

FCC TEST REPORT

REPORT NO.: 060712FIA01

MODEL NO.: GW-BT-002

RECEIVED: Jul. 11, 2006

TESTED: Jul. 11 ~ Jul. 20, 2006

ISSUED: Jul. 20, 2006

APPLICANT: GREAT WELL ELECTRONIC LIMITED

ADDRESS: The Third Industrial Area, Guanlan Town,
Shenzhen City, China

ISSUED BY: ADT (Shanghai) Corporation

ADDRESS: 2F, Building C, No.1618, Yishan Rd., 201103,
Shanghai, China

This test report consists of 48 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by A2LA or any government agencies. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards. This report contains data that were produced under Laboratory ADT (Shanghai) Corporation.

ADT (Shanghai) Corporation.

TABLE OF CONTENTS

1. CERTIFICATION	5
2. SUMMARY OF TEST RESULTS	6
2.1 MEASUREMENT UNCERTAINTY	7
3. GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	9
3.2.1 CONFIGURATION OF SYSTEM UNDER TEST	9
3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	10
3.3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS	12
3.3.4 DESCRIPTION OF SUPPORT UNITS	12
4. TEST TYPES AND RESULTS	13
4.1 CONDUCTED EMISSION MEASUREMENT	13
4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT	13
4.1.2 TEST RESULTS	13
4.2 RADIATED EMISSION MEASUREMENT	14
4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT	14
4.2.2 TEST INSTRUMENTS	15
4.2.3 TEST PROCEDURES	16
4.2.4 DEVIATION FROM TEST STANDARD	16
4.2.5 TEST SETUP	17
4.2.6 EUT OPERATING CONDITIONS	17
4.2.7 TEST RESULTS	18
4.3 NUMBER OF HOPPING FREQUENCY USED	22
4.3.1 LIMIT OF HOPPING FREQUENCY USED	22
4.3.2 TEST INSTRUMENTS	22
4.3.3 TEST PROCEDURES	22
4.3.4 DEVIATION FROM TEST STANDARD	22
4.3.5 TEST SETUP	23
4.3.6 TEST RESULTS	23

4.4 DWELL TIME ON EACH CHANNEL	25
4.4.1 LIMIT OF DWELL TIME USED	25
4.4.2 TEST INSTRUMENTS	25
4.4.3 TEST PROCEDURES	25
4.4.4 DEVIATION FROM TEST STANDARD	26
4.4.5 TEST SETUP	26
4.4.6 TEST RESULTS	27
4.5 CHANNEL BANDWIDTH	31
4.5.1 LIMITS OF CHANNEL BANDWIDTH	31
4.5.2 TEST INSTRUMENTS	31
4.5.3 TEST PROCEDURE	31
4.5.4 DEVIATION FROM TEST STANDARD	31
4.5.5 TEST SETUP	32
4.5.6 EUT OPERATING CONDITION	32
4.5.7 TEST RESULTS	33
4.6 HOPPING CHANNEL SEPARATION	35
4.6.1 LIMIT OF HOPPING CHANNEL SEPARATION	35
4.6.2 TEST INSTRUMENTS	35
4.6.3 TEST PROCEDURES	36
4.6.4 DEVIATION FROM TEST STANDARD	36
4.6.5 TEST SETUP	36
4.6.6 TEST RESULTS	37
4.7 MAXIMUM PEAK OUTPUT POWER	39
4.7.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT	39
4.7.2 TEST INSTRUMENTS	39
4.7.3 TEST PROCEDURES	39
4.7.4 DEVIATION FROM TEST STANDARD	40
4.7.5 TEST SETUP	40
4.7.6 EUT OPERATING CONDITION	40
4.7.7 TEST RESULTS	41

4.8 BAND EDGES MEASUREMENT	42
4.8.1 LIMITS OF BAND EDGES MEASUREMENT	42
4.8.2 TEST INSTRUMENTS	42
4.8.3 TEST PROCEDURE	42
4.8.4 DEVIATION FROM TEST STANDARD	42
4.8.5 EUT OPERATING CONDITION	42
4.8.6 TEST RESULTS	43
4.9 ANTENNA REQUIREMENT	44
4.9.1 STANDARD APPLICABLE	46
4.9.2 ANTENNA CONNECTED CONSTRUCTION	46
5. INFORMATION ON THE TESTING LABORATORIES	47
APPENDIX-A.....	A-1

1. CERTIFICATION

PRODUCT: Bluetooth Hands Free
MODEL NO.: GW-BT-002
APPLICANT: GREAT WELL ELECTRONIC LIMITED
TESTED: Jul. 11 ~ Jul. 20, 2006
TEST ITEM: Engineering Sample
STANDARDS: FCC Part 15, Subpart C (Section 15.247),
ANSI C63.4-2003

We, **ADT (Shanghai) Corporation**, declare that the equipment above has been tested in our facility and found compliance with the requirement limits of applicable standards. The test record, data evaluation and Equipment Under Test (EUT) configurations represented herein are true and accurate under the standards herein specified.

