Report No.: UL05420130725FCC/IC001 Page 1 of 98

FCC Part 15C Test Report

Product Name : Carbonado smart PTT case for

iPhone

Model Name : RTKI4C0

Prepared for:

Kodiak Networks. 1501 10th Street, Suite 130 Plano, Texas 75074

Prepared by:

Unilab (Shanghai) Co., Ltd. FCC 2.948 register number is 714465 No. 1350, Lianxi Rd. Pudong New District, Shanghai, China

TEL: +86-21-50275125 FAX: +86-21-50275126

Report Number : UL05420130725FCC/IC001

Date of Report : 2013-10-24

Date of Test : 2013-10-18~2013-10-24

Notes:

The test results only relate to these samples which have been tested. Partly using this report will not be admitted unless been allowed by Unilab. Unilab is only responsible for the complete report with the reported stamp of Unilab.

Report No. : UL05420130725FCC/IC001 Page 2 of 98

Applicant: Kodiak Networks.

1501 10th Street, Suite 130 Plano, Texas 75074

Manufacturer: Kodiak Networks.

1501 10th Street, Suite 130 Plano, Texas 75074

Product Name: Carbonado smart PTT case for iPhone

Brand Name: CARBONADO

Model Name: RTKI4C0

FCC ID: RTKI4C0

IC ID: 11048A-I4C0

Serial Number: N/A

Technical Data: AC input: AC 100~240V 50/60Hz

Rated voltage: 3.4V~4.2V

Date of Receipt: 2013-10-18

Test Standard: FCC CFR Tile 47 Part 15: 2013

ANSI C 63.4: 2009

DA 00705

Test Result: Complied

Date of Test 2013-10-18~2013-10-24

Prepared by:

(Technical Engineer: Andy Wei)

Reviewed by:

(Senior Engineer: Forest Cao)

Approved by:

(Supervisor: Eva Wang)

TABLE OF CONTENTS

1.	GEN	ERAL INFORMATION	5
	1.1	EUT DESCRIPTION	5
	1.2	TEST MODE	6
2.	TEST	METHODOLOGY	6
	2.1	EUT CONFIGURATION	6
	2.2	EUT EXERCISE	6
	2.3	GENERAL TEST PROCEDURES	6
	2.4	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	7
	2.5	DESCRIPTION OF TEST MODES	7
3.	TECH	INIACL SUMMARY	
	3.1	SUMMARY OF STANDARDS AND TEST RESULTS	8
	3.2	TEST UNCERTAINTY	8
	3.3	TEST EQUIPMENT LIST	8
	3.4	TEST FACILITY	
	3.5	TEST SETUP CONFIGURATION	6
4.	CHAI	NNEL SEPARATION	10
	4.1	TEST SETUP	10
	4.2	LIMITS	10
	4.3	TEST PROCEDURE	10
	4.4	TEST RESULT	
5.	MINI	MUM HOPPING CHANNELS	
	5.1	TEST SETUP	12
	5.2	LIMITS	
	5.3	TEST PROCEDURE	12
	5.4	TEST RESULT	13
6.	OCC	UPIED BANDWIDTH	14
	6.1	TEST SETUP	14
	6.2	LIMITS	
	6.3	TEST PROCEDURE	14
	6.4	TEST RESULTS	15
7.		LL TIME	
		TEST SETUP	
	7.2	LIMITS	19
	7.3	TEST PROCEDURE	
	7.4		
8.	PEAK	COUTPUT POWER (CONDUCTION)	24
	8.1	TEST SETUP	24
	8.2	LIMITS	
	8.3	TEST PROCEDURE	24
	8.4	RESULTS & PERFORMANCE	
9.	SPUF	RIOUS EMISSIONS (CONDUCTION)	
	9.1	TEST SETUP	29
	9.2	LIMITS	29
	9.3	TEST PROCEDURE	
	9.4	RESULTS & PERFORMANCE	
10.	BAND	DEDGE MEASUREMENT	
	10.1	TEST SETUP	42
	10.2	LIMITS	42

Page 4 of 98

	10.3	TEST PROCEDURE	42
	10.4	RESULTS & PERFORMANCE	43
11.	SPUR	RIOUS EMISSIONS(RADIATION)	59
	11.1	TEST SETUP	59
	11.2	LIMITS	60
	11.3	TEST PROCEDURE	60
	11.4	RESULTS & PERFORMANCE	62
12.	AC PO	OWER LINE CONDUCTED EMISSIONS	93
	12.1	TEST SETUP	93
	12.2	LIMITS	93
	12.3	TEST PROCEDURE	93
	12.4	RESULTS & PERFORMANCE	94
APPE	NDIX 1	PHOTOGRAPHS OF EUT	98
ADDE	NDIX 3	PHOTOGRAPHS OF TEST SETUP	a۵

1. GENERAL INFORMATION

1.1 EUT DESCRIPTION

Product Name:	Carbonado smart PTT case for iPhone
Model Name:	RTKI4C0
Hardware Version:	V2.0
Software Version:	V2.0
RF Exposure Environment:	Uncontrolled
Bluetooth	
Frequency Range:	2400MHz~2483.5MHz
Type of Modulation:	GFSK(1 Mbps), π/4-DQPSK(2 Mbps)
	8-DPSK(3 Mbps)
Channel Separation:	1MHz
Channel Number:	79
Antenna Type:	Internal
Antenna Peak Gain:	3 dBi
D 1	•

Remark:

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. The EUT satisfies the definition of "Spread Spectrum Systems", as below description:
 - a. The system hops to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies
 - b. Each frequency is used equally on the average by each transmitter
 - c. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and whether they shift frequencies in synchronization with the transmitted signals

Report No. : UL05420130725FCC/IC001 Page 6 of 98

1.2 TEST MODE

Unilab has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Test Mode
Mode 1: GFSK Bluetooth CH0
Mode 2: GFSK Bluetooth CH39
Mode 3: GFSK Bluetooth CH78
Mode 4: 8-DPSK Bluetooth CH0
Mode 5: 8-DPSK Bluetooth CH39
Mode 6: 8-DPSK Bluetooth CH78

Note:

- 1. Regards to the frequency band operation: the lowest, middle and highest frequency of channel were selected to perform the test, then shown on this report.
- 2. For the ERP/EIRP and radiated emission test, every axis (X, Y, Z) was verified, and show the worst result on this report.

2. TEST METHODOLOGY

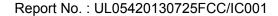
The tests documented in this report were performed in accordance with ANSI C63.4: 2009 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

2.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application

2.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.


2.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4: 2009 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4: 2009

2.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110 10.495 - 0.505 2.1735 - 2.1905 4.125 - 4.128 4.17725 - 4.17775 4.20725 - 4.20775 6.215 - 6.218 6.26775 - 6.26825 6.31175 - 6.31225 8.291 - 8.294 8.362 - 8.366 8.37625 - 8.38675	16.42 - 16.423 16.69475 - 16.69525 16.80425 - 16.80475 25.5 - 25.67 37.5 - 38.25 73 - 74.6 74.8 - 75.2 108 - 121.94 123 - 138 149.9 - 150.05 156.52475 - 156.52525 156.7 - 156.9	399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300 2310 - 2390 2483.5 - 2500 2655 - 2900	4.5 - 5.15 5.35 - 5.46 7.25 - 7.75 8.025 - 8.5 9.0 - 9.2 9.3 - 9.5 10.6 - 12.7 13.25 - 13.4 14.47 - 14.5 15.35 - 16.2 17.7 - 21.4 22.01 - 23.12
8.41425 - 8.41475 12.29 - 12.293 12.51975 - 12.52025 12.57675 - 12.57725 13.36 - 13.41	162.0125 - 167.17 167.72 - 173.2 240 - 285 322 - 335.4	3260 - 3267 3332 - 3339 3345.8 - 3358 3600 - 4400	23.6 - 24.0 31.2 - 31.8 36.43 - 36.5 (²)

- 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.
- 2 Above 38.6
- (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

2.5 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

After verification, all tests were carried out with the worst case test modes as shown below GFSK(1Mbps) and 8-DPSK(3 Mbps) Channel Low (2402MHz) · Mid (2441MHz) and High (2480MHz), these were chosen for full testing.

3. TECHNIACL SUMMARY

3.1 SUMMARY OF STANDARDS AND TEST RESULTS

The EUT have been tested according to the applicable standards as referenced below:

Test Item	FCC Rule	Result
Channel Separation	§15.247 (a)	Р
Minimum Hopping Channel	§15.247 (a)	Р
Occupied Bandwidth	§15.247 (a)	Р
Dwell Time	§15.247 (a)	Р
Peak Output Power (Conduction)	§15.247 (b)	Р
Spurious Emissions (Conduction)	§15.247 (d)	Р
Band edge measurement	§15.247 (d)	Р
Spurious Emissions (Radiation)	§15.247 (d) §15.35 (b) §15.209 (a)	Р
AC Power Line Conducted Emissions	§15.207 (a)	Р

Note: P means pass, F means failure, N/A means not applicable

3.2 TEST UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)
Conducted disturbance	3.4
Radiated disturbance	4.2

3.3 TEST EQUIPMENT LIST

ILSI EQUI MENTESI					
Equipment	Manufacturer	Model	Serial No.	Due Date	
Receiver	Agilent	N9038A	MY51210142	2014/09/27	
LISN	R&S	ENV216	100069	2014/06/23	
3m Chamber & Accessory Equipment	ETS-LINDGREN	FACT-3	CT-0000336	2013/11/27	
Microwave Preamplifier	EM Electronics	EM30180	3008A02425	2014/03/01	
Power Splitter	Agilent	11667C/ 52401	MY53806148	2014/03/01	
DC Power Supply	Agilent	6612C	MY43002989	2014.01.16	
Loop Antenna	Schwarzbeck	FMZB1519	1519-020	2014/03/27	
Bilog Antenna	Schwarzbeck	VULB9160	9160-3316	2015.10.16	

Report No. : UL05420130725FCC/IC001 Page 9 of 98

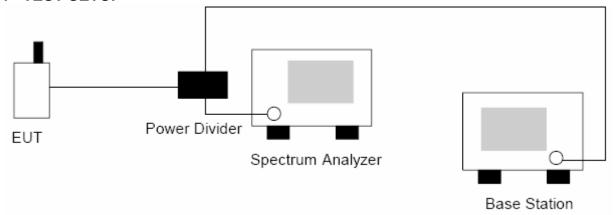
VHF-UHF-Biconical Antenna	Schwarzbeck	VUBA9117	9117-263	2015.10.16
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	9120D-942	2015.10.16
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	9120D-943	2015.10.16
Horn Antenna(18-40GHz)	ETS	3116	00070497	2014.07.19
Bluetooth Tester	Agilent	N4010A	MY49080813	2014.08.30

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year(antennas are calibrated every two years) or in accordance with the manufacturer's recommendations, and has been calibrated by accredited calibration laboratories.

