

[Home](#)
[Products](#)
[App Notes](#)
[Sales](#)
[Contact](#)
[Links](#)

© Radiometrix Ltd

UHF FM Data Transmitter and Receiver Mo

[PDF](#) - Download here •

Issue: 0150-1-2WW

TX3A & RX3 data sheet

5 Febr

European Versions : **TX3A-869-64/RX3-869-64**

North American Versions : **TX3A-914-64/RX3-914-64**

The TX3A and RX3 are miniature UHF radio transmitter & receiver modules designed for PCB mounting. They allow the simple implementation of data links at speeds up to 64kb/s and distances up to 30m in-building or 120m over open ground.

Features:

- Frequencies available as standard: 869.85MHz, 914.5MHz
- CE certified by independent Notified Body
- Verified to comply with Radio standard EN 300 220-3 by accredited Te
- Verified to comply with EMC standard EN 301 489-3 by accredited Tes
- North American version conforms to FCC part 15.249
- Data rates up to 64kbps
- Fully screened

Available for operation in the 868-870MHz band in Europe and the 902 band in North America, both modules combine full screening with inter ensure EMC compliance by minimising spurious radiation and susceptil TX3A & RX3 will suit one-to-one and multi-node wireless links in such as car and building security, EPOS and inventory tracking, remote indust monitoring and data networks. Because of their small size and low power requirements, both modules are ideal for use in portable, battery-powered such as hand-held terminals.

Transmitter – TX3

- Crystal-locked PLL, FM modulated at up to 64 kb/s
- Operation from 2.2V to 12V @ 7.5mA
- Built-in regulator for improved stability and supply noise rejection
- 1mW nominal RF output
- Enable facility
- Update of the original TX3 with enhanced performance

Receiver – RX3

- Single conversion FM superhet with SAW front end filter
- Operation from 2.7V to 12V @ 9.5mA
- Built-in regulator for improved stability and supply noise rejection
- 64kb/s, -98 dBm sensitivity @ 1ppm BER
- RSSI output with 75dB range
- Enable facility

Functional description

The TX3A transmitter module uses a frequency modulated crystal-locked PL between 2.2V and 12V at a current of 7.5mA nominal. At 3V supply it deli 0dBm (1mW) RF output. The SIL style TX3A measures 32 x 12 x 3.8 mm pins.

The RX3 module is a single conversion FM superhet receiver capable of han of up to 64kb/s. It will operate from a supply of 2.7V to 12V and draw receiving. The RX3 features a fast power-up time for effective duty cycle po a signal strength (RSSI) output with 70dB of range. Full screening and a filter give good immunity to interference. The SIL style RX3 measures 48 x excluding the pins.

TX3 transmitter

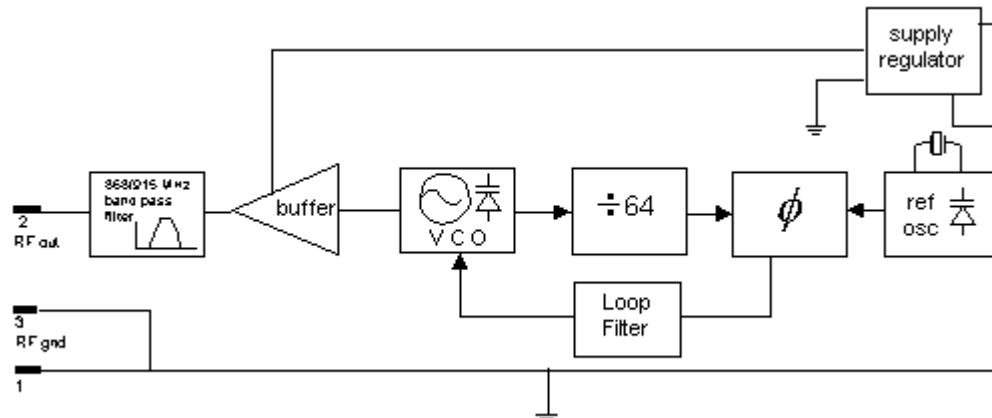
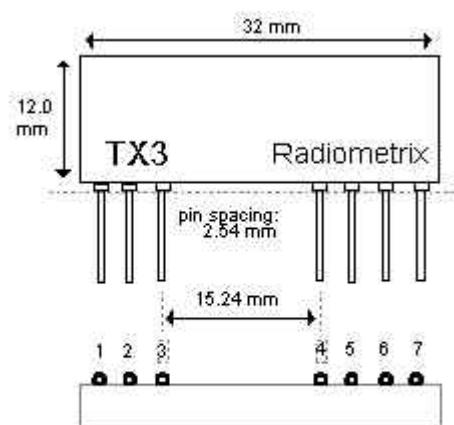


Fig 1 :TX3 block diagram


Pin description

RF GND (pins 1&3)

RF ground, internally connected to the module screen and pin 6 (0V). These pins should be directly connected to the RF return path - e.g. coax braid, main PCB ground plane etc.