**TECHNICAL
ACCEPTANCE :** _____, **DATE:** JUL. 20, 2006
Steven Qian
Engineering Supervisor

APPROVED BY : _____, **DATE:** JUL. 20, 2006
Wallace Pan
Director of Operations

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C			
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK
15.207	AC Power Conducted Emission	N/A	Power supply is 3.7Vdc from batteries
15.247(a)(1) (iii)	Number of Hopping Frequency Used Spec.: At least 15 channels	PASS	Meet the requirement of limit.
15.247(a)(1) (iii)	Dwell Time on Each Channel Spec.: Max. 0.4 second within 31.6 second	PASS	Meet the requirement of limit.
15.247(a)(1)	1. Hopping Channel Separation Spec. : Min. 25 kHz or 20 dB bandwidth, whichever is greater (see Note 1) 2. Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	PASS	Meet the requirement of limit.
15.247(b)	Maximum Peak Output Power Spec.: max. 30dBm (see Note 1)	PASS	Meet the requirement of limit.
15.247(d)	Transmitter Radiated Emissions Spec.: Table 15.209	PASS	Meet the requirement of limit. Minimum passing margin is -9.20 dB at 12400.00MHz.
15.247(d)	Band Edge Measurement	PASS	Meet the requirement of limit.

Note: If the Frequency Hopping System operating in 2400-2483.5 MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25 kHz or two-thirds of the 20dB bandwidth of hopping channel, whichever is greater.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4:

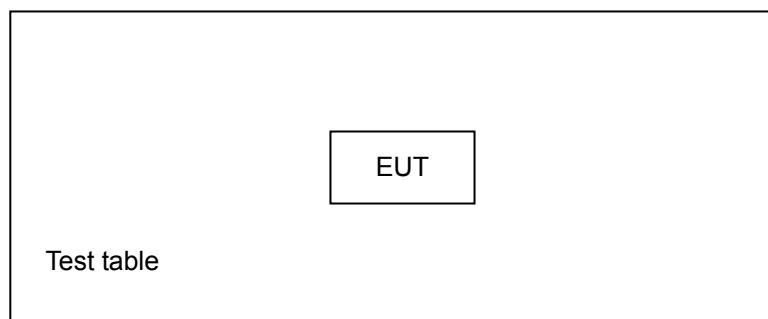
This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz ~ 30MHz	2.44 dB
Radiated emissions	30MHz ~ 200MHz	3.73 dB
	200MHz ~ 1000MHz	3.74 dB
	1GHz ~ 18GHz	2.20 dB
	18GHz ~ 40GHz	1.88 dB

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Bluetooth Hands Free
MODEL NO.	GW-BT-002
POWER SUPPLY	3.7Vdc from Battery
MODULATION TYPE	GFSK
RADIO TECHNOLOGY	FHSS
TRANSFER RATE	1Mbps
FREQUENCY RANGE	2402~ 2480 MHz
NUMBER OF CHANNEL	79
OUTPUT POWER	-6dBm- +4dBm
ANTENNA TYPE	Soldered on PCB
ANTENNA GAIN	2dBi
DATA CABLE	N/A
I/O PORTS	Refer to user's manual
ASSOCIATED DEVICES	N/A


NOTE: The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

79 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2431	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT CONFIGURE MODE	Applicable to							Description
	DT	CB	HCS	MPOP	BM	RE<1G	RE≥1G	
A	√	√	√	√	√	√	√	GFSK Modulation

Where **DT:** Dwell Time on Each Channel **CB:** CHANNEL BANDWIDTH
HCS: Hopping Channel Separation **MPOP:** Maximum Peak Output Power
BM: Band edge Measurement **RE<1G:** Radiated Emission below 1GHz **RE≥1G:** Radiated Emission above 1GHz