3.4 TEST FACILITY

All test facilities used to collect the test data are located at No. 1350, Lianxi Rd. Pudong New District, Shanghai, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4: 2009, CISPR 16-1-1 and other equivalent standards. The laboratory is compliance with the requirements of the ISO/IEC/E 17025.

3.5 TEST SETUP CONFIGURATION


The information contained within this report is intended to show verification of compliance of the EUT to the requirements of CFR 47 FCC Part 15.247. The test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4. CHANNEL SEPARATION

4.1 TEST SETUP

4.2 LIMITS

According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

4.3 TEST PROCEDURE

The EUT have its hopping function enabled. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span

Video (or Average) Bandwidth (VBW) ≥ RBW

Sweep = auto

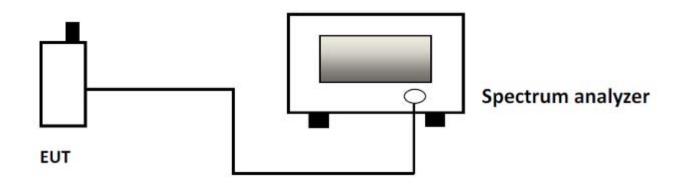
Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

4.4 TEST RESULT

GFSK Channel Separation: 1.000MHz



8-DPSK Channel Separation: 1.000MHz

5. MINIMUM HOPPING CHANNELS

5.1 TEST SETUP

5.2 LIMITS

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands shall use at least 15 hopping frequencies.

5.3 TEST PROCEDURE

The EUT have its hopping function enabled.

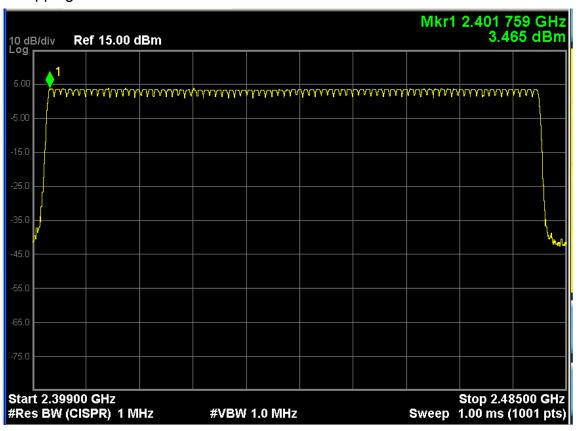
Use the following spectrum analyzer settings:

Span = the frequency band of operation

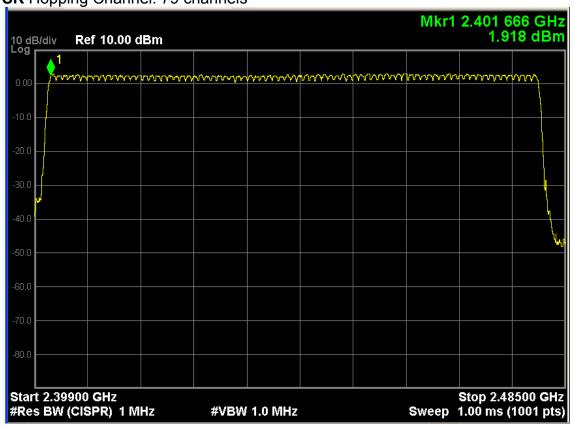
RBW ≥ 1% of the span

VBW ≥ RBW

Sweep = auto

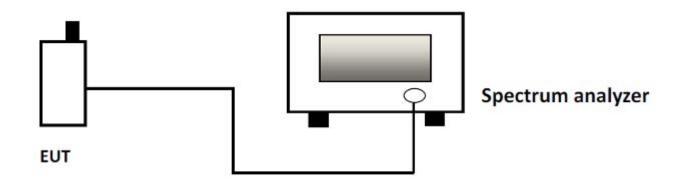

Detector function = peak

Trace = max hold


Allow the trace to stabilize. It may prove necessary to break the span up to sections, in order to clearly show all of the hopping frequencies.

5.4 TEST RESULT

GFSK Hopping Channel: 79 channels



8-DPSK Hopping Channel: 79 channels

6. OCCUPIED BANDWIDTH

6.1 TEST SETUP

6.2 LIMITS

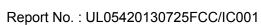
According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

6.3 TEST PROCEDURE

Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 6 dB or 20 dB bandwidth, centered on a channel RBW ≥ 1% of the 6 dB or 20 dB bandwidth

VBW ≥ RBW


Sweep = auto

Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6 dB or 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB or 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation.

Unilab

6.4 TEST RESULTS

Channel	20dB bandwidth (MHz)	99% bandwidth (MHz)
GFSK		
BT CH0	0.6181	0.80695
BT CH39	0.6661	0.80928
BT CH79	0.6649	0.81044
8-DPSK		
BT CH0	1.121	1.0825
BT CH39	1.122	1.0848
BT CH79	1.119	1.0817

GFSK Bluetooth Channel 0

GFSK Bluetooth Channel 39

GFSK Bluetooth Channel 78

Unilab

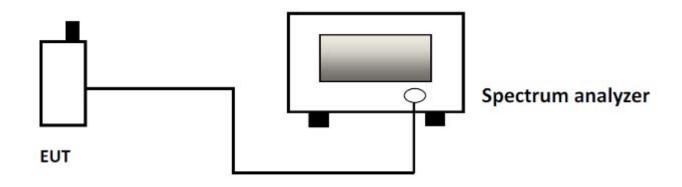
Report No.: UL05420130725FCC/IC001

8-DPSK Bluetooth Channel 0

8-DPSK Bluetooth Channel 39

8-DPSK Bluetooth Channel 78

x dB Bandwidth


x dB

-20.00 dB

1.119 MHz

7. DWELL TIME

7.1 TEST SETUP

7.2 LIMITS

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 seconds within a period 0.4 seconds multiplied by the number of hopping channels employed.

7.3 TEST PROCEDURE

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel

RBW ≤ Channel Separation

RBW≤VBW

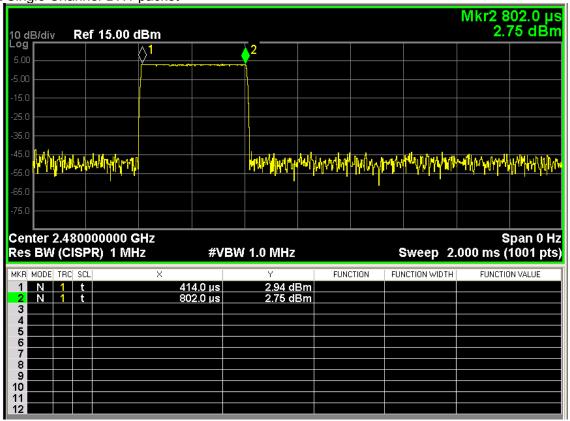
Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

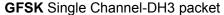
Trace = max hold

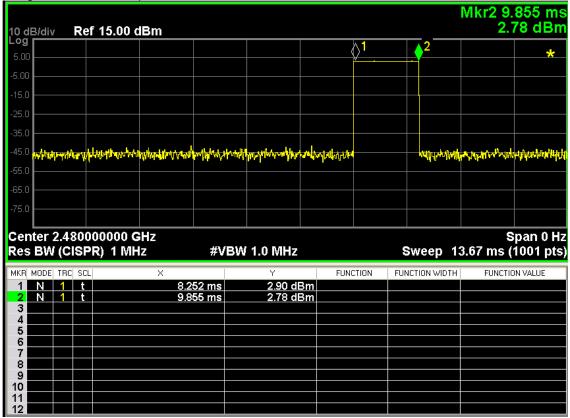
If possible, use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation.

7.4 TEST RESULTS

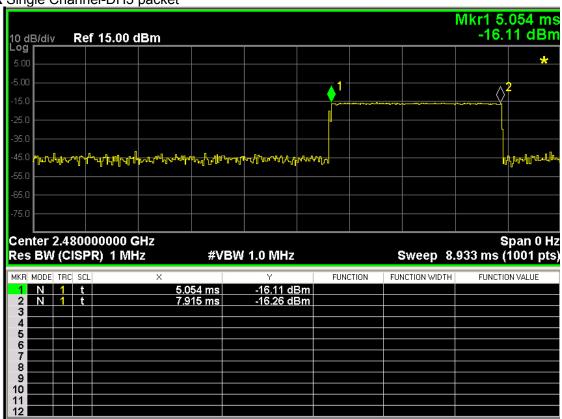

GFSK

Packet	N	x(ms)	Calculation formula	Result(T)(ms)
DH1	2	0.366	$T = \frac{1600}{79 \times N} \times x \times (0.4 \times 79) = \frac{1600}{79 \times N} \times x \times 31.6$	117.12
DH3	4	1.624	DH1, N=2;	259.84
DH5	6	2.876	DH3, N=4; DH5, N=6	306.77

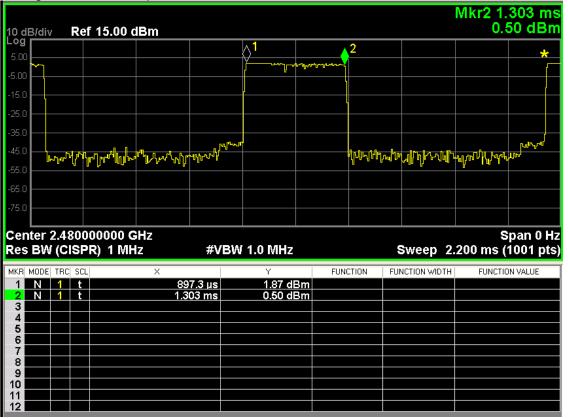

8-DPSK


Packet	N	x(ms)	Calculation formula	Result(T)(ms)
DH1	2	0.376	$T = \frac{1600}{79 \times N} \times x \times (0.4 \times 79) = \frac{1600}{79 \times N} \times x \times 31.6$	120.32
DH3	4	1.630	DH1, N=2;	260.80
DH5	6	2.881	DH3, N=4; DH5, N=6	307.31

