

DATE: 10 February 2004

I.T.L. (PRODUCT TESTING) LTD. EMC Test For EMTS Inc.

Equipment under test:

IntegrAlarm Passive Infra Red Detector

(Transmitter Section)

IA-PIR1

Approved by:

I. Raz, EMC Laboratory Manager

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd.

This report relates only to items tested.

Measurement/Technical Report for EMTS Inc.

IntegrAlarm Passive Infra Red Detector

(For Transmitter Section)

IA-PIR1

FCC ID:RUF150703

10 February 2004

This report concerns:	Original Grant x	Class II change
Class B verification C	Class A verification	Class I change
Equipment type:	Radio Telemetry Transmit	ter
Request Issue of Grant:		
xImmediately upon co	empletion of review	
Limits used:		
CISPR 22	Part 15 <u>x</u>	
Measurement procedure used	d is ANSI C63.4-2001.	
Application for Certification	Appl	icant for this device:
orepared by:	(diffe	erent from "prepared by")
Ishaishou Raz	Doro	n Lavee
ITL (Product Testing) L	td. EMT	S Inc.
Kfar Bin Nun	300 A	Alden Road
D.N. Shimshon 99780	Mark	tham, Ontario, L3R4C1
Israel	Cana	
e-mail Sraz@itl.co.il	Fax:	+1-905-946-8589 +1-905-947-0138 il: doronl@aqi.co.il

TABLE OF CONTENTS

1.	GENERAL INFORMATION	4
	1.1 Administrative Information	4
	1.2 List of Accreditations	
	1.3 Product Description	
	1.5 Test Facility	
	1.6 Measurement Uncertainty	8
2.	PRODUCT LABELING	9
3.	SYSTEM TEST CONFIGURATION	
	3.1 Justification	
	3.2 EUT Exercise Software	
	3.4 Equipment Modifications	
	3.5 Configuration of Tested System	
4.	BLOCK DIAGRAM	
	4.1 Schematic Block/Connection Diagram	
	4.2 Theory of Operation	
5.	CUSTOMER'S DECLARATION	
6.	SPURIOUS RADIATED MEASUREMENT PHOTOS	
7.	SPURIOUS RADIATED EMISSION, BELOW 1 GHZ	14
	7.1 Test Specification	14
	7.2 Test Procedure	
	7.3 Measured Data	
	7.5 Field Strength Calculation	
8.	SPURIOUS RADIATED EMISSION ABOVE 1 GHZ	
	8.1 Radiated Emission Above 1 GHz	
	8.2 Test Data	
_	8.3 Test Instrumentation Used, Radiated Measurements Above 1 GHz	
9.	MAXIMUM TRANSMITTED PEAK POWER OUTPUT	
	9.1 Test procedure	
	9.3 Test Equipment Used	
10.	PEAK POWER OUTPUT OUT OF 902-928 MHZ BAND	31
	10.1 Test procedure	
	10.2 Results table	
	10.3 Test Equipment Used	
11.	20 DB BANDWIDTH	
	11.2 Results table	
	11.3 Test Equipment Used	
12.	BAND EDGE SPECTRUM	43
	12.1 Test procedure	
	12.2 Results table	
	12.3 Test Equipment Used	
13.	ANTENNA GAIN	
14.	R.F EXPOSURE/SAFETY	
15.	PHOTOGRAPHS OF TESTED E.U.T	49

1. General Information

1.1 Administrative Information

Manufacturer: EMTS Inc.

Manufacturer's Address: 300 Alden Road

Markham, Ontario L3E4C1

Canada

Tel: +1-905-946-8589 Fax: +1-905-947-0138

Manufacturer's Representative: Doron Lavee

Equipment Under Test (E.U.T): IntegrAlarm Passive Infra Red

Detector

Equipment Model No.: IA-PIR1

Equipment Serial No.: Not designated

Date of Receipt of E.U.T: 14.12.03

Start of Test: 14.12.03

End of Test: 14.12.03

Test Laboratory Location: I.T.L (Product Testing) Ltd.

Kfar Bin Nun, ISRAEL 99780

Test Specifications: FCC Part 15, sub-part C

1.2 List of Accreditations

The EMC laboratory of I.T.L. is accredited by the following bodies:

- 1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
- 2. The Federal Communications Commission (FCC) (U.S.A.), Registration No. 90715.
- 3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
- 4. The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) (Japan), Registration Numbers: C-1350, R-1285.
- 5. Industry Canada (Canada), File No. IC 4025.
- 6. TUV Product Services, England, ASLLAS No. 97201.
- 7. Nemko (Norway), Authorization No. ELA 207.

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.

1.3 Product Description

The IntegrAlarm wireless security system includes a Control Panel and a number of wireless peripheral units. The system operates on the ISM wireless band of 902-928 MHz, in frequency hopping mode, transmitting short (about 10 ms) packets of data, with each packet transmitted on a different frequency. Time and frequency synchronization is maintained by a synchronization signal transmitted by the system Control Panel to the various peripherals (including the IA-PIR 1) every 3 minutes. The system operates on 56 pseudo random selected channels.

In its present configuration, the system includes five types of peripheral units:

Door / window sensor.

Passive infrared detector.

Smoke detector.

Handheld remote control.

Remote siren.

The PIR detector unit consists of a PIR sensor and circuitry, an RF transceiver, a micro-controller, a non-volatile memory, a power supply, a tamper switch, a test switch and a 3V Lithium HNO₂ battery type 123.

The sensor unit is composed of the following principal parts:

Mounting plate.

Sensor PCB assembly with RF controller PCB, LED and battery.

Inner cover.

Outer cover with IR motion lens.

