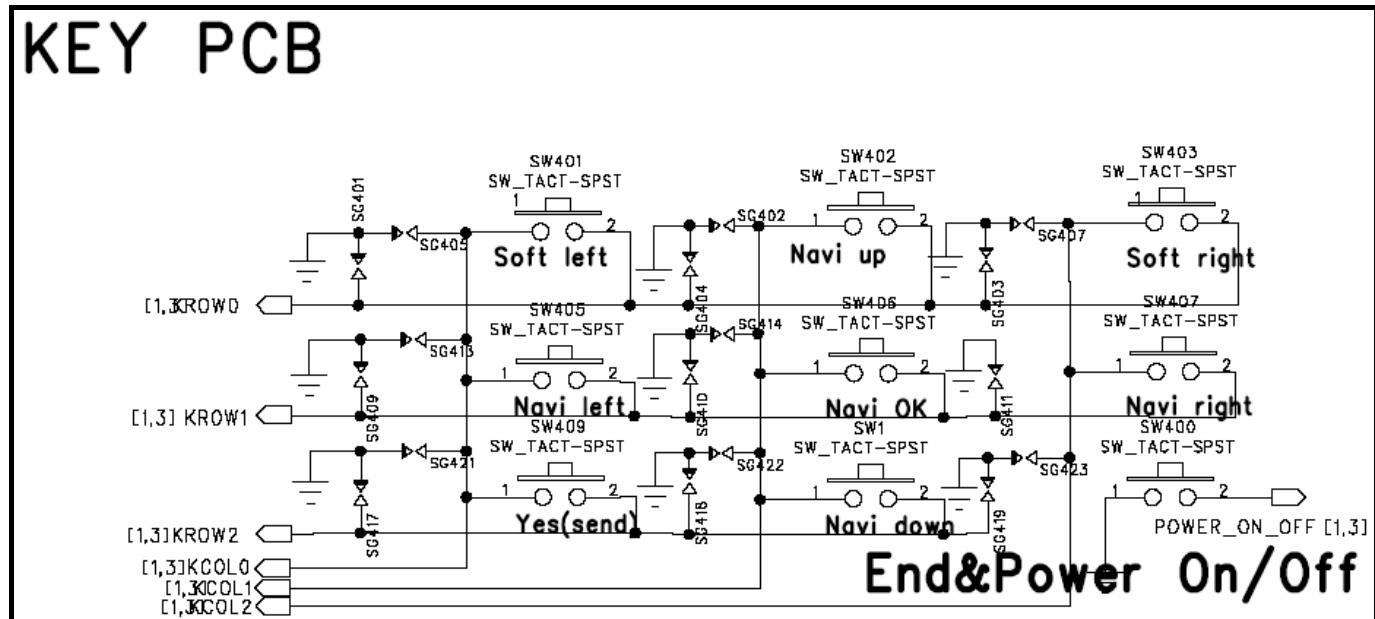


Figure 16. MEGA4 Key Scan Circuit.

General Purpose Inputs/Outputs

MT6228 offers 57 general purpose I/O pins and 5 general-purpose output pins. By setting the control registers, MCU software can control the direction, the output value and read the input values on these pins. These GPIOs and GPOs are multiplexed with other functionalities to reduce the pin count.

Upon hardware reset(SYSRST), GPIOs are all configured as inputs and the following alternate usages of the GPIO pins are enabled.

Multiplexing of Signals on GPIO

The GPIO pins can be multiplexed with other signals.

- DAICLK, DAIPCMIN, DAIPCMOUT, DAIRST: digital audio interface for FTA
- BPI_BUS6, BPI_BUS7, BPI_BUS8, BPI_BUS9: radio hardwired control
- BSI_CS1: additional chip select signal for radio 3-wire interface
- LSCK, LSA0, LSDA, LSCE0#, LSCE1#: serial display interface
- LPCE1#: parallel display interface chip select signal
- NRNB, NCLE, NALE, NWEB, NREB, NCEB: NAND flash control signals

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	31/78

- PWM1, PWM2: pulse width modulation signal ALERTER: pulse width modulation signal for buzzer
- IRDA_RXD, IRDA_TXD, IRDA_PDN: IrDA control signals
- URXD2, UTXD2, UCTS2, URTS2: data and flow control signals for UART2
- URXD3, UTXD3, UCTS3, URTS3: data and flow control signals for UART3
- CMRST, CMPDN, CMDAT9, CMDAT8, CMDAT7, CMDAT6, CMDAT5, CMDAT4, CMDAT3, CMDAT2, CMDAT1, CMDAT0: sensor interface
- SRCLKENAI: external power on signal of the external VCXO LDO
- NLD8, NLD9, NLD10, NLD11, NLD12, NLD13, NLD14, NLD15, NLD16, NLD17: NAND FLASH and Parallel LCD data signals
- MFIQ, MIRQ: external interrupt
- MCDA4, MCDA5, MCDA6, MCDA7: MMC4.0 data signals

Multiplexed of Signals on GPO

- SRCLKENA, SRCLKENAN: power on signal of the external VCXO LDO
- EPDN: external memory interface power down controls

UART

The baseband chipset houses three UARTs. The UARTs provide full duplex serial communication channels between baseband chipset and external devices. The UART has M16C450 and M16550A modes of operation, which are compatible with a range of standard software drivers.

In MEGA4, UART1(URXD1, UTXD1) is used for Factory Programming and UART3(URXD3, UTXD3) is used for Blue Tooth Programming.

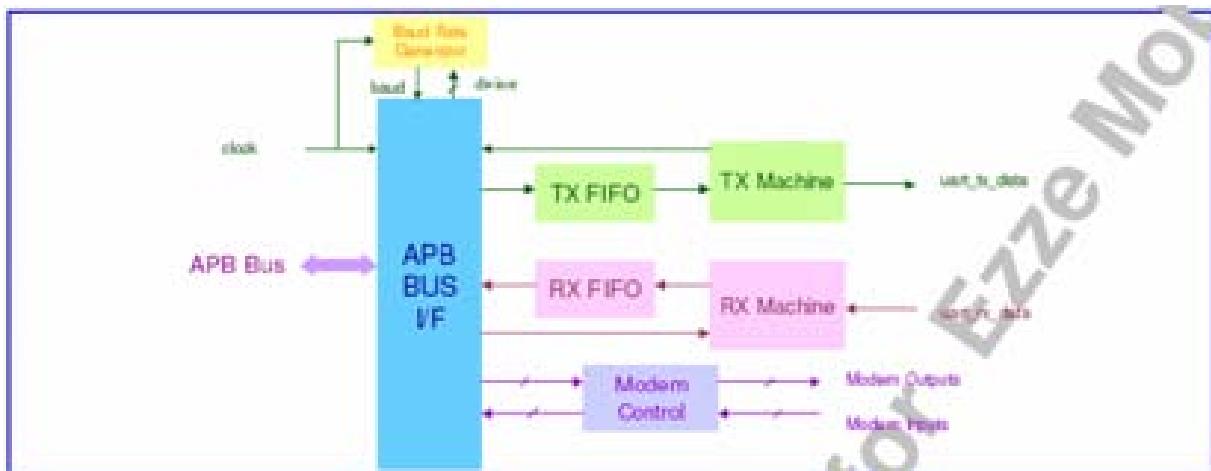


Figure 17. UART block diagram.

RX data Timeout Interrupt :

When virtual FIFO mode is disabled, RX data Timeout Interrupt is generated if all of the following apply:

1. FIFO contains at least one character.
2. The most recent character was received longer than four character periods ago(including all start, parity and stop bit)
3. The most recent CPU read of the FIFO was longer than four character periods ago.

When virtual FIFO mode is enabled, RX Data timeout Interrupt is generated if all of the following apply:

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	32/78

1. FIFO is empty.
2. The most recent character was received longer than four character periods ago(including all start, parity and stop bit)
3. The most recent CPU read of the FIFO was longer than four character periods ago

Read Time Clock

The Real Time Clock (RTC) module provides time and data information. The clock is based on a 32.768Khz oscillator with an independent power supply. When the mobile handset is powered off, a dedicated regulator supplies the RTC block. If the main battery is not present, a backup supply such as a small mercury cell battery or a large capacitor is used. In addition to providing timing data, an alarm interrupt is generated and can be used to power up the baseband core via the BBWAKEUP pin. Regulator interrupts corresponding to seconds, minutes, hours and days can be generated whenever the time counter value reaches a maximum value. The Maximum day-of-month values, which depend on the leap year condition, are stored in the RTC block.

In MEGA4, Big Capacitor Battery(BAT300 SF-3R3-104Z) is used for Backup Battery. The Charging Voltage is about 3.3V by BAT_BACKUP. The ST-4115 is a Cristal for 32.768Khz and The C100,C101 must be tuned.

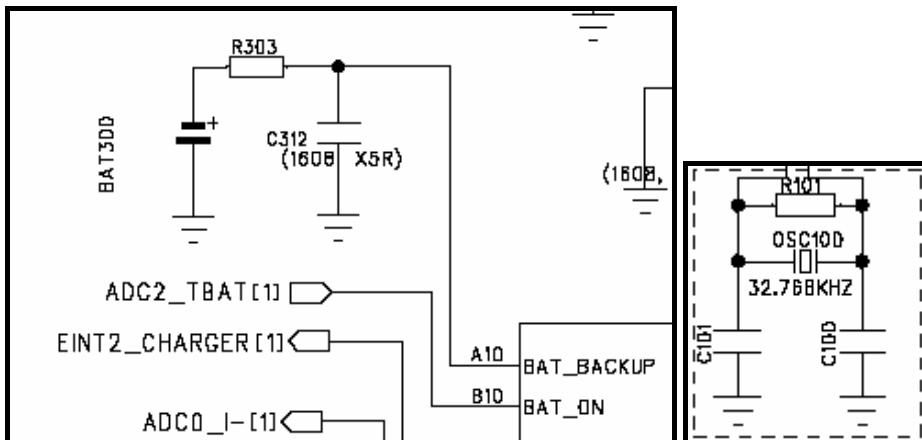
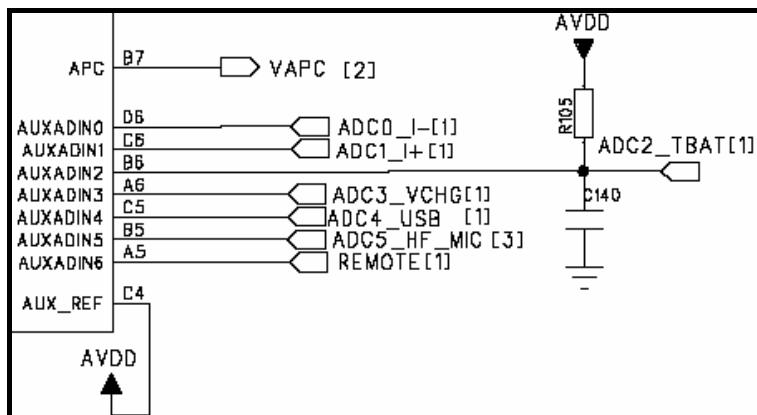


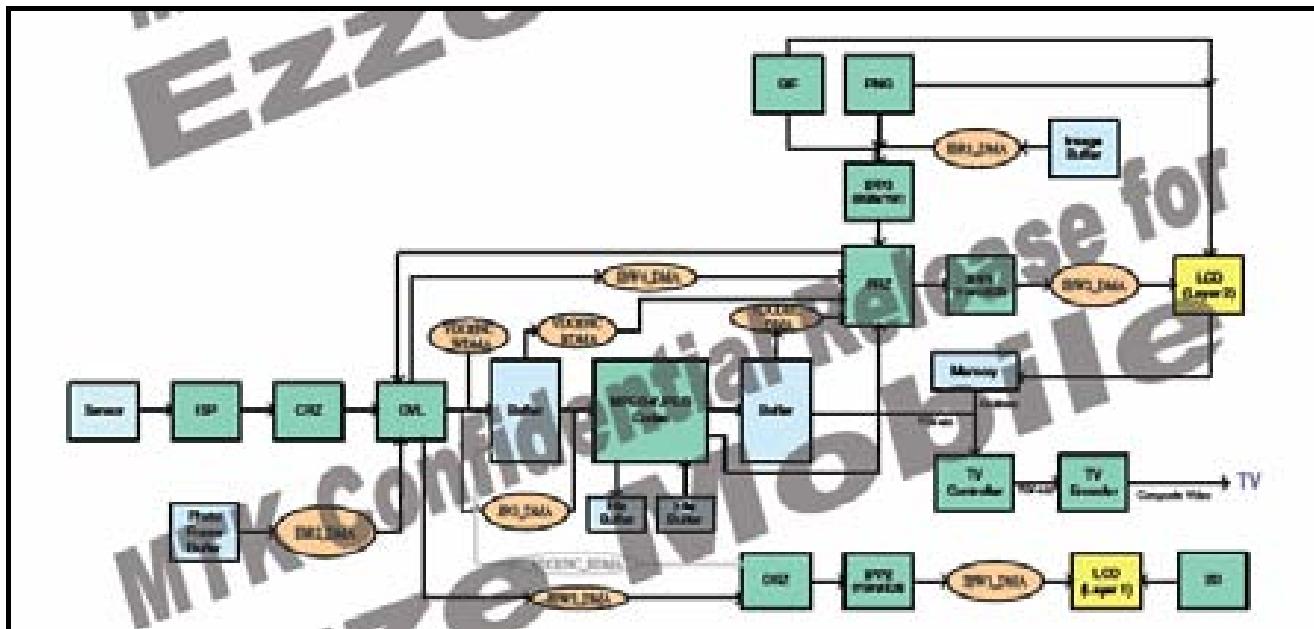
Figure 19. RTC Circuit

Auxiliary ADC Unit

The auxiliary ADC unit is used to monitor the status of battery and charger, identify the plugged peripheral and perform temperature measurement. There provides 7 input channels for diversified application in this unit.

In MEGA4, 6 ADC port are used as shown Figure 20.




Figure 20. AUXADC Circuit

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	33/78

- 1) ADC0/1_I-+ : Check the Battery and Charger voltage.
- 2) ADC2_TBAT : Connected to battery ID Resistor. Check the Battery Temperature by NTC ID Resistor(10Kohm), So, the voltage is about 0.6V in normal temperature.
- 3) ADC3_VCHG : Check and detect the charger. If charger is connected the Voltage is changed from 0V to 1V. So, MT6228 can know the charger inserted.
- 4) ADC4_USB : Check and detect the USB cable. If USB cable is inserted, voltage of ADC4_USB pin is changed from 2.8V to 0V (2.8V → Pulse → 0V). So, MT6228 can know the USB cable inserted.
- 5) ADC5_HF_MIC : Check and Detect the Headset(Ear Microphone). If Ear microphone is inserted, the voltage of ADC5_HF_MIC is changed from 2.8V to about 1.5V(1.2~1.8V. depending on CMIC resistance).
- 6) ADC6_REMOTE: : Check and operating the remote control headset(MP3 Remote Control Headset).

5. Multi-Media Subsystem

MT6228 is a highly integrated Baseband/Multimedia single chip. It integrates several hardware-based multimedia accelerators to enable rich multimedia application. Hardware accelerators include Image signal processor, Image resizer, JPEG Codec, MPEG-4 Codec, GIF Decoder, PNG Decoder, 2D graphics engine, TV encoder, and advanced hardware LCD display controller. A lot of attractive multimedia functions can be realized through above hardware accelerators in MT6228. The functions include camera function, JPEG/GIF/PNG image playback, MPEG-4 video recording, MPEG-4 video playback, TV out, 2D graphics acceleration, and so on. Image data paths of multi-media sub-system are shown in Figure 21. Hardware data paths and Image DMA are designed to make data transfer more efficient. MT6228 also incorporates NAND Flash, USB 1.1 OTG Controller and SD/SDIO/MMC/MS/MS Pro Controllers for mass data transfers and storage.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	34/78

These features are:

- Up to 320 x 240 resolution
- The internal frame buffer supports 8bpp indexed colour, RGB 565, RGB 888 and ARGB 8888 format.
- Supports 8-bpp (RGB332), 12-bpp (RGB444), 16-bpp (RGB565), 18-bit (RGB666) and 24-bit (RGB888) LCD modules.
- 6 Layers Overlay with individual colour depth, window size, vertical and horizontal offset, source key, alpha value and display rotation control(90°,180°, 270°, mirror and mirror then 90°, 180° and 270°)
- One colour look-up table of 24bps.

For parallel LCD modules, the LCD controller can reuse external memory interface or use dedicated 8/9/16/18-bit parallel interface to access them and 8080 type interface is supported. It can transfer the display data from the internal SRAM or external SRAM/Flash Memory to the off-chip LCD modules. For Parallel LCD Modules, The interface pins are 6pins and 18bit data lines.

- ./LWR : write enable signal.
- ./LRD : read enable signal
- LPAO : Register select signal. To enter the command and data.
- ./LST : reset signal.
- ./LPCE0/1 : Chip enable signal.
- NLD00 : 17 : data signal.

MEGA4 Main LCD uses the Renesas Driver IC R61505U for 2.2" QVGA, 320x240 pixels 260Kcolors. Also, MEGA4 LCD Module includes the followings.

- Hynix STN Sub LCD
- Receiver/Vibrator
- BLU driver IC : A8435.
- Touch Panel.

MEGA4 can select the Touch Panel by option. The Driver IC is MT6301 from Media Tec.

After s/w downloading, When power on firstly, Phone indicates the Touch Panel calibration with stylus pen, Center, Top Left, Bottom Right coordinates. When Phone is in Sleep mode, If touch the panel, X+ Pin Voltage is changed and Phone is waked up from sleep mode. Also, EINT1_Pen interrupt signal is generated. If touch the Panel, MT6301 read and calculates the X+, Y+ and Z coordinates. Figure 22 is shown the Touch Panel driver IC circuit.

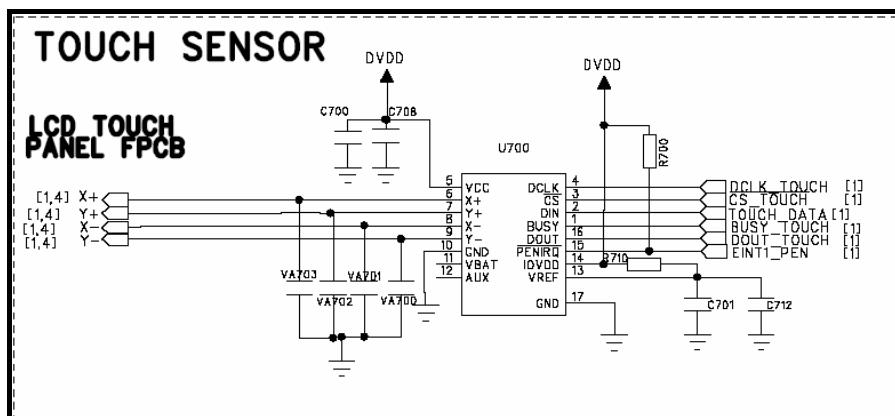


Figure 22. Touch Panel Driver IC circuit.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	35/78

6.2 NAND Flash interface

MT6228 provides NAND flash interface. The NAND FLASH interface support features as follows:

- . ECC (Hamming code) acceleration capable of one-bit error correction or two bits error detection.
- . Programmable ECC block size. Support 1, 2 or 4 ECC block within a page.
- . Word/byte access through APB bus.
- . Direct Memory Access for massive data transfer.
- . Latch sensitive interrupt to indicate ready state for read, program, erase operation and error report.
- . Programmable wait states, command/address setup and hold time, read enable hold time, and write enable recovery time. - .
- . Support page size: 512(528) bytes and 2048(2112) bytes.
- . Support 2 chip select for NAND flash parts.
- . Support 8/16 bits I/O interface.
- . The NFI core can automatically generate ECC parity bits when programming or reading the device.
- . Used 7 control Signal : NRE#, NEW#,NCE#,NALE, WATCHDOG#,NCLE, NRNB.