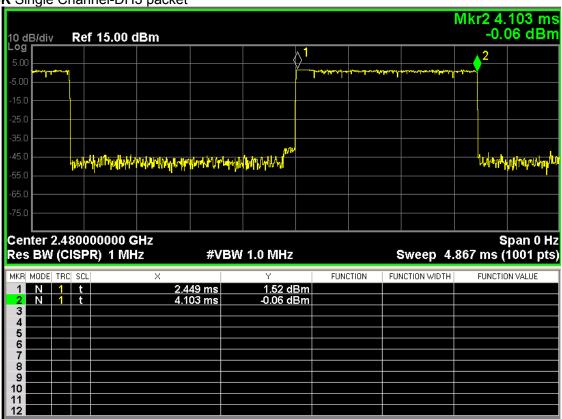
GFSK Single Channel-DH1 packet



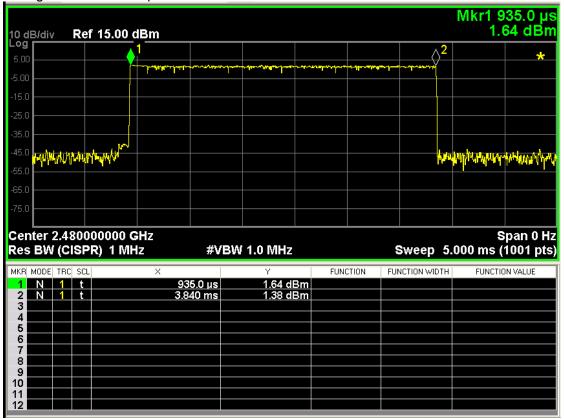
Report No.: UL05420130725FCC/IC001 Page 21 of 98



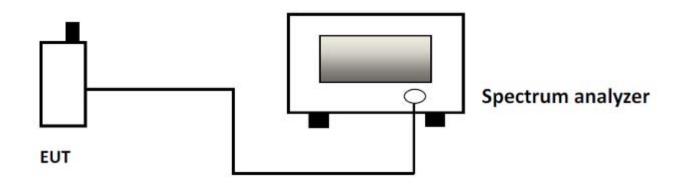
GFSK Single Channel-DH5 packet



Page 22 of 98



8-DPSK Single Channel-DH3 packet


Page 23 of 98

8-DPSK Single Channel-DH5 packet

8. PEAK OUTPUT POWER (CONDUCTION)

8.1 TEST SETUP

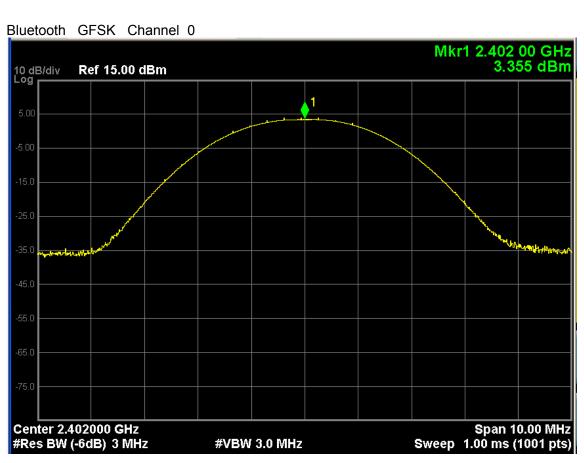
8.2 LIMITS

The maximum peak output power of the intentional radiator shall not exceed the following:

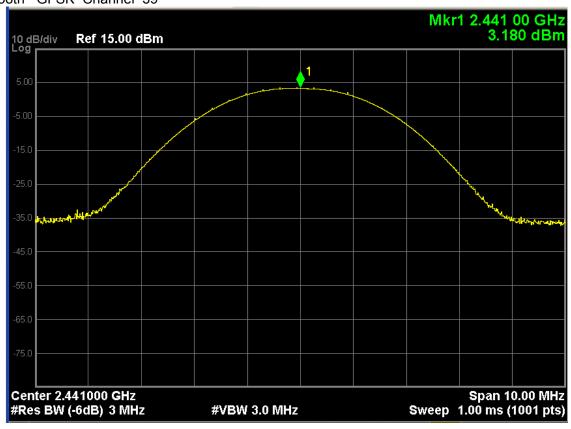
- 1. According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
- 2. According to §15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.
- 3. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

8.3 TEST PROCEDURE

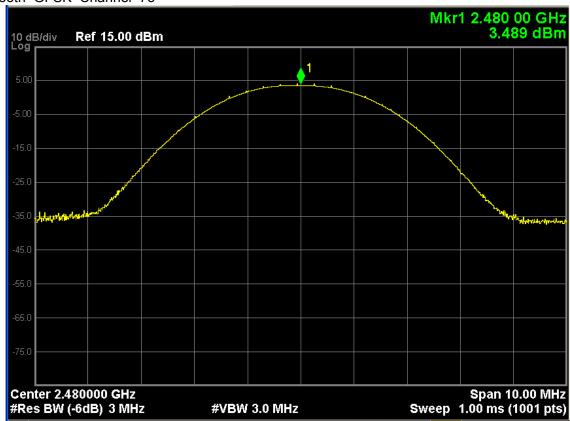
After a radio link has been established between EUT and Base station, the output power of the cell signal of the testing equipment will be decreased until the output power of the EUT reach a maximum value. Then the test data can be read at the tester screen. The loss between RF output port of the EUT and the input port of the tester will be taken into consideration.

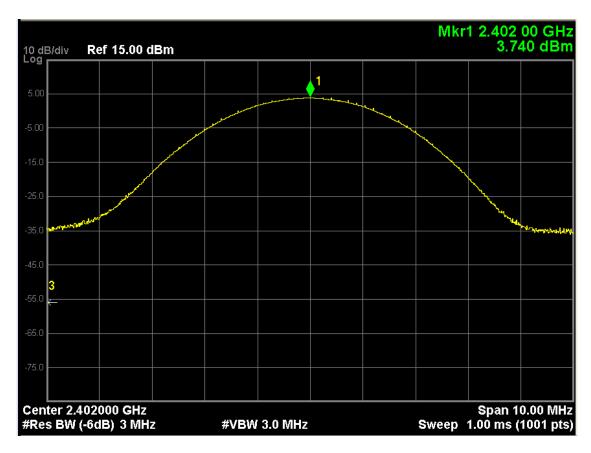

The measurement will be conducted at three channels:

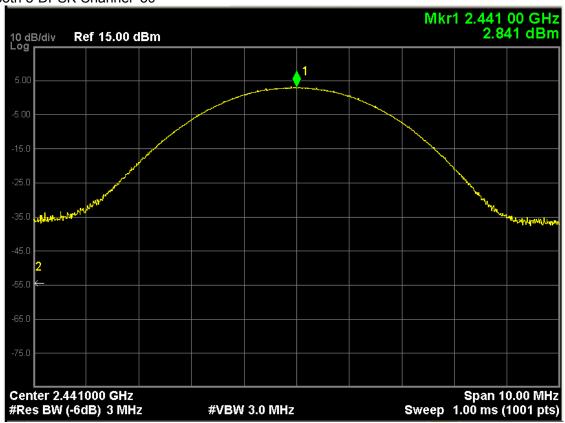
Bluetooth: Low(0), middle(39) and High (78),

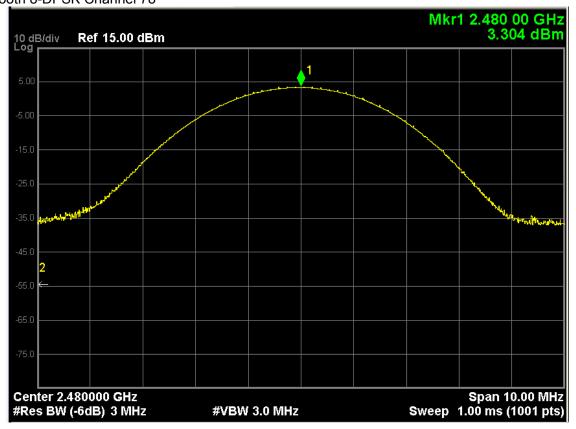

Set the spectrum analyzer as RBW = 3MHz, VBW = 3MHz, Span = 10MHz, Sweep=auto Detector = Peak, Trace mode = max hold

8.4 RESULTS & PERFORMANCE

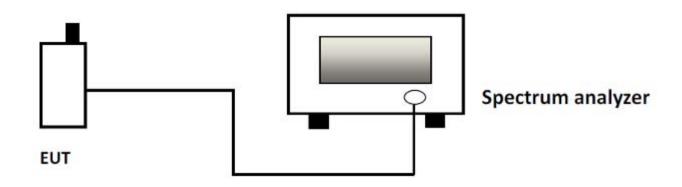

GFSK								
Channel	Peak power (dBm)	Peak power (mW)	Limit (mW)	Result				
0 (2402MHz)	3.355 2.167			Pass				
39 (2441MHz)	3.180	2.070	125	Pass				
78 (2480MHz)	3.489	2.233		Pass				
8-DPSK								
Channel	Peak power (dBm)	Peak power (mW)	Limit (mW)	Result				
0 (2402MHz)	3.740	2.366		Pass				
39 (2441MHz)	2.841	1.924	125	Pass				
78 (2480MHz)	3.304	2.138		Pass				


Bluetooth GFSK Channel 39


Bluetooth GFSK Channel 78



Bluetooth 8-DPSK Channel 39



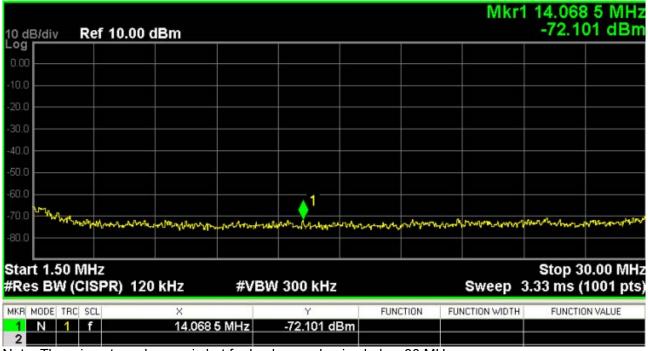
Bluetooth 8-DPSK Channel 78

9. SPURIOUS EMISSIONS (CONDUCTION)

9.1 TEST SETUP

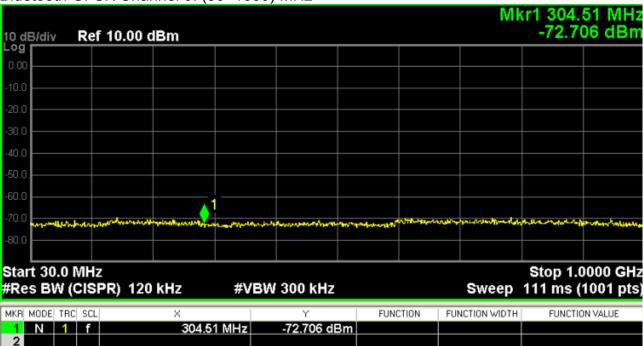
9.2 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

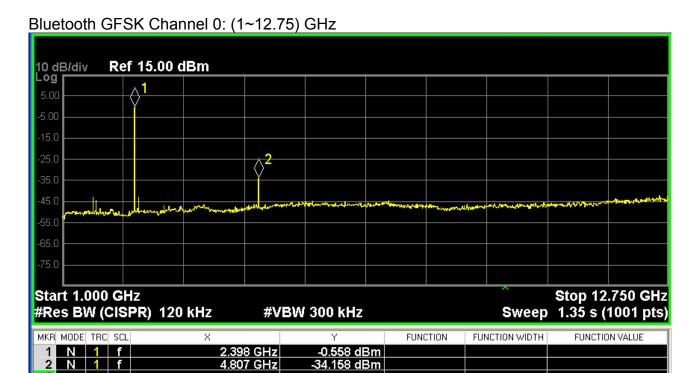

9.3 TEST PROCEDURE

The EUT was connected to Spectrum Analyzer and Base Station via power divider. Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span. RBW = 100 kHz;VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this Section.