DWELL TIME ON EACH CHANNEL:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE
A	0 to 78	0, 39, 78	FHSS	GFSK	1Mbps

CANNEL BANDWIDTH:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE
A	0 to 78	0, 39, 78	FHSS	GFSK	1Mbps

HOPPING CHANNEL SEPARATION

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE
A	0 to 78	0, 39, 78	FHSS	GFSK	1Mbps

MAXIMUM PEAK OUTPUT POWER

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE
A	0 to 78	0, 39, 78	FHSS	GFSK	1Mbps

BANDEdge MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE
A	0 to 78	0, 78	FHSS	GFSK	1Mbps

RADIATED EMISSION TEST (BELOW 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE
A	0 to 78	39	FHSS	GFSK	1Mbps

RADIATED EMISSION TEST (ABOVE 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE
A	0 to 78	0, 39, 78	FHSS	GFSK	1Mbps

3.3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a Bluetooth Hands Free. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. (15.247)

ANSI C63.4- 2003

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

3.3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit.

4. TEST TYPES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dB μ V)	
	Quasi-peak	Average
0.15 - 0.5	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTES:

- (1) The lower limit shall apply at the transition frequencies.
- (2) The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- (3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.1.2 TEST RESULTS

Since the EUT does not have AC port, the test item is not applicable.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB_uV/m) = 20 log Emission level (uV/m).
3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.2.2 TEST INSTRUMENTS

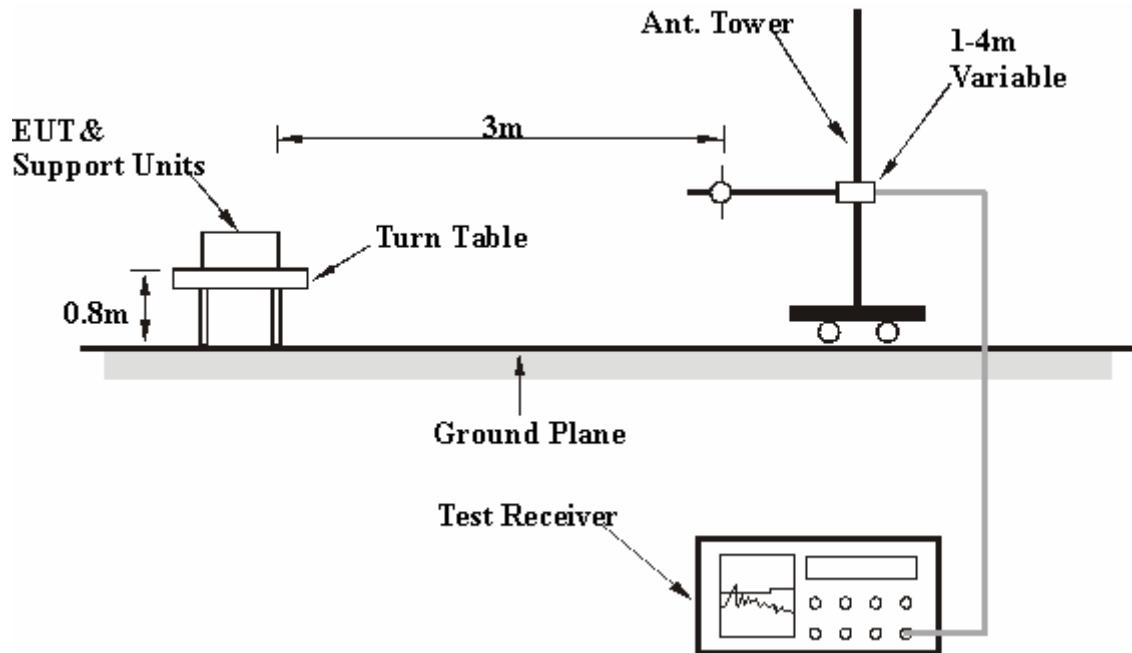
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Test Receiver ROHDE & SCHWARZ	ESCS30	E1R1001	Apr. 19, 2007
BILOG Antenna SCHWARZBECK	VULB9168	E1A1001	Sep. 26, 2006
Preamplifier Agilent	8447D	E1A2001	Jan. 27, 2007
Preamplifier Agilent	8449B	E1A2002	Jan. 27, 2007
Double Ridged Broadband Horn Antenna Schwarzbeck	BBHA 9120D	E1A1002	Feb. 15, 2007
Spectrum Analyzer Agilent	E4403B	E1S1001	Jan. 13, 2007
Spectrum Analyzer ROHDE & SCHWARZ	FSP30	E1S1002	May. 15, 2007
RF signal cable Woken	RG-402	E1CBH01	May. 30, 2007
RF signal cable Woken	RG-402	E1CBH02	May. 30, 2007
RF signal cable Woken	RG-402	E1CBH03	May. 30, 2007
RF signal cable Woken	RG-412	E1CBL02	May. 30, 2007
RF signal cable Woken	RG-412	E1CBL03	May. 30, 2007
RF signal cable Woken	RG-412	E1CBL04	May. 30, 2007
Software ADT	ADT_Radiated_V7.5	N/A	N/A