In MEGA4, The Nand Flash Memory is used HYC0UGEOMF1P-5SHOE from Hynix. The HYC0UEE0CF1 is Nand Flash(1Gb) + SDRAM (256Mb). The Figure 23 is shown the Circuit diagram. The I/O is 8bit interface from MT6228.

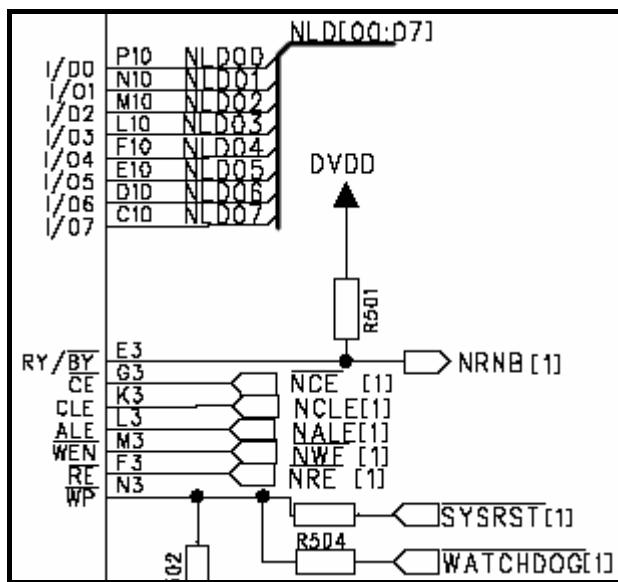


Figure 23. Hynix Nand MCP Circuit Diagram

6.3 USB Device controller

The MT6228 USB OTG controller complies with Universal Serial Bus (USB) Specification Rev 1.1 and USB On-The-Go (OTG) Supplement Rev. 1.0a. The USB OTG controller supports USB device mode, USB simple host mode, as well as OTG handshaking capabilities, at full-speed (12 Mbps) operation. The cellular phone uses this widely available USB interface to exchange data with USB hosts such as a PC or laptop; or to function as a host, allowing it to connect to other devices. When operating in host mode, only a single peer-to-peer (no intermediate hub) connection is supported.

The USB device uses cable-powered feature for the transceiver but only drains little current. An external resistor R42 (nominally 1.5kohm) is required to be placed across Vusb and DP Signal. Two additional external serial resistors(R444,R445)

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	36/78

might be needed to be placed on the output of DP and DM signals to make the output impedance equivalent to 28~44ohm. Also, USB cable can be used to Charger for 5V input. The ADC4_USB is to monitor whether USB cable is inserted or not.

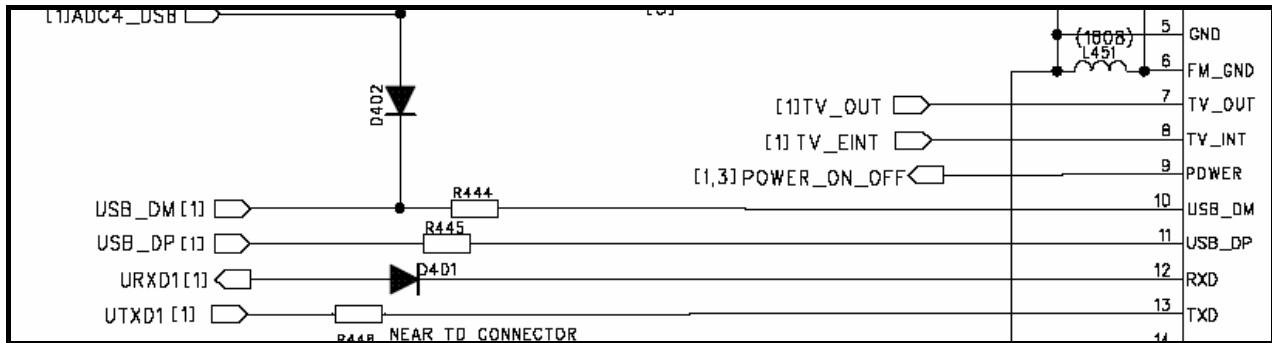


Figure 24. USB Interface Circuit

6.4 Memory Stick and SD Memory Card Controller

The controller fully supports the Memory Stick bus protocol as defined in Format Specification version 2.0 of Memory Stick Standard (Memory Stick PRO) and the SD Memory Card bus protocol as defined in SD Memory Card Specification Part 1 Physical Layer Specification version 1.0 as well as the Multi Media Card (MMC) bus protocol as defined in MMC system specification version 2.2. Since SD Memory Card bus protocol is backward compatible to MMC bus protocol, the controller is capable of working well as the host on MMC bus under control of proper firmware. Furthermore, the controller also support SDIO card specification version 1.0 partially. However, the controller can only be configured as either the host of Memory Stick or the host of SD/MMC Memory Card at one time. **MEGA4** is not interfaced Mini SD card but T-Flash Memory Card. Interface Signals are same. Normally, the Detection is controlled by INS pin status. When Card is nothing, The INS is high logically. And When Card inserted, The INS is low.

Pin Assignment.

No.	Name	Type	MMC	SD	MS	MSPRO	Description
1	SD_CLK	O	CLK	CLK	SCLK	SCLK	Clock
2	SD_DAT3	I/O/PP		CD/DAT3		DAT3	Data Line [Bit 3]
3	SD_DAT0	I/O/PP	DAT0	DAT0	SDIO	DAT0	Data Line [Bit 0]
4	SD_DAT1	I/O/PP		DAT1		DAT1	Data Line [Bit 1]
5	SD_DAT2	I/O/PP		DAT2		DAT2	Data Line [Bit 2]
6	SD_CMD	I/O/PP	CMD	CMD	BS	BS	Command Or Bus State
7	SD_PWRON	O					VDD ON/OFF
8	SD_WP	I					Write Protection Switch in SD
9	SD_INS	I	VSS2	VSS2	INS	INS	Card Detection

Card Detection

A dedicated pin “INS” is used to perform card insertion and removal for SD/MMC. The pin “INS” will connect to the pin “VSS2” of a SD/MMC connector. Then the scheme of card detection is the same as that for MS. It is shown Figure 25. In Figure 25, The MCINS(M17) is connected to GND.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	37/78

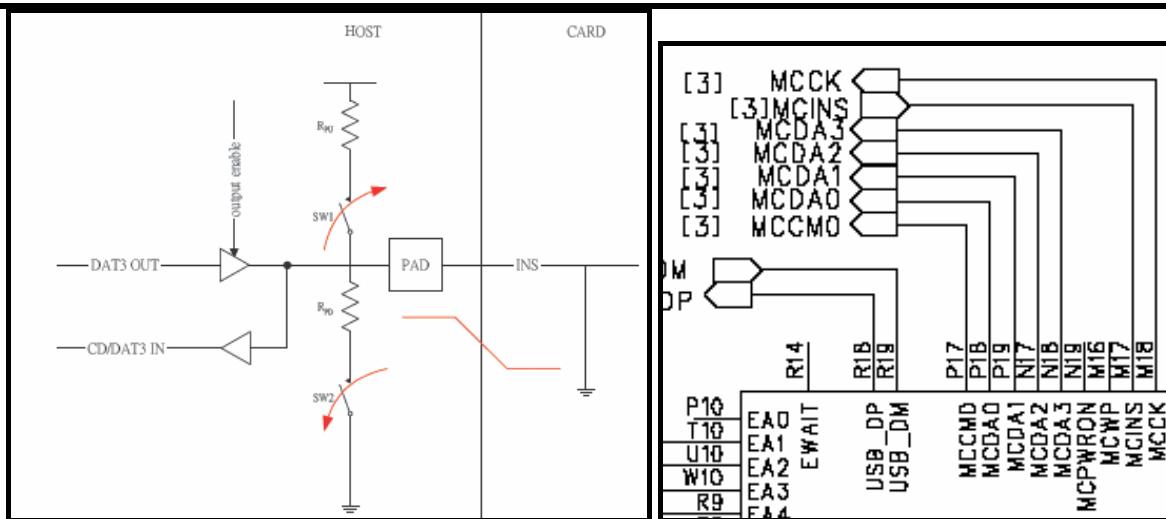
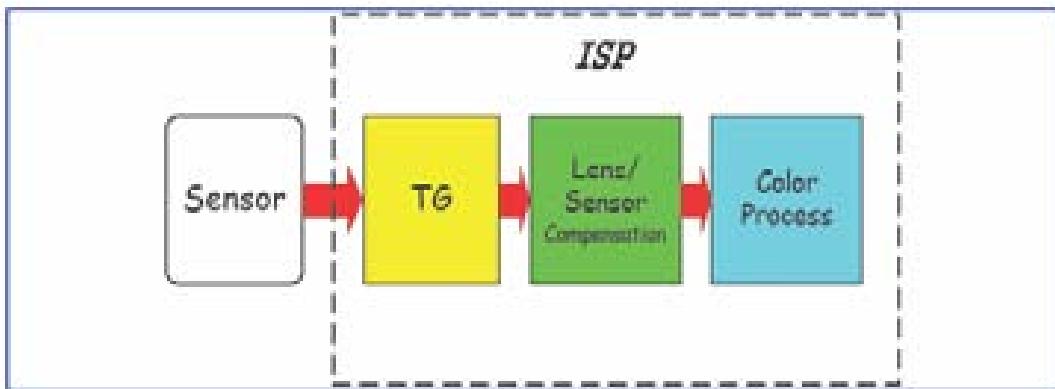



Figure 25. Card Detection.

6.5 Camera Interface

MT6228 incorporates a feature rich image signal processor to connect with a variety of image sensor components. This processor(ISP) consists of timing generated unit (TG) and lens/sensor compensation unit and image process unit. Timing generated unit (TG) cooperates with master type image sensor only. That means sensor should send vertical and horizontal signals to TG. TG offers sensor required data clock and receive sensor Bayer pattern raw data by internal auto synchronization or external pixel clock synchronization. The main purpose of TG is to create data clock for master type image sensor and accept vertical/horizontal synchronization signal and sensor data, and then generate grabbed area of raw data or YUV422/RGB565 data to the lens/sensor compensation unit. Lens/sensor compensation unit generates compensated raw data to the colour process unit in Bayer raw data input mode. In YUV422/RGB565 input mode, this stage is bypassed. Image process unit accepts Bayer pattern raw data or YUV422/RGB565 data that is generated by lens/sensor compensation unit. The output of ISP is YCbCr 888 data format which can be easily encoded by the compress engine (JPEG encoder and MPEG4 encoder). It can be the basic data domain of other data format translation such as R/G/B domain. The ISP is pipelined, and during processing stages ISP hardware can auto extract meaningful information for further AE/AF/AWB calculation. These information are temporary stored on ISP registers or memory and can be read back by MCU.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	38/78

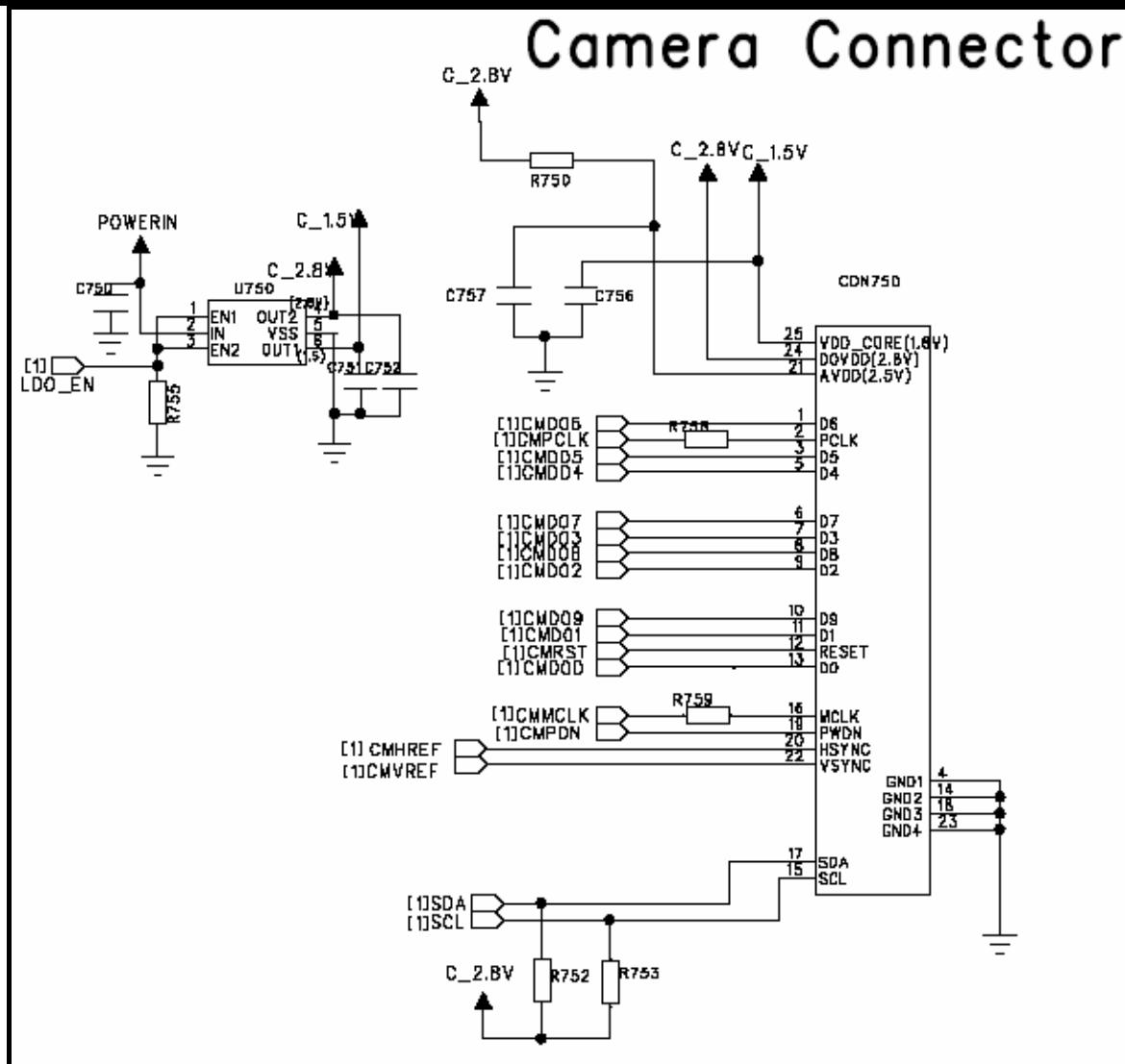


Figure 26. Camera Sensor Interface circuit.

6.6 TV Controller

MT6228 supports NTSC/PAL interlaced TV format. The display function includes two components: a TV controller and a TV encoder. The main functions of the TV controller are as follows:

1. Fetch the TV frame buffer. In video playback mode, the source is from the video codec buffer in YUV420 format. In this mode, the TV controller and MPEG4 decoder can also communicate to achieve the best performance. In image playback mode, the source is in RGB565 format. In this mode, still images can be displayed. The LCM controller can direct the image path to the TV controller. When the LCM controller sends frames to the frame buffer as it does for the LCD display, the TV controller retrieves the frames for display.

2. Scale the frame size to fit the TV size. MT6228 adopts bilinear interpolation in both horizontal and vertical dimension to scale up the frame. The user can adjust both the location and the size to achieve a suitable appearance.

In NTSC mode, the ideal display area is 720(W) x 480(H), but the actual display area depends on the TV set.

In PAL mode, the ideal display area is 720(W) x 576(H); the actual display area also depends on the TV set. TV frame updates consume a lot of bandwidth. For interlaced system, one frame contains 2 fields. In NTSC mode, the field update rate is 59.94 frames per second (fps); the field update rate in PAL mode is 50 fps. Performance is bound by the size of

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	39/78

the source image. The larger the image size, the higher the bandwidth required to support the TV display. The controller supports an arbitrary image size up to 640 pixels in height and 480 pixels in width. Figure 27 depicts the block diagram of the TV controller and TV Encoder.

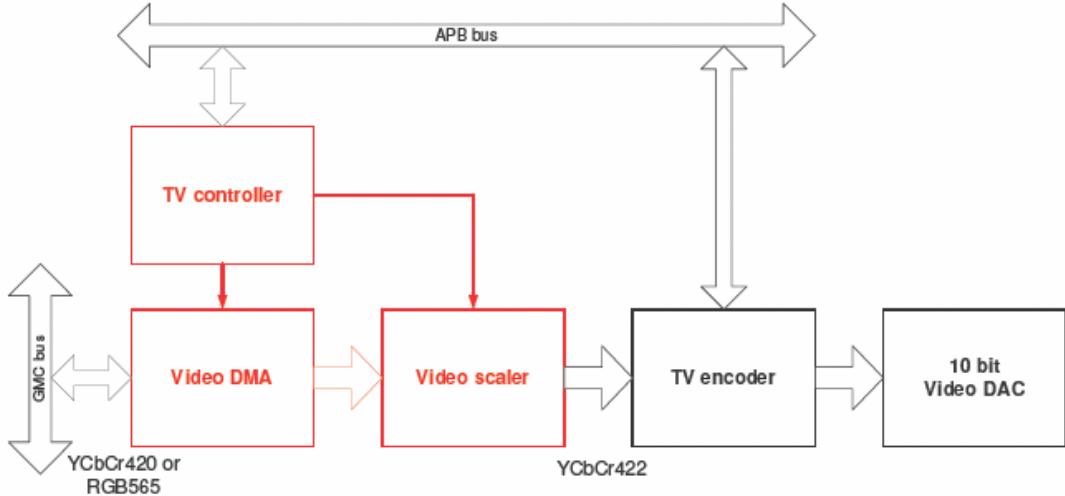


Figure 27. TV controller and Encoder block diagram.

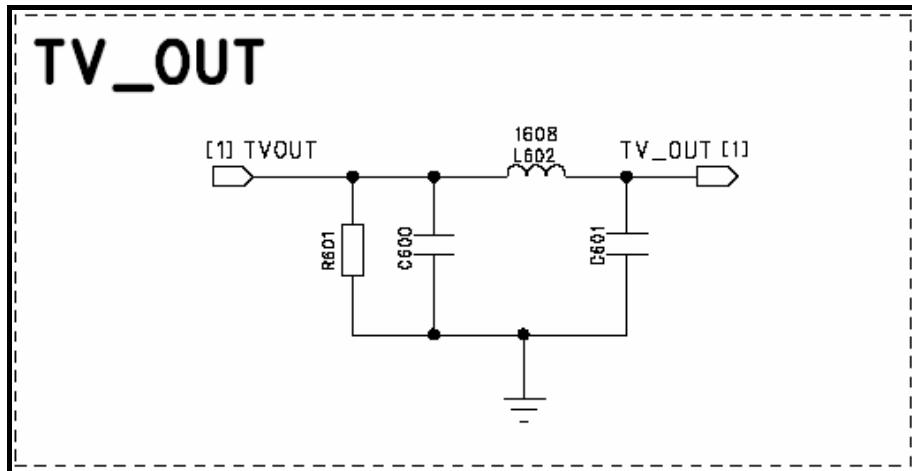


Figure 28. TV out Matching Circuit.

So, MEGA4 has a TV out function. The Figure 28 is a TV out matching circuit. The TV video cable is a 75ohm(R601) impedance and connected to I/O Connector CON450. The Audio Line is sharing with Melody Line.