To reduce false alarms, the PIR is pet-immune and has a selectable alarm threshold (1, 2 or 3 movements in the protected space). Once an alarm has been transmitted, the PIR shuts down for a minimum of 2 minutes. After 2 minutes, the PIR will automatically be rearmed, provided that movement within the protected space has ceased and not resumed.

Depending on the space to be protected, the PIR has either a wide-angle lens, with a 70° viewing angle and a maximum range of 15 m, or a long-range lens, with a 9° viewing angle and a maximum range of 21 m. (The standard lens supplied is the wide-angle lens).

Operating frequency band – ISM 902-928 MHz. The transmitter operation frequency range is 903.5-913.5 MHz.

Mode of operation – frequency hopping; every data packet is transmitted on a different pseudo random selected frequency.

Data packet transmission duration – less than 10 milliseconds.

Data packet validity check – CRC.

Transmission and reception verification – two-way communication; each received packet is acknowledged, with an automatic repeat request (ARQ) in case of unacknowledged data packet.

IR detector sensitivity – Δ 1.6 deg. @ 0.6 m/sec.

Movement speed range -0.3 to 1.5 m/sec.

Detection field of view @ maximum range with WA lens -21 m @ 15 m range Detection field of view @ maximum range with LR lens -3.5 m @ 21 m range *

Events reported – movement in room, tamper.

Automatic self-test (transmission of a data packet and receipt of acknowledgment).

Power source – 3V Lithium MNO₂ battery type 123.

Average current drain in normal use – 23 uA

Current drain in "no movement" state – 15 uA

1.4 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4: 2001. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.5 Test Facility

The radiated emissions tests were performed at I.T.L.'s testing facility at Kfar Bin-Nun, Israel. This site is a FCC listed test laboratory (FCC Registration No. 90715, date of listing December 12, 2003).

I.T.L.'s EMC Laboratory is also accredited by A2LA, certificate No. 1152.01.

1.6 Measurement Uncertainty

Radiated Emission

The Open Site complies with the ±4 dB Normalized Site Attenuation requirements of ANSI C63.4-2001. In accordance with Paragraph 5.4.6.1 of this standard, this tolerance includes instrumentation calibration errors, measurement technique errors, and errors due to site anomalies.

2. Product Labeling

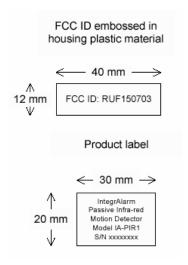


Figure 1. FCC Label

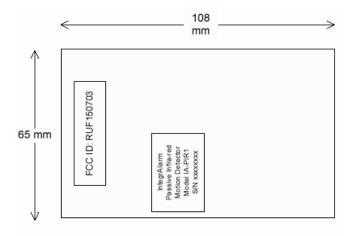


Figure 2. Location of Label on EUT

3. System Test Configuration

3.1 Justification

The E.U.T. is a fixed wall mounted installation, mounted in the vertical position. During the tests, it was positioned in vertical orientation.

It is impossible to test the IA-PIR 1 under normal operating conditions. This is because the data packets transmitted by the IntegrAlarm system are too short (<10 ms) for the system to be tested for emission levels by any standard test equipment. Moreover, because the system operates in frequency hopping mode, with each packet transmitted on a different frequency, no standard test equipment is capable of synchronizing with the system for test purposes.

Accordingly, the IA-PIR 1 EUT is provided with a Test Mode pushbutton switch on the PCB. Test Mode includes three transceiver options. One press of the Test Mode button selects continuous reception, a second press selects continuous transmission of carrier wave only, a third press selects continuous transmission of modulated signal, and a fourth press returns the EUT to normal operating mode. If continuous transmission of modulated signal is selected, the EUT will transmit binary data (1-0-1-0...) at its normal transmission rate.

Test Mode transmission / reception takes place on one of four predefined frequencies (903.500, 913.500, 916.500 or 926.500 MHz). The default is 903.500 MHz. The IA-PIR 1 tamper switch is used to change the frequency while the EUT is in Test Mode.

3.2 EUT Exercise Software

The EUT does not include dedicated exercise software. The test procedure for the EUT is described in Section 3.1 above.

3.3 Special Accessories

No special accessories were needed to achieve compliance.

3.4 Equipment Modifications

No modifications were needed to achieve compliance.

3.5 Configuration of Tested System

E.U.T.

Figure 3. Configuration of Tested System

4. Block Diagram

4.1 Schematic Block/Connection Diagram

Intentionally Blank for Reasons of Confidentiality

Figure 4. E.U.T. Block Diagram

4.2 Theory of Operation

The IA-PIR 1 is part of the IntegrAlarm System. This system consists of a Control Panel and a number of Wireless Peripheral Units, such as wireless security sensors, wireless environmental sensors and wireless actuators such as sirens/strobes. Two-way digital communication between the Control Panel and the Wireless Peripheral Units provides full control and supervision of the system by the CP and the Central Station operator.

Each time motion is detected in the space secured by the IA-PIR 1, the IA-PIR 1 sends an event data packet to the Control Panel. This is indicated by a red LED (visible through a window in the IA-PIR 1 outer cover) which illuminates momentarily on the IA-PIR 1. The Control Panel then sends back an acknowledgment data packet, which is indicated by a green LED (visible through a hole in the IA-PIR 1 outer cover) which illuminates momentarily on the IA-PIR 1. If the IntegrAlarm System is armed, the Control Panel then sends a suitable code to the monitoring service (central station) via PSTN.

In addition, if the IA-PIR 1 is tampered with, it sends an alarm data packet to the Control Panel. The Control Panel then sends back an acknowledgment data packet to the IA-PIR 1 and sends an alarm code to the monitoring service via PSTN (even if the Control Panel is not armed).