RF OUT (pin 2)

50Ω RF output to the antenna. Internally DC-isolated. See antenna section of apps notes for details of

7 holes, 0.7 mm dia, pin spacing

Fig 2: TX3 physical dimensions

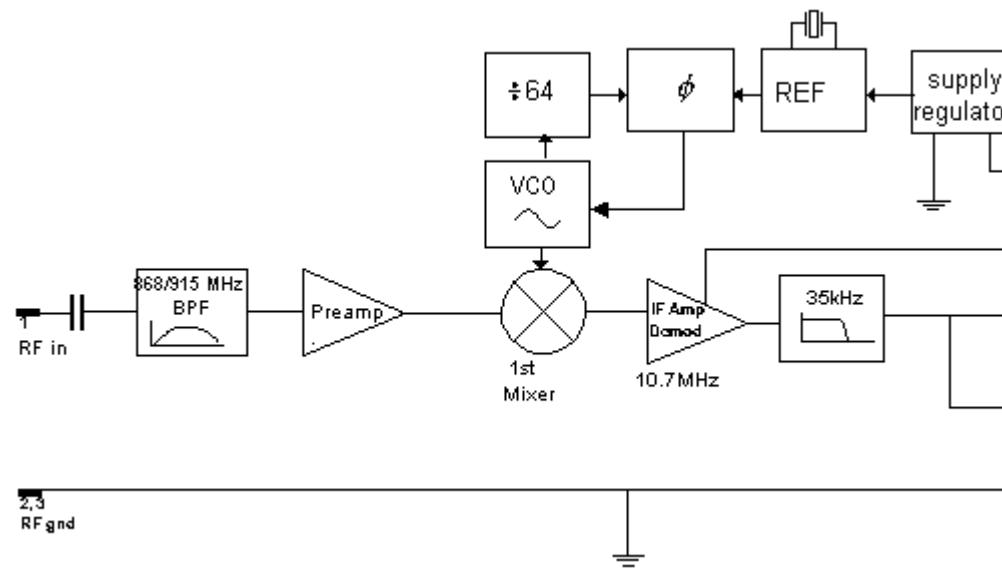
suitable antennas.

En (pin 4)

Tx enable. $<0.15V$ or o/c shuts down module (current $<1\mu A$). $>1.7V$ enables tx. Impedance $\sim 1M\Omega$.

Vcc (pin 5)

$+2.2V$ to $+12V$ DC supply. Max ripple content $0.1V_{p-p}$. Decoupling is not generally required.


0V (pin 6)

DC supply ground. Internally connected to pins 1 & 3 and module screen.

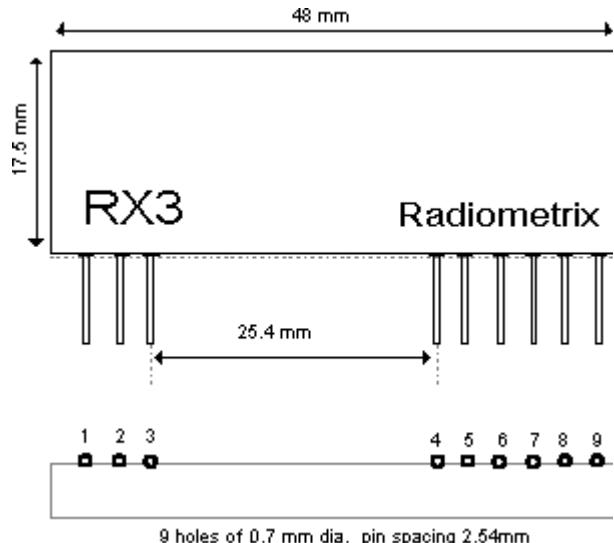
TXD (pin 7)

DC-coupled modulation input. Accepts serial digital data at 0V to 2.5V levels. See applications notes for suggested drive methods. Input is high impedance ($>1M\Omega$).

RX3 receiver

Fig.3: RX3 block diagram

Pin description


RF IN (pin 1)

50Ω RF input from antenna. Internally DC-isolated. See antenna section of applications notes for

suggested antennas and feeds.

RF GND (pins 2 & 3)

RF ground, internally connected to the module screen and pin 6 (0V). These pins should be connected to the RF return path - e.g. coax braid, main PCB ground plane etc.

Fig.4: RX3 physical dimensions

En(pin 4)

Rx enable. $<0.15V$ shuts down module (current $<1\mu A$). $>2V$ enables receiver. $\sim 1M\Omega$. nominal.
Observe slew rate requirements (see application notes)

RSSI (pin 5)

Received signal strength indicator with $>65dB$ range. See applications notes for characteristics.

