

TEST REPORT

REPORT NUMBER: 108GE4046-FCC-SAR

ON

Type of Equipment: GSM/GPRS Mobile phone

Type of Designation: MEGA3

Manufacturer:

Ezze Mobile Tech

ACCORDING TO

FCC Part 2.1093: Radiofrequency radiation exposure evaluation: portable devices, e-CFR March 23, 2006

FCC OET Bulletin 65 Supplement C (Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency **Emissions**

1528™-2003: IEEE Recommended Practice for IEEE Std Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications **Devices: Measurement Techniques**

China Telecommunication Technology Labs.

Month date, year Feb 19, 2008

Signature

He Guili Director

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

FCC ID: RV2MEGA3
Report Date: Feb 19,2008

Test Firm Name: China Telecommunication Technology Labs

Registration Number: 840587

Statement

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported tests were carried out on a sample equipment to demonstrate limited compliance with FCC CFR 47 Part 2.1093. The sample tested was found to comply with the requirements defined in the applied rules.

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

Table of Contents

1. General Information	. 4
1.1 Notes	5 6
2 Test Item	8
2.1 GENERAL INFORMATION 2.2 OUTLINE OF EUT 2.3 MODIFICATIONS INCORPORATED IN EUT 2.4 EQUIPMENT CONFIGURATION 2.5 OTHER INFORMATION 2.6 EUT PHOTOGRAPHS	8 8 8 9
3 Measurement Systems	11
3.1 SAR MEASUREMENT SYSTEMS SETUP 3.2 E-FIELD PROBE 3.3 PHANTOM 3.4 DEVICE HOLDER 4 Test Results 4.1 OPERATIONAL CONDITION	11 12 13 14
4.2 TEST EQUIPMENT USED	15
4.3 APPLICABLE LIMIT REGULATIONS	
4.5 TEST SETUP AND PROCEDURES	
4.6 TISSUE EQUIVALENT LIQUIDS USED AND ITS PROPERTIES	18
4.8 Maximum Output Power Measurement Methods	21
Annex A Photographs	
Annex B Graphical Results	34
ANNEX C Probes Calibration Certificates	18
ANNEX D Deviations from Prescribed Test Methods	58

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

1. General Information

1.1 Notes

All reported tests were carried out on a sample equipment to demonstrate limited compliance with the requirements of FCC CFR 47 Part 2.1093.

The test results of this test report relate exclusively to the item(s) tested as specified in section 2.

The following deviations from, additions to, or exclusions from the test specifications have been made. See Annex D.

China Telecommunication Technology Labs.(CTTL) authorizes the applicant or manufacturer (see section 1.4) to reproduce this report provided, and the test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTTL Mr. He Guili.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. CTTL accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

FCC Part 2.1093 (2006-3-23), FCC OET 65C (01-01), IEEE Std 1528™-2003 Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

1.2 Testers

Name:

Li Guoqing

Position:

Engineer

Department:

Department of EMC test

Signature:

本国东

Editor of this test report:

Name:

Li Guoging

Position:

Engineer

Department:

Department of EMC test

Date:

2008, 2-19

Signature:

孝国庆

Technical responsibility for testing:

Name:

Zou Dongyi

Position:

Manager

Department:

Department of EMC test

Date:

2008.2.19

Signature:

都古城

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

1.3 Testing Laboratory information

-	_	-		
1	٠.٢	1	Location	٦
- 1	. J		Location	ı

Name: China Telecommunication Technology Labs.

Address: No. 52, Huanyuan Road, Haidian District

BEIJING

P. R. CHINA, 100083

Tel: +86 10 68094053

Fax: +86 10 68011404

Email: emc@chinattl.com

1.3.2 Details of accreditation status

Accredited by: China National Accreditation Service for Conformity

Assessment (CNAS)

Registration number: CNAS Registration No. CNAS L0570

Standard: ISO/IEC 17025

1.3.3 Test location, where different from section 1.3.1

Name: -----

Street:

City: -----

Country: -----

Telephone: -----

Fax: -----

Postcode: -----

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

1.4 Details of applicant or manufacturer

1.4.1 Applicant

Name: Ezze Mobile Tech

Address: 1F, Bubmusa Bldg., 151-31, Nonhyun-dong,

Kangnam-ku, Seoul

Country: Korea

Telephone: 82-2-519-7807

Fax: 82-2-519-7882

Contact: Han shin, Lee

Telephone: 82-19-543-3776

Email: leehs@ezzemobile.com

1.4.2 Manufacturer (if different from applicant in section 1.4.1)

Name: --

Address:

City: --

Country: --

1.4.3 Manufactory (if different from applicant in section 1.4.1)

Name: Ezze Mobile Tech

Address: Rm. 204, Anyang Megavalley, 799,

Guanyang-dong, Dongan-gu, Anyang-city,

Gyunggi-do, Korea, 431-767

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

2 Test Item

2.1 General Information

Manufacturer: Ezze Mobile Tech

Name: GSM/GPRS Mobile phone

Model Number: MEGA3

Serial Number: --

Production Status: Production

Receipt date of test item: 2008-1-7

2.2 Outline of EUT

E.U.T. is a GSM/GPRS Mobile phone.

2.3 Modifications Incorporated in EUT

The EUT has not been modified from what is described by the brand name and unique type identification stated above.

2.4 Equipment Configuration

Equipment configuration list:

Item	Generic Description	Manufacturer	Туре	Serial No.	Remarks
Α	handset	Ezze Mobile Tech	MEGA3		None
В	adapter	Yu Feng	YF-0510228		None
С	battery	ZHIYIN	MEGA3		None
	Гоми	Diah atau	Wire		None
D	Earphone	Rich star	Type(stereo)		None

Cables:

Item	Cable Type	Manufacturer	Length	Shield	Quantity	Remarks
1	DC cable on Adapter	Unknown	1.0m	No	1	None

2.5 Other Information

Version of hardware and software

HW Version: V 0.1

SW Version: V 0.1

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

2.6 EUT Photographs

Figure 1 Front view

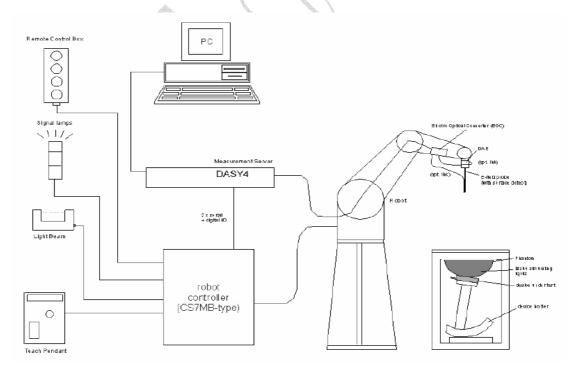
Figure 2 front view with slip open

FCC Part 2.1093 (2006-3-23), FCC OET 65C (01-01), IEEE Std 1528 $^{\text{TM}}$ -2003

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

Figure 3 back view

Figure 4 back view


Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

3 Measurement Systems

3.1 SAR Measurement Systems Setup

All measurements were performed using the automated near-field scanning system, DASY4, from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision industrial robot which positions the probes with a positional repeatability of better than 0.02mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length = 300mm) to the data acquisition unit.

A cell controller system containing the power supply, robot controller, teach pendant (Joystick) and remote control, is used to drive the robot motors. The PC consists of the Micron Pentium III 800 MHz computer with Windows 2000 system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc., which is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical signal to digital electric signal of the DAE and transfers data to the PC plug-in card.

Demonstration of measurement system setup

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built-in VME-bus computer.