5. Customer's Declaration

EMTS INC.

300 Alden Road Markham, Ontario L3R 4C1 Canada

February 09, 2004

DECLARATION

To Whom It May Concern,

I hereby declare that the product, IntegrAlarm IA-PIR1 Passive Infra Red Detector, FCC ID RUF150703, complies with the following requirements of Part 15, Sub-part C, Section 15.247:

- 1. Number of hopping frequencies, Section 15.247 (a) (1).
- 2. Channel average time occupancy, Section 15.247 (a) (1).
- 3. Channel frequency separation, Section 15.247 (a) (1).

Thank you,

Doron Lavee

O lave

Engineering Manager

EMTS Inc.

Tel. (905) 946-8477 Fax (905) 947-0138

6. Spurious Radiated Measurement Photos

Figure 5. Spurious Radiated Emission Test. Front

7. Spurious Radiated Emission, Below 1 GHz

7.1 Test Specification

30kHz-1000 MHz, FCC, Part 15, Subpart C

7.2 Test Procedure

The E.U.T. operation mode and test set-up are as described in Section 3.

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in Figure 3.1.

The frequency range 30kHz-1000 MHz was scanned, and the list of the highest emissions was verified and updated accordingly.

The levels of the emissions within the frequency ranges of the restricted bands (Section 15.205 of FCC Part 15) were compared to the limits of the table in Section 15.209 (a), General Requirements.

The emissions were measured using a computerized EMI receiver complying to CISPR 16 requirements. The specification limits and applicable correction factors are loaded to the receiver via a 3.5" floppy disk.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization.

Verification of the E.U.T emissions was based on the following methods:

Turning the E.U.T on and off.

Using a frequency span less than 10 MHz.

Observation of the signal level during turntable rotation. Background noise is not affected by the rotation of the E.U.T.

7.3 Measured Data

The signals in the band 30 kHz - 1.0 GHz were below the spectrum analyzer noise level which is at least 6dB below the specification limit.

TEST PERSONNEL:	
Tester Signature:	Date: 07.01.04

Typed/Printed Name: E. Pitt

7.4 Test Instrumentation Used, Radiated Measurements

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	HP	85422E	3411A00102	January 31, 2003	1 year
RF Section	НР	85420E	3427A00103	January 31, 2003	1 year
Antenna Bioconical	ARA	BCD 235/B	1041	April 20, 2003	1 year
Antenna Log Periodic	ARA	LPD-2010/A	1038	April 20, 2003	1 year
Active Loop Antenna	EMCO	6502	9506-2950	October 17, 2003	1 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	HP	ThinkJet 2225	2738508357.0	N/A	N/A

7.5 Field Strength Calculation

The field strength is calculated directly by the EMI Receiver software, and a "Correction Factors" data disk, using the following equation:

$$[dB\mu v/m] FS = RA + AF + CF$$

FS: Field Strength [dB\u00e4v/m]

RA: Receiver Amplitude [dBµv]

AF: Receiving Antenna Correction Factor [dB/m]

CF: Cable Attenuation Factor [dB]

No external pre-amplifiers are used.

Spurious Radiated Emission Above 1 GHz 8.

8.1 Radiated Emission Above 1 GHz

The E.U.T operation mode and test set-up are as described in Section 3.

A preliminary measurement to characterize the E.U.T was performed inside the shielded room, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in Figure 3.1.

The levels of the emissions within the frequency ranges of the restricted bands (Section 15.205 of FCC Part 15) were compared to the limits of the table in Section 15.209 (a), General Requirements.

In the frequency range 1-2.9 GHz, a computerized EMI receiver complying to CISPR 16 requirements and a High Pass Filter were used. The test distance was 3 meters.

In the frequency range 2.9-9.5 GHz, a spectrum analyzer including a low noise amplifier was used. The test distance was 3 meters. During peak measurements, the I.F. bandwidth was 1 MHz, and video bandwidth 3 MHz. During average measurements, the I.F. bandwidth was 1 MHz and video bandwidth was 100 Hz. The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization.

Verification of the E.U.T emissions was based on the following methods: turning the E.U.T on and off; using a frequency span less than 10 MHz; observation of the signal level during turntable rotation. (Background noise is not affected by the rotation of the E.U.T.)

8.2 Test Data

HIDGEN (ENT

JUDGEMENT:	Passed by 8.	.3 dBμV/m
The EUT met the red The worst cases were	1	F.C.C. Part 15, Subpart C, specification
for 903.5 MHz,	11.4 dB at 2710.00	MHz frequency, vertical polarization
for 913.5 MHz,	8.3 dB at 2740 MH	Iz frequency, vertical polarization
The details of the hig	ghest emissions are	given in Figure 6 to Figure 13.
TEST PERSONNEL	: D	
TEST PERSONNEL Tester Signature:	Mil	Date: 07.01.04

Typed/Printed Name: E. Pitt

E.U.T Description IntegrAlarm Passive Infra Red

Detector

Type IA-PIR1

Serial Number: Not designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal Frequency range: 1.0 GHz to 9.5 GHz

Test Distance: 3 meters Detector: Peak

Operating Frequency: 903.5 MHz

Freq.	Peak Amp	Correction Factors	Peak. Specification	Peak. Margin
(MHz)	$\left(dB\mu V/m\right)$	(dB)	$(dB\;\mu V/m)$	(dB)
2710.00	56.5	43.5**	74.0	-17.5
3614.00	46.7	6.0*	74.0	-27.3
4517.00	49.4	8.3*	74.0	-24.6

Figure 6. Radiated Emission. Antenna Polarization: HORIZONTAL.