6. Audio Front-End

6.1 Main MIC, Receiver, Headset and OP amp stage.

The audio front-end essentially consists of voice and audio data paths. Figure 29 shows the block diagram of the audio front-end. All voice band data paths comply with the GSM 03.50 specification. Mono hands-free audio or external FM radio playback paths are also provided. The audio stereo path facilitates CD-quality playback, external FM radio, and voice playback through a headset. In MEGA4, The Voice in normal mode is output to AU_Out0_N/P and voice in Headset Mode/Loud Mode is output to AU_MOUTL/R . The Melody in Normal mode/Headset Mode is output to AU_MOUTL/R. The Mic input in normal mode/Loud mode is to AU_VIN0_N/P and Mic input in headset mode is to AU_VIN1_N/P.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	40/78

The below tables are shown the PGA gains of Mic, Voice and Melody. And the S/W control gain can be changed in Debug Mode using *#110*01# → Audio → Normal mode/Headset Mode/Loud Mode.

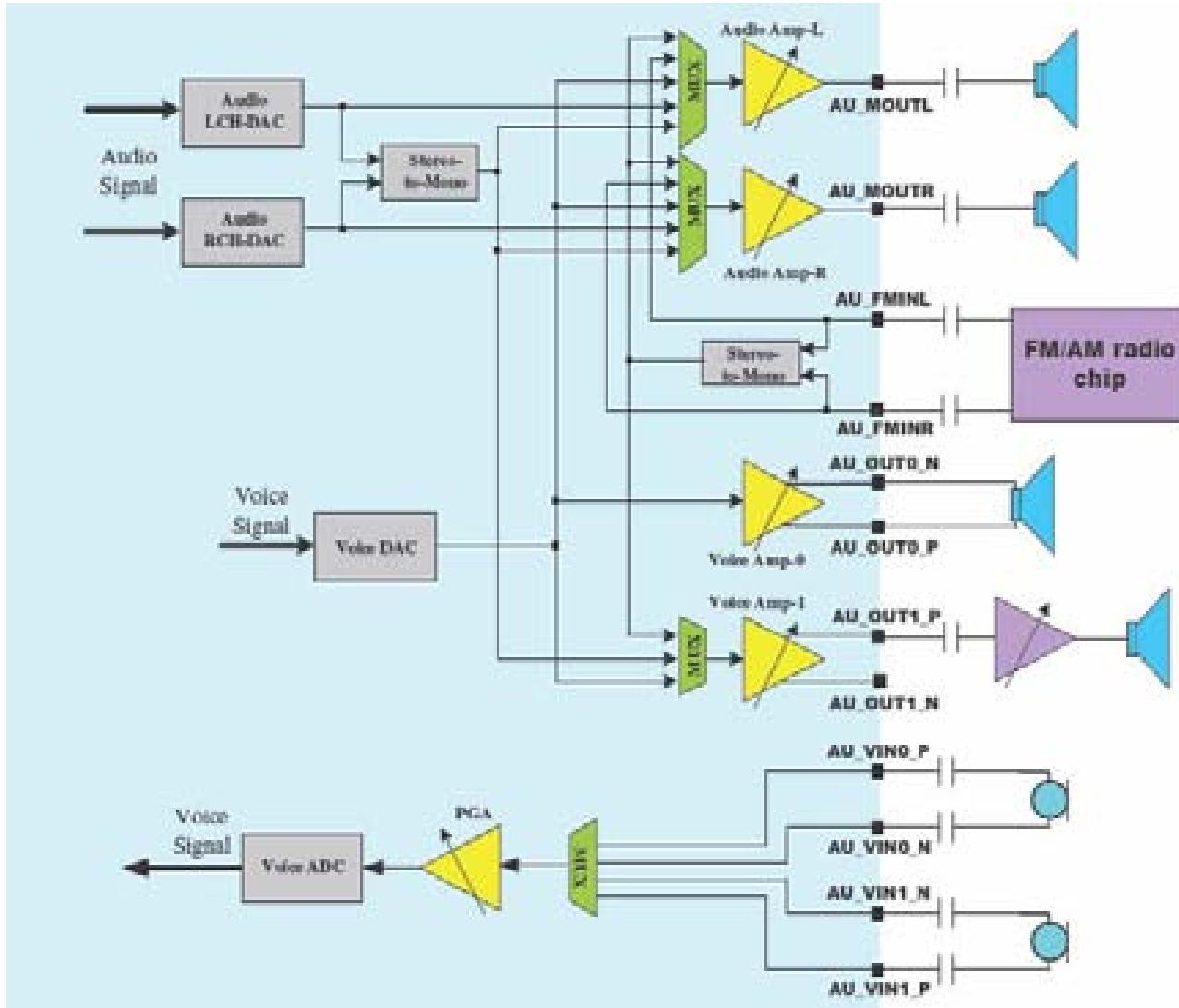


Figure 29. Audio Front-End Block Diagram

	Uplink PGA gain	Downlink PGA gain	
		Audio Amp L/R	Voice Amp 0/1
Step size	2dB	3dB	2dB
Tunable Range	-20~42dB	-22~23dB	-22~8dB
0dBm0	0.2Vrms	0.6Vrms	0.6Vrms

Engineer mode	Microphone	Melody	Speech
Tunable Range	0~255	0~255	0~255
Step size	8 (2dB)	16 (3dB)	16 (2dB)

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	41/78

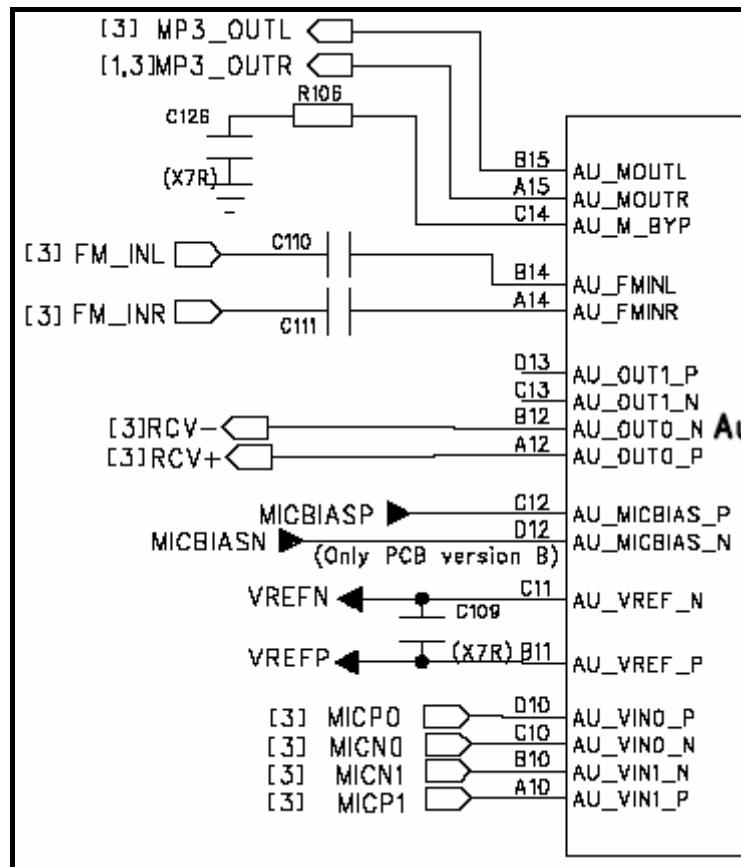


Figure 30. MT6228 Audio Port circuit diagram.

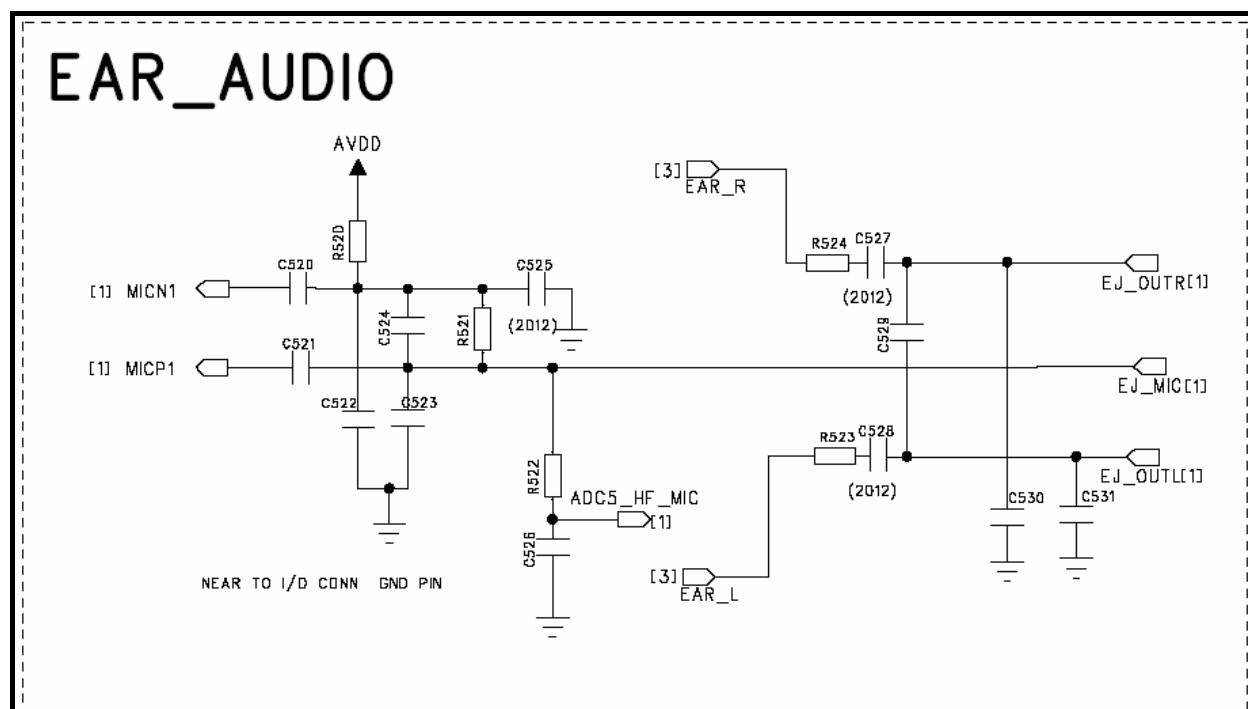


Figure 31. Headset Circuit diagram.

The Figure 31 is shown the Headset Circuit diagram. EJ_Mic is input and EJ_OUTR(L) is output.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	42/78

These are important for FM Radio Blocking of 100Mhz and must be placed to near by Headset connector. Also, has a good performance for EMI. Because The FM Radio Ant is connected to EJ_OUTL. The ADC5_HF_MIC is for hook switch of Headset. If Hook is pressed, The ADC5_HF_MIC voltage is changed from 2.8V to 0V.

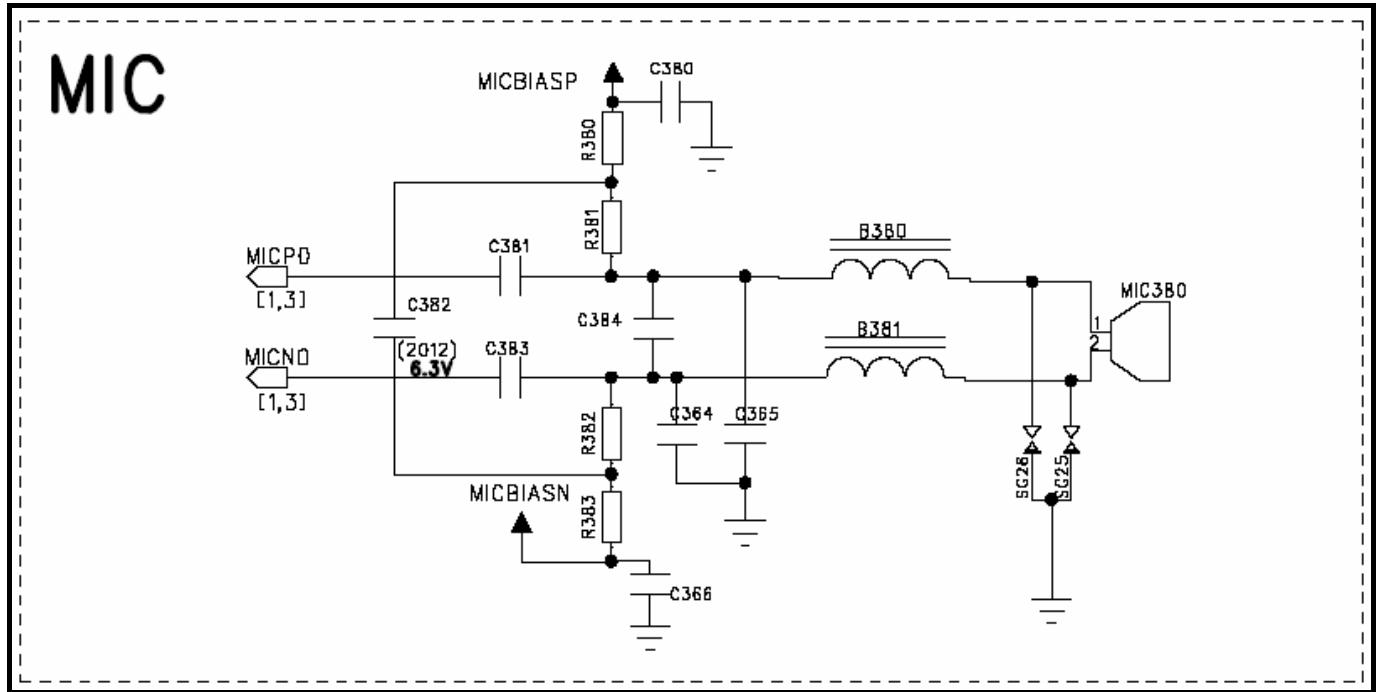
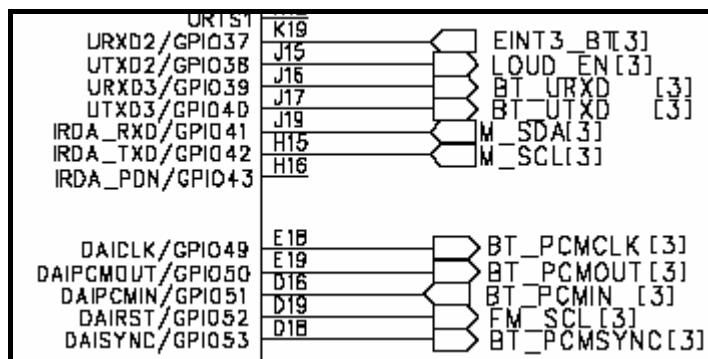
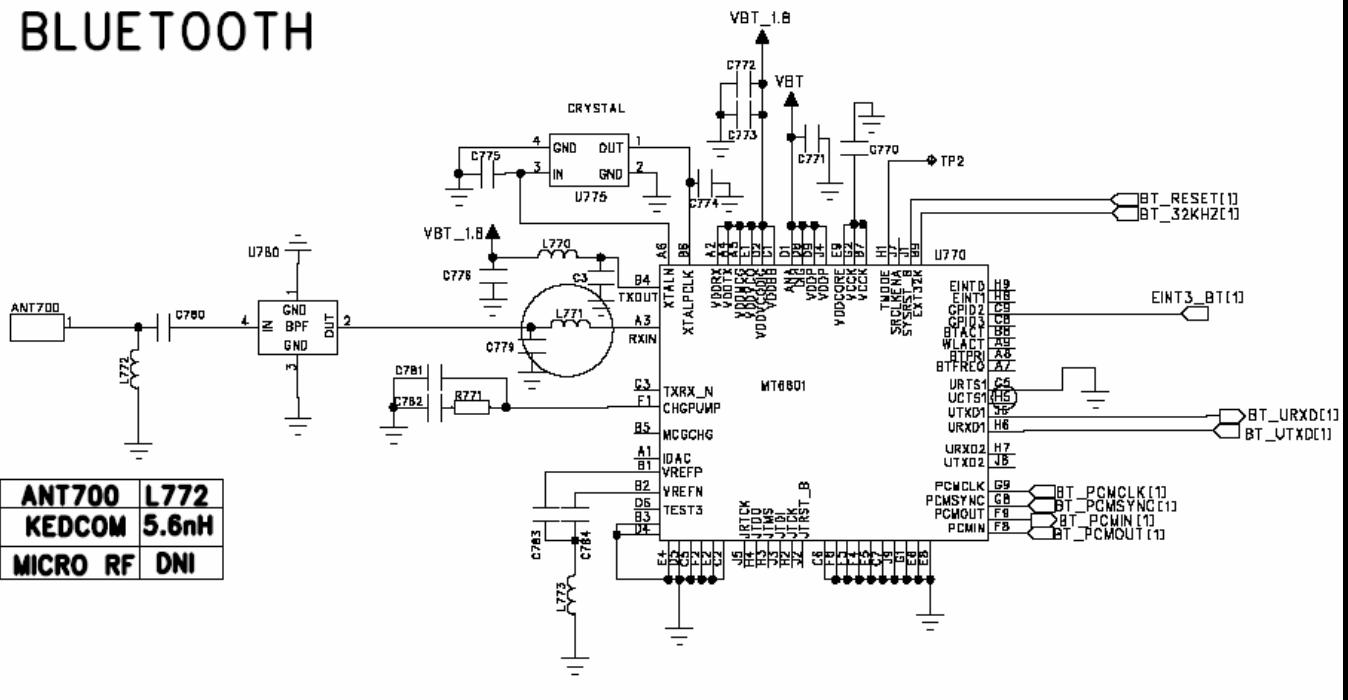



Figure 32. Mic Circuit diagram.


6.2 Blue Tooth Stage

Also, MT6228 has a Digital Audio Interface(DAI) block to communicate with the System Simulator for FTA or external Bluetooth module for particular applications. The digital filter block performs filter operations for voice band and audio band signal processing.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	43/78

BLUETOOTH

Figure 33. The digital circuits for Audio Front-End

The Below table is shown the MT6228 DAI/PCM Port mapping according to S/W concept.

PIN NAME	DAI	PCM	EDI
DAI_CLK (OUTPUT)	DAI_CLK	PCM_CLK	EDI_CLK
DAI_TX (OUTPUT)	DAI_TX	PCM_OUT	EDI_DAT
DAI_RX (INPUT)	DAI_RX	PCM_IN	
BT_SYNC (OUTPUT)	-	PCM_SYNC	EDI_WS

The BT Module is used MT6601 from MTK. The BT Version is 1.2 and Nominal Power is 0dBm and Sensitivity is about -80dBm. The distance during communication for Voice and Audio is around 13meter. The BT Test is certificated in BQB.