3.2 E-field Probe

3.2.1 E-field Probe Description

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the standard procedure with an accuracy of better than $\pm 10\%$. The spherical isotropy was evaluated and found to be better than ± 0.25 dB.

was evaluated and round to be better than ± 0.250b.			
Items	Specification		
	Symmetrical design with triangular core		
	Built-in optical fiber for surface detection		
Construction	System(ET3DV6 only)		
Construction	Built-in shielding against static charges		
	PEEK enclosure material (resistant to		
	organic solvents, e.g., glycol)		
	In air from 10 MHz to 2.5 GHz		
	In brain and muscle simulating tissue at		
0.111	frequencies of 450MHz, 900MHz and 1.8GHz		
Calibration	(accuracy±8%)		
	Calibration for other liquids and frequencies		
	upon request		
_	I 0 MHz to > 6 GHz; Linearity: ±0.2 dB		
Frequency	(30 MHz to 3 GHz)		
Disactivity	±0.2 dB in brain tissue (rotation around probe axis)		
Directivity	±0.4 dB in brain tissue (rotation normal probe axis)		
Dynamic Range	5u W/g to > 100mW/g; Linearity: ±0.2dB		
Cumfo of Dotostics	±0.2 mm repeatability in air and clear liquids		
Surface Detection	over diffuse reflecting surface(ET3DV6 only)		
	Overall length: 330mm		
	Tip length: 16mm		
Dimensions	Body diameter: 12mm		
	Tip diameter: 6.8mm		
	Distance from probe tip to dipole centers: 2.7mm		
	General dosimetry up to 3GHz		
Application	Compliance tests of mobile phones		
	Fast automatic scanning in arbitrary phantoms		

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

3.2.2 E-field Probe Calibration

The Annex C is the copy of the calibration certificate of the used probes.

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The free-space E-field measured in the medium correlates to temperature increase in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

3.3 Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Specifications:

Shell Thickness: 2±0.1mm

Filling Volume: Approx. 20 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W) Liquid depth when testing: at least 150 mm

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

3.4 Device Holder

In combination with the Generic Twin Phantom V3.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeat ably positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom etc).

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

4 Test Results

4.1 Operational Condition

Specifications FCC OET 65C (01-01), IEEE Std 1528[™]-2003

Date of Tests 2008.1.17 – 2008.1.18

Test conditions Ambient Temperature: 22.0~24.0℃

Relative Humidity: 39.5~50.7%

Operation Mode TX at the highest output peak power level

Method of measurement: FCC OET 65C (01-01), IEEE Std 1528[™]-2003

4.2 Test Equipment Used

TYPE	ITEM	S/N	CALIBRATIO N DATE	DUE DATE	
CMU200	Wireless Communication Test Set	109172	2007-03-12	2008-03-12	
ES3DV3	probe	3109	2007-11-12	2008-11-11	
SD000D04 BC	DAE4	685	2007-11-08	2008-11-07	
D835V2	dipole	4d038	2007-11-07	2008-11-06	
D1900V2	dipole	5d072	2007-11-07	2008-11-06	
NRVD	Power Meter	101438	2007-03-05	2008-03-04	
HP E4432B	Signal Generator	GB38450525	2007-03-14	2008-03-13	
NRV-Z4	Power Sensor	100381	2007-09-27	2008-09-27	
NRV-Z2	Power Sensor	100211	2007-09-27	2008-09-27	
8491B	Attenuator	MY39262528	NA	NA	
8491B	Attenuator	MY39262663	NA	NA	
8491B	Attenuator	MY39262640	NA	NA	
8491B	Attenuator	MY39262638	NA	NA	
778D	Dual directional coupler	20040	NA	NA	
E3640A	DC Power Supply	MY40008487	2007-08-14	2008-08-13	
85070E	Probe kit	MY44300214	N.A.	N.A.	
E5071B	Network Analyzer	MY42404001	2007-06-18	2008-06-17	

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

4.3 Applicable Limit Regulations

Item	Limit Level	
Local	1.6W/kg	
Specific Absorption Rate (SAR) (1g)	1.0 W/Kg	

4.4 Test Results

The EUT complies.

Note:

All measurements are traceable to national standards.

4.5 Test Setup and Procedures

The test setup is showed as picture 1 in the annex A.

The evaluation was performed according to the following procedure:

Step 1: The SAR value at a fixed location above the ear point was measured and was used as a reference value for assessing the power drift.

Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 10 mm x 10 mm. Based on these data, the area of the maximum absorption was determined by interpolation.

Step 3: Around this point, a volume of 30 mm \times 30 mm \times 25 mm was assessed by measuring 7 \times 7 \times 6 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

- a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on the least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
- b. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot"-condition (in $x \sim y$ and z-directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
- c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- Step 4: Re-measurement the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation should be repeated.

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

4.6 Tissue Equivalent Liquids Used and its Properties

4.6.1 Liquids for 835MHz

4.6.1.1 Head Tissue-Equivalent Liquids

Head Recipes of the liquids for 835MHz			
Ingredient	Percentage by weight		
Sucrose	57.00		
Water	40.45		
NaCl	1.45		
HEC	1.00		
Preventol	0.10		

Dielectric properties of the Head liquids at 835MHz					
Property	Reference value	Tolerance limit	Measured value	Error	Result
٤r	41.5	5%	40.4	-2.7%	Complies
σ	0.90 S/m	5%	0.89 S/m	-1.1%	Complies

4.6.1.2 Body Tissue-Equivalent Liquids

Body Recipes of the liquids for 835MHz			
Ingredient	Percentage by weight		
Sucrose	45.00		
Water	52.40		
NaCl	1.40		
HEC	1.00		
Preventol	0.10		

Dielectric properties of the Body liquids at 835MHz					
Property	Reference value	Tolerance limit	Measured value	Error	Result
εr	55.2	5%	54.7	-0.9%	Complies
σ	0.97 S/m	5%	0.998 S/m	2.9%	Complies

4.6.2 Liquids for 1900MHz

4.6.2.1 Head Tissue-Equivalent Liquids

Head Recipes of the liquids for 1900MHz			
Ingredient	Percentage by weight		
2-(2-butoxyethoxy) ethanol	44.92		
De-ionised water	54.90		
NaCl salt	0.18		

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

Dielectric properties of the Head liquids at 1900MHz							
Property	Reference value	Tolerance limit	Measured value	Error Resu			
ε _r	40	5%	39.8	-0.5%	Complies		
σ	1.4 S/m	5%	1.39 S/m	-0.07%	Complies		

4.6.2.2 Body Tissue-Equivalent Liquids

Body Recipes of the liquids for 1900MHz					
Ingredient	Percentage by weight				
Sucrose	58.00				
De-ionised water	40.40				
NaCl salt	0.50				
HEC	1.00				
Preventol	0.10				

Dielectric properties of the Body liquids at 1900MHz							
Property	Reference value	Tolerance limit	Measured value	Error	Result		
٤r	53.3	5%	54.2	1.7%	Complies		
σ	1.52 S/m	5%	1.52 S/m	0%	Complies		

4.7 System Validation Check

Validation Method:

The setup of system validation check is demonstrated as figure 5. The amplifier, low pass filter and attenuators are optional. The dipole shall be positioned and centered below the phantom, paralleling to the longest side of the phantom. A low loss and low dielectric constant spacer on the dipole may be used to guarantee the correct distance between the dipole top surface and the phantom bottom surface.

The separation d, which is defined as the distance from the liquid bottom surface to the dipole's central axis at location of the feed-point, should be as following: for 835 MHz dipole, d=15 mm, and for 1900 MHz dipole, d=10 mm, and this can be obtained using two different size spacer. The dipole arms shall be parallel to the flat phantom surface.

First the power meter PM1 is connected to the cable and it measures the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the (Att1) value) and the power meter PM2 is read at that level. Then after connecting the cable to the dipole, the signal generator is readjusted for the same reading at the power meter PM2.

The system validation check procedures are the same as all measurement

FCC Part 2.1093 (2006-3-23), FCC OET 65C (01-01), IEEE Std 1528™-2003 Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

procedures used for compliance tests. A complete 1 g averaged SAR measurement is performed using the flat part of the phantom. The reference dipole input power is adjusted to produce a 1 g averaged SAR value falling in the range of 0.4 – 10 mW/g. The 1 g averaged SAR is measured at 835 MHz and 1900 MHz using corresponding dipole respectively. Then the results are normalized to 1 W forward input power and compared with the reference SAR values.