0V (pin 6)

DC supply ground. Internally connected to pins 2 & 3 and module screen.

Vcc (pin 7)

$+2.7V$ to $+12V$ DC supply. Max ripple content $0.1V_{p-p}$. Decoupling is not generally required.

AF out (pin 8)

Buffered and filtered analogue output from the FM demodulator. Standing DC approx. External load should be $>50k\Omega // <100pF$. **NOTE:** AF waveform from **inverted**.

RXD (pin 9)

Digital output from the internal data slicer. The data is true data, i.e. as fed to the microcontroller. Output is “open-collector” format with internal $10k\Omega$ pullup to Vcc (pin 7).

Absolute maximum ratings

Exceeding the values given below may cause permanent damage to the module.

Operating temperature	-20°C to +70°C
Storage temperature	-40°C to +100°C

TX3A

Vcc (pin 5)	-0.3V to +16V
TXD (pin 7)	$\pm 7V$
En (pin 4)	-0.3V to +Vcc V
RF OUT (pin 2)	$\pm 50V$ DC, +10dBm RF

RX3

RSSI, Vcc, RXD (pins 5,7,9)	-0.3V to +6V
En, AF (pins 4,8)	-0.3V to +Vcc V
RF IN (pin 1)	$\pm 50V$ DC, +10dBm RF

Performance specifications: TX3 transmitter
(Vcc = 3.0V / temperature = 20°C unless stated)

	pin	min.	typ.	max.	ur
DC supply					
Supply voltage	5	2.2	3.0	13	
Supply current	5		7.5	9.5	n
RF					
RF power output @ Vcc = 2.2V	2		-1		dF
RF power output @ Vcc \geq 2.8V	2		0		dF
Harmonics / spurious emissions	2		-55	-45	d
Initial frequency accuracy		-25	0	+25	k
FM deviation (peak)			± 27		k
Baseband					
Modulation bandwidth @ -3dB		0		35	k
Modulation distortion (THD)			5	10	%
TXD input level (logic low)	7	-0.2	0	+0.2	
TXD input level (logic high)	7	+2.3	+2.5	+3	
Dynamic timing					
Power-up time (En \rightarrow full RF)			1.0	1.5	n

Notes:

1. RF output is automatically disabled below 2.2V supply voltage.
2. RF output terminated with 50Ω resistive load.
3. Meets or exceeds EN/FCC requirements at all frequencies.
4. With 0V – 2.5V modulation input.
5. To achieve specified FM deviation.
6. See applications information for further details.

Performance specifications: RX3 receiver
(Vcc = 3.0V / temperature = 20°C unless stated)

	pin	min.	typ.	max.	unit
<i>DC supply</i>					
Supply voltage	7	2.7	3.0	12	V
Supply current	7		9.5	11	mA
<i>RF/IF</i>					
RF sensitivity @ 10dB (S+N)/N	1,8		-103	-97	dB Nr
RF sensitivity @ 1ppm BER	1,9		-98	-92	dB Nr
IP ₃ at RF input	1		-14.5		dB Nr
Max operational RF input	1		-10		dB Nr
RSSI threshold	1,5		-115		dB Nr
RSSI range	1,5	65	75		dB
IF bandwidth			180		kHz
Image rejection	1	40	45		dB
½-IF spurious rejection	1		50		dB
±1MHz spurious rejection	1		67		dB
LO leakage, conducted	1		-75	-70	dB Nr
<i>Baseband</i>					
Baseband bandwidth @ -3dB	8	0		35	kHz
AF level	8		200		mV _P
DC offset on AF out	8	0.9	1.3	1.7	V
Distortion on recovered AF	8		1	5	%
Load capacitance, AFout / RXD	8,9			100	pF
<i>Dynamic timing</i>					
<i>Power up with signal present</i>					
Power up to valid RSSI	4,5		5.5	7	ms
Power up to stable data	4,9		15	18	ms
<i>Signal applied with supply on</i>					
Signal to valid RSSI	1,5		1.6	2	ms
Signal to stable data	1,9		1	10	ms
Time between data transitions	9	15.6		1250	μs
Mark : space ratio	9	20	50	80	%

Notes:

1. See applications information for further details.
2. Meets or exceeds EN/FCC requirements at all frequencies.
3. For received signal with ±27kHz FM deviation.
4. AF waveform on pin 8 is inverted.
5. 50kHz offset. Typically 5ms for on-channel signal.
6. Typically 1ms for on-channel signal, 10ms for 50kHz offset.
7. For 50:50 mark to space ratio (i.e. squarewave).