6.3 FM Radio Stage.

MEGA4 Also, has a FM Radio chip set MT6188 from Media Tek. The interface is very simple. The FM_X1 frequency can be used 32Khz, 13Mhz and 26Mhz. The FM_X1 is from MT6228 GPIO port can be used for Oscillator output. The L702 is to tune the FM Radio band Q. Since the Headset is used for FM Radio Receiver and ANT. So, The Headset Receiver GND line must be connected to GND via. If the Headset Receiver GND is connected to Power GND, The white noise is increased.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	44/78

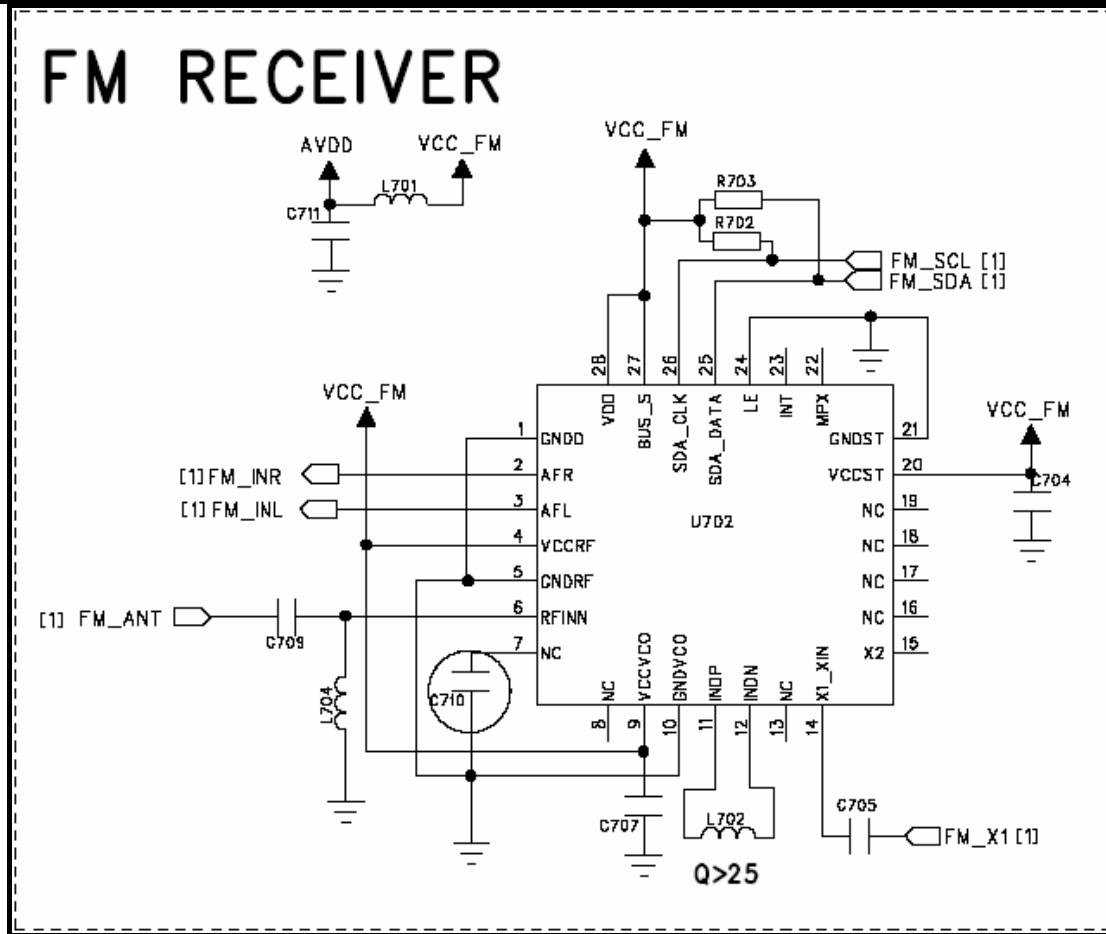


Figure 34. FM Radio Circuit diagram.

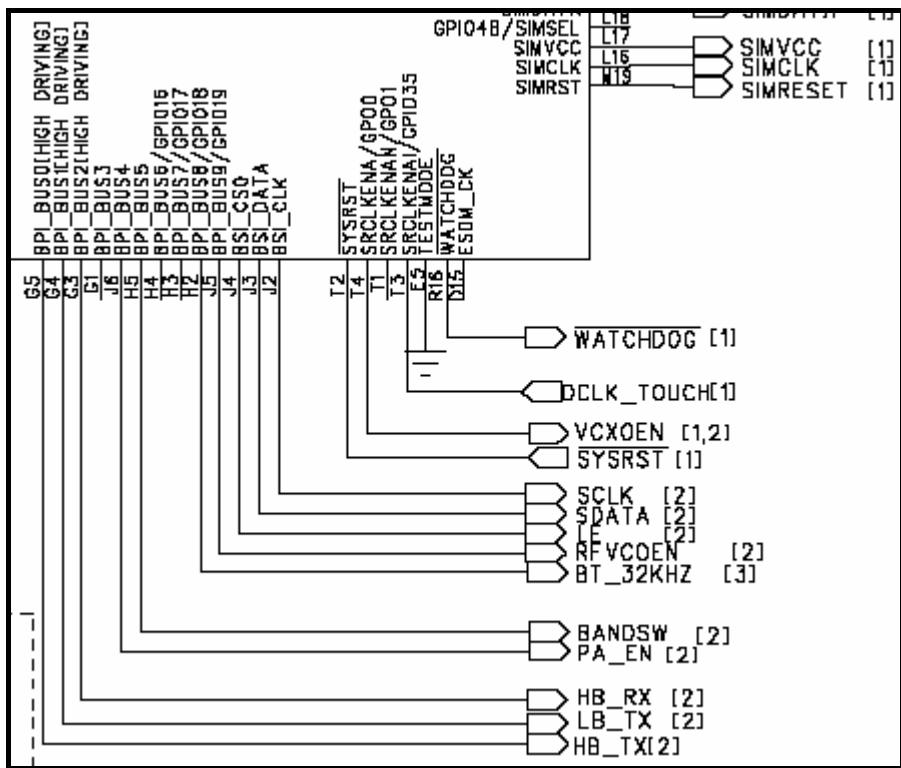
7. Radio Interface Control

This chapter details the MT6228 interface control with the radio part of a GSM terminal. Providing a comprehensive control scheme, the MT6228 radio interface consists of Baseband Serial Interface (BSI), Baseband Parallel Interface (BPI), Automatic Power Control (APC) and Automatic Frequency Control (AFC), together with APC-DAC and AFC-DAC.

7.1 Baseband Serial Interface

The Baseband Serial Interface controls external radio components MT6120. A 3-wire serial bus transfers data to RF circuitry for PLL frequency change, reception gain setting and other radio control purposes. In this unit, BSI data registers are double-buffered in the same way as the TDMA event registers. The user writes data into the write buffer and the data is transferred from the write buffer to the active buffer when a TDMA_EVTVAL signal (from the TDMA timer) is pulsed.

The unit has four output pins : BSI_CLK is the output clock, BSI_DATA is the serial data port and BSI_CS0, BSI_CS1 are the select pins for 2 external components. These outputs are connected to MT6120 Transceiver to program.


Baseband Parallel Interface

The Baseband Parallel Interface features a 10-pin output bus used for timing-critical control of the external circuits. These pins are typically used to control front-end components at the specified time along the GSM time-base, such as transmit-enable(PA_EN), band switching(BANDSW_DCS), FEM-switch(LB_TX, HB_TX), etc.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	45/78

The following table is shown the used pin for RF part.

Pin Name	Pin Description	Description	Component
BPI_BUS 0	HB_TX	Switch Module DCS/PCS TX	Switch Module(LMSP54HA)
BPI_BUS 1	LB_TX	Switch Module GSM TX	Switch Module(LMSP54HA)
BPI_BUS 2	PCS	Switch Module PCS RX	Switch Module(LMSP54HA)
BPI_BUS 4	PA_EN	PAM Enable	PAM (RF3166)
BPI_BUS 5	BANDSW_DCS	Band switch for DCS	PAM (RF3166)
BPI_BUS 8	BT_LDO_EN	Blue Tooth Power Supply Enable	BTM(MT6601)
BPI_BUS 9	RFVCOEN	RF VCO Enable	Transceiver(MT6120)

Figure 35. BSI and BPI Circuit diagram.

Automatic Power Control Unit

Automatic Power Control unit is used to control the Power Amplifier module. Through APC unit, we can set the proper transmit power level of the handset and to ensure that the burst power ramping requirements are met. In one TDMA frame, up to 7 TDMA events can be enabled to support multi-slot transmission. In practice, 5 banks of ramp profiles are used in one frame to make up 4 consecutive transmission slots.

The shape and magnitude of the ramp profiles are configurable to fit ramp-up, intermediate ramp, and ramp-down profiles. Each bank of the ramp profile consists of 16 8-bit unsigned values, which is adjustable for different conditions.

The entries from one bank of the ramp profile are partitioned into two parts, with 8 values in each part. In normal operation, the entries in the left half part are multiplied by a 10-bit left scaling factor, and the entries in the right half part are multiplied

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	46/78

by a 10-bit right scaling factor. Those values are then truncated to form 16 10-bit intermediate values. Finally the intermediate ramp profile are linearly interpolated into 32 10-bit values and sequentially used to update to the D/A converter.

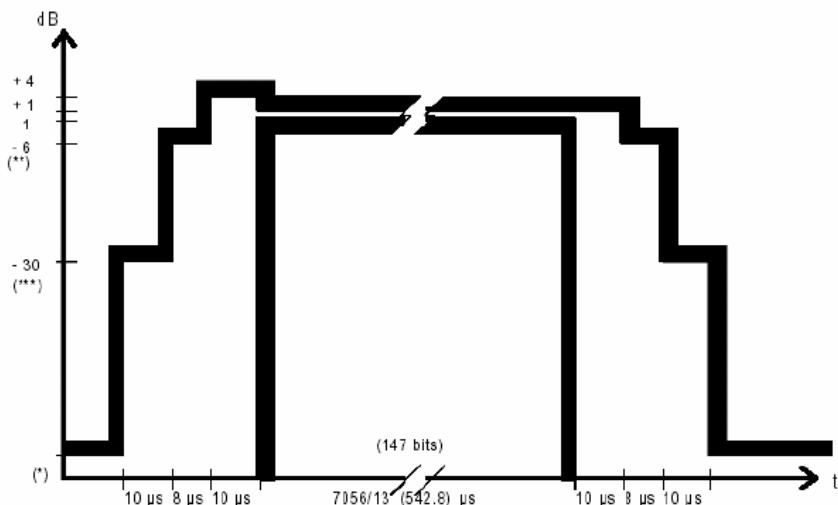
The APC Analog Signal is inputted to Power Amplifier Module through Low Pass filter.

The APC Analog Signal has 32 Ramp profiles for Up Ramp and Down Ramp each 16 profiles as shown below.

TX power level=44,53,62,74,90,110,136,165,200,240,295,350,420,525,610,610

(Voltage Level according to TX Power GSM Level 19 ~ 5. DCS/PCS Level 15~0)

profile 0 ramp up=0,0,0,0,0,0,2,4,8,26,65,143,228,255,255,255


profile 0 ramp down=255,255,239,197,138,78,32,10,0,0,0,0,0,0,0,0

•
•

profile 15 ramp up=0,0,0,0,0,0,2,4,8,26,65,143,219,250,255

profile 15 ramp down=255,239,197,138,78,32,10,0,0,0,0,0,0,0,0,0

The Figure 36 shows the Timing Mask for Normal VAPC.

Figure 36. Timing Mask for normal VAPC.

Automatic Frequency Control Unit

Automatic Frequency Control unit provides the direct control of the oscillator for frequency offset and Doppler shift compensation. It utilizes a 13-bit D/A converter to achieve high-resolution control. The AFC is always inputted to VCTCXO to generate 26Mhz. The AFC Voltage must be calibrated to tune the VCTCXO to generate 26Mhz to be entered the MT6120 and MT6228 Main system clock. If the VCTCXO output a frequency with much ppm, The Frequency error and Phase error are out of range. After calibrated, The Analog voltage is about 1.5V and AFC_DAC is about 4200 decimal.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	47/78

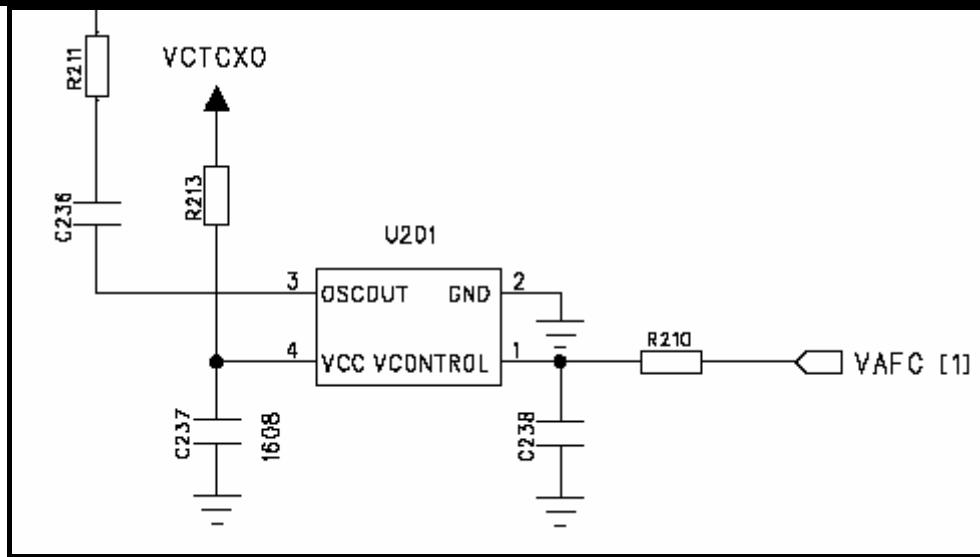


Figure 37. The AFC and VCTCXO Circuit diagram

8. Clocks and Reset

Clocks

There are two major time bases in the MT6228. For the faster one is the 13MHz clock origination from an off-chip temperature-compensated voltage controlled oscillator that can be 26MHz. This signal is the input from the SYSCLK pad then is converted to the square-wave signal. The other time base is the 32.768KHz clock generated by an on-chip oscillator connected to an external crystal.

- 32.768Khz Time Base

The 32.768Khz clock is always running. It's mainly used as the time base of the Real Time Clock(RTC) module, which maintains time and date with counters. In low power mode, the 13Mhz time base is turned off, so the 32.768Khz clock shall be employed to update the critical TDMA timer and Watchdog timer. This Time base is also used to clock the keypad Scanner logic. The C101,C102 must be tuned with Oscillator.

- 13Mhz Time Base

Two 1/2-dividers, one for MCU Clock and the other for DSP Clock, exist to allow usage of either 26 or 13Mhz TXVCXO as clock input. There phase-locked loops(MPLL, DPLL and UPLL) are used to generate three primary clocks.

MPLL : Provides the MCU System Clock.

DPLL : Provides the DSP System Clock. DPLL can be programmed to provide 1x to 6x output of the 13Mhz reference.

UPLL : Provides the USB System Clock.

Reset Generation Unit

Figure 38 shows reset scheme used in MT6228. There are three kinds of resets in the MT6228, i.e., hardware reset, watchdog reset, and software resets.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	48/78

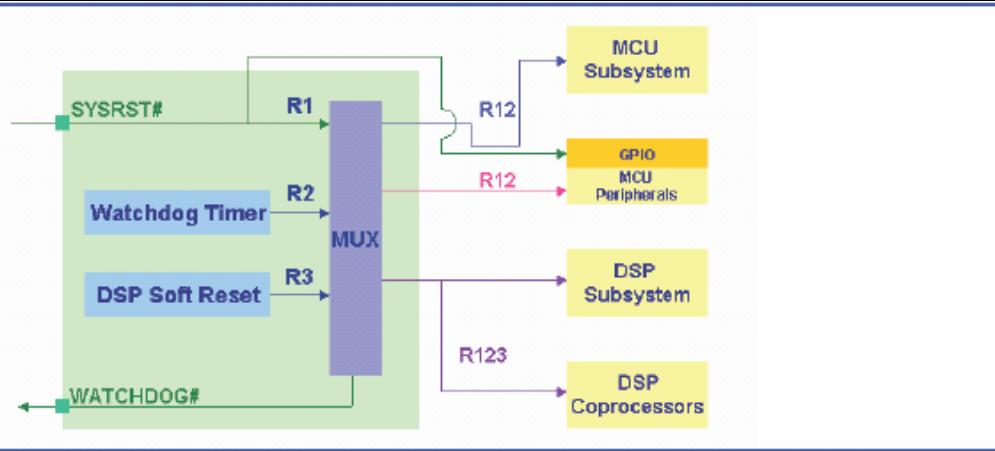


Figure 38. Reset Scheme used in MT6228

- Hardware Reset

This Reset is inputted through the SYSRST# pin from PMIC(MT6318 Pin F9). The SYSRST# shall be driven to low during power-on. The Hardware reset has a global effect on the chip. It initializes all digital and analog circuits except the RTC. Refer to the listed below.

- All Analog Circuits are turned off
- All PLLs are turned off and bypassed. The 13Mhz system clock is the default time base.
- Special Trap statue in GPIO.

- Watchdog Reset

A Watchdog reset is generated when the Watchdog timer expires as the MCU software failed to re-program the timer counter in time. Hardware blocks that are affected by the watchdog reset are :

- MCU Subsystem
- DSP Subsystem
- External Component (By software program)

- Software Reset

These are local reset signals that initialize specific hardware. For example, The MCU or DSP software may write to software reset trigger registers to reset hardware modules to their initial states, when hardware failures are detected.

The following Modules has software resets

- DSP Core
- DSP Coprocessors.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	49/78

II. MT6318 (GSM Power Management System)

The MT6318 is a power management system chip optimized for GSM/GPRS handsets, especially those based on the MediaTek

MT621x/MT622x system solution. MT6318 contains 11 LDOs, one to power each of the critical GSM/GPRS sub-blocks. Sophisticated controls are available for power-up during battery charging, for the keypad interface, and for the RTC alarm. The MT6318 is optimized for maximum battery life.

The 2-step RTC LDO design allows the RTC circuit to stay alive without a battery for several hours.

The MT6318 battery charger can be used with a lithium-ion (Li+) battery.

The SIM interface provides the level shift between SIM card and microprocessor.

The MT6318 is available in a 96-pin TFBGA package.

The operating temperature range is -25°C to +85°C.

The interface Features are listed below.