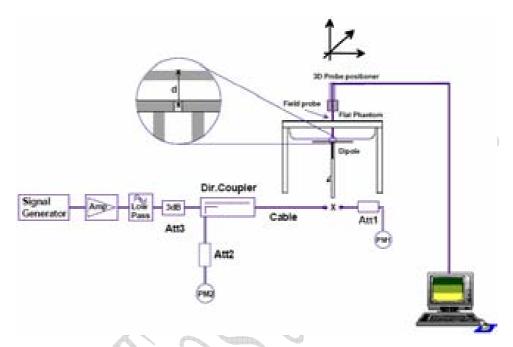


Figure 5 Illustration of system validation test setup

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

Validation Results

(a) Head simulating liquid at 835MHz

Test date: 2008-1-18

Liquid parameters: $\varepsilon_r = 40.4$, $\sigma = 0.89$ S/m

Ambient temperature: 24℃, liquid temperature: 23℃

Item	Target value	Tolerance limit	Verification source power	Measured value	Normalized Measured value	Error	Result
SAR	9.52	±10%	250mW	2.4	9.6	0.8%	complies
(1 g)	mW/g	1078	25011100	mW/g	mW/g	0.6%	complies

(b) Head simulating liquid at 1900MHz

Test date: 2008-1-18

Liquid parameters: ε_r =39.8, σ =1.39S/m

Ambient temperature: 24℃, liquid temperature: 23℃

Item	Target value	Tolerance limit	Verification source power	Measured value	Normalized Measured value	Error	Result
SAR	39.4	±10%	250mW	10.6	42.4	7.6%	complies
(1 g)	mW/g	1078	25011100	mW/g	mW/g	7.076	complies

(c) body simulating liquid at 835MHz

Test date: 2008-1-17

Liquid parameters: $\varepsilon_r = 54.7$, $\sigma = 0.998$ S/m

Ambient temperature: 24℃, liquid temperature: 21.5℃

Item Target Tolerance limit	Verification source power	Measured value	Normalized Measured value	Error	Result
SAR 9.56 (1 g) mW/g ±10%	250mW	2.3 mW/g	9.2 mW/g	-3.8%	complies

(d) Head simulating liquid at 1900MHz

Test date: 2008-1-17

Liquid parameters: $\varepsilon_r = 54.2$, $\sigma = 1.52$ S/m

Ambient temperature: 24℃, liquid temperature: 21.5℃

Item	Target value	Tolerance limit	Verification source power	Measured value	Normalized Measured value	Error	Result
SAR	37.6	±10%	250mW	9.99	39.96	6.3%	complies
(1 g)	mW/g	± 10 %	25011100	mW/g	mW/g	0.3%	complies

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

4.8 Maximum Output Power Measurement Methods

According to FCC OET 65c, maximum output power shall be measured before and after each SAR test. The test setup and method are described as following.

Test setup

The output power measurement test setup is demonstrated as figure 6.

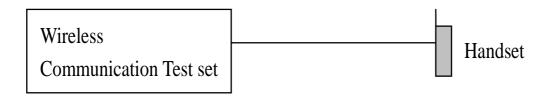


Figure 6 Demonstration of power measurement

The power control level settings are as following table.

mode	PCL setting	Permissible max.values	Channel[low]	Channel[mid]	Channel[high]
GSM/GPRS 850	5	33dBm	32.3dBm 824.20MHz	32.4 dBm 836.60 MHz	31.9 dBm 848.80 MHz
PCS/GPRS			29.7dBm	29.7dBm	29.9dBm
1900 0		30dBm	1850.2 MHz	1880.0 MHz	1909.8 MHz

4.9 Test Data

4.9.1 Test Specifications

(a) Duty Factor and Crest Factor

For GSM mode, the duty factor is 1:8.3 and the crest factor is 8.3; and for GPRS mode the duty factor is 1:4 and the crest factor is 4.

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

(b) Liquid Parameters

Conditions	Frequency	ε _r	σ [S/m]	Note				
Head Liquid for GSM 850 MHz band								
128	824.2	40.3	0.886					
190	836.6	40.3	0.892					
251	848.8	40.2	0.905					
Head Liquid for	PCS 1900 MHz ba	and						
512	1850.2	39.8	1.338					
661	1880.0	39.8	1.39					
810	1909.8	39.8	1.40					
Body Liquid for	GSM/GPRS 850 M	1Hz band						
128	824.2	54.7	0.998					
190	836.6	54.7	0.999					
251	848.8	54.5	1.01					
Body Liquid for	PCS/GPRS 1900 I	MHz band	A AM					
512	1850.2	54.2	1.52					
661	1880.0	54.2	1.52					
810	1909.8	54.2	1.53					

(c) Test configurations pictures:

Configurations	pictures no. in Annex A
Right Cheek – slip open	2
Right Cheek – slip close	3
Right Tilt – slip open	4
Right Tilt – slip close	5
Left Cheek – slip open	6
Left Cheek - slip close	7
Left Tilt – slip open	8
Left Tilt - slip close	9
Front side – slip open	10
Front side – slip close	11
Back side – slip open	12
Back side – slip close	13
Back side -slip open	14
with earphone	14
Back side –slip close	15
with earphone	15
Liquid depth for 835	16
band	10
Liquid depth for 1900	17
band	17

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

(d) Test description for body-worn mode

The distance between the handset and the bottom of the flat section is 15 mm.

(e) Test procedure for body-worn mode

Step 1: GSM850 band, test the middle channel of each of the front side and back side mode with the 15 mm distance between the handset and the bottom of the phantom, including slip open and close. Find out the worst case.

Step 2: For the worst case of step 1, test the low and high channel.

Step 3: Find out the worst case of step 1 and 2, and for this case, test the mode with Bluetooth on, and then with earphone using voice traffic mode.

Step 4: Repeat all the above steps for PCS 1900 band.

4.9.2 Test Data for Head mode

GSM850 - slip open

Toot	Toot	SAR _{1g} [W/kg] / Power Drift [dB]					
Test configuration	Test	Channel 128 [low] 824.20 MHz	Channel 190 [Mid] 836.60 MHz	Channel 251 [high] 848.80 MHz			
Left side of	Cheek	- / -	0.663 / 0.166	- / -			
Head	Tilted		0.311 / -0.077	- / -			
Right side of Head	Cheek	0.565 / -0.0213	0.73 / 0.129	0.835 / 0.157			
Tieau	Tilted	- / -	0.337 / 0.0324	- / -			
Right side of Head with BT on	Cheek	- / -	/	0.829 / 0.049			

GSM850 - slip close

Test	Toot	SAR _{1g} [W/kg] / Power Drift [dB]				
configuration	Test position	Channel 128 [low] 824.20 MHz	Channel 190 [Mid] 836.60 MHz	Channel 251 [high] 848.80 MHz		
Left side of	Cheek	0.628 / -0.034	0.800 / 0.046	0.779 / 0.0268		
Head	Tilted	- / -	0.418 / -0.089	- / -		
Right side of Head	Cheek	- / -	0.722 / 0	- / -		
	Tilted	- / -	0.415 / 0.14	- / -		

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

In GSM850 – slip open mode, the high channel of Right Cheek configuration gives the maximum SAR value, and the graphical result is showed as Annex B.1.

In GSM850 – slip close mode, the middle channel of Left Cheek configuration gives the maximum SAR value, and the graphical result is showed as Annex B.2.

In GSM850 mode (including slip open and close), the high channel of Right Cheek configuration with slip open gives the maximum SAR value, and when the Bluetooth is on, the graphical result is showed as Annex B.3.

PCS1900 - slip open

Test	Test	SAR _{1g} [W/kg] / Power Drift [dB]					
configuration	position	Channel 512 [low]	Channel 661 [Mid]	Channel 810 [high]			
		1850.2 MHz 1880.0 MHz		1909.8 MHz			
Left side of Head	Cheek	- / -	0.19 / -0.154	- / -			
	Tilted	- / -	0.196 / -0.054	- / -			
Right side of	Cheek	0.267 / -0.050	0.295 / -0.026	0.365 / -0.027			
Head	Tilted	-(>-	0.165 / -0.039	- / -			

PCS1900 - slip close

Test	Test	SAR _{1g} [W/kg] / Power Drift [dB]					
configuration	position	Channel 512 [low] 1850.2 MHz	Channel 661 [Mid] 1880.0 MHz	Channel 810 [high] 1909.8 MHz			
Left side of Head	Cheek	0.583 / 0.135	0.729 / -0.056	0.890 / -0.103			
	Tilted	- / -	0.286 / -0.008	- / -			
Right side of	Cheek	- / -	0.599 / -0.044	- / -			
Head	Tilted	- / -	0.256 / -0.097	- / -			
left side of Head with BT on	Cheek	/	/	0.949 / -0.039			

In PCS1900 – slip open mode, the high channel of Right Cheek configuration gives the maximum SAR value, and the graphical result is showed as Annex B.4.