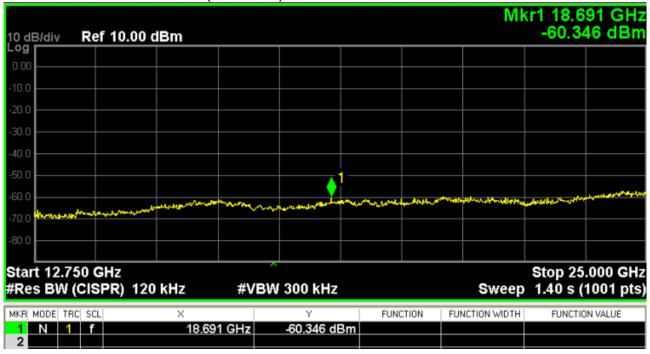

9.4 RESULTS & PERFORMANCE

Bluetooth GFSK Channel 0: Below 30 MHz

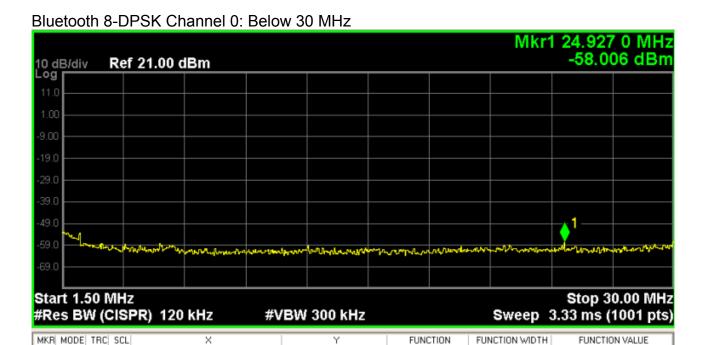


Note: There is not any harmonic but for background noise below 30 MHz.

Bluetooth GFSK Channel 0: (30~1000) MHz

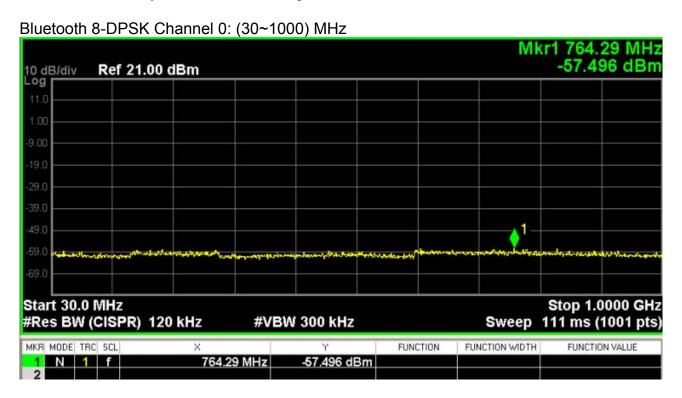


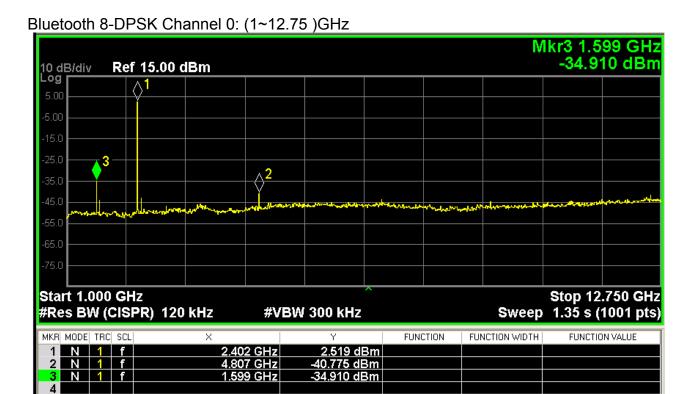
Report No.: UL05420130725FCC/IC001 Page 31 of 98



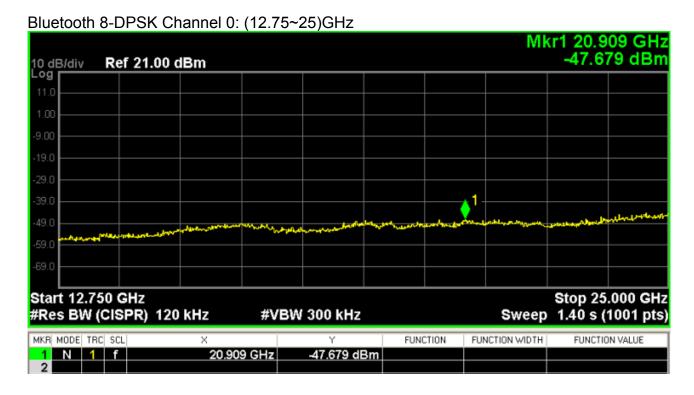
Note: The Mark1 point is carrier.

Bluetooth GFSK Channel 0: (12.75~25) GHz

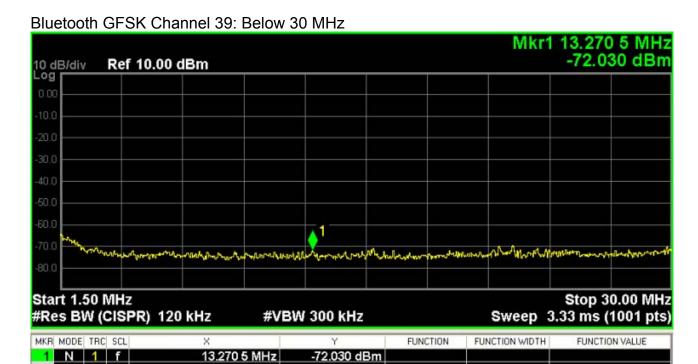

Report No.: UL05420130725FCC/IC001 Page 32 of 98

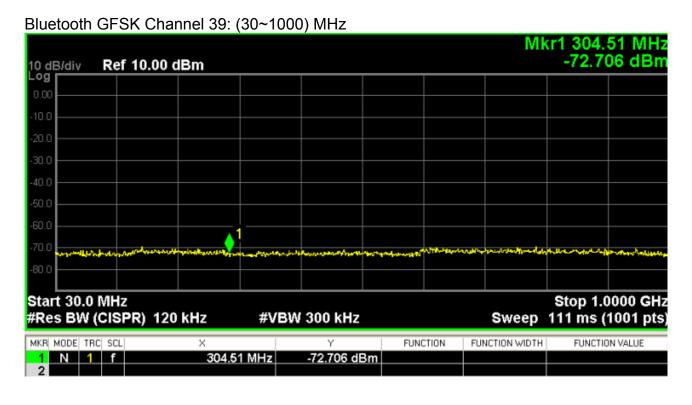


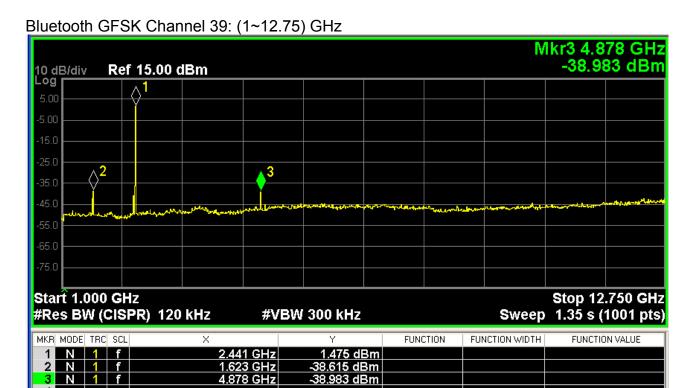
-58.006 dBm

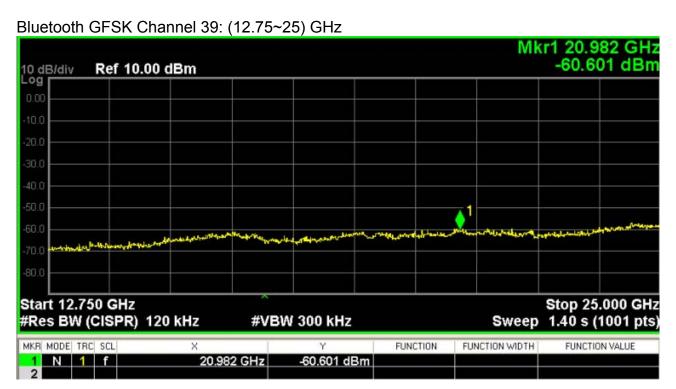

1 N 1 f Note: There is not any harmonic but for background noise below 30 MHz.

24.927 0 MHz

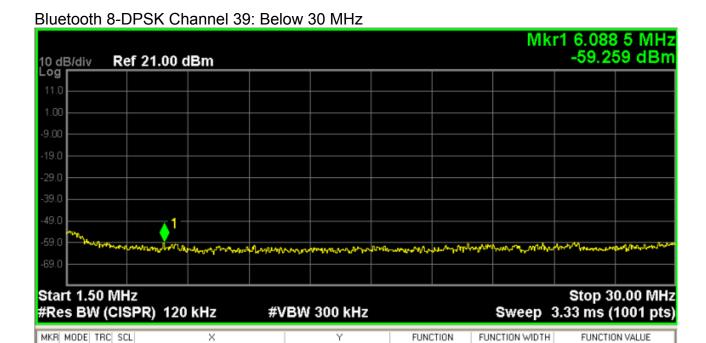



Note: The Mark1 point is carrier.