Detector: Peak

Notes:

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

^{*} Correction Factor = Antenna Factor + Cable Loss-Preamplifier Gain

^{**} Correction Factor = Antenna Factor + Cable Loss

E.U.T Description IntegrAlarm Passive Infra Red

Detector

Type IA-PIR1

Serial Number: Not designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal Frequency range: 1.0 GHz to 9.5 GHz

Test Distance: 3 meters Detector: Average

Operating Frequency: 903.5 MHz

Freq.	Average Amp	Correction Factors	Average Result***	Average Specification	Peak. Margin
(MHz)	$(dB\mu V/m)$	(dB)	$(dB\mu V/m)$	$(dB\;\mu V/m)$	(dB)
2710.00	48.6	43.5**	28.6	54.0	-25.4
3614.00	38.8	6.0*	18.8	54.0	-35.2
4517.00	41.9	8.3*	21.9	54.0	-32.1

Figure 7. Radiated Emission. Antenna Polarization: HORIZONTAL.

Detector: Average

Notes:

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

* Correction Factor = Antenna Factor + Cable Loss-Preamplifier Gain

** Correction Factor = Antenna Factor + Cable Loss

Duty Cycle Factor =
$$20 \log \frac{10}{100} = -20 dB$$

***Average Result = Average Amp + Duty Cycle Factor

Note: Maximum transmission "ON" time is 10 msec.

E.U.T Description IntegrAlarm Passive Infra Red

Detector

Type IA-PIR1

Serial Number: Not designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Vertical Frequency range: 1.0 GHz to 9.5 GHz

Test Distance: 3 meters Detector: Peak

Operating Frequency: 903.5 MHz

Freq.	Peak Amp	Correction Factors	Peak. Specification	Peak. Margin
(MHz)	$\left(dB\mu V/m\right)$	(dB)	$(dB\;\mu V/m)$	(dB)
2710.00	62.6	43.5**	74.0	11.4
3614.00	46.8	6.0*	74.0	27.2
4517.00	50.4	8.3*	74.0	24.4

Figure 8. Radiated Emission. Antenna Polarization: VERTICAL. Detector: Peak

Notes:

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

^{*} Correction Factor = Antenna Factor + Cable Loss-Preamplifier Gain

^{**} Correction Factor = Antenna Factor + Cable Loss

E.U.T Description IntegrAlarm Passive Infra Red

Detector

Type IA-PIR1

Serial Number: Not designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Vertical Frequency range: 1.0 GHz to 9.5 GHz

Test Distance: 3 meters Detector: Average

Operating Frequency: 903.5 MHz

Freq.	Average Amp	Correction Factors	Average Result***	Average Specification	Peak. Margin
(MHz)	$\left(dB\mu V/m\right)$	(dB)	$(dB\mu V/m)$	$(dB\;\mu V/m)$	(dB)
2710.00	58.4	43.5**	38.4	54.0	-15.6
3614.00	38.8	6.0*	18.8	54.0	-35.2
4517.00	45.2	8.3*	25.2	54.0	-28.8

Figure 9. Radiated Emission. Antenna Polarization: VERTICAL.

Detector: Average

Notes:

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

* Correction Factor = Antenna Factor + Cable Loss-Preamplifier Gain

** Correction Factor = Antenna Factor + Cable Loss

Duty Cycle Factor =
$$20 \log \frac{10}{100} = -20 dB$$

***Average Result = Average Amp + Duty Cycle Factor

Note: Maximum transmission "ON" time is 10 msec.

E.U.T Description IntegrAlarm Passive Infra Red

Detector

Type IA-PIR1

Serial Number: Not designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal Frequency range: 1.0 GHz to 9.5 GHz

Test Distance: 3 meters Detector: Peak

Operating Frequency: 913.5 MHz

Freq.	Peak Amp	Correction Factors	Peak. Specification	Peak. Margin
(MHz)	$\left(dB\mu V/m\right)$	(dB)	$(dB~\mu V/m)$	(dB)
2740.00	60.7	43.5**	74.0	-13.3
3654.00	45.5	6.0*	74.0	-28.5
4567.00	48.3	8.3*	74.0	-25.7

Figure 10. Radiated Emission. Antenna Polarization: HORIZONTAL.

Detector: Peak

Notes:

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

^{*} Correction Factor = Antenna Factor + Cable Loss-Preamplifier Gain

^{**} Correction Factor = Antenna Factor + Cable Loss

E.U.T Description IntegrAlarm Passive Infra Red

Detector

Type IA-PIR1

Serial Number: Not designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal Frequency range: 1.0 GHz to 9.5 GHz

Test Distance: 3 meters Detector: Average

Operating Frequency: 913.5 MHz

Freq.	Average Amp	Correction Factors	Average Result***	Average Specification	Peak. Margin
(MHz)	$(dB\mu V/m)$	(dB)	$(dB\mu V/m)$	$(dB\;\mu V/m)$	(dB)
2740.00	56.3	43.5**	36.3	54.0	-17.7
3654.00	34.2	6.0*	14.2	54.0	-39.8
4567.00	38.9	8.3*	18.9	54.0	-35.1

Figure 11. Radiated Emission. Antenna Polarization: HORIZONTAL.

Detector: Average

Notes:

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

* Correction Factor = Antenna Factor + Cable Loss-Preamplifier Gain

** Correction Factor = Antenna Factor + Cable Loss

Duty Cycle Factor =
$$20 \log \frac{10}{100} = -20 dB$$

***Average Result = Average Amp + Duty Cycle Factor

Note: Maximum transmission "ON" time is 10 msec.