In PCS1900 – slip close mode, the high channel of Left Cheek configuration gives the

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

maximum SAR value, and the graphical result is showed as Annex B.5.

In PCS1900 mode (including slip open and close), the high channel of Left Cheek configuration with slip close gives the maximum SAR value, and when the Bluetooth is on, the graphical result is showed as Annex B.6.

4.9.3 Test Data for Body-Worn mode

GPRS850 - slip open

Toot	Toot	SAR _{1g} [W/kg] / Power Drift [dB]								
Test Test configuration position		Channel 128 [low] 824.20 MHz		Channel 190 [Mid] 836.60 MHz		Channel 251 [high] 848.80 MHz				
Front side	15 mm	0.469	/	0.0147	0.564	/	-0.0343	0.547	/	0.0159
Back side	15 mm	-	/	-	0.510	1	0.0063	-	/	-
Front side with BT on	15 mm		/		0.487	1	0.0231		/	
GSM-Front side with earphone	15 mm		1		0.421	/	-0.0638		/	

GPRS850 - slip close

Test configuration	Test position	SAR _{1g} [W/kg] / Power Drift [dB]					
		Channel 128 [low] 824.20 MHz	Channel 190 [Mid] 836.60 MHz	Channel 251 [high] 848.80 MHz			
Front side	15 mm	- / -	0.389 / 0.0606	- / -			
Back side	15 mm	0.426 / -0.001	0.505 / -0.014	0.525 / -0.0118			

In GPRS850 – slip open mode, the middle channel of front side configuration gives the maximum SAR value, and the graphical result is showed as Annex B.7.

In GPRS850 – slip close mode, the high channel of back side configuration gives the maximum SAR value, and the graphical result is showed as Annex B.8.

In GPRS850 mode (including slip open and close), the middle channel of front side configuration with slip open gives the maximum SAR value. In this case, when the Bluetooth is on, the graphical result is showed as Annex B.9, and when in voice traffic mode with earphone, the graphical result is showed as Annex B.10.

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

GPRS1900 - slip open

Test	Test	SAR _{1g} [W/kg] / Power Drift [dB]				
configuration	position	Channel 512 [low]	Channel 661 [Mid]	Channel 810 [high]		
		1850.2 MHz	1880.0 MHz	1909.8 MHz		
Front side	15 mm	/	0.136 / 0.0137	/		
Back side	15 mm	0.256 / 0.023	0.296 / -0.024	0.341 / -0.037		
Front side with BT on	15 mm	/	1	0.242 / -0.020		
GSM-Back side with earphone	15 mm	/		0.265 / -0.006		

GPRS1900 - slip close

Test	Test	SAR _{10ç}	[W/kg] / Power Drif	t [dB]		
configuration	position	Channel 512 [low]	Channel 661 [Mid]	Channel 810 [high]		
		1850.2 MHz	1880.0 MHz	1909.8 MHz		
Front side	15 mm		0.233 / -0.049	- / -		
Back side	15 mm	0.206 / 0.004	0.267 / -0.063	0.307 / -0.031		

In GPRS1900 – slip open mode, the high channel of back side configuration gives the maximum SAR value, and the graphical result is showed as Annex B.11.

In GPRS1900 – slip close mode, the high channel of back side configuration gives the maximum SAR value, and the graphical result is showed as Annex B.12.

In GPRS1900 mode (including slip open and close), the high channel of back side configuration with slip open gives the maximum SAR value. In this case, when the Bluetooth is on, the graphical result is showed as Annex B.13, and when in voice traffic mode with earphone, the graphical result is showed as Annex B.14.

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

4.10 Measurement uncertainty

ERROR SOURCE	Uncertainty	Probability distribution	Divisor	C_{i}	Standard Uncertainty	
	value (%)			(1g)	(%)	
Measurement equipment				, 0,		
Probe calibration	5.9	Normal	1	1	5.9	
Probe axial isotropy	4.7	Rectangular	$\sqrt{3}$	0.7	1.9	
Probe hemispherical isotropy	9.6	Rectangular	$\sqrt{3}$	0.7	3.9	
Probe linearity	4.7	Rectangular	$\sqrt{3}$. 1	2.7	
Detection limits	0.25	Rectangular	$\sqrt{3}$	T	0.6	
Boundary effect	0.8	Rectangular	$\sqrt{3}$	1	0.6	
Measurement device	0.3	Normal	1	1	0.3	
Response time	0.0	Normal	1	1	0	
Noise	0.0	Normal	1	1	0	
Integration time	1.7	Normal	1	1	2.6	
Mechanical constraints			700 700			
Scanning system	1.5	Rectangular	$\sqrt{3}$	1	0.2	
Positioning of the probe	2.9	Normal		1	2.9	
Phantom shell	4.0	Rectangular	$\sqrt{3}$	1	2.3	
Positioning of the dipole	2.0	Normal	1	1	2.0	
Positioning of the phone	2.9	Normal	1	1	2.9	
Device holder disturbance	3.6	Normal	1	1	3.6	
Physical parameters	10 100					
Liquid conductivity	5.0	Rectangular	$\sqrt{3}$	0.5	1 4	
(deviation from target)				0.5	1.4	
Liquid conductivity	4.3	Rectangular	$\sqrt{3}$	0.5	1.2	
(measurement error)				0.5		
Liquid permittivity	5.0	Rectangular	$\sqrt{3}$	0.5	1.4	
(deviation from target)	3.0	Rectangular	73	0.5	1.4	
Liquid permittivity	4.3	Rectangular	$\sqrt{3}$	0.5	1.2	
(measurement error)			,-			
Drifts in output power of the phone,	5.0	Rectangular	$\sqrt{3}$	1	2.9	
probe, temperature and humidity						
Environment disturbance	3.0	Rectangular	$\sqrt{3}$	1	1.7	
Post-processing						
SAR interpolation and extrapolation	0.6	Rectangular	$\sqrt{3}$	1	0.6	
Maximum SAR evaluation	1.0	Rectangular	$\sqrt{3}$		0.6	
Combined standard uncertainty	$u_c = \sqrt{\sum_{i=1}^{m} c_i^2 \cdot u_i^2} = 11.08\%$					
Expanded uncertainty		Normal u_a	$=1.96u_c$ =	-21 7%		
(confidence interval of 95%)		u_e	1.70u _c -	-21.770		

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

Annex A Photographs

Picture 1 test setup

Picture 2 Right Cheek - slip open


Picture 3 Right Cheek – slip close

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

Picture 4 Right Tilt – slip open

Picture 5 Right Tilt – slip close

Picture 6 Left Cheek - slip open

FCC Part 2.1093 (2006-3-23), FCC OET 65C (01-01), IEEE Std 1528™-2003 Equipment: Mega3

REPORT NO.: 108GE4046-FCC-SAR

Picture 7 Left Cheek - slip close

Picture 8 Left Tilt - slip open

Picture 9 Left Tilt - slip close

FCC Part 2.1093 (2006-3-23), FCC OET 65C (01-01), IEEE Std 1528 $^{\text{M}}$ -2003 Equipment: Mega3 RE

REPORT NO.: 108GE4046-FCC-SAR

Picture 10 Front side – slip open

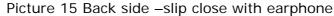
Picture 11 Front side - slip close

Picture 12 Back side – slip open

FCC Part 2.1093 (2006-3-23), FCC OET 65C (01-01), IEEE Std 1528 $^{\text{M}}$ -2003 Equipment: Mega3 RE