Report No.: UL05420130725FCC/IC001 Page 34 of 98

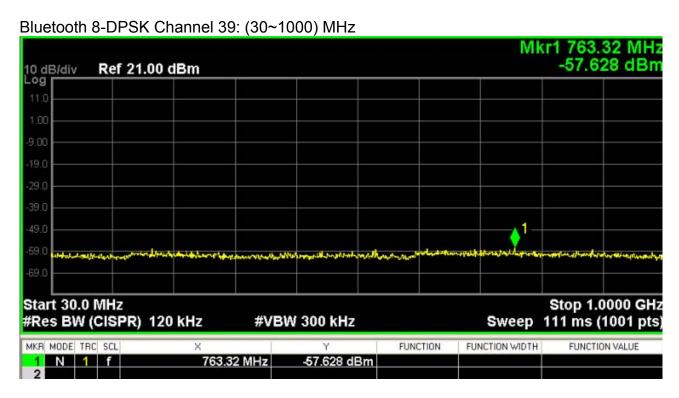

Note: There is not any harmonic but for background noise below 30 MHz.

Report No.: UL05420130725FCC/IC001 Page 35 of 98

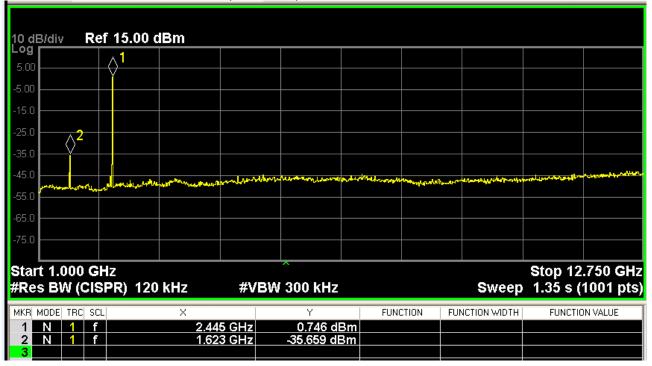


Note: The Mark1 point is carrier.

1 N 1 f

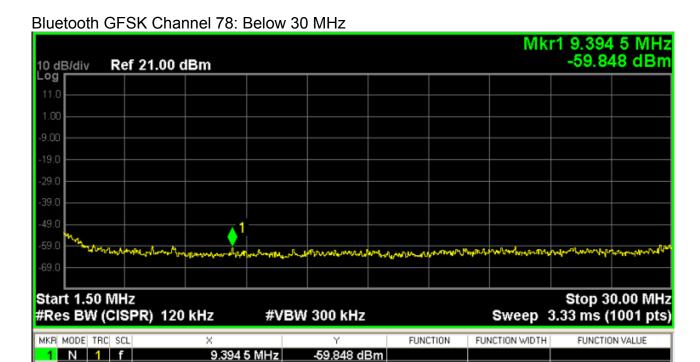

Report No.: UL05420130725FCC/IC001 Page 36 of 98

-59.259 dBm

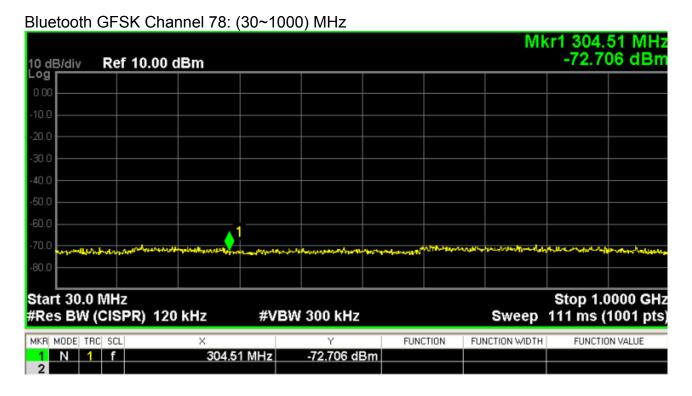

Note: There is not any harmonic but for background noise below 30 MHz.

6.088 5 MHz

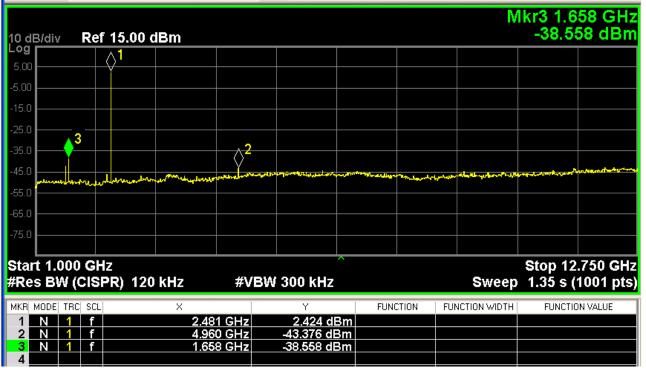
Page 37 of 98



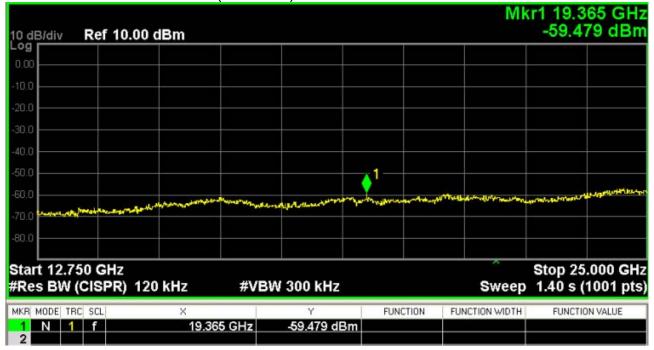
Note: The Mark2 point is carrier.

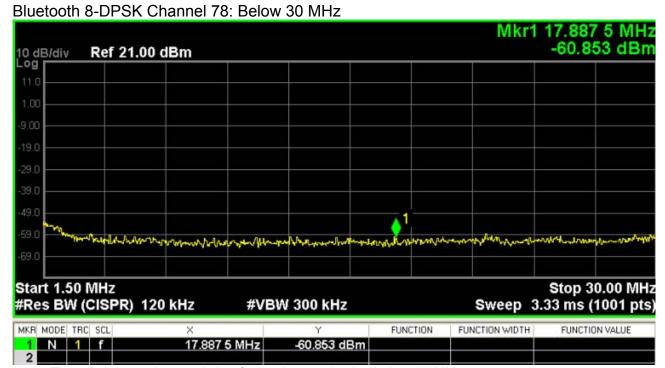

Bluetooth 8-DPSK Channel 39: (12.75~25)GHz

Report No.: UL05420130725FCC/IC001 Page

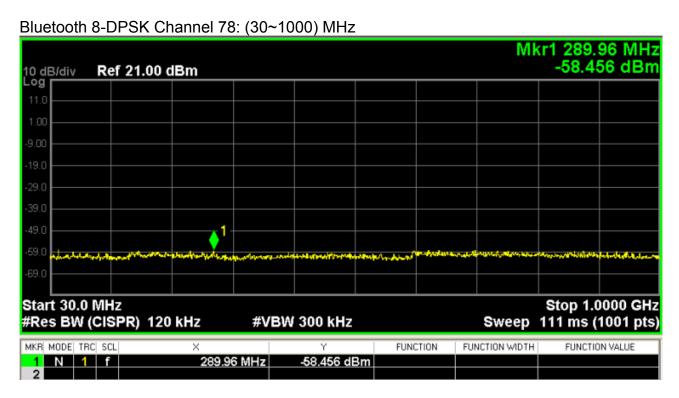


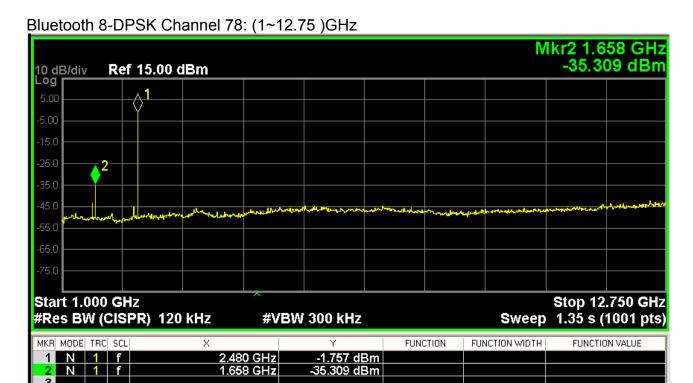
Note: There is not any harmonic but for background noise below 30 MHz.

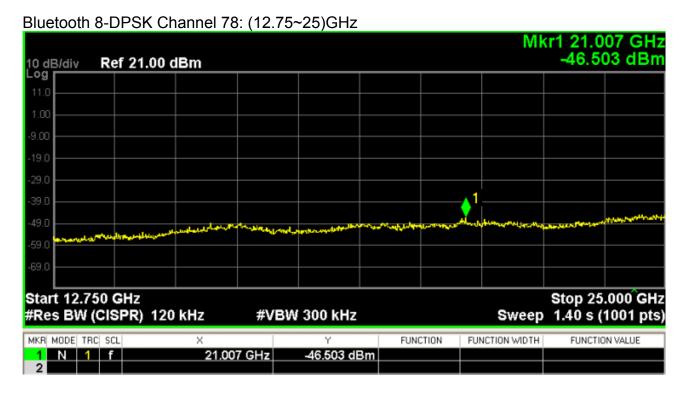

Page 39 of 98



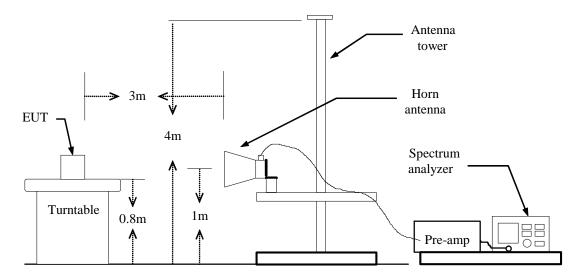
Note: The Mark1 point is carrier.


Bluetooth GFSK Channel 78: (12.75~25) GHz


Report No.: UL05420130725FCC/IC001 Page 40 of 98


Note: There is not any harmonic but for background noise below 30 MHz.

Report No.: UL05420130725FCC/IC001 Page 41 of 98



Note: The Mark1 point is carrier.

10. BAND EDGE MEASUREMENT

10.1 TEST SETUP

10.2 LIMITS

According to §15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

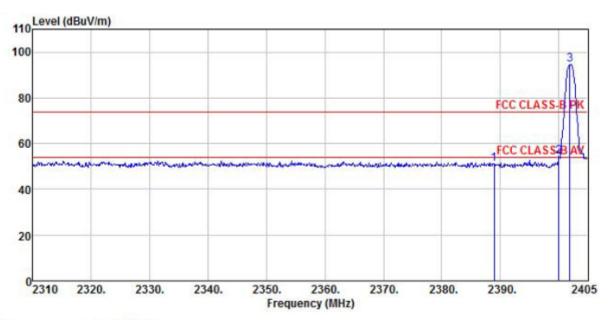
10.3 TEST PROCEDURE

The EUT is placed on a turntable, which is 0.8m above the ground plane.