- Handles all GSM/GPRS Baseband Power Management
- Input range: 2.8 V ~ 5.0 V
- Charger input of up to 15 V
- 11 LDOs optimized for specific GSM/GPRS subsystems
- 2-step RTC LDO
- 600 mW Class AB audio amplifier
- Booster for series backlight LED driver
- Charge pump for parallel backlight LED driver
- SPI interface
- Pre-charge indication
- Li-ion battery charge function
- SIM card interface
- RGB LED driver
- V_{core} for power-saver mode
- Over-current and thermal overload protection
- Programmable under voltage lockout protection
- Power-on reset and start-up timer
- 96-pin TFBGA package

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	50/78

	1	2	3	4	5	6	7	8	9	10	
A	LED_KP	Q2+	C1+	C1+	PWRIN4	FB_BL	BLDRV	PWRIN0	PWRIN8	BAT_BACKUP	A
B	VO_G	VO_R	CS_KP	DC_OV	PWRIN4	CS_BL	RST_CAP	PWRIN0	INT	BAT_ON	B
C	V_USB	VO_B	GND4	GND4	PWRIN4	GND4	GND4	PWRIN0	RTC_SEL	VIO	C
D	USB	GDR_VUSB	GND1	GND4	PWRIN4	GND4	GND3	GND3	PWRIN2	PWRIN0	D
E	AC	GDR_VAC	GND1	GND1			GND3	GND3	VD_SEL	VA_SW	E
F	VBAT	ISENSE	GND1	GND1			GND3	SPICS	RESET	VIBR	F
G	VN	SEL2	GND1	GND1	GND2	GND2	GND2	SPICK	SRCLK_EN	VRTC	G
H	VTGND	SEL1	SEL1_EN	GND2	ISENSE_OUT	GND2	GND2	SIO	SIM_VCC	SIM_RST	H
J	PWRIN1	PWRIN1	PWRIN1	VD_OUT	AUDP	AUDN	SIMIO	SPIDAT	SRST	VD	J
K	VA	BYREF	VMC	VM_SEL	SPK+	SPK-	PWR_KEY	VSIM	SIM_CLK	SOLK	K
	1	2	3	4	5	6	7	8	9	10	

Figure 39. MT6318 Pin configuration.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	51/78

Pin	Symbol	Input (I), Output (O), or Analog (A)	Description
Control			
K7	PWRKEY	I	Power on button input. Active low.
A9	PWRBB	I	Power on/off from microprocessor. Active high.
G9	SRCLKEN	I	VTCXO and VA enable. High = enable. Low = disable.
H9	SIMVCC	I	VSIM enable. High = enable. Low = disable.
B10	BAT_ON	I	Indication that Li-ion battery is inserted. High = no battery. Low = battery inserted.
B4	DC_OV	I	DC/DC protection input. OV threshold voltage is 1V.
K4	VM_SEL	I	External memory supply selection. 1 = 2.8V, 0 = 1.8V.
H3	SEL1_EN	I	Enable the "pre-charge indication" function. 1 = enable, 0 = disable. (Note1)
C9	RTC_SEL	I	VRTC output voltage selection. 1 = 1.5V, 0 = 1.2V (Note1)
E9	VD_SEL	I	VD output voltage selection. 1 = 1.8V/1.5V, 0 = 1.2V/0.9V (depending on the register PWR_SAVE setting).
Charger Control			
E1	AC	IA	AC-DC adaptor input
D1	USB	IA	USB power input
C1	V_USB	OA	3.3V USB power output
B9	INT	O	Interrupt PIN. Active low. This pin informs the BB if an AC or USB voltage is detected, or if OVP (AC > 9V) is detected. Is reset to normal high after BB has communicated with the PMIC through SPI.
D2	GDRVUSB	OA	Control output to the gate of the external p-channel FET for the USB charger.
E2	GDRVAC	OA	Control output to the gate of the external p-channel FET for the AC charger.
F2	ISENSE	OA	Charger current sensing input
H2	SEL1	OA	Control output to the gate of the external PMOS for the AC charger input as power source.
G2	SEL2	OA	Control output to the gate of the external PMOS for the VBAT input as power source.
SIM Interface			
J7	SIMIO	I/O	Non level-shifted SIM data (3V)
H10	SIMRST	I	Non level-shifted SIM reset input (3V)
K9	SIMCLK	I	Non level-shifted SIM clock input (3V)
H8	SIO	I/O	Level-shifted SIM data (1.8/3V)
J9	SRST	O	Level-shifted SIM reset output (1.8/3V)
K10	SCLK	O	Level-shifted SIM clock output (1.8/3V)
Reset			
B7	RSTCAP	IA	Reset delay time capacitance
F9	RESET	O	System reset. Low active.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	52/78

Power-Related			
F1	VBAT	IA	Battery input voltage
J1, J2, J3, D9, D10, A8, B8, C8, A5, B5, C5, D5	PWRIN	IA	Power input
J4	VB_OUT	OA	Battery output voltage. Switchable.
H5	ISENSE_OUT	OA	ISENSE output voltage. Switchable.
K2	BP/VREF	OA	Bandgap reference and bypass capacitance
D3, E3, E4, F3, F4, G3, G4, G5, G6, G7, H4, H6, H7, D7, D8, E7, E8, F7, C3, C4, C6, C7, D4, D6	GND		Ground
J10	VD	OA	Digital core supply
C10	VIO	OA	Digital IO supply
K1	VA	OA	Analog supply
E10	VA_SW	OA	Auxiliary analog supply. Switchable.
H1	VTCXO	OA	TCXO supply
G1	VM	OA	Memory supply
K8	VSIM	OA	SIM supply
G10	VRRTC	OA	RTC supply
K3	VMC	OA	Memory card supply
Miscellaneous			
F10	VIBR	IA	Vibrator driver
A3	C1+	A	Charge pump capacitor. Positive terminal.
A4	C1-	A	Charge pump capacitor. Negative terminal.
A2	C2+	A	DC/DC output back-up capacitor. Positive terminal.
A10	BAT_BACKUP	OA	Backup battery pin for 2-step RTC
Speaker Amplifier			
J5	AUDP	IA	Audio positive input
J6	AUDN	IA	Audio negative input
K5	SPK+	OA	Speaker positive output
K6	SPK-	OA	Speaker negative output
LED Driver			
B2	VO_R	IA	R LED current driver
B1	VO_G	IA	G LED current driver
C2	VO_B	IA	B LED current driver
A1	LED_KP	OA	KP LED driver
B3	CS_KP	IA	KP LED current sensor
A7	BLDRV	OA	Control output to the gate of the external FET for the backlight DC-DC converter.
B6	CS_BL	IA	Voltage sensor input for external BL FET current
A6	FB_BL	IA	Voltage sensor input from white LED ballast resistor
SPI Interface			
F8	SPICS	I	Serial port select input
G8	SPICK	I	Serial port clock input
J8	SPIDAT	IO	Serial port I/O

1. Low Dropout Regulator and Reference

The MT6318 integrates eleven LDOs that are optimized for their given functions by balancing quiescent current, dropout voltage, line/load regulation, ripple rejection, and output noise.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	53/78

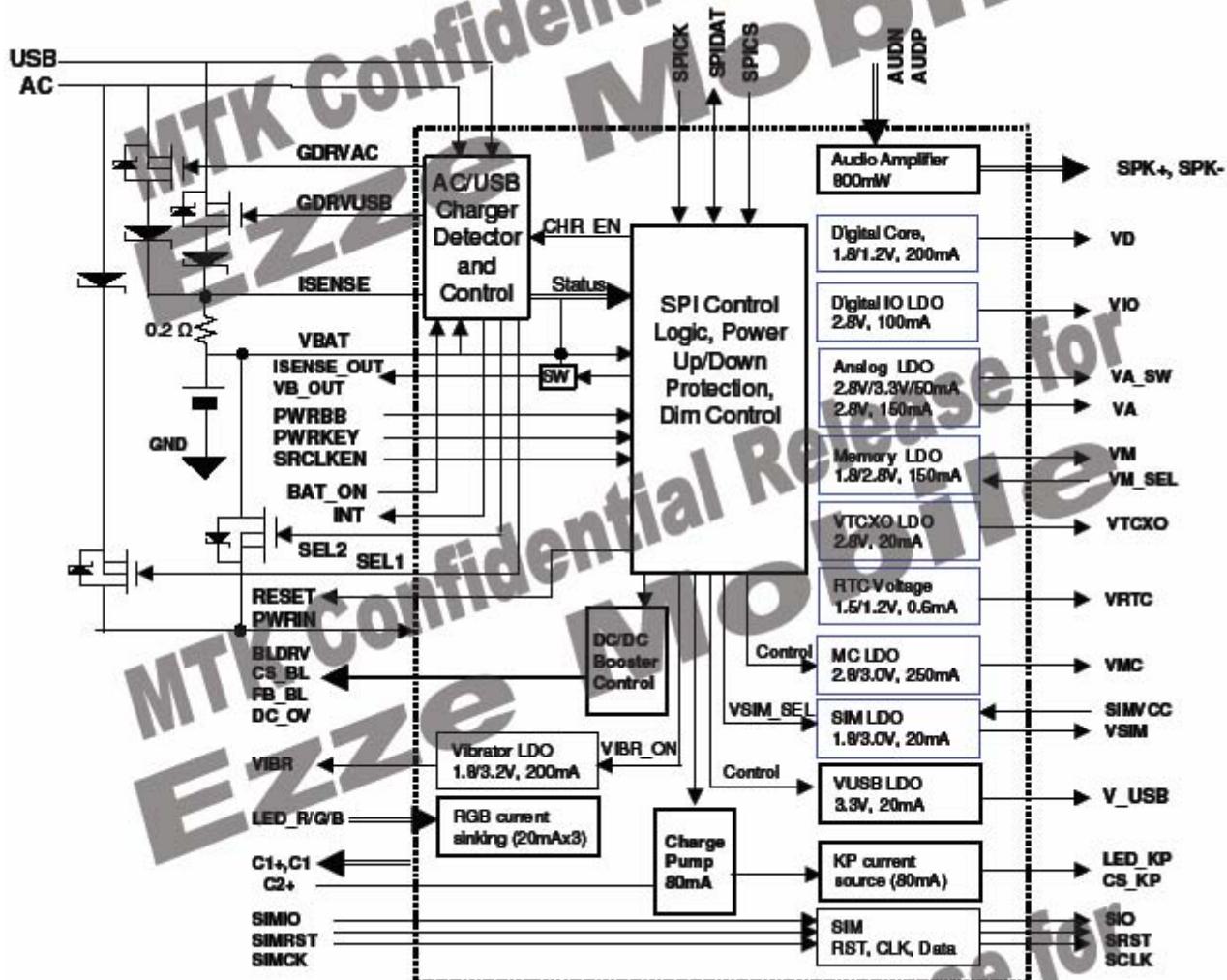


Figure 40. Functional Block Diagram of MT6318

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	54/78

THR	Conditions					Operations									
	UV (PWRDN)	CHDET	PWRKEY	PWRBB	SPKKEN	PWRDN < 2.5V	VTCXO	VRCO	VA	VIO	VIO	VUSB	VMC	VSA	VLSW
L	H	X	X	X	X	H	On	On	Off	Off	Off	Off	Off	Off	Off
L	H	X	X	X	X	L	On	On	Off	Off	Off	Off	Off	Off	Off
L	L	L	H	L	X	L	Off	On	Off	Off	Off	Off	Off	Off	Off
						H	L	On	On	VA_SELAVB_OUT = 0, VA = VD	On	USB_PWR	VMC	SIMVOC	VA_SW = 0, Off
							L	Off	On	VA_SELAVB_OUT = 1, VA = VTCXO	On	USB_PWR	VMC	SIMVOC	VA_SW = 1, VA
						H	L	On	On	VA_SELAVB_OUT = 0, VA = VD	On	USB_PWR	VMC	SIMVOC	VA_SW = 0, Off
							L	Off	On	VA_SELAVB_OUT = 1, VA = VTCXO	On	USB_PWR	VMC	SIMVOC	VA_SW = 1, VA
						H	L	On	On	VA_SELAVB_OUT = 0, VA = VD	On	USB_PWR	VMC	SIMVOC	VA_SW = 0, Off
							L	Off	On	VA_SELAVB_OUT = 1, VA = VTCXO	On	USB_PWR	VMC	SIMVOC	VA_SW = 1, VA
						H	L	On	On	VA_SELAVB_OUT = 0, VA = VD	On	USB_PWR	VMC	SIMVOC	VA_SW = 0, Off
							L	Off	On	VA_SELAVB_OUT = 1, VA = VTCXO	On	USB_PWR	VMC	SIMVOC	VA_SW = 1, VA
						H	X	X	H	VA_SELAVB_OUT = 0, VA = VD	On	USB_PWR	VMC	SIMVOC	VA_SW = 0, Off
							L	Off	On	VA_SELAVB_OUT = 1, VA = VTCXO	On	USB_PWR	VMC	SIMVOC	VA_SW = 1, VA
H	X	X	X	X	X	X	L	On	On	Off	On	Off	Off	Off	Off

Figure 41. LDO Turn On Table.

2. **Digital Core LDO (VD)** The digital core LDO is a regulator that sources 200mA(max) with a 1.8V or 1.2V output voltage selection based on the supply voltage requirement of the BB chipset. The LDO also provides 1.5V/0.9V power-down modes that can be controlled either by the SRCLKEN pin or by the PWR_SAVE_SPI software register(Register 8[5]) The digital core LDO supplies the BB circuitry in the handset, and is optimized for a very low quiescent current.

3. Digital IO LDO (VIO)

The digital IO LDO is a regulator that sources 100mA(max) with 2.8V output voltage. The LDO supplies the BB circuitry in the handset, and is optimized for a very low quiescent current. The LDO powers up at the same time as the digital core LDO.

4. Analog LDO (VA)

The analog LDO is a regulator that sources 150mA(max) with a 2.8V output voltage. The LDO supplies the analog sections of the BB chipsets and is optimized for low frequency ripple rejection in order to reject the ripple coming from the RF power amplifier burst frequency at 217Hz.

5. TCXO LDO (VTCXO)

The TCXO LDO is a regulator that sources 20mA(max) with 2.8V output voltage. The LDO supplies the temperature compensated crystal oscillator, which needs its own ultra low noise supply and very good ripple rejection ratio. The Decoupling Capacitor C306 must be higher than X5R type.

6. RTC LDO (VRTC)

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	55/78

PMIC features a 2-step RTC that keeps RTC alive for a long time after the battery has been removed. The 1st LDO charges a backup battery on the BAT_BACKUP pin to ~2.6V. Also, when the battery is removed, the first stage prevents the backup battery from leaking back to VBAT. The 2nd LDO regulates the 2.6V supply to a 1.5V/1.2V optional RTC voltage. The RTC voltage can be set by the RTC_SEL pin while the BB is alive; the setting is retained while the BB is powered down. When the backup battery is fully charged, the high backup battery voltage, low reverse current leakage and the low 2nd LDO operating current sustain the RTC block for even tens of hours with the absence of the main battery.

7. Memory LDO (VM)

The memory LDO is a regulator that sources 150mA(max) with a 1.8V or 2.8V output voltage selection based on the supply specs of memory chips. The LDO supplies the memory circuitry in the handset and is optimized for a very low quiescent current. This LDO powers up at the same time as the digital core LDO.

8. SIM LDO (VSIM)

The SIM LDO is a regulator that sources 20mA(max) with a 1.8V or 3.0V output voltage selection based on the supply specs of subscriber identity modules card. The LDO supplies the SIMs in the handset, and is controlled independently of the other LDOs.

9. Memory Card LDO (VMC)

The memory card LDO is a regulator that sources 250mA(max) with a 2.8V or 3.0V output voltage selection. The LDO supplies the memory cards(MS, SD, MMC) in the handset, and is controlled independently of the other LDOs.

10. Auxiliary Analog Circuit LDO(VA_SW)

The auxiliary analog circuit LDO is a regulator that sources 50mA(max) with a 2.8V or 3.3V output voltage selection based on the VA_SW_SEL register setting. It can be switched on/off by register control.

11. USB IO LDO(VUSB)

The USB IO LDO is a regulator that sources 20mA(max) with a 3.3V output voltage. The LDO output on/off follows the control bit USB_PWR(Register 1[3]). When the USB_PWR control bit is set to off, the VUSB output voltage drops below 0.3V within 1ms. The Decoupling Capacitor C301 is shunt a 1uF.

12. Vibrator LDO(VIBR)

The Vibrator LDO is a regulator that sources 200mA(max) with a 1.8V or 3.2V output voltage selection based on the VIBSEL register setting (Register E[1]). This LDO can be powered on/off by register control (Register 8[0] .

13. Reference Voltage Output(VREF)

The Reference voltage output is a low noise, high PSRR and high precision reference with a guaranteed accuracy of 1.5% over temperature. The output is used as a system reference in MT6318 internally. However for accurate specs of every LDO output voltage, avoid loading the reference voltage; only bypass it to GND with a minimum 100nF.

14. LED Drivers

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	56/78

PMIC provides 4 independent drivers. Three of them use an identical structure to driver 3 different LEDs (R, G, B). The fourth is dedicated to driving the keypad LEDs. The reason for separating the LED drivers into 2 groups is phone feature oriented. First, for the colourful backlight display when a call is coming, three independent drivers can be used to blend many illuminating colors easily. Second, LEDs for a bar type phone's LED and keypad normally do not turn on at the same time. Therefore a 2-step architecture is beneficial for pin count saving and power efficiency.

The first common block for the keypad (KP) and R/G/B LED driver is a switching capacitor type DC/DC (charger pump circuit) that boosts VBAT to 4.5V (note VBAT < 4.2V). This charger pump circuit features a driving capability control option for reduced current consumption and start-up inrush current.

The KP LED driver is a voltage feedback type regulator available to 80mA for up to 4 parallel KP LEDs. External ballast resistors are necessary and serially connected to each LED, but only one provides feedback voltage to the PMIC. Moderate variations light intensity for different LEDs in the KP is not a critical issue, therefore this configuration is simpler and saves the PMIC on pin count.

The R/G/B LED drivers are 3 identical current regulators. The 3 external LEDs connect their anodes to 3 pins of the PMIC(LED_R/G/B) and their cathodes to ground. No ballast resistor is needed for these 3 LEDs; each current regulator is capable of setting its current to 12, 16, 20 or 24mA via the control registers(Registers 3~5 [6:5]).

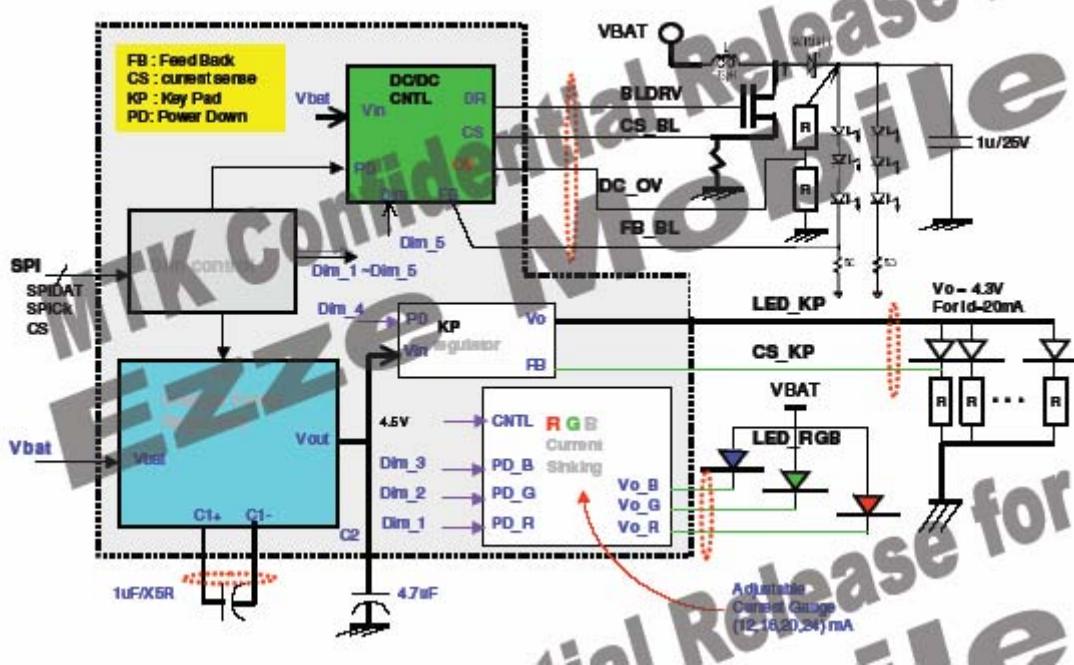


Figure 42. LED Driver Block Diagram.

15. Charger Detector

The charger detector sensor senses the charging voltage from either a standard AC-DC adaptor or a USB connection. When the charging input voltage is greater than the pre-determined threshold, the charging process is triggered. This detector resists higher input voltage than other parts of the PMIC; i.e. if an excess charging source is

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	57/78

detected ($> 9.0V$), the charger detector stops the charging process to avoid burning out the whole chip or even the whole phone.

If both AC and USB chargers are detected, the charging source uses the AC source.

When the presence of a charger voltage (either AC or USB) is detected, an interrupt output pin INT becomes active (pull Low). The INT is also active when the AC or USB regulator is removed. The PMIC resets INT to HIGH after the BB chip reads the PMIC through the SPI.