REPORT NO.: 108GE4046-FCC-SAR

Picture 13 Back side – slip close



Picture 14 Back side -slip open with earphone

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

Picture 16 Liquid Depth at Ear Reference Point for 835MHz Head Liquid

Picture 17 Liquid Depth at Ear Reference Point for 1900MHz Head Liquid

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

Annex B Graphical Results

B.1 GSM850, slip open, high channel of Right Cheek configuration

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.905$ mho/m; $\epsilon_r = 40.2$; $\rho = 1000$ kg/m³;

Medium Notes: Ambient humidity: 44; Ambient temperature: 24; Liquid temperature: 20.4;

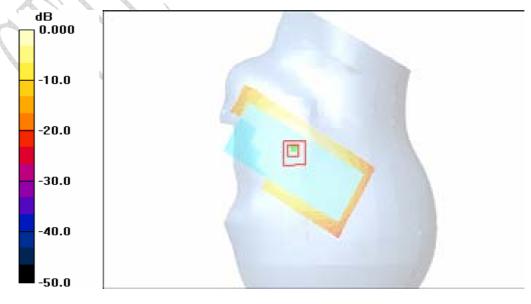
Phantom section: Right Section; Phantom: SAM with Right; Type: QD 000 P40 CA

DASY4 Configuration:

- Probe: ES3DV3 SN3109; ConvF(6.02, 6.02, 6.02); Calibrated: 2007-11-12
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn685; Calibrated: 2007-11-8
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 161

high/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.7 V/m; Power Drift = 0.157 dB


Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.835 mW/g; SAR(10 g) = 0.609 mW/g

Maximum value of SAR (measured) = 0.893 mW/g

high/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.887 mW/g

0 dB = 0.887 mW/g

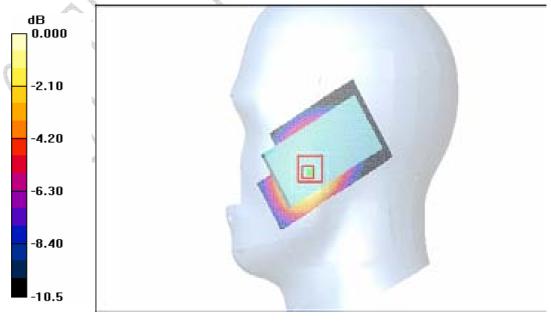
Equipment: Mega3 REPORT NO.: I08GE4046-FCC-SAR

B.2 GSM850, slip close, middle channel of Left Cheek configuration

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.892$ mho/m; $\epsilon_r = 40.3$; $\rho = 1000$ kg/m³;

Medium Notes: Ambient humidity: 44; Ambient temperature: 24; Liquid temperature: 20.4;

Phantom section: Left Section; Phantom: SAM with Right; Type: QD 000 P40 CA


DASY4 Configuration:

- Probe: ES3DV3 SN3109; ConvF(6.02, 6.02, 6.02); Calibrated: 2007-11-12
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn685; Calibrated: 2007-11-8
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 161

mid/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.841 mW/g mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.6 V/m; Power Drift = 0.046 dB Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.800 mW/g; SAR(10 g) = 0.591 mW/gMaximum value of SAR (measured) = 0.848 mW/g

0 dB = 0.848 mW/g

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

B.3 GSM850, slip open, high channel of Right Cheek configuration, with Bluetooth on

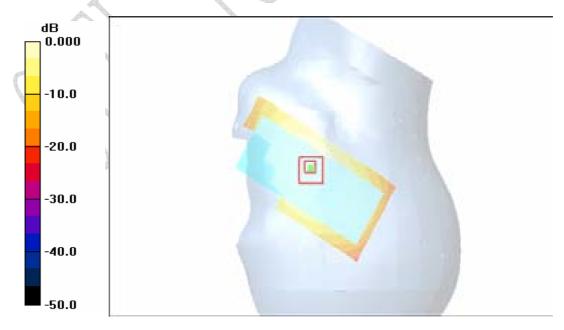
Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3 Medium parameters used (interpolated): f=848.8 MHz; $\sigma=0.905$ mho/m; $\epsilon_r=40.2$; $\rho=1000$ kg/m³;

Medium Notes: Ambient humidity: 44; Ambient temperature: 24; Liquid temperature: 20.4;

Phantom section: Right Section; Phantom: SAM with Right; Type: QD 000 P40 CA

DASY4 Configuration:

- Probe: ES3DV3 SN3109; ConvF(6.02, 6.02, 6.02); Calibrated: 2007-11-12
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn685; Calibrated: 2007-11-8
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 161


high/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.0 V/m; Power Drift = 0.049 dB Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.829 mW/g; SAR(10 g) = 0.606 mW/g

Maximum value of SAR (measured) = 0.887 mW/g

high/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.882 mW/g

0 dB = 0.882 mW/g

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

B.4 PCS1900, slip open, high channel of Right Cheek configuration

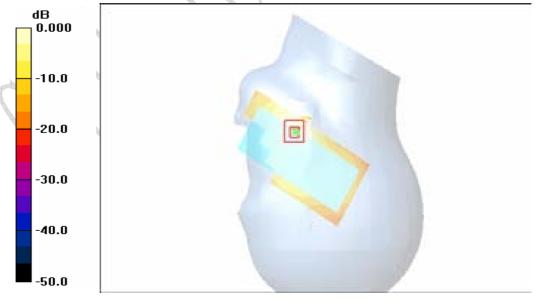
Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 1909.8 MHz; $\sigma = 1.4$ mho/m; $\epsilon_r = 39.8$; $\rho = 1000$ kg/m³;

Medium Notes: Ambient humidity: 41; Ambient temperature: 24; Liquid temperature: 23;

Phantom section: Right Section; Phantom: SAM with Front; Type: QD 000 P40 CA

DASY4 Configuration:

- Probe: ES3DV3 SN3109; ConvF(4.63, 4.63, 4.63); Calibrated: 2007-11-12
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn685; Calibrated: 2007-11-8
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build
 161


high/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.59 V/m; Power Drift = -0.027 dB Peak SAR (extrapolated) = 0.573 W/kg

SAR(1 g) = 0.365 mW/g; SAR(10 g) = 0.213 mW/g

Maximum value of SAR (measured) = 0.405 mW/g

high/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.405 mW/g

0 dB = 0.405 mW/g

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

B.5 PCS1900, slip close, high channel of Left Cheek configuration

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 1909.8 MHz; $\sigma = 1.4$ mho/m; $\epsilon_r = 39.8$; $\rho = 1000$ kg/m³;

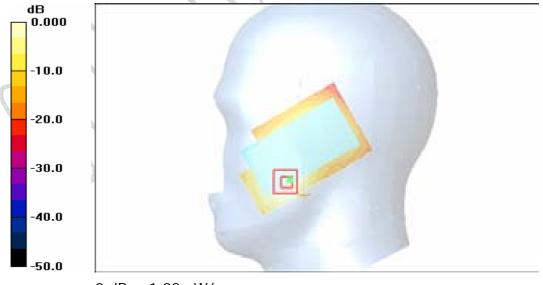
Medium Notes: Ambient humidity: 41; Ambient temperature: 24; Liquid temperature: 23;

Phantom section: Left Section; Phantom: SAM with Front; Type: QD 000 P40 CA

DASY4 Configuration:

- Probe: ES3DV3 SN3109; ConvF(4.63, 4.63, 4.63); Calibrated: 2007-11-12
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn685; Calibrated: 2007-11-8
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build
 161

high/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 11.4 V/m; Power Drift = -0.103 dB Peak SAR (extrapolated) = 1.47 W/kg

SAR(1 g) = 0.890 mW/g; SAR(10 g) = 0.501 mW/g

Maximum value of SAR (measured) = 0.970 mW/g

high/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.02 mW/g

0 dB = 1.02 mW/q

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

B.6 PCS1900, slip close, high channel of Left Cheek configuration, with Bluetooth on

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 1909.8 MHz; $\sigma = 1.4$ mho/m; $\epsilon_r = 39.8$; $\rho = 1000$ kg/m³;