The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.

Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

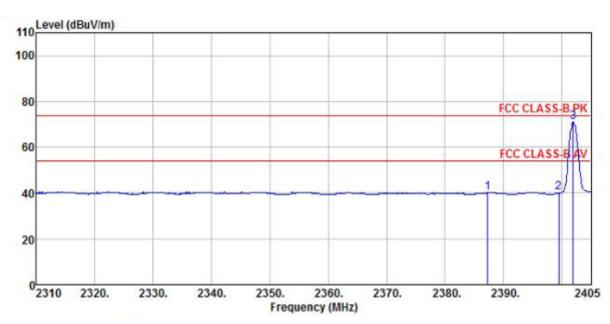

PEAK: RBW=VBW=1MHz / Sweep=AUTO

AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

10.4 RESULTS & PERFORMANCE

BT GFSK (Low Channel)


Site : chamber

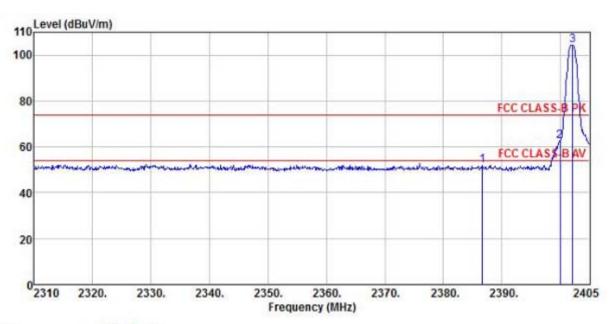
Condition : FCC CLASS-B PK 3m BBHA9120D(RSE-H) HORIZONTAL

EUT : carbonado smart PTT case for iphone

Model Name : PTK14C0 Temp/Humi : 25℃ / 57% Power Rating: DC 3.7V Mode : GFSK CH 0

	Freq		Antenna Factor						
100	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	2388.95	44.26	37.92	7.13	38.34	50.97	74.00	-23.03	Peak
2	2400.06	47.55	37.92	7.13	38.34	54.26	74.00	-19.74	Peak
3 pp	2401.96	87.96	37.92	7.13	38.34	94.67	74.00	20.67	Peak

Site : chamber

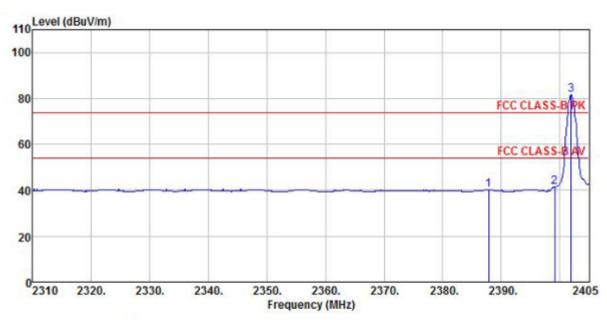

Condition : FCC CLASS-B PK 3m BBHA9120D(RSE-H) HORIZONTAL

EUT : carbonado smart PTT case for iphone

Model Name : PTK14C0 Temp/Humi : 25℃ / 57% Power Rating: DC 3.7V Mode : GFSK CH 0

Memo

icino	•								
	Freq		Antenna Factor				Limit		Remark
17	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	2387.33	33.49	37.92	7.13	38.34	40.20	54.00	-13.80	Average
2	2399.49	33.60	37.92	7.13	38.34	40.31	54.00	-13.69	Average
3 pp	2401.96	64.41	37.92	7.13	38.34	71.12	54.00	17.12	Average


Site : chamber

Condition : FCC CLASS-B PK 3m BBHA9120D(RSE-V) VERTICAL

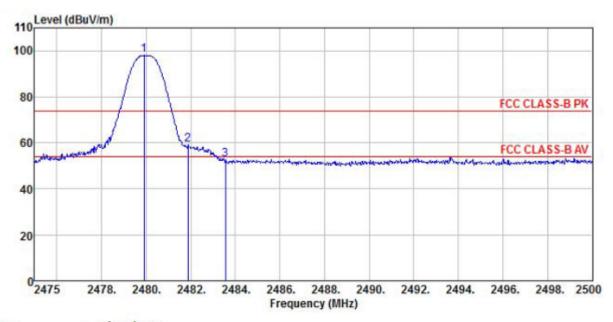
EUT : carbonado smart PTT case for iphone

Model Name : PTK14C0 Temp/Humi : 25℃ / 57% Power Rating: DC 3.7V Mode : GFSK CH 0

	Freq		Antenna Factor			Level			Remark
i.e	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	-
1	2386.67	45.16	37.92	7.13	38.34	51.87	74.00	-22.13	Peak
2	2399.97	55.82	37.92	7.13	38.34	62.53	74.00	-11.47	Peak
3 pp	2402.15	97.77	37.92	7.13	38.34	104.48	74.00	30.48	Peak

Site : chamber

Condition : FCC CLASS-B PK 3m BBHA9120D(RSE-V) VERTICAL

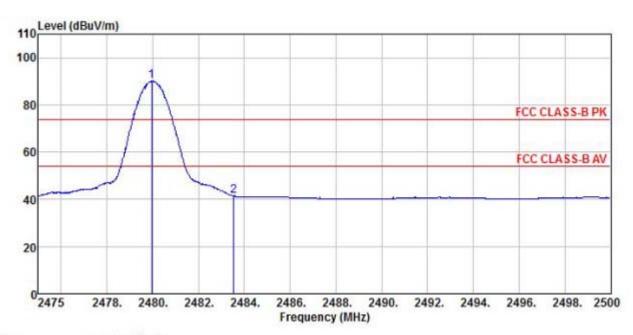

EUT : carbonado smart PTT case for iphone

Model Name : PTK14C0 Temp/Humi : 25℃ / 57% Power Rating: DC 3.7V Mode : GFSK CH 0

	Freq		Factor					Over Limit	
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	2387.90	33.36	37.92	7.13	38.34	40.07	54.00	-13.93	Average
2	2399.21	34.77	37.92	7.13	38.34	41.48	54.00	-12.52	Average
3 pp	2401.96	74.84	37.92	7.13	38.34	81.55	54.00	27.55	Average

Report No.: UL05420130725FCC/IC001 Page 47 of 98

BT GFSK (High Channel)

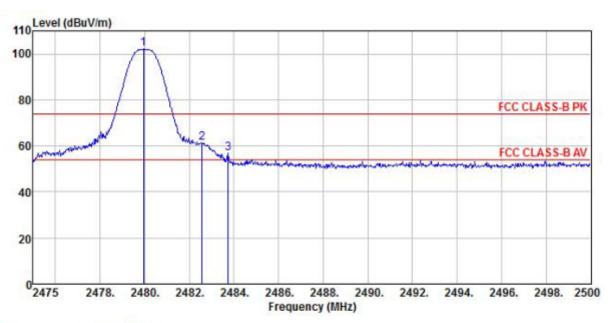

Site : chamber

Condition : FCC CLASS-B PK 3m BBHA9120D(RSE-H) HORIZONTAL

EUT : carbonado smart PTT case for iphone

Model Name : PTK14C0 Temp/Humi : 25℃ / 57% Power Rating: DC 3.7V Mode : GFSK CH 78

			Read	Antenna	Cable	Preamp		Limit	0ver	
		Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	20,00	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 p	р	2479.90	90.66	38.38	7.41	38.31	98.14	74.00	24.14	Peak
2		2481.88	51.60	38.38	7.41	38.31	59.08	74.00	-14.92	Peak
3		2483.55	45.16	38.38	7.41	38.31	52.64	74.00	-21.36	Peak

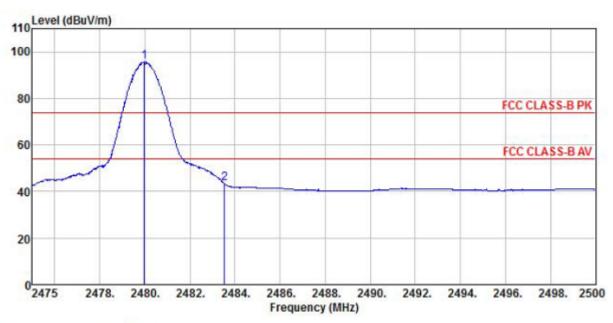

Site : chamber

Condition : FCC CLASS-B PK 3m BBHA9120D(RSE-H) HORIZONTAL

EUT : carbonado smart PTT case for iphone

Model Name : PTK14C0 Temp/Humi : 25℃ / 57% Power Rating: DC 3.7V Mode : GFSK CH 78

	Freq		ReadAntenna (Level Factor			III. O COLOR		Over Limit	
_	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	·
1 pp	2479.95	82.74	38.38	7.41	38.31	90.22	54.00	36.22	Average
2	2483.53	33.88	38.38	7.41	38.31	41.36	54.00	-12.64	Average


Site : chamber

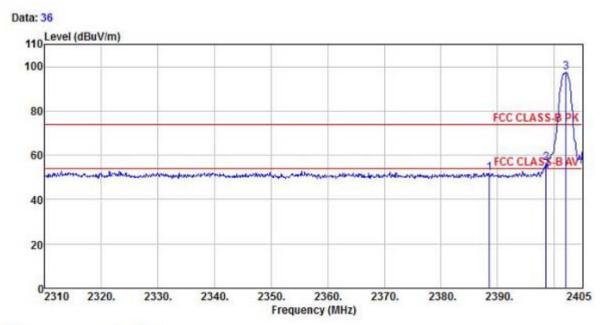
Condition : FCC CLASS-B PK 3m BBHA9120D(RSE-V) VERTICAL

EUT : carbonado smart PTT case for iphone

Model Name : PTK14C0 Temp/Humi : 25℃ / 57% Power Rating: DC 3.7V Mode : GFSK CH 78

		Read	Antenna	Cable	Preamp		Limit	0ver	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 pp	2479.95	94.72	38.38	7.41	38.31	102.20	74.00	28.20	Peak
2	2482.58	53.85	38.38	7.41	38.31	61.33	74.00	-12.67	Peak
3	2483.75	49.33	38.38	7.41	38.31	56.81	74.00	-17.19	Peak