8. Average over 50ms period at maximum bit rate.

Module test circuits

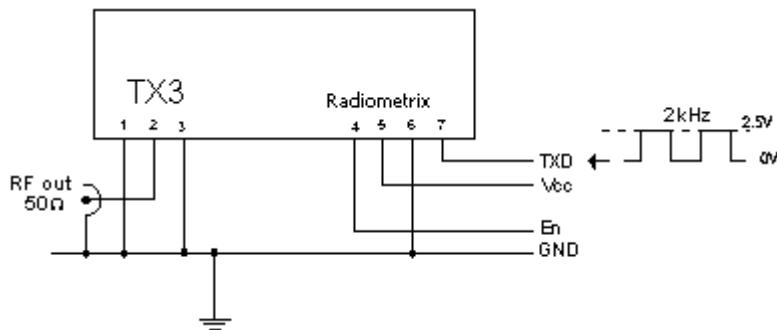


Fig.5: TX3A test circuit

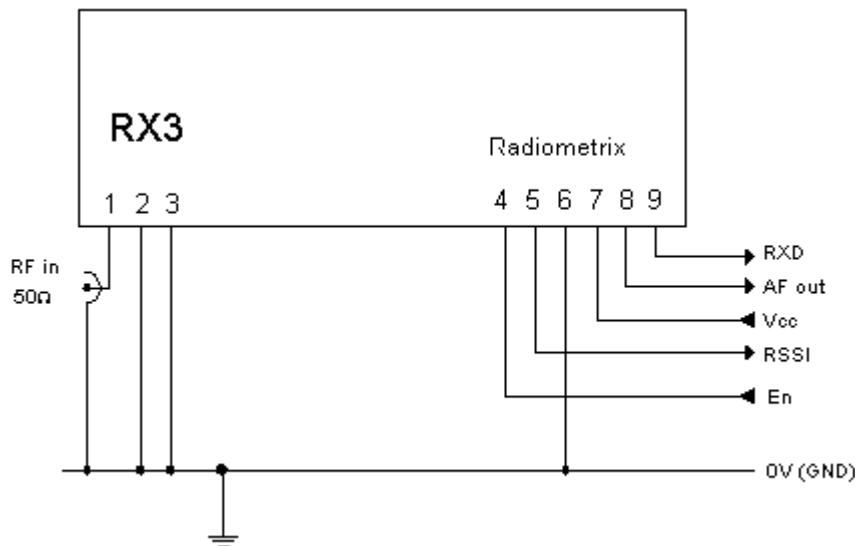


Fig.6: RX3 test circuit

Applications information

Power supply requirements

Both modules have built-in regulators which deliver a constant 2.85V to the V_{CC} when the external supply voltage is 2.9V or greater, with 40dB or more of rejection. This ensures constant performance up to the maximum permitted rail voltage. There is no need for external supply decoupling except in cases where the supply rail has poor (ripple/noise content $>0.1V_{pp}$).

Note, however, that for supply voltages lower than 2.85V the regulator is inoperative and supply ripple rejection is considerably reduced. Under these conditions the ripple/noise on the RX3 supply rail should be below 10mV V_{pp} to avoid problems.

If the quality of the supply is in doubt, it is recommended that a 10 μ F low-E

similar capacitor be added between the module supply pin (Vcc) and ground, 10Ω series feed resistor between the Vcc pin and the supply rail.

The Enable pin allows the module to be turned on or off under logic control DC supply to the Vcc pin. The module current in power-down mode is less than 100µA. **NOTE:** If this facility is used, the logic control signal must have a slew rate of more than 10V/µs. Slew rate less than this value may cause erratic operation of the on/off control and therefore the module itself.

The TX3A incorporates a low voltage shutoff circuit which prevents any erratic operation by disabling the RF output if the supply voltage drops below 2.2V. This feature is self-resetting, i.e. resorting the supply to greater than 2.2V will restore full RF output from the module.

TX3 modulation requirements

The module will produce the specified FM deviation with a TXD input to ground at 0V "low", 2.5V "high". Reducing the amplitude of the data signal (usually as a result of reducing the supply voltage) reduces the FM deviation to typically $\pm 22\text{kHz}$ at the lower extreme of 2.2V. The receiver will accept this with quite happy and no significant degradation of link performance should be the result.

Where standard 2-level digital data is employed with a logic "low" level of 0V and logic "high" level applied to TXD may be any value between +2.5V and +5V. Reducing the amplitude of the data signal (usually as a result of reducing the supply voltage) reduces the FM deviation to typically $\pm 22\text{kHz}$ at the lower extreme of 2.2V. The receiver will accept this with quite happy and no significant degradation of link performance should be the result.