E.U.T Description IntegrAlarm Passive Infra Red

Detector

Type IA-PIR1

Serial Number: Not designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Vertical Frequency range: 1.0 GHz to 9.5 GHz

Test Distance: 3 meters Detector: Peak

Operating Frequency: 913.5 MHz

Freq.	Peak Amp	Correction Factors	Peak. Specification	Peak. Margin
(MHz)	$\left(dB\mu V/m\right)$	(dB)	$(dB\;\mu V/m)$	(dB)
2740.00	65.7	43.5**	74.0	-8.3
3654.00	46.7	6.0*	74.0	-27.3
4567.00	49.3	8.3*	74.0	-24.7

Figure 12. Radiated Emission. Antenna Polarization: VERTICAL.

Detector: Peak

Notes:

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

^{*} Correction Factor = Antenna Factor + Cable Loss-Preamplifier Gain

^{**} Correction Factor = Antenna Factor + Cable Loss

E.U.T Description IntegrAlarm Passive Infra Red

Detector

Type IA-PIR1

Serial Number: Not designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Vertical Frequency range: 1.0 GHz to 9.5 GHz

Test Distance: 3 meters Detector: Average

Operating Frequency: 913.5 MHz

Freq.	Average Amp	Correction Factors	Average Result	Average Specification	Peak. Margin
(MHz)	$(dB\mu V/m)$	(dB)	$(dB\mu V/m)$	$(dB\ \mu V/m)$	(dB)
2740.00	62.9	43.5**	42.9	54.0	-11.1
3654.00	37.2	6.0*	17.2	54.0	-36.8
4567.00	42.3	8.3*	22.3	54.0	-31.7

Figure 13. Radiated Emission. Antenna Polarization: VERTICAL.

Detector: Average

Notes:

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

* Correction Factor = Antenna Factor + Cable Loss-Preamplifier Gain

** Correction Factor = Antenna Factor + Cable Loss

Duty Cycle Factor =
$$20 \log \frac{10}{100} = -20 dB$$

***Average Result = Average Amp + Duty Cycle Factor

Note: Maximum transmission "ON" time is 10 msec.

8.3 Test Instrumentation Used, Radiated Measurements Above 1 GHz

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
Receiver	НР	85422E	3411A00102	January 31, 2003	1 year
RF Section	НР	85420E	3427A00103	January 31, 2003	1 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	НР	ThinkJet2225	2738508357	N/A	N/A
Antenna-Log Periodic	A.H.System	SAS-200/511	253	January 31,2003	2 year
Double Ridged Waveguide Horn Antenna	EMCO	3115	9702-5111	May 1, 2003	1 year
Horn Antenna	ARA	SWH-28	1007	October 28, 2003	1 year
Band Pass Filter	SERNO	22102-0001	322	August 15, 2003	1 year
Low Noise Amplifier	DBS MICROWAVE	LNA-DBS- 0411N313	013	April 10, 2003	1 year
Spectrum Analyzer	НР	8592L	3926A01204	January 31,2003	1 year
Attenuator	MACOM	ATT-10	N/A	July 27, 2003	1 year
Attenuator	MACOM	ATT-20	N/A	July 27, 2003	1 year

9. Maximum Transmitted Peak Power Output

9.1 Test procedure

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through EXT ATTT=20dB and an appropriate coaxial cable. Special attention was taken to prevent Spectrum Analyzer RF input overload. The Spectrum Analyzer was set to 1 MHz resolution BW. Peak power level was measured at selected operation frequencies.

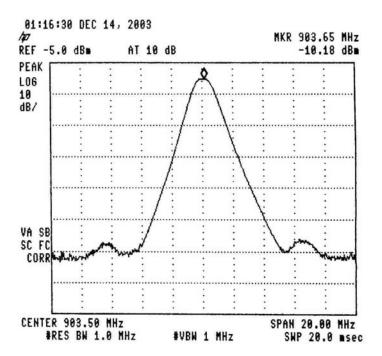


Figure 14.— 903.5 MHz

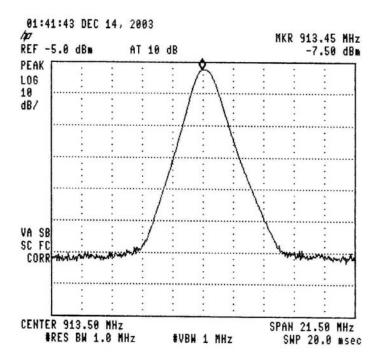


Figure 15.— 913.5 MHz

9.2 Results table

E.U.T. Description: IntegrAlarm Passive Infra Red Detector

Model No.: IA-PIR1

Serial Number: Not Designated

Specification: FCC Part 15, Subpart C

Operation	Reading	EXT ATT +	Final	Specification	Margin
Frequency		CL	Result		
(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)
903.5	-10.2	20.5	10.3	30.0	-19.7
913.5	-7.5	20.5	13.0	30.0	-17.0

Figure 16 Maximum Power Output

JUDGEMENT: Passed by 17.0 dB

TEST PERSONNEL:

Tester Signature: Date: 07.01.04

Typed/Printed Name: E. Pitt

9.3 Test Equipment Used.

Peak Power Output

Instrument	Manufacture	Model	Serial Number	Calibration	
				Last Calibr.	Period
Spectrum Analyzer	HP	8592L	3826A01204	January 31, 2003	1 year
Cable	Avnet	MTS	N/A	September 9, 2003	1 year

Figure 17 Test Equipment Used

10. Peak Power Output Out of 902-928 MHz Band

10.1 Test procedure

The E.U.T. antenna terminal was connected to the spectrum analyzer through a 20dB attenuator and an appropriate coaxial cable. The spectrum analyzer was set to 3.0 kHz resolution BW for the frequency range 30 kHz-300kHz and 100 kHz resolution BW for the frequencies above 300 kHz. The frequency range from 30 kHz to 9.5 GHz was scanned. Level of spectrum components out of the 902-928 MHz was measured at the selected operation frequencies.