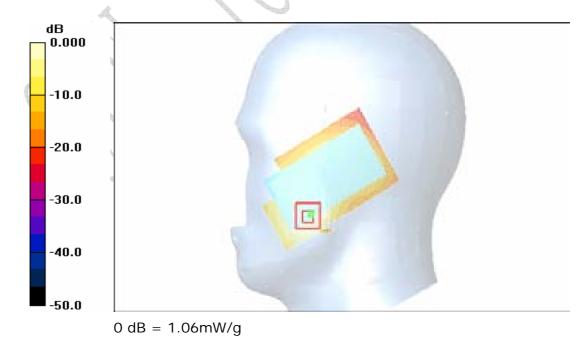
Medium Notes: Ambient humidity: 41; Ambient temperature: 24; Liquid temperature: 23;

Phantom section: Left Section; Phantom: SAM with Front; Type: QD 000 P40 CA

DASY4 Configuration:

- Probe: ES3DV3 SN3109; ConvF(4.63, 4.63, 4.63); Calibrated: 2007-11-12
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn685; Calibrated: 2007-11-8
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 161

high/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 9.84 V/m; Power Drift = -0.039 dB Peak SAR (extrapolated) = 1.58 W/kg

SAR(1 g) = 0.949 mW/g; SAR(10 g) = 0.528 mW/g

Maximum value of SAR (measured) = 1.04 mW/g

high/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.06 mW/g

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

B.7 GPRS850, slip open, middle channel of Front side configuration

Communication System: GPRS850 class 8; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.999 mho/m; ϵ_r = 54.7; ρ = 1000 kg/m³;

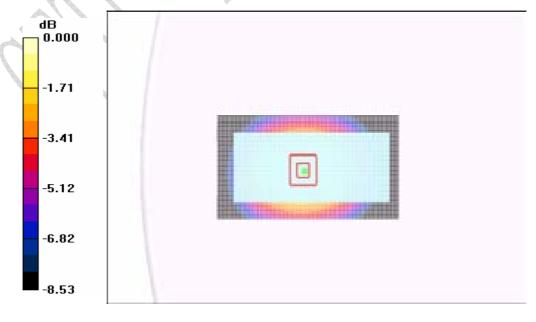
Medium Notes: Ambient humidity: 48; Ambient temperature: 24; Liquid temperature: 21.5;

Phantom section: Flat Section; Phantom: Flat Phantom ELI4.0; Type: QDOVA001B

DASY4 Configuration:

- Probe: ES3DV3 SN3109; ConvF(5.82, 5.82, 5.82); Calibrated: 2007-11-12
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn685; Calibrated: 2007-11-8
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 161

mid/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.591 mW/g


mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.3 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 0.711 W/kg

SAR(1 g) = 0.564 mW/g; SAR(10 g) = 0.417 mW/g

Maximum value of SAR (measured) = 0.596 mW/g

0 dB = 0.596 mW/g

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

B.8 GPRS850, slip close, high channel of back side configuration

Communication System: GPRS850 class 8; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

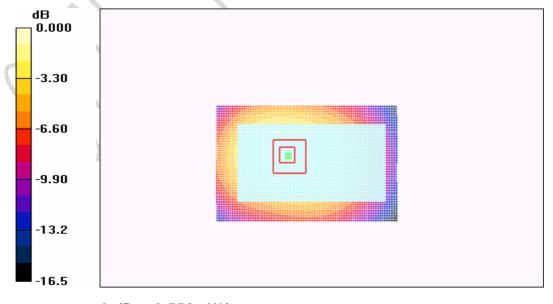
Medium parameters used (interpolated): f = 848.8 MHz; σ = 1.01 mho/m; ϵ_r = 54.5; ρ = 1000 kg/m³;

Medium Notes: Ambient humidity: 48; Ambient temperature: 24; Liquid temperature: 21.5;

Phantom section: Flat Section; Phantom: Flat Phantom ELI4.0; Type: QDOVA001B

DASY4 Configuration:

- Probe: ES3DV3 SN3109; ConvF(5.82, 5.82, 5.82); Calibrated: 2007-11-12
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn685; Calibrated: 2007-11-8
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 161


high/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.2 V/m; Power Drift = -0.012 dB Peak SAR (extrapolated) = 0.693 W/kg

SAR(1 g) = 0.525 mW/g; SAR(10 g) = 0.374 mW/g

Maximum value of SAR (measured) = 0.562 mW/g

high/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.552 mW/g

0 dB = 0.552 mW/g

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

B.9 GPRS850, slip open, middle channel of Front side configuration, with Bluetooth on

Communication System: GPRS850 class 8; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.999 mho/m; ϵ_r = 54.7; ρ = 1000 kg/m³;

Medium Notes: Ambient humidity: 48; Ambient temperature: 24; Liquid temperature: 21.5;

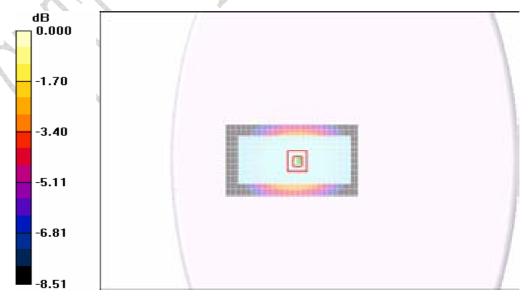
Phantom section: Flat Section; Phantom: Flat Phantom ELI4.0; Type: QDOVA001B

DASY4 Configuration:

- Probe: ES3DV3 SN3109; ConvF(5.82, 5.82, 5.82); Calibrated: 2007-11-12
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn685; Calibrated: 2007-11-8
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 161

mid/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.517 mW/g


mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.4 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 0.615 W/kg

SAR(1 g) = 0.487 mW/g; SAR(10 g) = 0.363 mW/g

Maximum value of SAR (measured) = 0.513 mW/g

0 dB = 0.513 mW/g

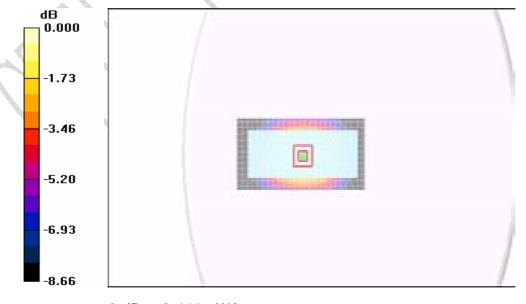
FCC Part 2.1093 (2006-3-23), FCC OET 65C (01-01), IEEE Std 1528™-2003 Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

B.10 GSM850, slip open, middle channel of Front side configuration, voice traffic with earphone

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:4 Medium parameters used (interpolated): f=836.6 MHz; $\sigma=0.999$ mho/m; $\epsilon_r=54.7$; $\rho=1000$ kg/m³;

Medium Notes: Ambient humidity: 48; Ambient temperature: 24; Liquid temperature: 21.5;

Phantom section: Flat Section; Phantom: Flat Phantom ELI4.0; Type: QDOVA001B


DASY4 Configuration:

- Probe: ES3DV3 SN3109; ConvF(5.82, 5.82, 5.82); Calibrated: 2007-11-12
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn685; Calibrated: 2007-11-8
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 161

mid/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.448 mW/g mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.4 V/m; Power Drift = -0.064 dB Peak SAR (extrapolated) = 0.528 W/kg

SAR(1 g) = 0.421 mW/g; SAR(10 g) = 0.312 mW/gMaximum value of SAR (measured) = 0.446 mW/g

0 dB = 0.446 mW/g

Equipment: Mega3 REPORT NO.: I08GE4046-FCC-SAR

B.11 GPRS1900, slip open, high channel of Back side configuration

Communication System: GPRS 1900 class 8; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1909.8 MHz; σ = 1.53 mho/m; ϵ_r = 54.2; ρ = 1000 kg/m³;

Medium Notes: Ambient humidity: 48; Ambient temperature: 24; Liquid temperature: 21.5;