Data formats and range extension

The TX3A data input is normally driven directly by logic levels but where analogue drive (e.g. 2-tone signalling) is used it is recommended that the TXD input is DC-biased to 1.25V approx. with the modulation ac-coupled and limited to 2.5V_{p-p} to minimise distortion over the link. The varactor modulator in the TX3A will produce some 2nd harmonic distortion which may be reduced if necessary by predistortion of the analogue waveform. At the other end of the link the RX3 AF output is used by an external decoder directly.

Although the modulation bandwidth of the TX3A extends down to DC, a DC component in the output of the RX3, it is not advisable to use data containing a DC component because frequency errors and drifts between the transmitter and receiver occur during operation, resulting in DC offset errors on the RX3 audio output.

The RX3 incorporates a low pass filter which works in conjunction with similar components in the TX3A to obtain an overall system bandwidth of 32kHz. This is suitable for data at raw bit rates up to 64kb/s. The adaptive data slicer in the RX3 has been designed to accept a maximum time between data transitions of 1.25ms, in order to keep the receiver reasonably fast. It will function reliably down to a bit rate of approximately 100b/s. The code in use contains no long 1s or 0s (i.e. Manchester or similar). The RXD output on pin 9 of the RX3 is "true" sense, i.e. as originally fed to the transmitter.

In applications such as longer range fixed links where data speed is not important, a significant increase in range can be obtained by using the slow rate together with filtering to reduce the receiver bandwidth to the minimum. Because of the limitations of the internal data slicer, in these circumstances the output should be used to drive an external filter and data slicer.

The audio output waveform on pin 8 of the RX3 is inverted, i.e. in the opposite direction to that originally fed to the transmitter. This should be borne in mind if using the RX3 to drive other circuitry.

RX3 Received Signal Strength Indicator (RSSI)

The RX3 receiver incorporates a wide range RSSI which measures the incoming signal over a range of 60dB or more. This allows assessment of link available margin and is useful when performing range tests.

The output on pin 5 of the module has a standing DC bias of typically 0.25V which rises to 1V at maximum indication. The RSSI output source impedance is high so external loading should therefore be kept to a minimum.

Typical RSSI characteristic is as shown below:

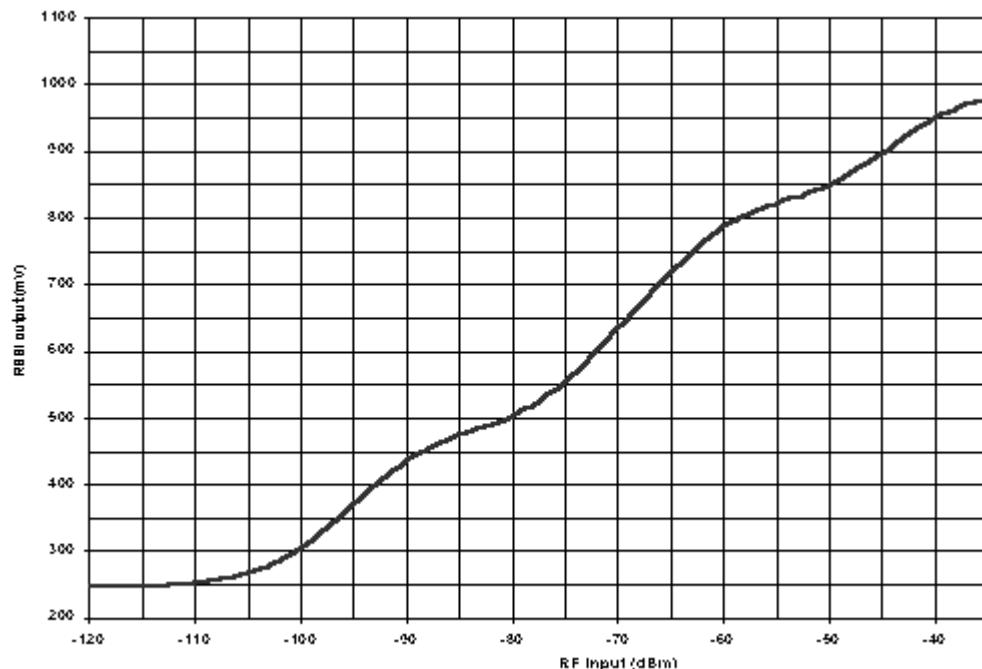


Fig.7: RX3 RSSI response curve

To ensure a reasonably fast response the RSSI has limited internal decoupling to ground. This results in a small amount of audio ripple on the DC output of the module. If this is a problem further decoupling may be added at the expense of speed, in the form of a capacitor from pin 5 to ground. There is no upper limit to this capacitor.

Operating the RX3 and TX3 in close proximity

The RX3 receiver will start to overload if the on-frequency RF input level exceeds the maximum level with resultant degradation in performance. It is sometimes possible to exce

operating the TX3A in very close proximity to the RX3, particularly if antennas. It follows that if the TX3A and RX3 are combined in a transceiver they should be operated in half-duplex mode if overload problems are to be avoided (only the transmitter or receiver should be active at any one time).