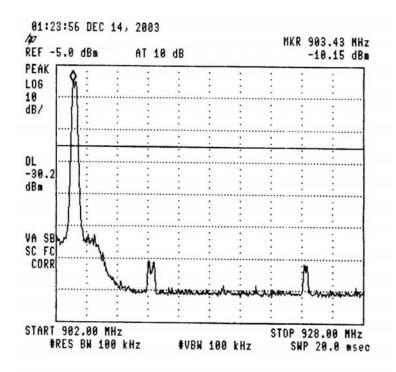


Figure 18.— 903.5 MHz

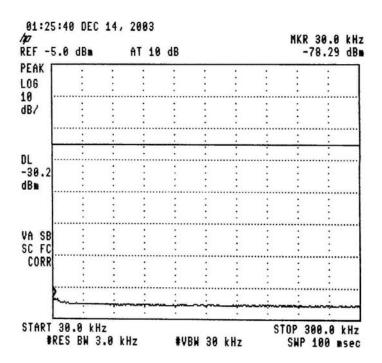


Figure 19.— 903.5 MHz

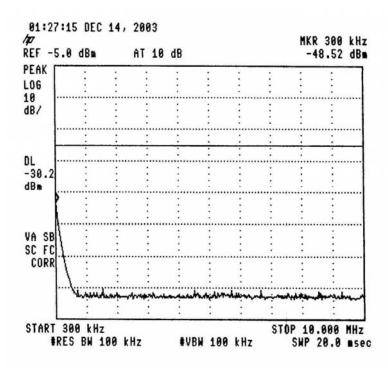


Figure 20.— 903.5 MHz

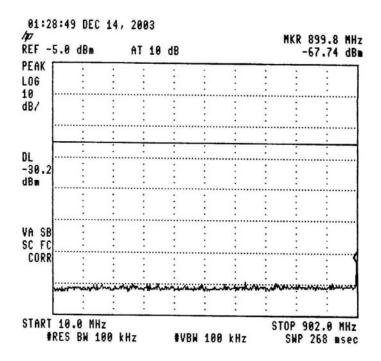


Figure 21.— 903.5 MHz

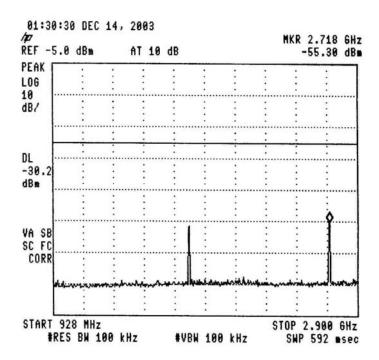


Figure 22.— 903.5 MHz

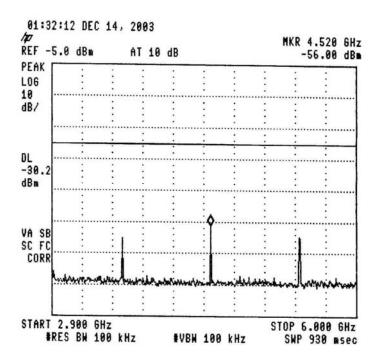


Figure 23.— 903.5 MHz



Figure 24.— 903.5 MHz

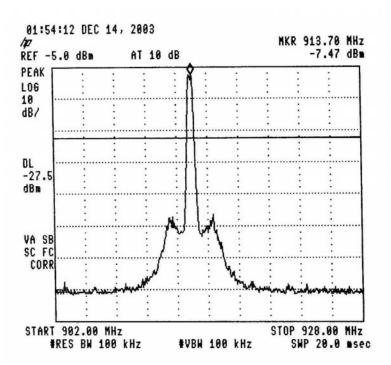


Figure 25.— 913.5 MHz

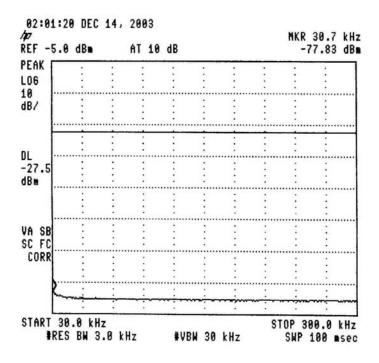


Figure 26.— 913.5 MHz

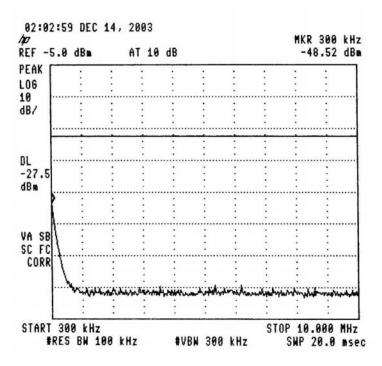


Figure 27.— 913.5 MHz

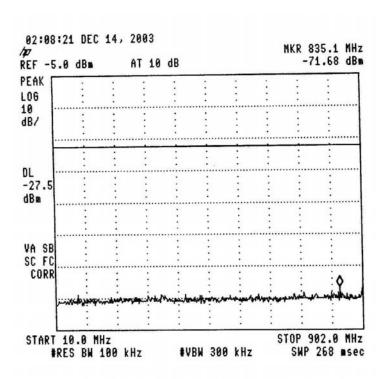


Figure 28.— 913.5 MHz

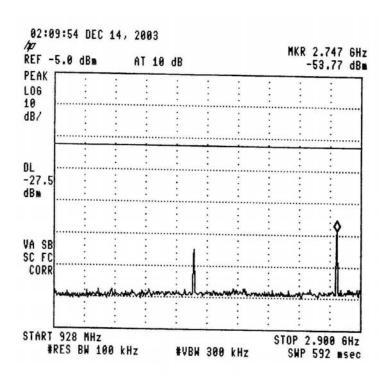


Figure 29.— 913.5 MHz

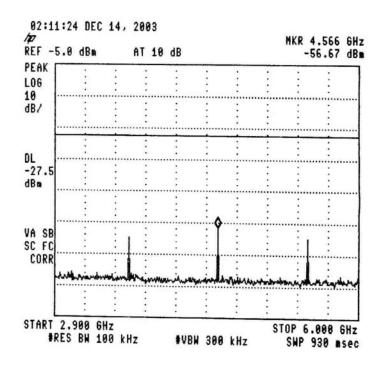


Figure 30.— 913.5 MHz

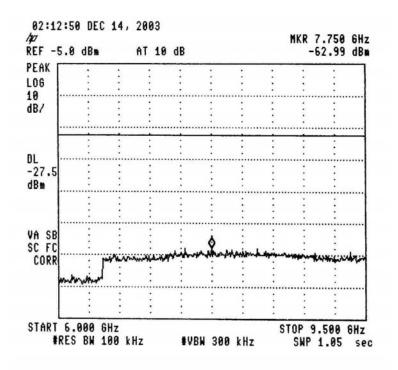


Figure 31.— 913.5 MHz

10.2 Results table

E.U.T. Description: IntegrAlarm Passive Infra Red Detector

Model No.: IA-PIR1

Serial Number: Not Designated

Specification: FCC Part 15, Subpart C (15.247)

Operation	Reading	Specification	Margin
Frequency			
(MHz)	(dBc)	(dBc)	(dB)
903.5	38.4	20.0	18.4
913.5	41.1	20.0	21.1

Figure 32 Peak Power Output of 902-928 MHz Band

JUDGEMENT: Passed by 18.4 dB

TEST PERSONNEL:
Tester Signature: Date: 07.01.04

Typed/Printed Name: E. Pitt

10.3 Test Equipment Used.

Peak Power Output of 902-928 MHz Band

Instrument	Manufacture	Model	Serial Number	Calibration	
				Last	Period
				Calibr.	
Spectrum Analyzer	HP	8592L	3826A01204	January 31, 2003	1 year
Cable	Avnet	MTS	N/A	September 20, 2003	1 year

Figure 33 Test Equipment Used

11. 20 dB Bandwidth

11.1 Test procedure