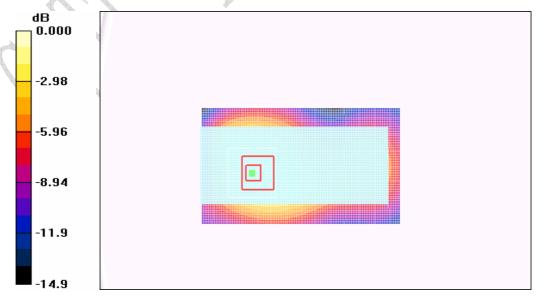
Phantom section: Flat Section; Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA

DASY4 Configuration:

- Probe: ES3DV3 SN3109; ConvF(4.41, 4.41, 4.41); Calibrated: 2007-11-12
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn685; Calibrated: 2007-11-8
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 161

high/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.47 V/m; Power Drift = -0.037 dB


Peak SAR (extrapolated) = 0.518 W/kg

SAR(1 g) = 0.341 mW/g; SAR(10 g) = 0.220 mW/g

Maximum value of SAR (measured) = 0.365 mW/g

high/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.383 mW/g

0 dB = 0.383 mW/g

Equipment: Mega3 REPORT NO.: I08GE4046-FCC-SAR

B.12 GPRS1900, slip close, high channel of back side configuration

Communication System: GPRS 1900 class 8; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1909.8 MHz; σ = 1.53 mho/m; ϵ_r = 54.2; ρ = 1000 kg/m³;

Medium Notes: Ambient humidity: 48; Ambient temperature: 24; Liquid temperature: 21.5;

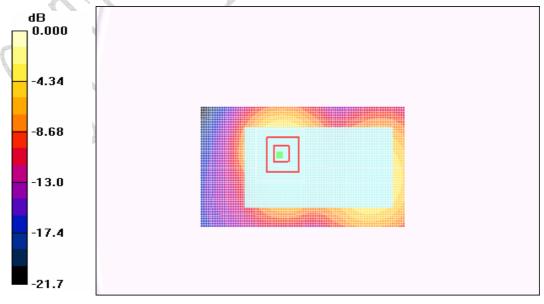
Phantom section: Flat Section; Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA

DASY4 Configuration:

- Probe: ES3DV3 SN3109; ConvF(4.41, 4.41, 4.41); Calibrated: 2007-11-12
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn685; Calibrated: 2007-11-8
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 161

high/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.7 V/m; Power Drift = -0.031 dB


Peak SAR (extrapolated) = 0.506 W/kg

SAR(1 g) = 0.307 mW/g; SAR(10 g) = 0.177 mW/g

Maximum value of SAR (measured) = 0.335 mW/g

high/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.348 mW/g

0 dB = 0.348 mW/g

Equipment: Mega3 REPORT NO.: I08GE4046-FCC-SAR

B.13 GPRS1900, slip open, high channel of Back side configuration, with Bluetooth on

Communication System: GPRS 1900 class 8; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1909.8 MHz; σ = 1.53 mho/m; ϵ_r = 54.2; ρ = 1000 kg/m³;

Medium Notes: Ambient humidity: 48; Ambient temperature: 24; Liquid temperature: 21.5;

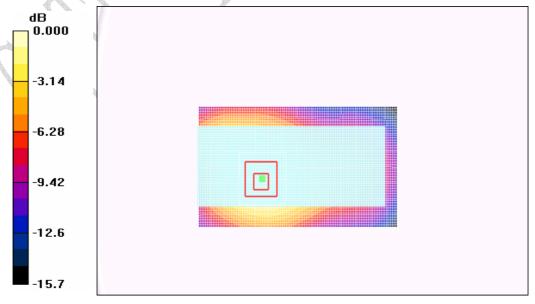
Phantom section: Flat Section; Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA

DASY4 Configuration:

- Probe: ES3DV3 SN3109; ConvF(4.41, 4.41, 4.41); Calibrated: 2007-11-12
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn685; Calibrated: 2007-11-8
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 161

high/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.12 V/m; Power Drift = -0.020 dB


Peak SAR (extrapolated) = 0.362 W/kg

SAR(1 g) = 0.242 mW/g; SAR(10 g) = 0.159 mW/g

Maximum value of SAR (measured) = 0.257 mW/g

high/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.260 mW/g

0 dB = 0.260 mW/g

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

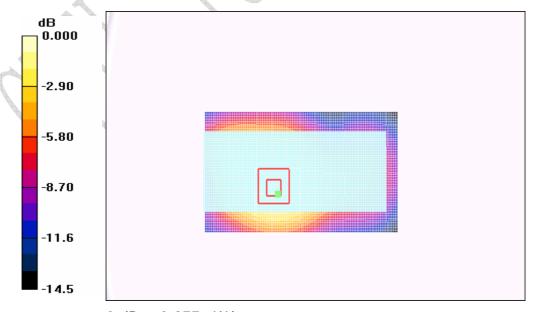
B.14 PCS1900, slip open, high channel of Back side configuration, voice traffic with earphone

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 1909.8 MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 54.2$; $\rho = 1000$ kg/m³;

Medium Notes: Ambient humidity: 48; Ambient temperature: 24; Liquid temperature: 21.5;

Phantom section: Flat Section; Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA

DASY4 Configuration:


- Probe: ES3DV3 SN3109; ConvF(4.41, 4.41, 4.41); Calibrated: 2007-11-12
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn685; Calibrated: 2007-11-8
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 161

high/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.65 V/m; Power Drift = -0.006 dB Peak SAR (extrapolated) = 0.402 W/kg

SAR(1 g) = 0.265 mW/g; SAR(10 g) = 0.172 mW/gMaximum value of SAR (measured) = 0.280 mW/g

high/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.277 mW/g

0 dB = 0.277 mW/g

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

ANNEX C Probes Calibration Certificates


The System Validation was conducted following the requirements of standard IEEE 1528: 2003 Clause 8.3.

The scanned copy of the calibration certificate of the probe used is as following.

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

Calibration Laboratory of Schmid & Partner Engineering AG Zoughausstrasse 43, 8004 Zurich, Switzerland

S Sehwotzerieuher Kalibrierdienat
Sorvice suisse d'étalennage
Sorvizie svizzere di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration cartificates

Glossary:

TSL tissue simulating liquid

NORMx,y,z sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z

DCP diode compression point

Polarization o rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx.y.z: Assessed for E-field polarization 8 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or
 Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field
 distributions based on power measurements for f > 800 MHz. The same setups are used for
 assessment of the parameters applied for boundary compensation (alpha, depth) of which
 typical uncertainty values are given. These parameters are used in DASY4 software to
 improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to
 NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A
 frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending
 the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3109_Nov07

Page 2 of 9

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

ES3DV3 SN:3109

November 12, 2007

Probe ES3DV3

SN:3109

Manufactured:

September 20, 2005

Last calibrated:

May 24, 2006

Recalibrated:

November 12, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3109_Nov07

Page 3 of 9

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

ES3DV3 SN:3109

November 12, 2007

DASY - Parameters of Probe: ES3DV3 SN:3109

Sensitivity in Free Space ^A			Diode Compression ⁸	
NormX	1.22 ± 10.1%	$\mu V/(V/m)^2$	DCP X	94 mV
NormY	1.30 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	96 mV
NormZ	1.28 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	93 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

Sensor Cente	r to Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	6.3	2.9

SAR _{be} [%]	Without Correction Algorithm	6.3	2.9
SAR _{be} [%]	With Correction Algorithm	1.7	0.5

Typical SAR gradient: 5 % per mm

TSL	1750 MHz	Typical SAR	gradient: 10 % per mm
-----	----------	-------------	-----------------------

900 MHz

Sensor Center to Phantom Surface Distance		3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	7.8	4.7
SAR _{te} [%]	With Correction Algorithm	0.0	1.4

Sensor Offset

Probe Tip to Sensor Center 2.0 mm

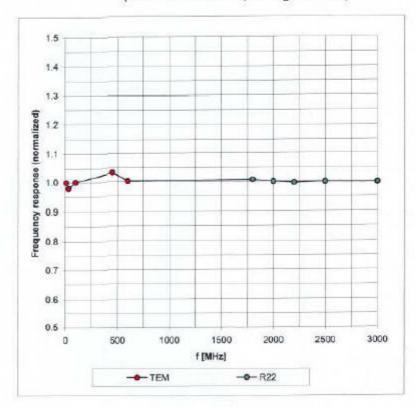
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3109_Nov07

Page 4 of 9

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

Numerical linearization parameter: uncertainty not required.