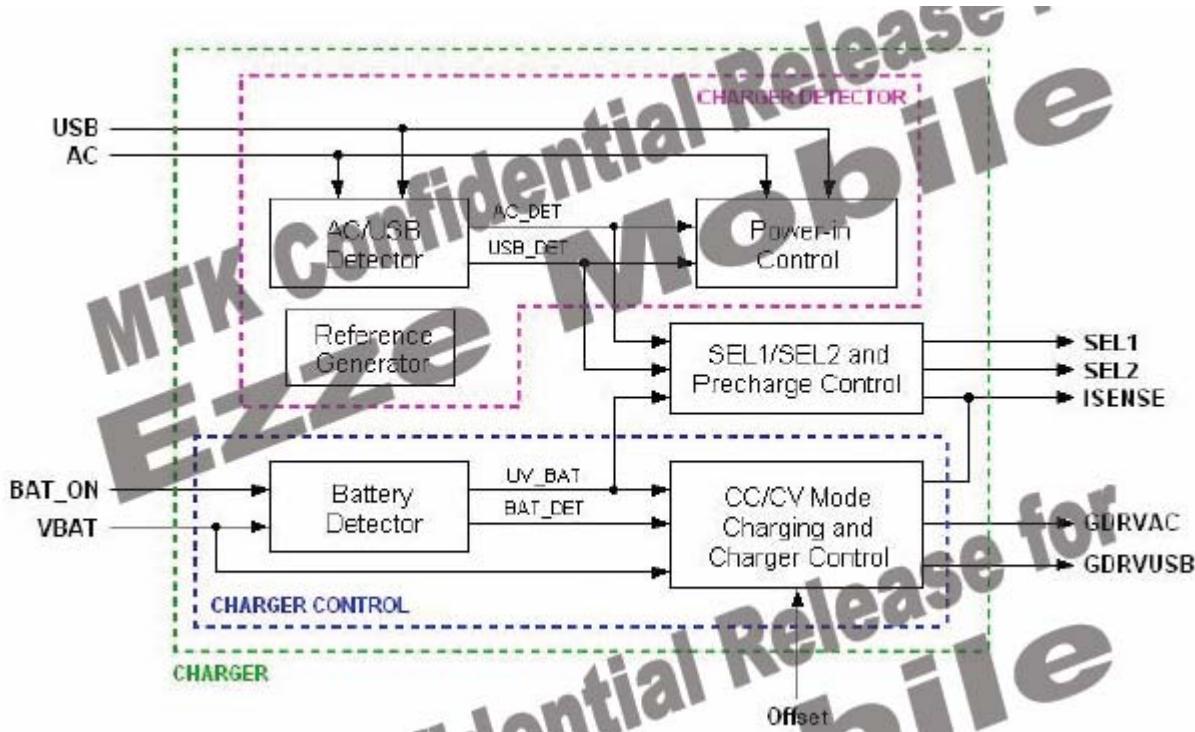


Figure 43. PMIC Charger Block Diagram.

16. Charger Control

When the charger is on, this block controls the charging phase and turns on the appropriate LDOs according to the battery status. The battery voltage is constantly monitored; if the voltage is greater than 4.3V, charging is stopped immediately to prevent permanent damage to the battery.

In CC mode, several charging currents can be set by programming Register 1[2:0]. When AC charging, the charging current can be up to 800mA. When USB charging, the charging control first clamps the charging current to 87.5mA. After the BB communicates with the USB host and if the power class is announced as 450mA, the BB sets the register via SPI, and the PMIC charger releases the charging current limit to 450mA.

The BB can disable the USB task by setting Register 1[1](USB_PWR) to 0 via the SPI. After the USB register shuts off the USB host is virtually disconnected while the charging process resumes its previous state. If the phone is in the switched-off state before USB power is inserted, the BB must wake up to determine the USB power class.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	58/78

The other case is when the phone is in the switched-on state before USB power is inserted. The already-awake BB must determine the USB power class for proper charging as well as for the USB data transfer operation. The MMI allows the user to utilize the USB simply as a charger only, as described above.

Due to process variation, the charging current may vary from chip to chip. To compensate for this variation, an offset value is set in the PMIC. The PMIC reads this compensation value and applies the charging current offset when the phone is in the charging state. This compensation value may be calculated during the phone production calibration process, or it may be constantly observed by the BB while the phone is charging. The offset value is set by the BB software (Register 10 [2:0].

17. Control for Pre-Charge Indication.

The PMIC provides 2 control signals SEL1 and SEL2 for the application that shows pre-charge status on the LCD. In normal cases, VBAT is selected (SEL2 turned on) as the power input to the PMIC.

Under battery low conditions (VBAT < 3.3V), the AC charger source is selected (SEL1 turned on) to substitute for the power normally provided by VBAT, allowing the BB power up and at least light up the LED showing the charging status. However, if customers do not connect the two external switches, the pre-charging status is not displayed.

SEL1 is turned on only in the pre-charging state, SEL1 and SEL2 must not be turned on simultaneously at any time. During the pre-charging state, when VBAT passes 3.3V, the PMIC switches SEL1 and SEL2 on to have the VBAT supply the whole system as under normal condition.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	59/78

Initial Phone State	Initial Charging State	Condition	Description	PMIC Settings	
Not Charging					
Switched on, idle	X (Not charging)	VBAT > 3.3 V	Can make a phone call	SEL2 on	X
		VBAT < 3.3 V	Low battery warning every 30 s		
		VBAT = 3.3 V	Software shutdown		
		PWRIN = 2.9 V	PMIC shutdown		
Switched on, talking	X (Not charging)	VBAT > 3.3 V	Talking		
		VBAT = 3.3 V	Call dropped → low battery warning every 30 s		
Powered off, switched off	X (Not charging)	X	X		
Switched On, Charging					
Switched on, talking	Normal charging	VBAT > 3.3 V	Talking	SEL2 on	A different charging current can be selected via the SPI in CC mode.
	CC mode charging	VBAT < 3.3 V	Call dropped → return to idle		
Switched on, idle	Normal charging	PWRIN = 2.9 V	In idle		
Switched Off, Charging					
Powered off	Pre-charging	VBAT < 3.3 V	Pre-charge and power-on key disabled	SEL1 on	CC mode charging at 50 mA
Powered off → switched off transition	Pre-charging	VBAT = 3.3 V	Pre-charge and power-on key enabled	SEL1 off → (delay) → SEL2 on. During this transient, pre-charging is ongoing.	CC mode charging at 50 mA
Switched off	Normal charging	VBAT > 3.3 V	Only charger task is activated.	SEL2 on	A different charging current can be selected via the SPI in CC mode.

Figure 44. SEL1 and SEL2 Setting for Each Phone State Table.

When Charging the PMIC uses GRVAC and GDRVUSB pins to control the current flow through the external MOSs, and at the same time maintains the current control loop by sensing the voltage drop ISENS across the external current sensor resistor(0.2 ohm). Note that the charging the charging current limit is 450mA for USB and 800mA for AC.

Battery charging states include No Charge mode, Constant(CC) charge mode (pre-charge, constant current), and Constant Voltage(CV) charge mode (Figure 45). No matter what state the phone is in, the PMIC charger handles the charging state transition and reflects the status in Register 0(charger status) for the BB to read.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	60/78

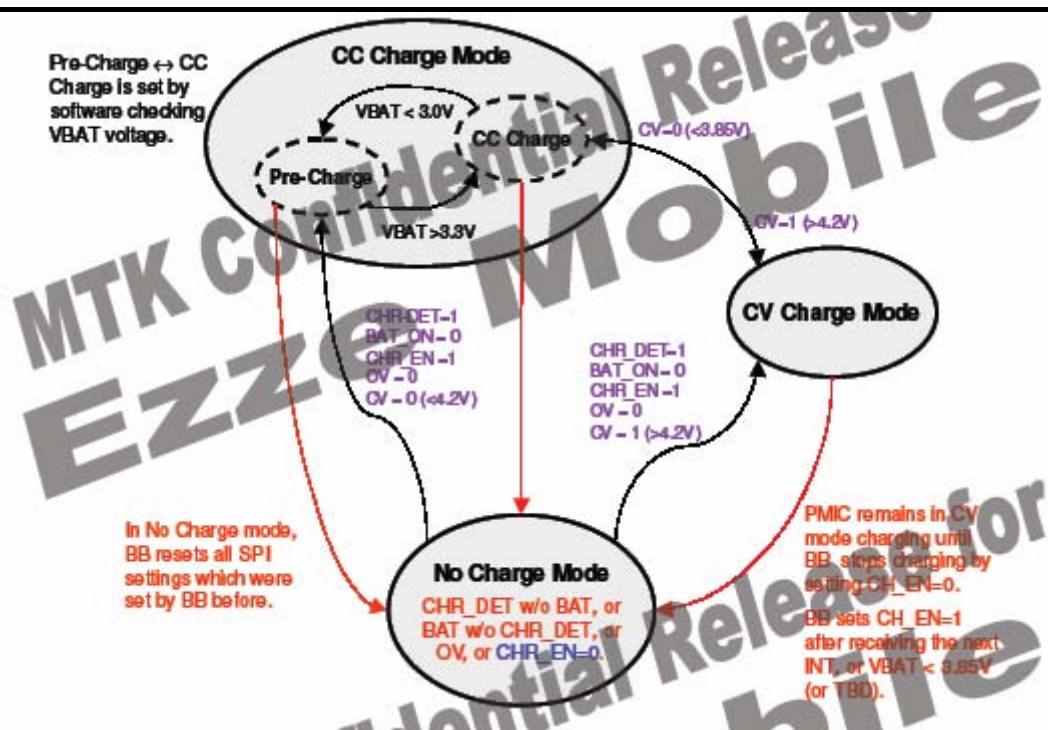
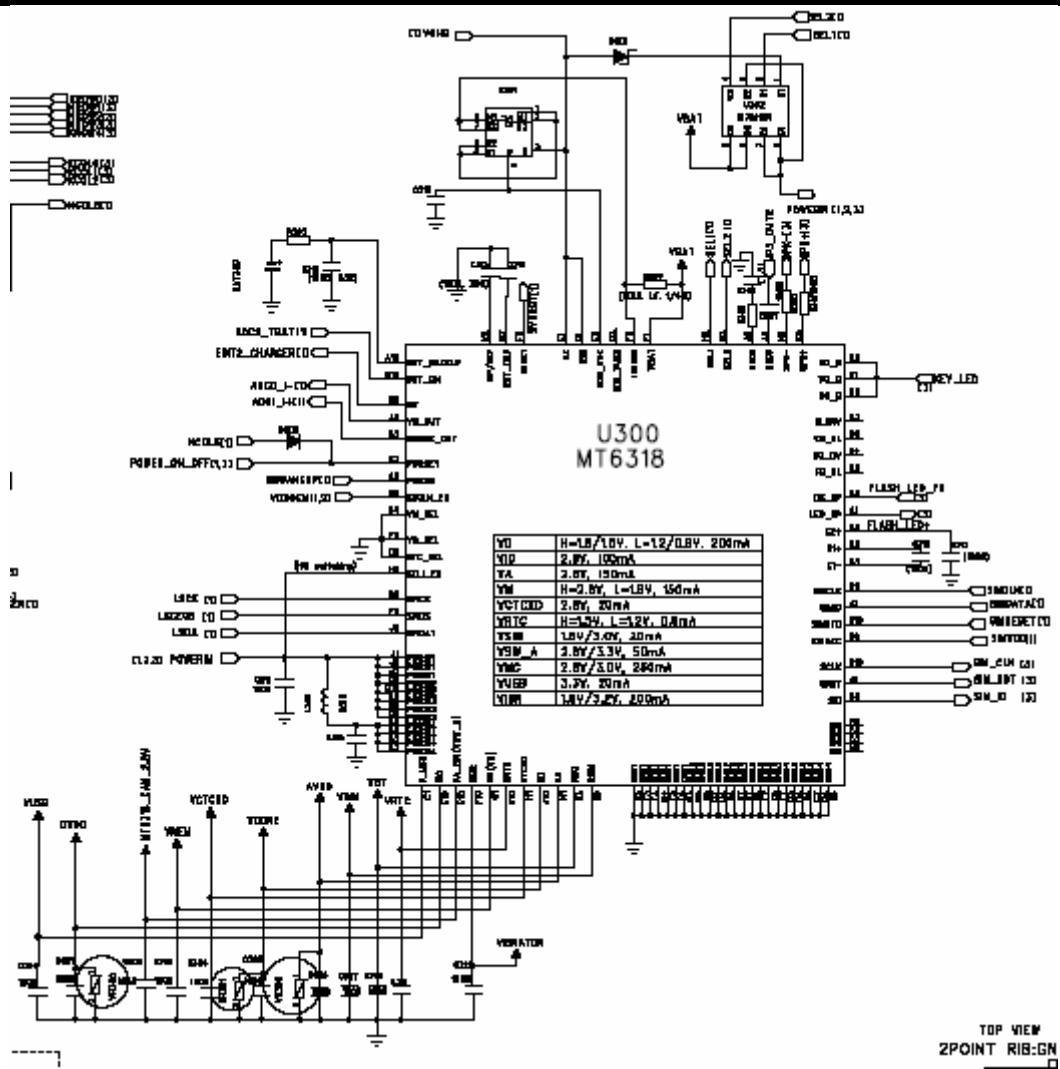



Figure 45. Charger Status Diagram

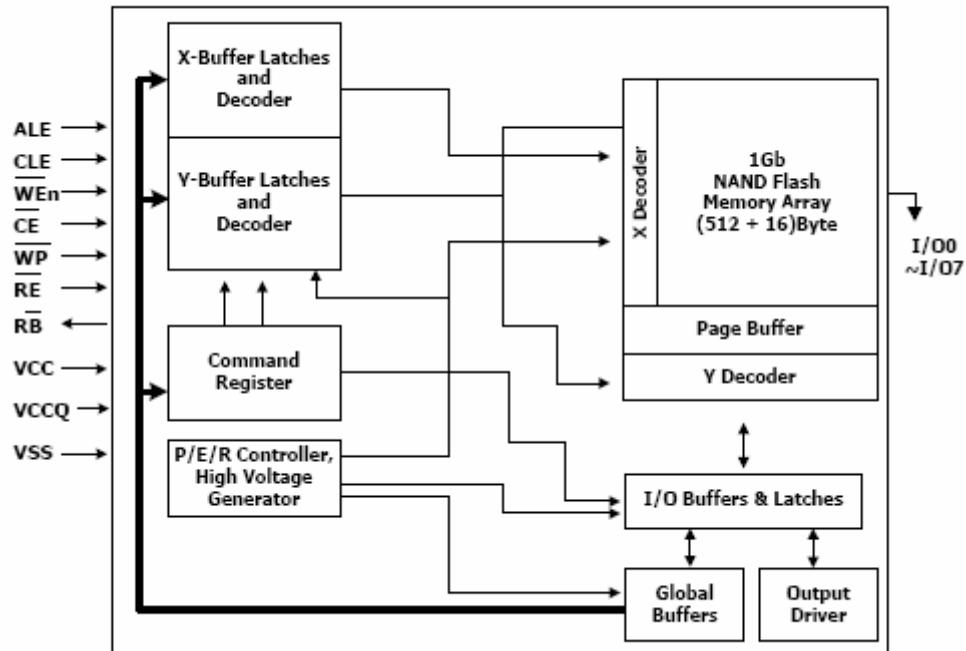
MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	61/78

Figure 46. MT6318 Circuit diagram

IV. HYC0UGE0MF1P

1G (128Mx8bit) Nand FLASH Memory and 256M (16Mx16bit) Mobile SDRAM Multi-Chip Package

The HYC0UGE0MF1(P) Series is suited for mobile communication system application which use in data memory to reduce only mount area but also power consumption. The HYC0UGE0MF1(P) is a Multi Chip Package Memory which combined a 1,107,296,256-bit Nand Flash Memory and a 268,435,456-bit Low Power Synchronous DRAM(Mobile SDRAM). Combination of HYC0UGE0MF1(P), 1Gbit NAND Flash memory is organized as 128M x8 bits and the size of a Page is either 528 Bytes (512 + 16 spare) depending on whether the device has a x8 bus width. 256Mbit Low Power SDRAM(Mobile SDRAM) is a 268,435,456bit CMOS Synchronous Dynamic Random Access Memory. It is organized as 4banks of 4,194,304x16.


The devices are available in the following packages: 149-Ball P-FBGA Type - 10x14.0mm, 0.8mm pitch : Lead Free

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	62/78

SYMBOL	TYPE	DESCRIPTION
1G NAND Flash Device Pin		
I/O0 ~ I/O7	I/O	Input/Output
\overline{CE}	INPUT	Chip Enable
\overline{WEn}	INPUT	Write Enable
\overline{RE}	INPUT	Read Enable
ALE	INPUT	Address Latch Enable
CLE	INPUT	Command Latch Enable
\overline{WP}	INPUT	Write Protect
RY/ \overline{BY}	I/O	Ready/Busy
VCCn	Power	Power Supply

256M (4M x4Bank x16bit) Mobile SDRAM Device Pin		
CLK	INPUT	Clock : Clock input for Mobile SDRAM
CKE	INPUT	Clock enable for Mobile SDRAM
A0 to A12	INPUT	Address inputs for Mobile SDRAM
BA0, BA1	INPUT	Bank Select for Mobile SDRAM
\overline{RAS}	INPUT	Row address strobe for Mobile SDRAM
\overline{CAS}	INPUT	Column address strobe for Mobile SDRAM
\overline{WE}	INPUT	Write enable for Mobile SDRAM
\overline{CS}	INPUT	Chip select for Mobile SDRAM
UDQM	INPUT	Upper Input/Output for Mobile SDRAM
LDQM	INPUT	Lower Input/Output for Mobile SDRAM
DQ0 ~ DQ15	I/O	Data Input/Output for Mobile SDRAM
VDD	Power	Main power supply for Mobile SDRAM
VDDQ	Power	DQ power supply for Mobile SDRAM
VSSd	Ground	Ground
DNU	-	Do Not Use
NC	-	No connection : These pads should be left unconnected

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	63/78

NAND FLASH MEMORY 1GBIT = 528 BYTES X 32 PAGES X 8,192 BLOCKS

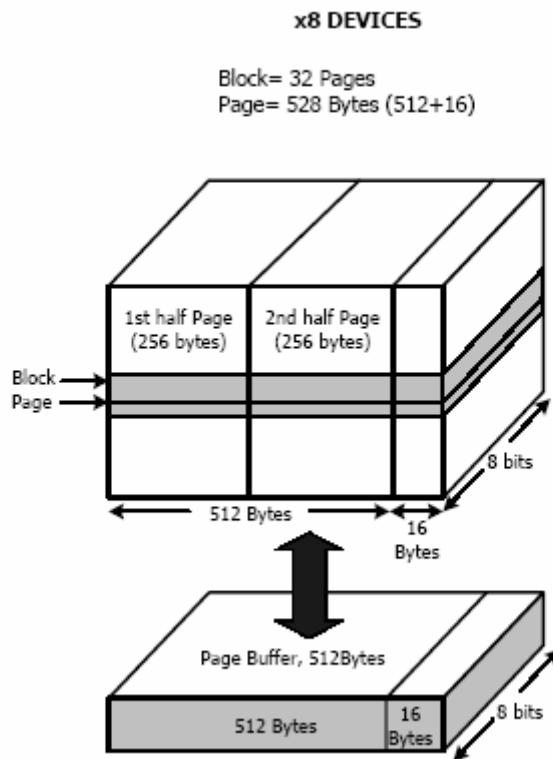


Figure 47. Nand Flash Block diagram and Memory Cell

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	64/78

Organized as 4banks of 4,194,304x16



Figure 48. SDRAM Block diagram

DC Operating Voltage

Parameter		Symbol	Min	Typ	Max	Unit	Note
VDD Power Supply Voltage		VDD	1.70	1.8	1.95	V	
VDDQ Power Supply Voltage		VDDQ	1.70	1.8	1.95	V	
VCCn Power Supply Voltage		VCCn	2.5	2.7	3.0	V	
Input High Voltage	NAND FLASH	VIH	VCC-0.4	-	VCCn+0.3	V	
	Mobile SDRAM		0.8*VDDQ	-	VDDQ+0.3	V	1
Input Low Voltage	NAND FLASH	VIL	-0.3	-	0.4	V	2
	Mobile SDRAM		-0.3	-	0.3	V	3