The E.U.T. was set to the applicable test frequency. The E.U.T. antenna terminal was connected to the spectrum analyzer through a 20dB attenuator and an appropriate coaxial cable. The spectrum analyzer was set to 10 kHz resolution BW. The spectrum bandwidth of the E.U.T. at the point of 20 dB below maximum peak power was measured and recorded.

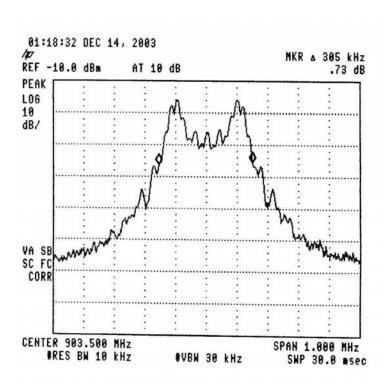


Figure 34 — 903.5 MHz

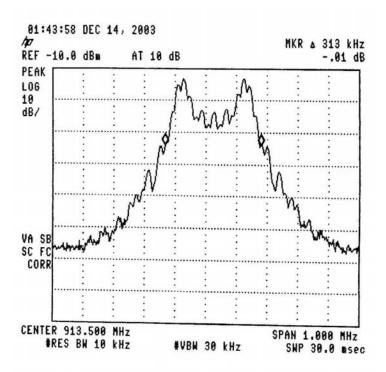


Figure 35 — 913.5 MHz

11.2 Results table

E.U.T. Description: IntegrAlarm Passive Infra Red Detector

Model No.: IA-PIR1

Serial Number: Not Designated

Specification: FCC Part 15, Subpart C: (15.247-a2)

Operation	Reading	Specification	Margin
Frequency			
(MHz)	(kHz)	(kHz)	(kHz)
903.5	305.0	500.0	-195
913.5	313.0	500.0	-185

Figure 36 20 dB Bandwidth

JUDGEMENT: Passed by 185 kHz

TEST PERSONNEL:

Tester Signature: _____ Date: 07.01.04

Typed/Printed Name: E. Pitt

11.3 Test Equipment Used.

6 dB Minimum Bandwidth

Instrument	Manufacture	Model	Serial Number	Calibration	
				Last	Period
				Calibr.	
Spectrum Analyzer	HP	8592L	3826A01204	January 31, 2003	1 year
Cable	Avnet	MTS	N/A	September 20, 2003	1 year

Figure 37 Test Equipment Used

12. Band Edge Spectrum

[In Accordance with section 15.247(c)]

12.1 Test procedure

Enclosed are spectrum analyzer plots for the lowest operation frequency (903.5 MHz) and the highest operation frequency (913.5 MHz) in which the E.U.T. is planned to be used.

The E.U.T. antenna terminal was connected to the spectrum analyzer through a 20dB attenuator and an appropriate coaxial cable. The spectrum analyzer was set to 100 kHz resolution BW. Maximum power level below 902 MHz and above 928 MHz was measured relative to power level at 903.5 MHz and 913.5 MHz correspondingly.