Site : chamber

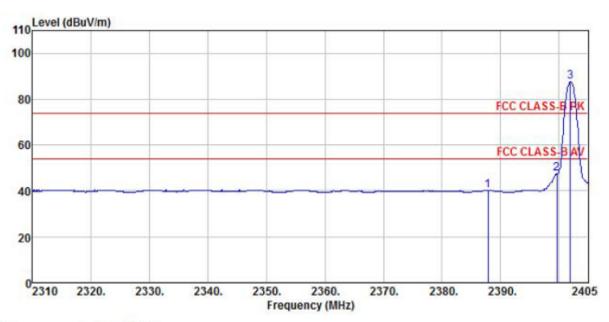

Condition : FCC CLASS-B PK 3m BBHA9120D(RSE-V) VERTICAL

EUT : carbonado smart PTT case for iphone

Model Name : PTK14C0 Temp/Humi : 25℃ / 57% Power Rating: DC 3.7V Mode : GFSK CH 78

	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 pp	2479.98	88.18	38.38	7.41	38.31	95.66	54.00	41.66	Average
2	2483.53	36.00	38.38	7.41	38.31	43.48	54.00	-10.52	Average

BT 8-DPSK (Low Channel)


Site : chamber

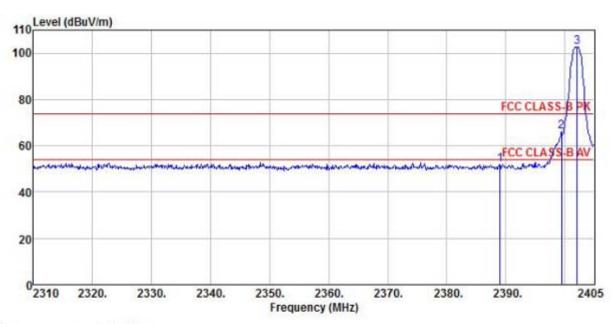
Condition : FCC CLASS-B PK 3m BBHA9120D(RSE-H) HORIZONTAL

EUT : carbonado smart PTT case for iphone

Model Name : PTK14CO Temp/Humi : 25℃ / 57% Power Rating: DC 3.7V Mode : 8DPSK CH 0

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
17	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	2388.57	45.39	37.92	7.13	38.34	52.10	74.00	-21.90	Peak
2	2398.64	49.74	37.92	7.13	38.34	56.45	74.00	-17.55	Peak
3 pp	2402.15	90.54	37.92	7.13	38.34	97.25	74.00	23.25	Peak

Site : chamber


Condition : FCC CLASS-B PK 3m BBHA9120D(RSE-H) HORIZONTAL

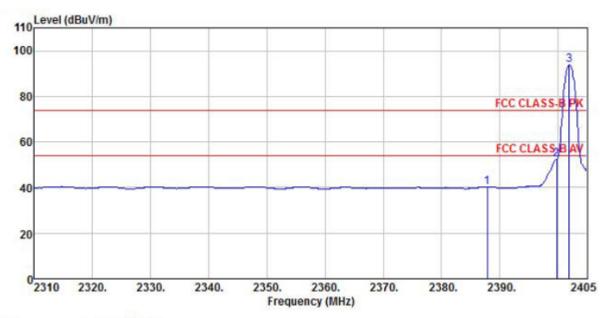
EUT : carbonado smart PTT case for iphone

Model Name : PTK14C0 Temp/Humi : 25℃ / 57% Power Rating: DC 3.7V Mode : 8DPSK CH 0

Memo

		Read	Antenna	Cable	Preamp		Limit	0ver	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	2387.90	33.41	37.92	7.13	38.34	40.12	54.00	-13.88	Average
2	2399.68	40.80	37.92	7.13	38.34	47.51	54.00	-6.49	Average
3 pp	2401.96	81.03	37.92	7.13	38.34	87.74	54.00	33.74	Average

Site : chamber


Condition : FCC CLASS-B PK 3m BBHA9120D(RSE-V) VERTICAL

EUT : carbonado smart PTT case for iphone

Model Name : PTK14C0 Temp/Humi : 25°C / 57% Power Rating: DC 3.7V Mode : 8DPSK CH 0

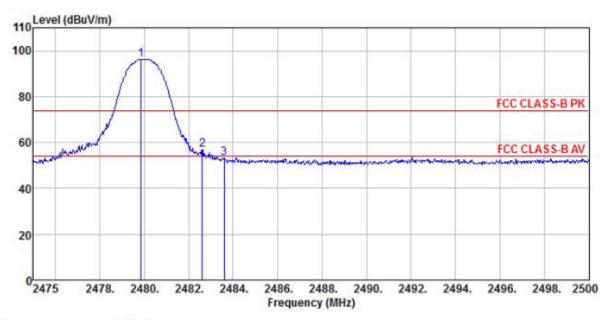
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	2389.04	45.09	37.92	7.13	38.34	51.80	74.00	-22.20	Peak
2	2399.49	59.36	37.92	7.13	38.34	66.07	74.00	-7.93	Peak
3 pp	2402.15	96.12	37.92	7.13	38.34	102.83	74.00	28.83	Peak

Report No.: UL05420130725FCC/IC001 Page 54 of 98

Site : chamber

Condition : FCC CLASS-B PK 3m BBHA9120D(RSE-V) VERTICAL

: carbonado smart PTT case for iphone EUT

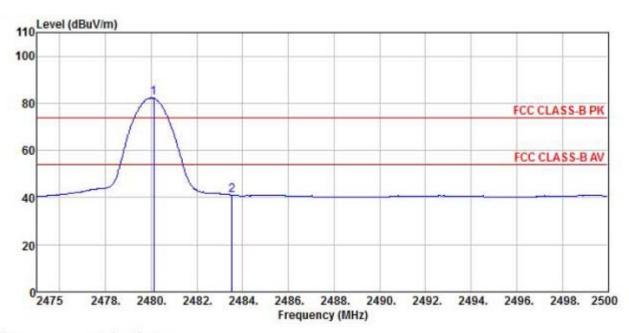

Model Name : PTK14CO : 25°C / 57% Temp/Humi Power Rating: DC 3.7V Mode : 8DPSK CH 0

Memo

	Freq		Antenna Factor						Remark
10	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	2387.90	33.50	37.92	7.13	38.34	40.21	54.00	-13.79	Average
2	2399.78	45.49	37.92	7.13	38.34	52.20	54.00	-1.80	Average
3 pp	2401.96	87.08	37.92	7.13	38.34	93.79	54.00	39.79	Average

Report No.: UL05420130725FCC/IC001 Page 55 of 98

BT 8-DPSK (High Channel)

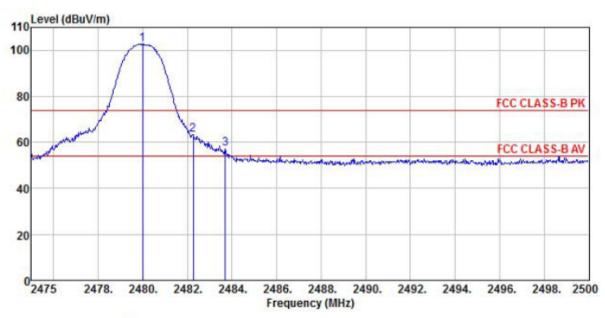

Site : chamber

Condition : FCC CLASS-B PK 3m BBHA9120D(RSE-H) HORIZONTAL

: carbonado smart PTT case for iphone EUT

Model Name : PTK14CO : 25°C / 57% Temp/Humi Power Rating: DC 3.7V Mode : 8DPSK CH 78

	Freq		Antenna Factor				Limit Line		Remark
-	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 pp	2479.85	88.90	38.38	7.41	38.31	96.38	74.00	22.38	Peak
2	2482.60	49.25	38.38	7.41	38.31	56.73	74.00	-17.27	Peak
3	2483.60	45.70	38.38	7.41	38.31	53.18	74.00	-20.82	Peak


Site : chamber

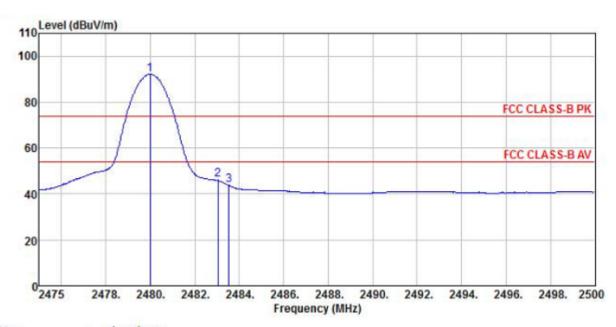
Condition : FCC CLASS-B PK 3m BBHA9120D(RSE-H) HORIZONTAL

EUT : carbonado smart PTT case for iphone

Model Name : PTK14CO Temp/Humi : 25°C / 57% Power Rating: DC 3.7V Mode : 8DPSK CH 78

	Freq		Antenna Factor		The second second second		1000	Over Limit	
-	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	0
1 pp	2480.13	74.87	38.38	7.41	38.31	82.35	54.00	28.35	Average
2	2483.53	33.58	38.38	7.41	38.31	41.06	54.00	-12.94	Average

Site : chamber


Condition : FCC CLASS-B PK 3m BBHA9120D(RSE-V) VERTICAL

EUT : carbonado smart PTT case for iphone

Model Name : PTK14CO Temp/Humi : 25℃ / 57% Power Rating: DC 3.7V Mode : 8DPSK CH 78

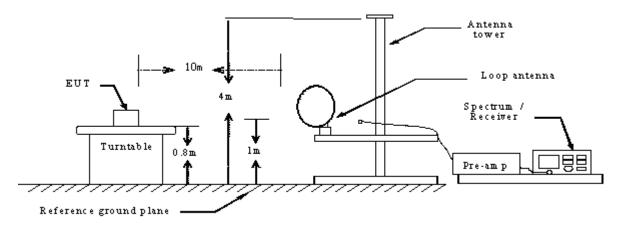
Memo

		ReadAnten		Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
10	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 pp	2480.00	95.41	38.38	7.41	38.31	102.89	74.00	28.89	Peak
2	2482.25	55.97	38.38	7.41	38.31	63.45	74.00	-10.55	Peak
3	2483.70	49.94	38.38	7.41	38.31	57.42	74.00	-16.58	Peak

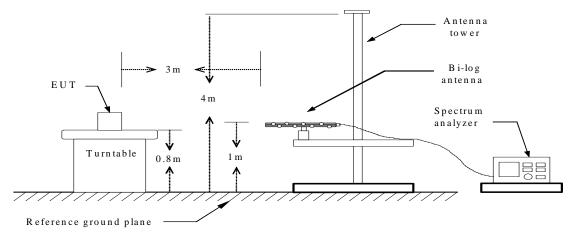
Site : chamber

Condition : FCC CLASS-B PK 3m BBHA9120D(RSE-V) VERTICAL

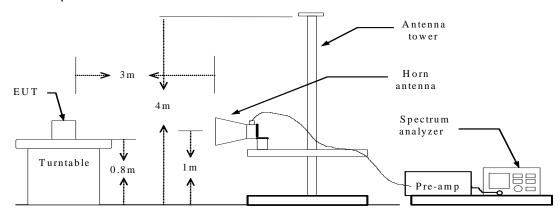
EUT : carbonado smart PTT case for iphone


Model Name : PTK14CO Temp/Humi : 25℃ / 57% Power Rating: DC 3.7V Mode : 8DPSK CH 78

		Read	Antenna	Cable	Preamp		Limit	0ver	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
17	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 pp	2480.00	84.65	38.38	7.41	38.31	92.13	54.00	38.13	Average
2	2483.05	38.75	38.38	7.41	38.31	46.23	54.00	-7.77	Average
3	2483.53	36.29	38.38	7.41	38.31	43.77	54.00	-10.23	Average


11. SPURIOUS EMISSIONS(RADIATION)

11.1 TEST SETUP


Radiated Spurious Measurement: below 30MHz

Radiated Spurious Measurement: below 1GHz

Radiated Spurious Measurement: above 1GHz

Report No.: UL05420130725FCC/IC001 Page 60 of 98

11.2 LIMITS

Frequency (MHz)	Limits (dBuV/m)	Measured distance (m)
0.009-0.490	107.6-72.9	
0.490-1.705	52.8-42.1	10
1.705-30.0	49	
30~88	40	
88~216	43.5	3
216-960	46	3
Above 960	54	

Notes: the calculate formula for below 30MHz

L2 = 20lg (L1) + 40lg (d1/d2)

L2: is the specified limit in dB microvolts per metre at distance d2.