DC Characteristics (Nand Flash Memory). VCC : 2.5V ~ 3.0V.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	65/78

Symbol	Parameter		Test Condition	Min	Typ.	Max	Unit
ICC1	NAND Operating Current	Sequential Read	t _{RC} = 60ns / 50ns CE=V _{IL} , I _{OUT} = 0 mA	-	10	20	mA
ICC2		Program	-	-	10	20	mA
ICC3		Erase	-	-	10	20	mA
ICC4	NAND Standby Current (TTL)		CE=V _{IH} , WP=0V/V _{CC}	-	-	1	mA
ICC5	NAND Standby Current (CMOS)		CE=V _{CC} -0.2, WP=0/V _{CC}	-	10	50	uA
I _{LN}	NAND Input Leakage Current		V _{IN} = 0 to V _{CCmax}	-	-	± 10	uA
I _{LOh}	NAND Output Leakage Current		V _{OUT} = 0 to V _{CCmax}	-	-	± 10	uA
V _{IHh}	NAND Input High Voltage Level			V _{CC} -0.4	-	V _{CC} +0.3	V
V _{IL}	NAND Input Low Voltage Level			-	-	0.4	V
V _{OHi}	NAND Output High Voltage Level		I _{OL} = -400uA	V _{CC} -0.4	-		V
V _{OL}	NAND Output Low Voltage Level		I _{OL} = 2.1mA	-	-	0.4	V
I _{OL(RB)}	NAND Output Low Current (RB)		V _{OL} = 0.4V	8	10	-	mA

DC Characteristics (Mobile SDRAM). VDD/VDDQ : 1.7 ~ 1.95V

Parameter	Symbol	Test Condition	Speed		Unit	Note
			H	S		
Operating Current	IDD1	Burst length=1, One bank active t _{RC} ≥ t _{RC} (min), I _{OL} =0mA	65	55	mA	1
Precharge Standby Current in Power Down Mode	IDD2P	CKE ≤ V _{IL} (max), t _C = min	0.3		mA	
	IDD2PS	CKE ≤ V _{IL} (max), t _C = ∞	0.3		mA	
Precharge Standby Current in Non Power Down Mode	IDD2N	CKE ≥ V _{IH} (min), CS ≥ V _{IH} (min), t _C = min Input signals are changed one time during 2clks. All other pins ≥ VDD-0.2V or ≤ 0.2V	10		mA	
		CKE ≥ V _{IH} (min), t _C = ∞ Input signals are stable.	1.0		mA	
Active Standby Current in Power Down Mode	IDD3P	CKE ≤ V _{IL} (max), t _C = min	3		mA	
	IDD3PS	CKE ≤ V _{IL} (max), t _C = ∞	1.0		mA	
Active Standby Current in Non Power Down Mode	IDD3N	CKE ≥ V _{IH} (min), CS ≥ V _{IH} (min), t _C = min Input signals are changed one time during 2clks. All other pins ≥ VDD-0.2V or ≤ 0.2V	15		mA	
		CKE ≥ V _{IH} (min), t _C = ∞ Input signals are stable.	10		mA	
Burst Mode Operating Current	IDD4	t _C ≥ t _{RC} (min), I _{OL} =0mA All banks active	60	55	mA	1
Auto Refresh Current	IDD5	t _{RF} ≥ t _{RF} (min),	85		mA	
Self Refresh Current	IDD6	CKE ≤ 0.2V	See Next Page		mA	2
Standby Current in Deep Power Down Mode	IDD7	See p.90~91	10		uA	

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	66/78

RF section

RF Section is combined with Transceiver MT6120, VCTCXO CSX-325T26, Power Amplifier Module RF3166 and Front-End Module LMSP54HA-348(or 349). The MEGA4 was designed for Dual-Band according to FEM, PCB Modify and S/W Matching.

The one type is GSM900, DCS1800, PCS1900 with LMSP54HA-348. Another type is GSM850, DCS1800, PCS1900 with LMSP54HA-349.

I. MT6120 (RF Transceiver IC)

MT6120 includes LNAs, two RF quadrature mixers, an integrated channel filter, programmable gain amplifiers(PGA), an IQ demodulator for the receiver, a precision IQ modulator with offset PLL for the transmitter, two internal TX VCOs, a VCXO, on-chip regulators, and a fully programmable sigma-delta fractional-N synthesizer with an on-chip RF VCO.

Features Receiver

- Very low IF architecture
- Quad band differential input LNAs
- Quadrature RF mixers
- Fully integrated channel filter
- More than 100 dB gain
- More than 110 dB control range
- Image-reject down conversion to baseband

Transmitter

- Precision IQ modulator
- Translation loop architecture
- Fully integrated wideband TX VCO
- Fully integrated TX loop filter

Frequency Synthesizer

- Single integrated, fully programmable fractional- N synthesizer
- Fully integrated wideband RF VCO
- Fast settling time suitable for multi-slot GPRS application

Voltage Control Crystal Oscillator (VCXO)

- 26 MHz crystal oscillator capable of supporting 13 MHz / 26 MHz output clock
- Programmable capacitor array for coarse tuning
- Internal varactor for fine tuning

Regulators

- Built-in low-noise, low-dropout (LDO) regulators

Low power consumption

QFN (Quad Flat Non-lead) Package 56-pin SMD

3-wire serial interface

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	67/78

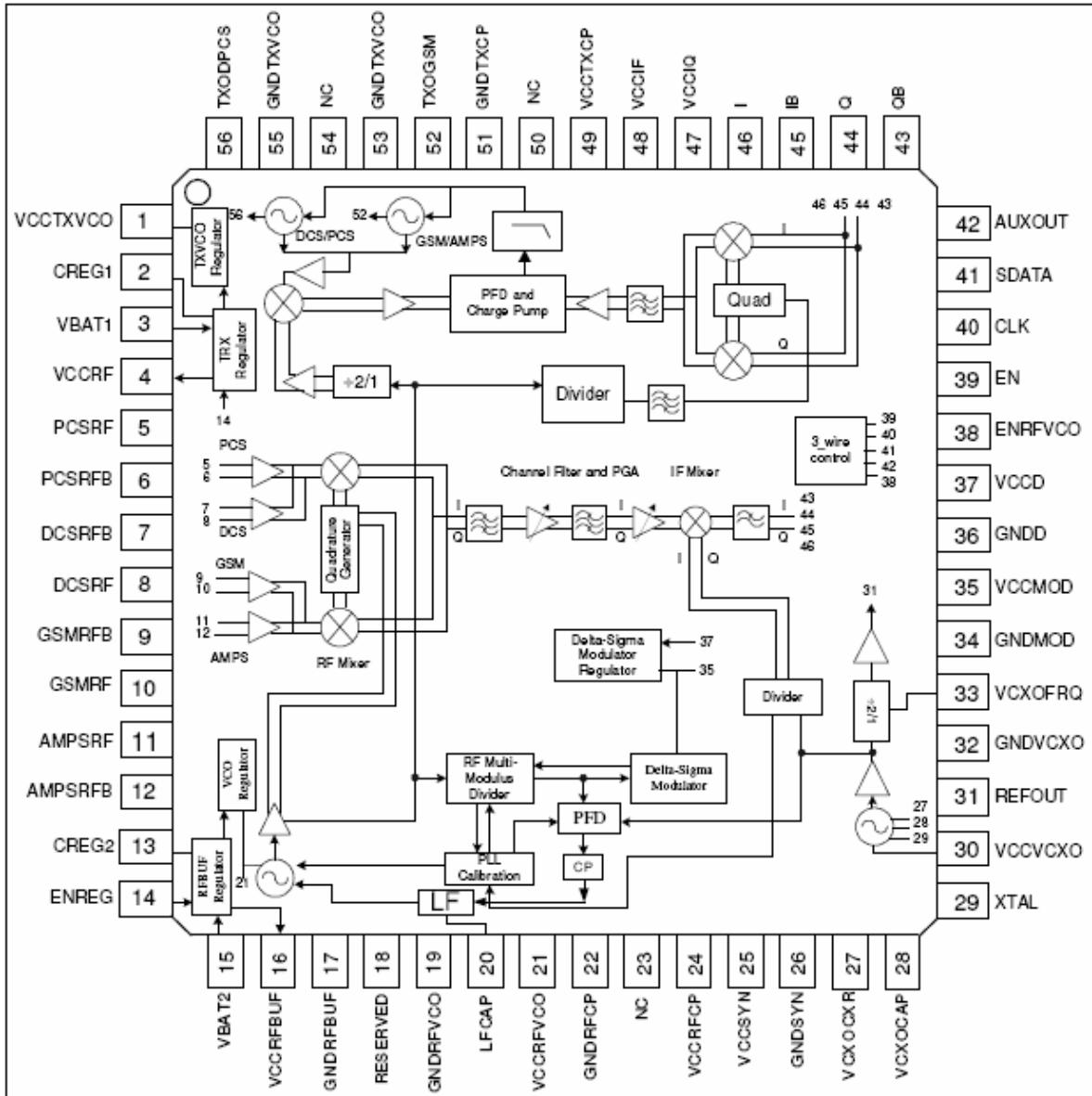


Figure 49. MT6120 Functional block diagram

- Recommended Operating Range

Item	Symbol	Min	Typ	Max	Unit
Power Supply Voltage(VBAT)	VBAT	3.1	3.6	4.6	V
Power Supply Voltage(VCCD)	VCCD	2.5	2.8	3.1	V
Operating Ambient Temperature	Topr	-20	25	75	C

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	68/78

A description of MT612X hardware control pins and their functionality are shown in the table below. MT612X has an internal VCXO and its control.

Name	Setting	Description
ENREG	0	Power off Regulator1 and 2
	1	Power on Regulator 1 and 2
ENRFVCO	0	Power off RFVCO
	1	Power on RFVCO
VCXOCXR	0	Select internal VCXO
	1	Select external TCVCXO Note: Connect to VCCVCXO
VCXOFRQ	0	Reference output buffer 13 MHz
	1	Reference output buffer 26 MHz Note: Connect to VCCVCXO

Pin Description

Pin No.	Pin Name	Description
1	VCCTXVCO	TX VCO supply voltage and Regulator 1 (TX VCO) voltage output
2	CREG1	Regulator 1 external noise bypass capacitor
3	VBAT1	Battery supply for Regulator 1
4	VCCRF	TRX RF and TX BUF block supply voltage and Regulator 1 (TRX) voltage output
5	PCSRF	Receiver PCS 1900 RF differential positive input
6	PCSRFB	Receiver PCS 1900 RF differential negative input
7	DCSRFB	Receiver DCS 1800 RF differential negative input
8	DCSRF	Receiver DCS 1800 RF differential positive input
9	GSMRFB	Receiver E-GSM 900 RF differential negative input
10	GSMRF	Receiver E-GSM 900 RF differential positive input
11	AMPSRF	Receiver GSM 850 RF differential negative input
12	AMPSRFB	Receiver GSM 850 RF differential positive input
13	CREG2	Regulator 2 external noise bypass capacitor
14	ENREG	Regulator 1 & 2 enable input for TRX/ RFVCO buffer/ Synthesizer/ VCXO
15	VBAT2	Battery supply for Regulator 2
16	VCCRFBUF	RF VCO buffer supply voltage and Regulator 2 (SX) voltage output
17	GNDRFBUF	RF VCO buffer ground
18	Reserved	Keep this pin floating
19	GNDRFVCO	RF VCO ground
20	LFCAP	Loop filter main capacitor input
21	VCCRFVCO	RF VCO supply voltage and Regulator 2 (RF VCO) voltage output
22	GNDRFCP	Synthesizer charge pump and PFD ground
23	NC	No connection
24	VCCRFCP	Synthesizer charge pump and PFD supply voltage
25	VCCSYN	Synthesizer supply voltage
26	GNDSYN	Synthesizer ground
27	VCXOCXR	VCXO internal / external output buffer control
28	VCXOCAP	VCXO coarse tuning capacitor and fine tuning varactor

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	69/78

29	XTAL	26 MHz crystal reference input
30	VCCVCXO	VCXO supply voltage
31	REFOUT	13 MHz / 26 MHz reference buffer output
32	GNDVCXO	VCXO ground
33	VCXOFRQ	Reference output buffer 13 MHz / 26 MHz selection
34	GNDMOD	Synthesizer Sigma-Delta modulator ground
35	VCCMOD	Synthesizer Sigma-Delta modulator supply voltage and Regulator 3 output
36	GNDD	3-wire digital circuit ground
37	VCCD	Supply voltage for 3-wire digital circuit and supply voltage for Regulator 3
38	ENRFVCO	Regulator 2 enable input for RFVCO
39	EN	3-wire serial bus enable input
40	CLK	3-wire serial bus clock input
41	SDATA	3-wire serial bus data input
42	AUXOUT	Auxiliary test output
43	QB	Q path negative baseband input / output
44	Q	Q path positive baseband input / output
45	IB	I path negative baseband input / output
46	I	I path positive baseband input / output
47	VCCIQ	IF circuit supply voltage
48	VCCIF	Transmitter PFD and Receiver IF circuit supply voltage
49	VCCTXCP	Transmitter charge pump supply voltage
50	NC	No connection
51	GNDTXCP	Transmitter charge pump ground
52	TXOGSM	TX VCO buffer transmit output for GSM
53	GNDTXVCO	TX VCO ground
54	NC	No connection
55	GNDTXVCO	TX VCO ground
56	TXODPCS	TX VCO buffer transmit output for DCS/PCS

1. Receiver

The receiver section of MT6120 includes Quad-band low noise amplifiers(LNAs), RF quadrature mixers, an on-chip channel filter, Programmable Gain Amplifiers(PGAs), quadrature second mixers, and a final low-pass filter. The very low-IF MT6120 uses image-rejection mixers and filters to eliminate interference. With accurate RF quadrature signal generation and mixer matching techniques, the image rejection of the MT6120 can reach 35dB for all bands. Compared to a direct conversion receiver(DCR), MT6120's very low-IF architecture improves the blocking rejection, AM suppression, as well as the adjacent channel interference performance.

- Receiver Input Frequency

Mode	Min	Max	Unit
GSM850	869	894	Mhz
GSM900	925	960	Mhz
DCS	1805	1880	Mhz
PCS	1930	1990	Mhz

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	70/78

The below table is shown LNA input impedance. So, From FEM Sawfilter to MT6120 LNA input, The Impedance matching is need for high sensitivity. The L903, L904, L905, C910, C911, C912, C913, C914 and C915 are the matching State.

LNA differential input impedance	GSM850	Zin, RF = 882 MHz	71-j73 (146// 1.2 pF)	Ω
	GSM900	Zin, RF = 945 MHz	71-j73 (146// 1.2 pF)	Ω
	DCS	Zin, RF = 1842 MHz	33-j85 (252// 885 fF)	Ω
	PCS	Zin, RF = 1960 MHz	37-j81 (214// 830 fF)	Ω

The IF signal is then filtered and amplified through an image-rejection filter and a PGA. The multi-stage PGA is implemented between filtering stages to control the gain of the receiver. With 2 dB gain steps, a 78 dB dynamic range of the PGA ensures a proper signal level for demodulation. The quadrature 2nd mixers are provided on-chip to down convert IF signal to baseband in an analog differential IQ format.

2. Transmitter

The MT6120 transmitter section consists of two on-chip TX VCOs, buffer amplifiers, a down-converting mixer, a quadrature modulator, an analog phase detector and a digital phase frequency detector, each with a charge pump output and on chip loop filter. The dividers and loop filters are used to achieve the desired IF frequency from the down-conversion mixer and quadrature modulator. For a given transmission channel, the transmitter will select one of the two different TX reference dividing numbers. These built-in components, along with an internal voltage controlled oscillator and a loop filter, implement a translation loop modulator. The TX VCO output is fed to the power amplifier. A control loop, implemented externally, is used to control the PA's output power level.

- Transceiver Output Frequency

Mode	Min	Max	Unit
GSM850	824	849	Mhz
GSM900	880	915	Mhz
DCS	1710	1785	Mhz
PCS	1850	1910	Mhz

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	71/78

3. TX VCO

Two power VCOs are integrated with OPLL to form a complete transmitter circuit. The TX VCO output power is typically 9dBm with +/-2.5dB variation in GSM850 bands and +8dBm output power with +/-2dB variation in PCS1900 bands over extreme Temperature conditions.

The PAM(RF3166) Input range is typically 3dBm. So 5dB Attenuator is added Between MT6120 and RF3166.

- For GSM850/GSM900 : R406, R407, R408,
- For DCS/PCS : R403, R404, R405.

Tx VCO Frequency Range is same with Transmitter Frequency Range.

4. Frequency Synthesizer

The MT6120 includes a frequency synthesizer with a fully integrated RF VCO to generate RX and TX local oscillator frequencies. The PLL locks the RF VCO to a precision reference frequency at 26MHz. To reduce the acquisition time or to enable fast settling time for multi-slot data services such as GPRS, a digital loop along with a fast-acquisition system are implemented in the synthesizer. After the calibration, a fast-acquisition system is utilized for a period of time to facilitate fast locking.

The frequency ranges of the synthesizer for RX mode are

RX mode	GSM850	1737Mhz ~ 1788Mhz
	GSM900	1850Mhz ~ 1920Mhz
	DCS1800	1805Mhz ~ 1880Mhz
	PCS1900	1930Mhz ~1990Mhz

The Calculate LO Frequency Fvco from RX Channel Frequency Fch is following.

$$F_{VCO} = 2 * F_{CH} - 200K \quad \text{for GSM850 and GSM900}$$

$$F_{VCO} = F_{CH} - 100K \quad \text{for DCS1800 and PCS1900.}$$

The frequency ranges of the synthesizer for TX mode are

TX mode	GSM850	1813Mhz ~ 1868Mhz
	GSM900	1936Mhz ~ 2059Mhz
	DCS1800	1881Mhz ~ 2008Mhz
	PCS1900	2035Mhz ~2149Mhz

The Calculate LO Frequency Fvco from TX Channel Frequency Fch is following.

(Set the divider ratio D1 of TX reference divider = 11)

$$F_{VCO} = 2 * D1 * F_{CH} / (D1 - 1) \quad \text{for GSM850 and GSM900}$$

$$F_{VCO} = D1 * F_{CH} / (D1 - 1) \quad \text{for DCS1800 and PCS1900.}$$

The MT6120 uses a digital calibration technique to reduce the PLL settling time once the RF synthesizer is programmed through a 3-wire serial interface, the calibration loop is activated. The main function of the calibration

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	72/78

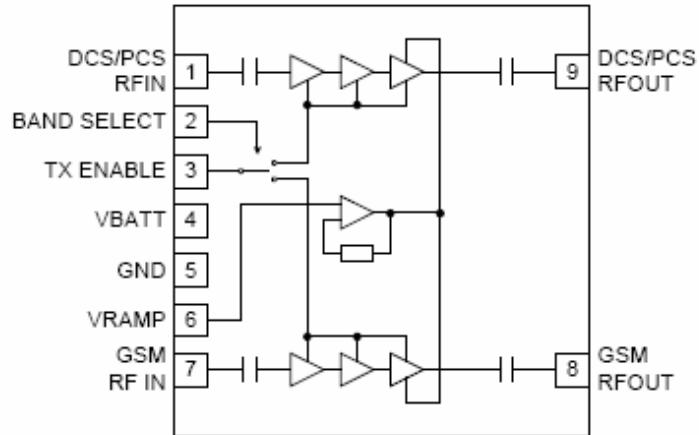
loop is to preset the RF VCO to the vicinity of the desired frequency quickly and correctly, thus aiding the PLL to settle faster. On the other hand, since a large portion of initial frequency error is dealt with by the integrated calibration loop, the overall locking time can be drastically reduced, irrespective of the desired frequency.