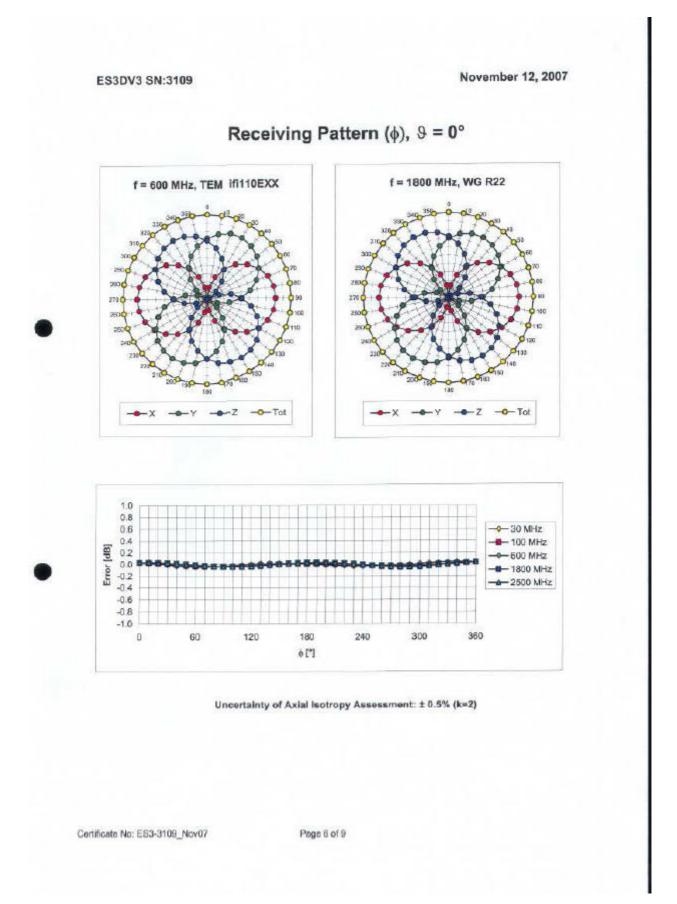

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

ES3DV3 SN:3109

November 12, 2007

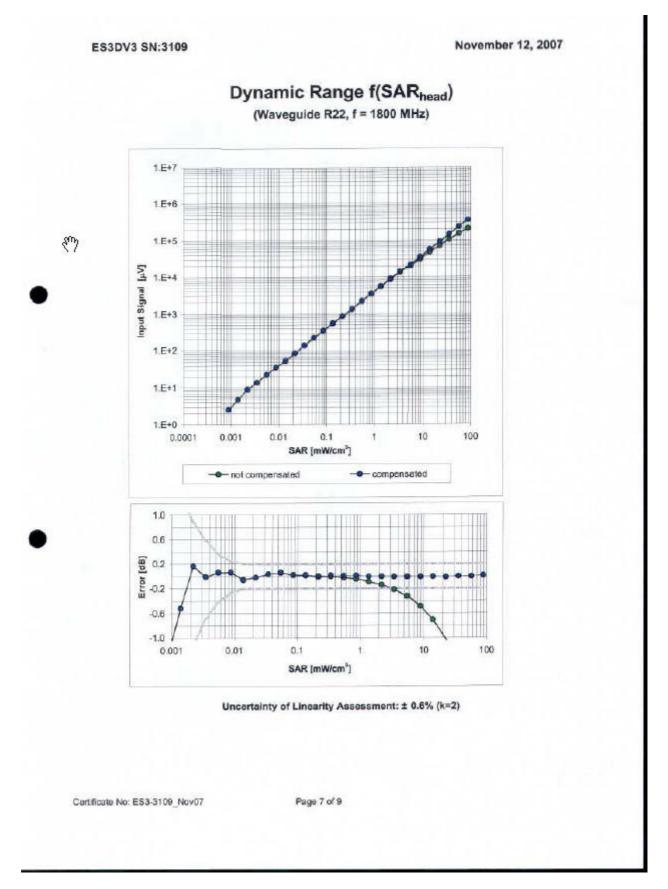
Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

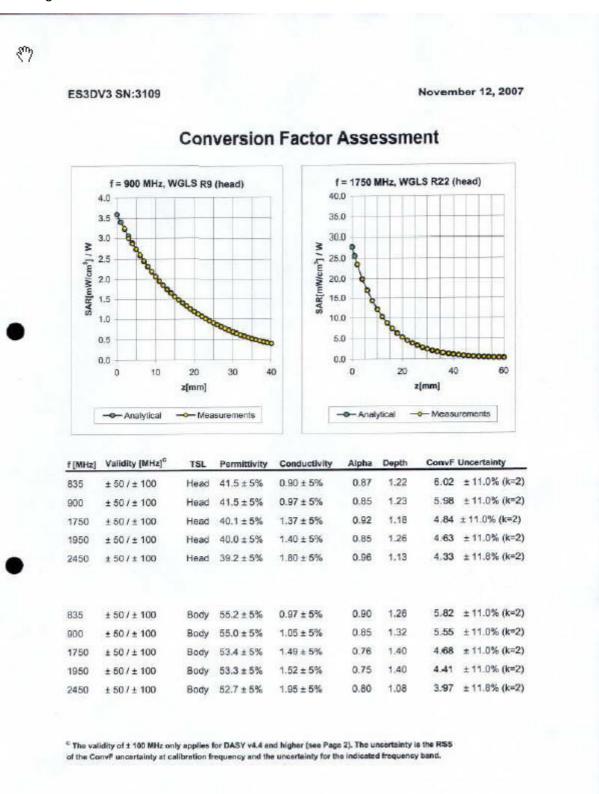

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ES3-3109_Nov07

Page 5 of 9



Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

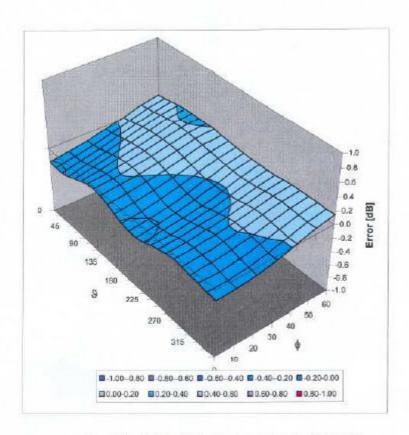


FCC Part 2.1093 (2006-3-23), FCC OET 65C (01-01), IEEE Std 1528™-2003 Equipment: Mega3 REPORT NO.: I08GE4046-FCC-SAR

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

Page 8 of 9

Certificate No: ES3-3109_Nov07


Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

ES3DV3 SN:3109

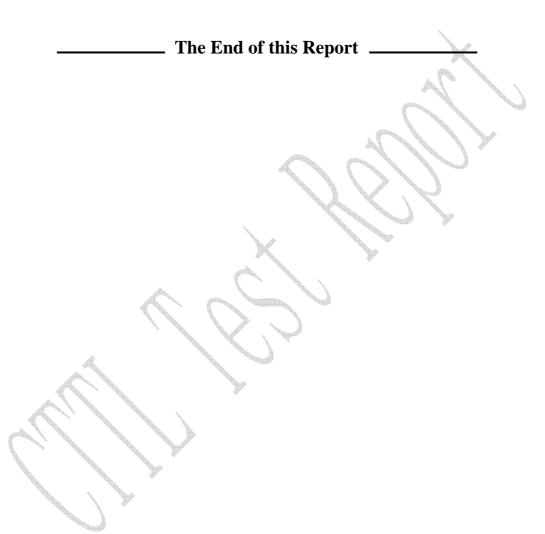
November 12, 2007

Deviation from Isotropy in HSL

Error (é, 8), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3109_Nov07


Page 9 of 9

Equipment: Mega3 REPORT NO.: 108GE4046-FCC-SAR

ANNEX D Deviations from Prescribed Test Methods

No deviation from Prescribed Test Methods.