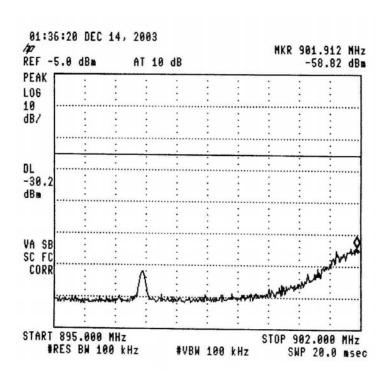


Figure 38 — 903.5 MHz

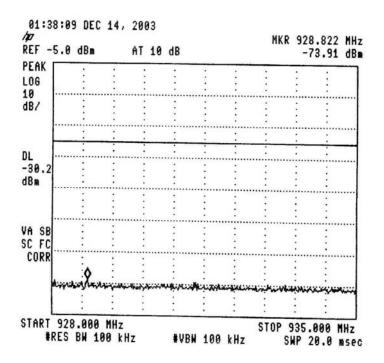


Figure 39 — 903.5 MHz

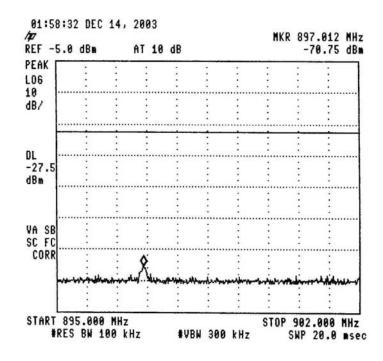


Figure 40 — 913.5 MHz

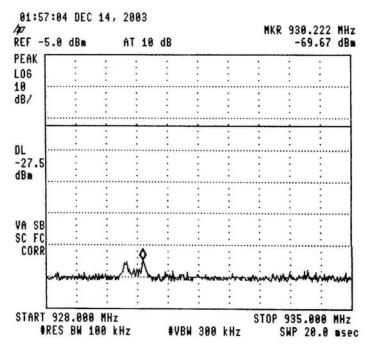


Figure 41 — 913.5 MHz

12.2 Results table

E.U.T. Description: IntegrAlarm Passive Infra Red Detector

Model No.: IA-PIR1

Serial Number: Not Designated

Specification: FCC Part 15, Subpart C (15.247)

Operation	Band Edge	Spectrum	Specification	Margin
Frequency	Frequency	Level		
(MHz)	(MHz)	(dBc)	(dBc)	(dB)
903.5	902.0	48.7	20.0	28.7
913.5	930.2	62.2	20.0	42.2

Figure 42 Band Edge Spectrum

JUDGEMENT: Passed by 28.7 dB

TEST PERSONNEL:

Tester Signature: Date: 07.01.04

Typed/Printed Name: E. Pitt

12.3 Test Equipment Used.

Band edge Spectrum

Instrument	Manufacture	Model	Serial Number	Calibration	
				Last Calibr.	Period
Spectrum Analyzer	HP	8592L	3826A01204	January 31, 2003	1 year
Cable	Avnet	MTS	N/A	September 20, 2003	1 year

Figure 43 Test Equipment Used

13. Antenna Gain

The gain of the antenna is 0dBi.

14. R.F Exposure/Safety

The E.U.T. is a wall mounted, fixed installation. The typical distance between the E.U.T. and the general population in normal use is at least 0.5m.

Calculation of Maximum Permissible Exposure (MPE)
Based on Section 1.1307(b)(1) Requirements

(a) Considering the worst case FCC limit at the operating frequency of 903.5 MHz the FCC limit is:

$$S = \frac{903.5}{1500} = 0.60 \frac{mW}{cm^2}$$

Using table 1 of Section 1.1310 limit for general population/uncontrolled exposures, the above level is an average over 30 minutes.

(b) The power density produced by the E.U.T. is

$$S = \frac{P_t G_t}{4\pi R^2}$$

P_t- Transmitted Power: +15dBm=31.6mW (max. measured power,

+13dB at 913.5MHz)

G_T- Antenna Gain: 1=(0dBi)

R- Distance from Transmitter using 20cm worst case

(c) The peak power density is:

$$S_p = \frac{31.6x1}{4\pi (20)^2} = 6.3x10^{-3} \frac{mW}{cm^2}$$

(d) The duty cycle of transmission in actual worst case is 10msec "on" and 200msec "Off".

The average power over 30 minutes is:

$$P_{AV} = \frac{31.6 \times 10}{200} = 1.58 mW$$

(e) The averaged power density of the E.U.T. is:

$$S_{AV} = \frac{1.58X1}{4\pi x (20)^2} = 0.31X10^{-3} \frac{mW}{cm^2}$$

(f) This is more than 3 orders of magnitude below the FCC limit.

15. Photographs of Tested E.U.T.

Figure 44 Front View

Figure 45 Rear View With Wall Mounting Assembly

Figure 46 Wall Mounting Assembly

Figure 47 Rear View Battery Cover Removed

Figure 48 Front Cover Internal View

Figure 49 PCB in Unit

Figure 50 PCB Side 1

Figure 51 PCB Side 1 Shield Removed

Figure 52 PCB Side 1 Area Under Shield

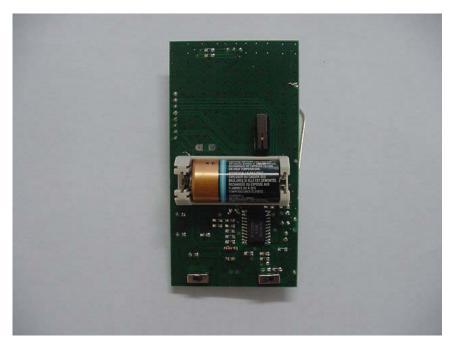


Figure 53 PCB Side 2