5. Voltage Control Crystal Oscillator(VCXO)

VCXO consists of an amplifier, a buffer, and a programmable capacitor array. The VCXO provides the MT6120 with a selectable reference frequency of either 13MHz or 26MHz. When VCXOFRQ pin is high, Output Frequency is 26Mhz. When VCXOFRQ pin is low, Output Frequency is 13Mhz.

VCXOFRQ is high in MEGA4. The Amplifier is designed to be in series resonance with a standard 26Mhz crystal. The Crystal is connected from the Input pin XAL of Amplifier to ground through a series load capacitance. The buffer provides a typical 600mVpp voltage swing. As an alternative, the reference frequency can be provided by an external 26Mhz VCTCXO module. When Pin VCXOCXR is tied to the VCCVCXO supply, the XTAL pin will accept an external signal. Furthermore, the VCXO control pin can be tied to VCCVCXO to prevent the current leakage during the sleep mode operation.

Buffer output level	13 MHz baseband clock (Load = 148 - j1206 Ω @ Frequency = 13 MHz) 26 MHz baseband clock (Load = 37 - j610 Ω @ Frequency = 26 MHz)	400	600		mVpp
Duty cycle	13 MHz / 26 MHz baseband clock	45		55	%


6. Regulator

The MT6120 internal regulators provide low noise, stable, temperature and process independent supply voltages to critical blocks in the transceiver. An internal P-channel MOSFET pass transistor is used to achieve a low dropout voltage of less than 150mV in all regulators.

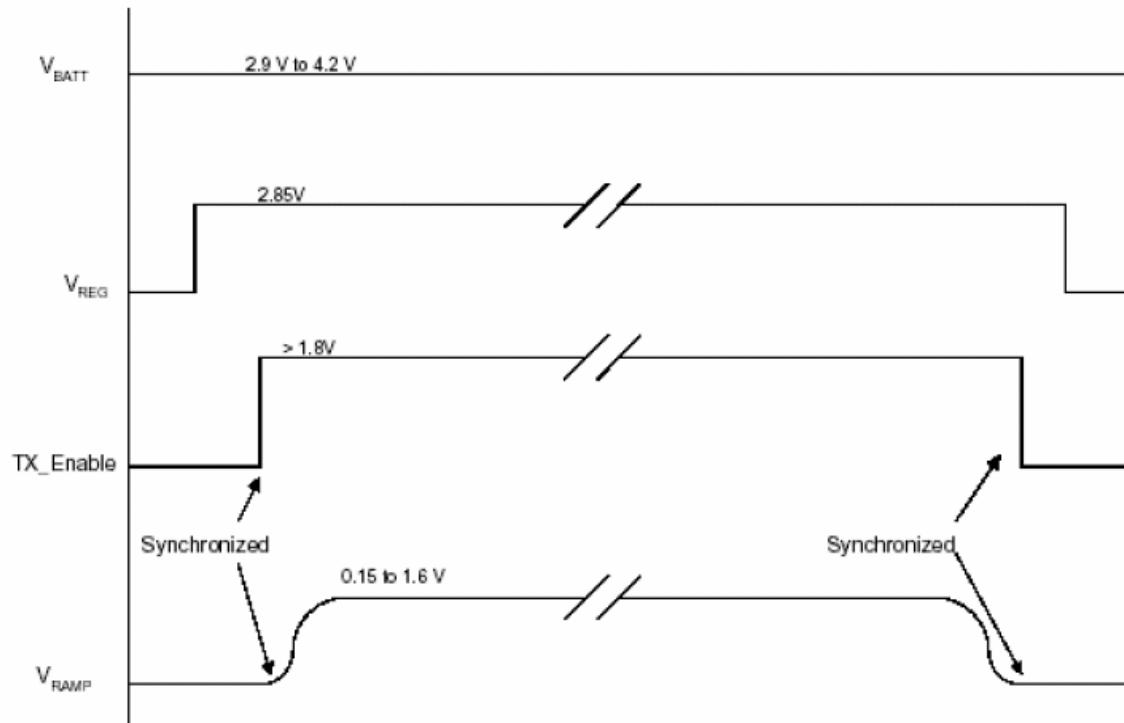
MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	73/78

II. RF3166 (GSM850,GSM900 and DCS,PCS Power

Amplifier Module)

Figure 48. RF3166 Block Diagram

The RF3166 is a high-power, high-efficiency power amplifier module with integrated power control that provides over 50dB of control range. The device is a self-contained 6mmx6mm module with 50Ω input and output terminals. The device is designed for use as the final RF amplifier in GSM850, EGSM900, DCS and PCS handheld digital cellular equipment and other applications in the 824MHz to 849MHz, 880MHz to 915MHz, 1710MHz to 1785MHz and 1850MHz to 1910MHz bands. The RF3166 incorporates RFMD's latest VBATT tracking circuit, which monitors battery voltage and prevents the power control loop from reaching saturation. The VBATT tracking circuit eliminates the need to monitor battery voltage, thereby minimizing switching transients. The RF3166 requires no external routing or external components, simplifying layout and reducing board space.


The VRamp Range is from 0.26V to 2.1V. And the R400, R401, C406 is a Voltage divider for fine tuning and Low pass filter of 300Khz.

The Input/Output Impedance is 50ohm. So, The PCB Design must be designed with 50ohm strobe line.

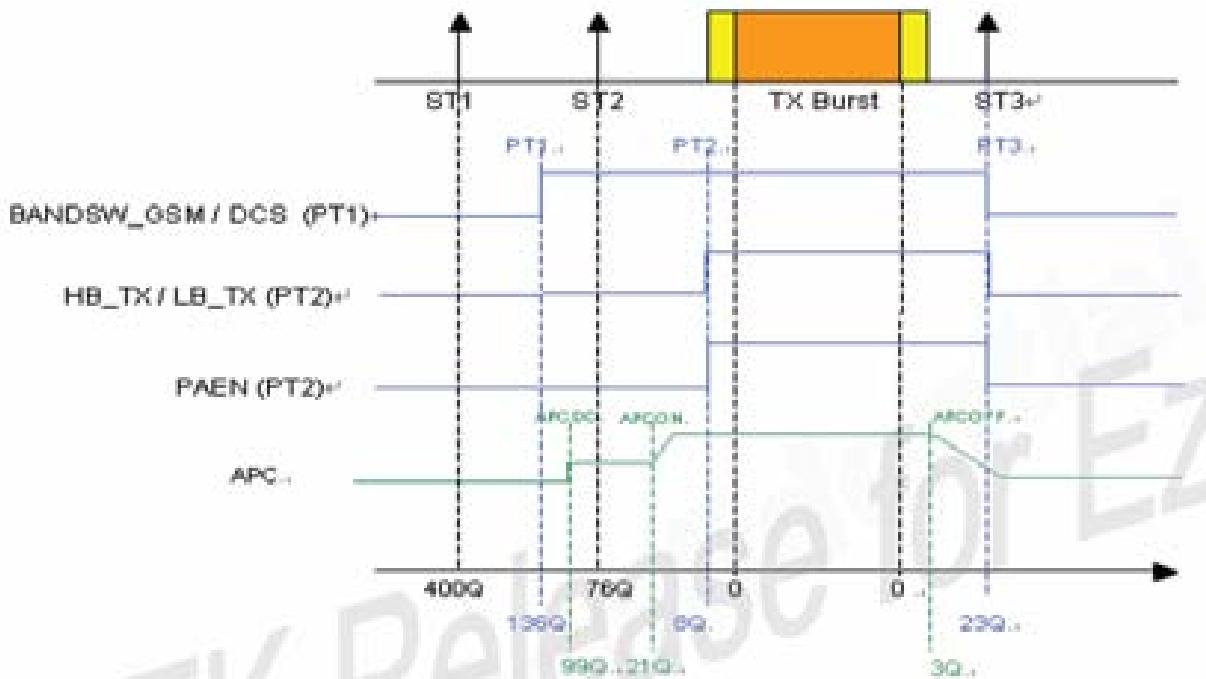
Thermal vias are required in the PCB layout to effectively conduct heat away from the package. The via pattern has been designed to address thermal, power dissipation and electrical requirements of the device as well as accommodating routing strategies. The via pattern used for the RFMD qualification is based on thru-hole vias with 0.203mm to 0.330mm finished hole size on a 0.5mm to 1.2mm grid pattern with 0.025mm plating on via walls. If micro vias are used in a design, it is suggested that the quantity of vias be increased by a 4:1 ratio to achieve similar results.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	74/78

Pin	Function	Description	Interface Schematic
1	DCS/PCS IN	RF input to the DCS band. This is a 50Ω input.	
2	BAND SELECT	Allows external control to select the GSM or DCS band with a logic high or low. A logic low enables the GSM band whereas a logic high enables the DCS band.	
3	TX ENABLE	This signal enables the PA module for operation with a logic high.	
4	VBATT	Power supply for the module. This should be connected to the battery.	
5	GND		
6	VRAMP	Ramping signal from DAC. A 300kHz lowpass filter is integrated into the CMOS. No external filtering is required.	
7	GSM IN	RF input to the GSM band. This is a 50Ω input.	
8	GSM OUT	RF output for the GSM band. This is a 50Ω output. The output load line matching is contained internal to the package.	
9	DCS/PCS OUT	RF output for the DCS band. This is a 50Ω output. The output load line matching is contained internal to the package.	
Pkg Base	GND		

Power On Sequence:

- Apply V_{BATT}
- Apply V_{REG}
- Apply Band Select
- Apply RF drive
- Apply TX_Enable & V_{RAMP} in unison


The Power Down sequence is in opposite order of the Power On Sequence

* NOTE: V_{BATT} must be present before applying V_{REG} to protect the ESD circuit from damage.

Figure 49. Power control sequence

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	75/78

The Next Picture is for RF TX Timing of BSI and BPI.

< Single Slot TX Event with Timing Requirement>

<BSI Interface>

In order to simply the serial control mechanism, and achieve best usage of BSI resources. Each burst transmitted, There are three generic timing defined (ST1/ST2/ST3) to send 3-wire control commands to transceiver. Usually 1'st BSI event(ST1) is used to warm up the synthesizer and set its N-counter to lock the operational frequency. The 2'nd BSI(ST2) is used to set the transmitted mode and indicate the operational band. The 3'rd BSI(ST3) is used to command transceiver entering idle mode. All bands(GSM/DCS/PCS) share the same timing.

<BPI interface>

In order to simply the parallel control mechanism, and achieve best usage of BPI resources. Each burst transmitted, there are also three generic timing defined(PT1/PT2/PT3) to send HW control Signals to RF module. In other words, there are only three timing events to trigger HW control signals changing their states. Usually 1'st BPI event(PT1) is used to select suitable band for TXVCO. The 2'nd BPI(PT2) is used to turn on PA and control antenna switch depends on its band. The 3'rd BSI(ST3) is used to force RF module to terminate transmission and enter idle mode. All bands share the same timing but could has different HW control signals.

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	76/78

III. LMSP54HA-348(9) (Antenna Switch Module)

For Tri- Band with SAW Filter)

LMSP54HA-348 is an Antenna Switch Module for GSM900, DCS1800 and PCS1900 of Murata with Three SAW Modules. LMSP54HA-349 is an Antenna Switch Module for GSM850, DCS1800 and PCS1900 of Murata with Three SAW Modules. Control Pins (VC1, VC2, and VC3) are connected to LB_TX, HB_TX, and PCS_RX (signals from baseband processor). The Control Pins Operating range is 2.4V ~ 2.8V.

LB_TX : GSM900(GSM850) TX Enable.

HB_TX : DCS1800, PCS1900 TX Enable.

PCS_RX : PCS RX Enable.

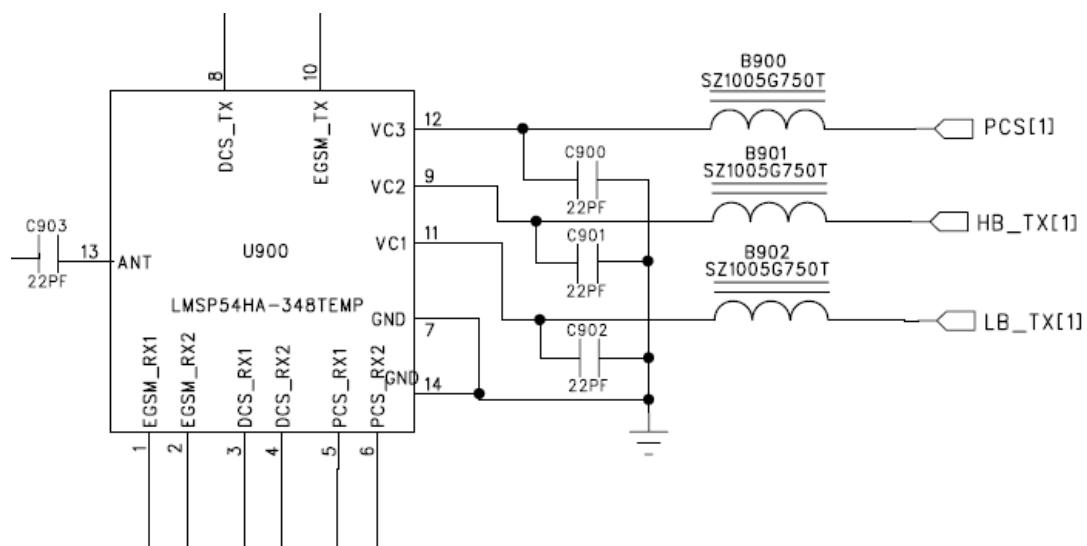
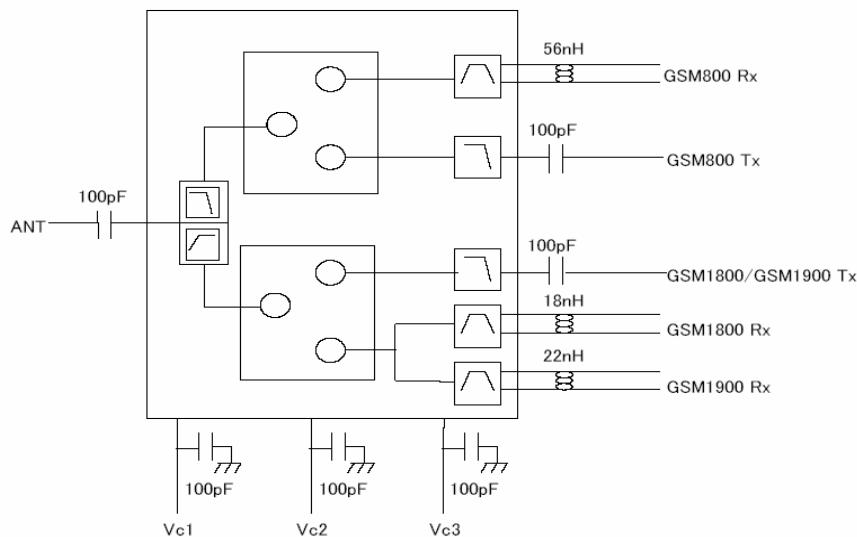
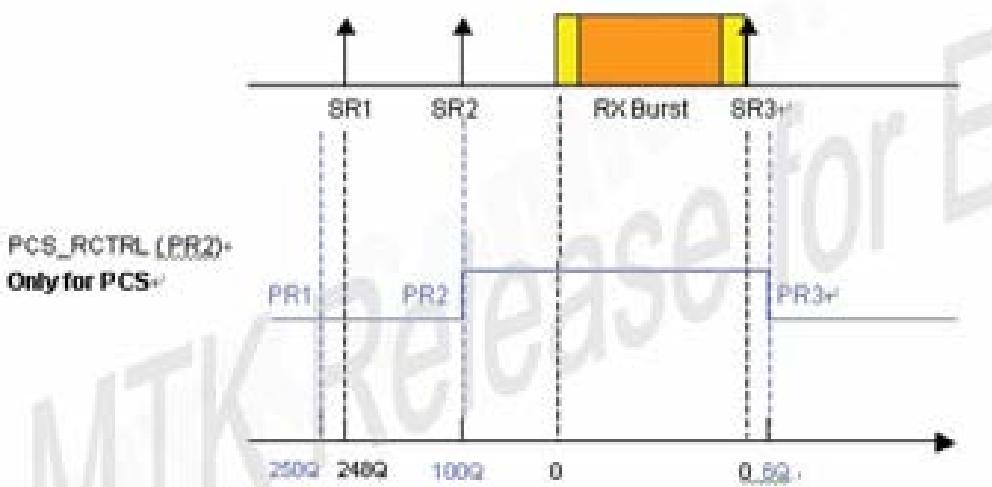



Figure 50. LMSP54HA-348(9) block diagram and Circuit

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	77/78

TERMINAL CONFIGURATION


Terminal No.	Terminal Name	Terminal No.	Terminal Name
(1)	GSM900 Rx	(8)	GSM1800/1900 Tx
(2)	GSM900 Rx	(9)	Vc2(GSM1800/1900 Tx)
(3)	GSM1800 Rx	(10)	GSM900 Tx
(4)	GSM1800 Rx	(11)	Vc1(GSM900 Tx)
(5)	GSM1900 Rx	(12)	Vc3(GSM1900 Rx)
(6)	GSM1900 Rx	(13)	ANT
(7)	GND	(14)	GND

Switch Mode	Vc1(GSM900 -Tx)	Vc2(GSM1800/1900 -Tx)	Vc3(GSM1900 - Rx)
GSM900 - Rx	Lo(0.0-0.1V)	Lo(0.0-0.1V)	Lo(0.0-0.1V)
GSM1800 - Rx	Lo(0.0-0.1V)	Lo(0.0-0.1V)	Lo(0.0-0.1V)
GSM1900 - Rx	Lo(0.0-0.1V)	Lo(0.0-0.1V)	Hi(2.4-2.8V)
GSM900 - Tx	Hi(2.4-2.8V)	Lo(0.0-0.1V)	Lo(0.0-0.1V)
GSM1800/1900 - Tx	Lo(0.0-0.1V)	Hi(2.4-2.8V)	Hi(2.4-2.8V)

The GSM900 and DCS1800/PCS1900 input port matching impedances are 50 ohm from PAM(RF3166).

The GSM900, DCS1800 and PCS1900 (Balance) output port matching impedance are 150ohm to Transceiver (MT6120).

The Next Picture is for RF Receiving Timing of BSI and BPI.

<Single Slot RX Event with Timing Requirement>

<BSI Interface>

In order to simply the serial control mechanism, and achieve best usage of BSI resources. Each burst received, there are three generic timing defined (SR1/SR2/SR3) to send 3-wire control commands to transceiver. Usually 1'st BSI event(SR1) is used to warm up the synthesizer and set its N-Counter to lock the operation frequency. The 2'nd BSI(SR2) is used to set the receiving amplifier gain, received mode and operation band of transceiver. The 3'rd BSI(SR3) is used to command transceiver entering idle mode. All bands(GSM/DCS/PCS) share the same timing.

<BPI Interface>

MODEL	MEGA4	VERSION	V_1.00
PREPARED BY	H/W	DATE	16/05/2008
SUBJECT	TECHNICAL MANUAL	PAGE	78/78

In order to simply the parallel control mechanism, and achieve best usage of BPI resources. Each burst received, there are also three generic timing defined(PR1/PR2/PR3) to send HW Control signals to RF Module. In other words, There are only three timing events to trigger HW control signals changing its state. Usually 1'st BPS event(PR1) is used to activate the RF Component. The 2'nd BPI(PR2) is used to control antenna switch depend on its band. The 2'rd BPI(PR3) is used to force RF Module entering idle mode. All bands(GSM/DCS/PCS) share the same timing but could have different HW control signals.