Expected range

Predicting the range obtainable in any given situation is notoriously difficult due to the many factors involved. The main ones to consider are as follows:

- Type and location of antennas in use (see below)
- Type of terrain and degree of obstruction of the link path
- Sources of interference affecting the receiver
- “Dead” spots caused by signal reflections from nearby conductive objects
- Data rate and degree of filtering employed (see page 7)

Assuming the maximum 64kb/s data rate and 1/4-wave whip antennas on both receiver, the following ranges may be used as a rough guide only:

1. Cluttered/obstructed environment, e.g. inside a building	30m
2. Open, relatively unobstructed environment	120m

It must be stressed, however, that range could be much greater or much less than these figures. Range tests should *always* be performed before assuming that a particular range will be achieved in any given application.

Antenna considerations and options

The choice and positioning of transmitter and receiver antennas is of the utmost importance and is the single most significant factor in determining system range. The following guidelines apply particularly to integral antennas and are intended to assist the user in determining the most effective arrangement for a given application.

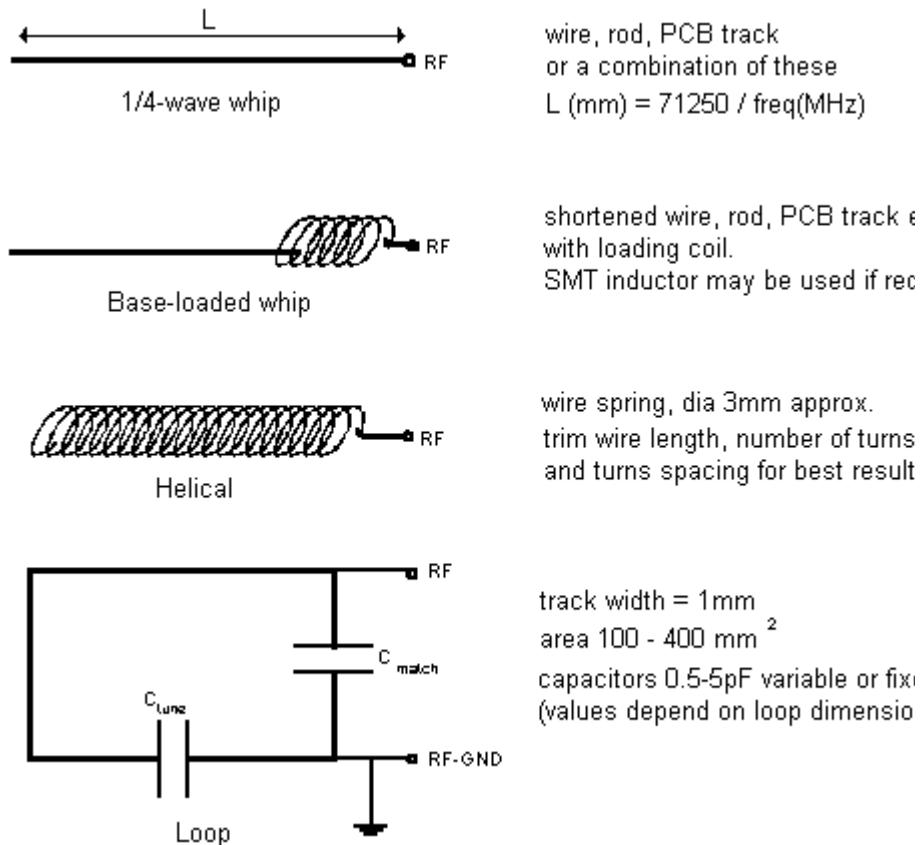
Nearby conducting objects such as a PCB or battery can cause detuning or significant loss of antenna gain which severely reduces efficiency. Ideally the antenna should stick out of the product as far as possible and be entirely in the clear, however this is often not practical/ergonomic reasons and a compromise may need to be reached. If an antenna must be used try to keep it away from other metal components and pay attention to the “hot” end (i.e. the far end) as this is generally the most sensitive to detuning. The space around the antenna is as important as the antenna itself.

Microprocessors and microcontrollers tend to radiate significant amounts of radio frequency noise, which can cause desensitisation of the receiver if its antenna is in close proximity. The 900MHz band is generally less prone to this effect than lower frequencies, but problems can still arise. Things become worse as logic speeds increase, because fast logic edges generate harmonics across the UHF range which are then radiated effectively. In extreme cases system range can be reduced by a factor of 10 or more. To minimise any adverse effects, situate the antenna and module as far as possible from such circuitry and keep PCB track lengths to the minimum possible. A ground plane is highly effective in cutting radiated interference and its use is strongly recommended.