L1: is the specified limit in microvolts per metre at distance d1.

For example:

 $L1 = 2400/9 \,(\mu V/m)$, $d1 = 300 \,(m)$, $d2 = 10 \,(m)$, so L2 as follows:

 $20lg (2400/9) + 40lg(300/10) = 107.6(dB\mu V/m)$

11.3 **TEST PROCEDURE**

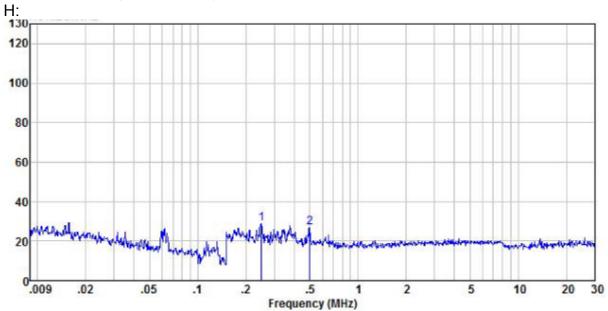
Radiated Emission (9 kHz – 30 MHz):

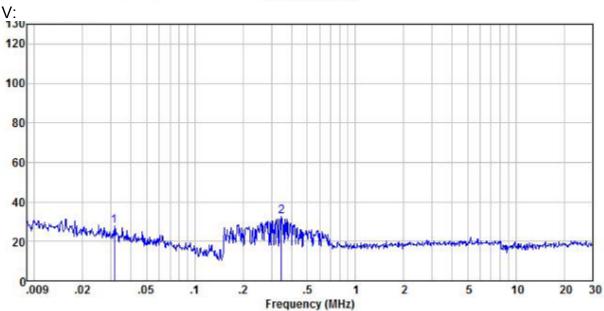
Spurious emissions from the EUT are measured in the frequency range of 9 kHz to 30 MHz using a tuned receiver and a shielded loop antenna. The antenna was positioned 10 meters horizontally from the EUT. Measurements have been made in all three orthogonal axes and the shielded loop antenna was rotated to locate the maximum of the emissions. The emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz.

Radiated Emission (30 MHz - 1000 MHz):

According to description of ANSI C63.4: 2009 sec. 13.4, the preliminary radiated emissions measurement were carried out. The preliminary radiated measurements were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT. The EUT configuration (in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for the final radiated emissions measurements. The measurement is carried out using a spectrum analyzer or receiver. The Quasi-peak detector is used and RBW is set to 120kHz. The antenna height and turn table rotation is adjusted until the maximum power value is founded on spectrum analyzer or receiver.

Report No.: UL05420130725FCC/IC001 Page 61 of 98

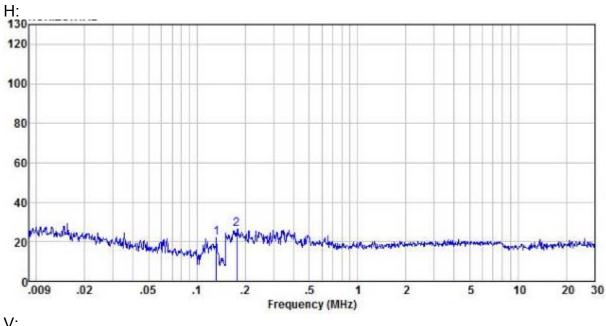

Radiated Emission (Above 1 GHz):

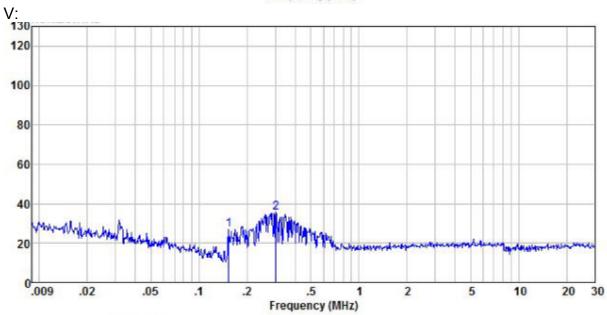

According to description of ANSI C63.4: 2009 sec.13.4, the preliminary radiated emissions measurement were carried out. The preliminary radiated measurements were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT. The EUT configuration (in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for the final radiated emissions measurements. The measurement is carried out using a spectrum analyzer or receiver. The spectrum analyzer scans from 1GHz to 25GHz (higher than the 10th harmonic of the carrier). The peak detector is used for Peak limit and RBW is set to 1MHz ,VBW ≥ 3RBW. The peak detector is used for Average limit and RBW is set to 1MHz ,VBW is not smaller than 1/T, T = to the shortest pulse width. The antenna height and turn table rotation is adjusted until the maximum power value is founded on spectrum analyzer or receiver.

11.4 RESULTS & PERFORMANCE

From 9KHz to 30MHz:

Bluetooth GFSK, traffic mode; Channel 0

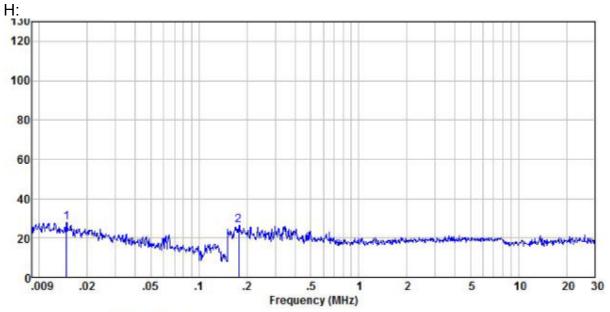


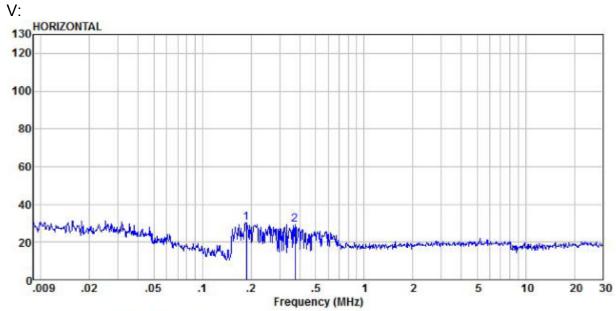


Frequency (MHz)	Polarization (H/V)	Reading (dBuV/m)	Correction Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector
0.03	Н	27.84	19.53	47.37	97.14	-49.77	Peak
0.25	V	28.82	19.66	48.48	78.73	-30.25	Peak
0.35	Н	32.41	18.24	50.65	76.56	-25.91	Peak
0.49	V	26.66	18.43	45.09	52.80	-7.71	Peak

H: Horizontal V: Vertical

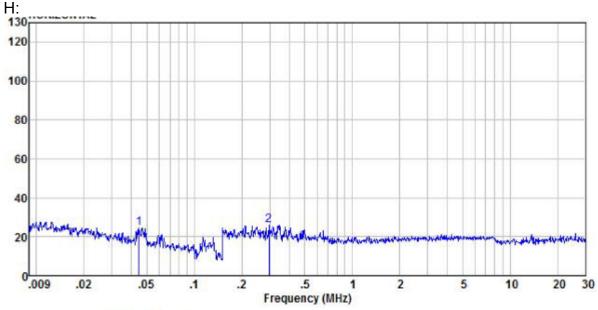
Unil@b

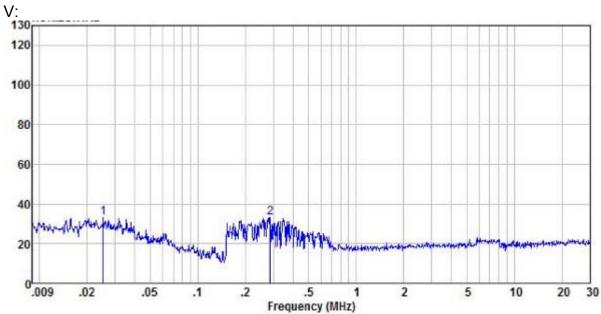




Frequency (MHz)	Polarization (H/V)	Reading (dBuV/m)	Correction Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector
0.15	Н	27.03	19.55	46.58	83.16	-36.58	Peak
0.13	V	21.86	19.61	41.47	84.41	-42.94	Peak
0.3	Н	35.41	19.94	55.35	77.14	-21.79	Peak
0.18	V	26.55	19.65	46.20	81.58	-35.38	Peak

H: Horizontal V: Vertical





Frequency (MHz)	Polarization (H/V)	Reading (dBuV/m)	Correction Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector
0.19	Н	30.42	19.53	49.95	81.11	-31.16	Peak
0.01	V	27.80	18.66	46.46	106.68	-60.22	Peak
0.37	Н	29.30	19.14	48.44	75.32	-26.88	Peak
0.18	V	26.55	19.65	46.20	81.58	-35.38	Peak

H: Horizontal V: Vertical

Bluetooth 8-DPSK, traffic mode; Channel 0

Frequency (MHz)	Polarization (H/V)	Reading (dBuV/m)	Correction Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector
0.03	Н	33.29	19.53	52.82	97.14	-44.32	Peak
0.04	V	24.61	19.66	44.27	94.64	-50.37	Peak
0.29	Н	33.01	18.54	51.55	77.44	25.89	Peak
0.30	V	26.10	19.94	46.04	77.14	-31.10	Peak

H: Horizontal V: Vertical