A simple test for interference is to monitor the receiver RSSI output voltage

be the same regardless of whether the microcontroller or other logic circuitry is reset.

Depending on the application and bearing in mind applicable legal requirements a variety of antenna types may be used with the TX3A and RX3.


Integral antennas generally do not perform as well as externally mounted antennas but they result in physically compact equipment and are the preferred choice for many applications. The following can be recommended:

Whip (1/4-wave). This consists simply of a piece of wire or rod connected to one end. The lengths given below are from module pin to antenna tip via interconnecting wire or tracking. This antenna is quite simple and performs well if used in conjunction with a ground plane. This will often be provided by the board on which the module is mounted, or by a metal case.

Base-loaded whip. This is a shortened whip, tuned by means of a coil inserted into the base. This coil may be air-wound for maximum efficiency, or a small SMT inductor. Space is at a premium. The value must be carefully chosen to tune the particular whip in use, making this antenna more difficult to set up than a 1/4-wave whip.

Helical. This is a more compact but slightly less effective antenna formed from a helical wire. It is very efficient for its size, but has high Q and tends to suffer badly from detuning caused by proximity to nearby conductive objects. It needs to be carefully tuned to give good performance in a given situation and the required dimensional tolerances cannot be achieved repeatable, nevertheless It can provide a very compact solution.

Loop. A loop of PCB track, tuned and matched with 2 capacitors. Loops are inefficient but have good immunity to proximity detuning, so may be preferred for range applications where very high component packing density is necessary.

Fig.8: Integral antenna configurations

Integral antenna summary:

	Whip	Loaded whip	Helical	Loop
Ultimate performance	***	**	**	:
Ease of design set-up	***	**	*	:
Size	*	***	***	:
Immunity to proximity effects	**	*	*	*

External antennas have several advantages if portability is not an issue. They are optimised for individual circumstances and may be mounted in relatively good locations away from sources of interference, being connected to the equipment by coax. Unlike the usual whips, helicals etc, low-profile types such as microstrip patches are effective at these frequencies. Suitable antennas are available from many different manufacturers and are generally supplied pre-tuned to the required frequency.

Type Approval requirements: Europe

The modules are **CE certified** by independent notified body. They are designed to meet European type approval standard EN 300 220-3 and EMC standard EN 55022 when used in accordance with the information contained in this leaflet. The following provisions apply:

1. The modules must not be modified or used outside their specification limits.
2. The modules may only be used to transfer digital or digitised data. Analogue data and/or music are not permitted.
3. The equipment in which the TX3A is used must carry the approval text.

of its exterior labelling. Minimum preferred text height 2mm.

4. The TX3 must not be used with gain antennas such as multi-element Yagi antennas, this may result in allowed ERP or spurious emissions levels being exceeded.

Type Approval requirements: USA

Radiometrix TX3A and RX3 modules are sold as component devices external components and connections to function. They are designed to FCC Part 15.249 regulations, however they are not approved by the FCC. The purchaser understands that FCC approval will be required prior to operation of any device containing these modules.

1. Antennas must be either permanently attached (i.e. non-removable) or non-removable connector which is unique or not commonly available to the public.
2. The user must ensure that the TX3A/antenna combination does not radiate above the maximum permitted level of 50mV/m at 3m distance (FCC Part [15.20](#))
3. The appropriate FCC identifying mark and/or part 15 compliance statement must be clearly visible on the outside of the equipment containing the module(s)

Module mounting considerations

The modules may be mounted vertically or bent horizontal to the motherboard layout practice should be observed – in particular, any ground return required or feed should be connected directly to the RF GND pins at the antenna end and not to the 0V pin which is intended as a DC ground only. All connecting should be kept as short as possible to avoid any problems with stray RF pickup.

If the connection between module and antenna does not form part of the air should be made using 50Ω microstrip line or coax or a combination of both (but not essential) to fill all unused PCB area around the module with ground planes.

Variants and ordering information

The TX3A transmitter and RX3 receiver modules are manufactured in the following configurations as standard:

*For European applications in the 868-870MHz band:
Frequency = 869.85MHz*

TX3A-869-64 Transmitter
RX3-869-64 Receiver

*For USA applications in the 902-928MHz band:
Frequency = 914.5MHz*

TX3A-914-64 Transmitter
RX3-914-64 Receiver

Other variants can be supplied to customer requirements, at different freq optimised for specific data speeds and formats. Please consult the facts information.

Limitation of liability

The information furnished by Radiometrix Ltd is believed to be accurate and reliable. Radiometrix Ltd reserves the right to make changes or improvements in the design, specification or n subassembly products without notice. Radiometrix Ltd does not assume any liability for application or use of any product or circuit described herein, nor for any infringement of other rights of third parties which may result from the use of its products. This data nor implies warranty of any kind, including fitness for any particular application. The data may be subject to radio interference and may not function as intended if interference is present. Radiometrix Ltd does not recommend their use for life critical applications.

The Intrastat commodity code for all our modules is: 8542 6000.

R&TTE Directive

After 7 April 2001 the manufacturer can only place finished product on the market under the R&TTE Directive. Equipment within the scope of the R&TTE Directive may do so in compliance to the essential requirements specified in Article 3 of the Directive, as applied to the particular equipment.

*Further details are available on Radiocommunications Agency (RA) web site:
<http://www.radio.gov.uk/topics/conformity/conform-index.htm>*

**** END OF TX3A/RX3 DATA LEAFLET ****

Benchmark Electronics Limited

Brandon Lane, Langley Moor, Durham. DH7 8PE. Telephone 0191 378 3789 Fax 0191 378 3747
Registered in England; Company Number 3465761

Bison Bede Compact RF Transmitter Tx04

Operational Description.

2 October, 2003

The Bison Bede Compact RF Transmitter Tx04 is a battery powered radio frequency remote control designed to operate the Bison Bede Compact range of stairlifts. It uses a Radiometrix TX3 transmitter module transmitting 1 mW at 914 MHz. The system transmits one of three remote commands to the stairlift (up, down and park) together with identification information designed to prevent interference between lifts and other users of the 914 MHz frequency band.

Power Supply

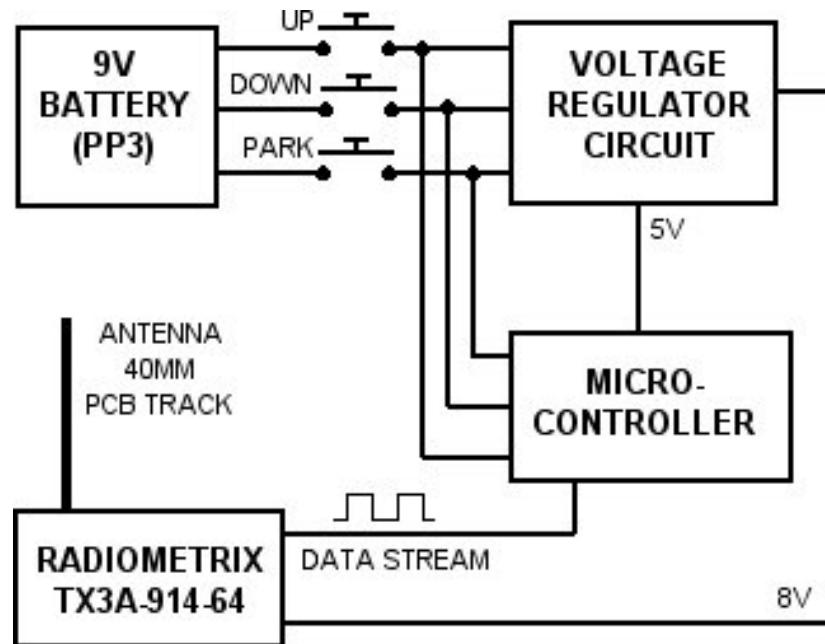
A PP3 9V battery powers the transmitter. In standby all electronic circuits on the transmitter system are isolated from the battery. The action of closing any one of the three control switches connects the battery to the power supply. The radio module is then powered directly from the battery while the control circuits are powered at 5V from a voltage regulator circuit.

When the control switches are released the battery feed is lost and the system powers down.

A voltage clamp monitors the battery voltage allowing an LED to illuminate when a battery voltage exceeding 7V powers the system up. This indicates the system is active and the battery is healthy.

Digital Circuits.

The digital word transmitted by the system is produced by a microprocessor (Microchip 12F675) in response to the control signals sent to it. Three switches are mounted on the PCB to be operated by the user indicating the required lift function (up, down or park). In addition a control input is made or broken by cutting a PCB track; this input is used to change the digital word to prevent lifts operating in close proximity responding to the same transmitter.


A pulse train of seven pulses is generated by the microprocessor. The pulses are 5v. A logic 1 is represented by a 300us pulse, a zero by a 150us pulse.

Pulses are spaced at 500us. The first four pulses represent a code identifying the signal to the receiver; the next three pulses represent the position of the three control inputs. The data word is repeated every 6ms for as long as a control button is pressed.

Transmitter

The data word from the microprocessor is used to drive a NPN transistor that shifts the 5v data to an 8v level. The signal is then fed into the “data in” pin on the Radiometrix TX3 module which converts the signal to a 914 MHz FM signal. The TX3 module is provided with a 40mm whip antenna that is part of the PCB artwork.

System Block Diagram