NOTE:

1. The calibration interval of the above test instruments is 12 months.
2. The horn antenna and Agilent preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
3. The Spectrum Analyzer (model: FSP30) and RF signal cable (SERIAL: E1CBH05&E1CBH07) are used only for the measurement of emission frequency above 1GHz if tested.

4.2.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.


NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection at frequency below 1GHz.
2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection (PK) at frequency above 1GHz.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.2.6 EUT OPERATING CONDITIONS

The software controlled the EUT to transmit at its maximum power on the specified channels.

4.2.7 TEST RESULTS

Below 1 GHz Worst Case

EUT		Bluetooth Hands Free	MEASUREMENT DETAIL		
MODEL		GW-BT-002	FREQUENCY RANGE		Below 1000MHz
CHANNEL		Channel 39	DETECTOR FUNCTION		Quasi-Peak
MODULATION TYPE		GFSK	ENVIRONMENTAL CONDITIONS		20deg. C, 60%RH, 1001hPa
TEST MODE		A	INPUT POWER		3.7Vdc from battery
TESTED BY		Jeffrey			

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
No.	Frequency MHz	Factor dB	Reading dBuV/m	Emission dBuV/m	Limit dBuV/m	Margin dB	Tower cm	Table deg
1	139.12	16.14	-7.71	8.43	43.50	-35.07	245.00	51.00
2	250.68	14.83	-7.15	7.68	46.00	-38.32	276.00	135.00
3	420.43	19.33	-7.44	11.89	46.00	-34.11	191.00	205.00
4	529.55	21.52	-7.33	14.19	46.00	-31.81	271.00	293.00
5	616.85	23.45	-6.93	16.52	46.00	-29.48	111.00	271.00
6	742.95	25.26	-7.63	17.63	46.00	-28.37	179.00	348.00

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
No.	Frequency MHz	Factor dB	Reading dBuV/m	Emission dBuV/m	Limit dBuV/m	Margin dB	Tower cm	Table deg
1	179.90	14.65	-6.75	7.90	43.50	-35.60	99.00	41.00
2	284.62	16.00	-7.90	8.11	46.00	-37.89	99.00	113.00
3	408.30	18.92	-7.85	11.07	46.00	-34.93	99.00	182.00
4	531.98	21.58	-8.19	13.40	46.00	-32.60	99.00	318.00
5	633.83	23.70	-8.24	15.47	46.00	-30.53	99.00	252.00
6	842.37	26.19	-7.48	18.72	46.00	-27.28	99.00	19.00

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
3. The other emission levels were very low against the limit.
4. Margin value = Emission level – Limit value.

EUT		Bluetooth Hands Free	MEASUREMENT DETAIL		
MODEL		GW-BT-002	FREQUENCY RANGE		Above 1GHz
CHANNEL		Channel 0	DETECTOR FUNCTION		Peak (PK) Average (AV) 1 MHz
MODULATION TYPE		GFSK	ENVIRONMENTAL CONDITIONS		20deg. C, 60%RH, 1001hPa
TEST MODE		A	INPUT POWER		3.7Vdc from battery
TESTED BY		Bright Tong			

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
No.	Frequency MHz	Factor dB	Reading dBuV/m	Emission dBuV/m	Limit dBuV/m	Margin dB	Tower cm	Table deg
1	4804.00 PK	41.13	12.38	53.52	74.00	-20.48	114.00	19.00
1	4804.00 AV	41.13	12.38	33.52	54.00	-20.48	114.00	19.00
2	7206.00 PK	48.78	12.21	60.99	74.00	-13.01	120.00	356.00
2	7206.00 AV	48.78	12.21	40.99	54.00	-13.01	120.00	356.00
3	9608.00 PK	52.28	9.54	61.82	74.00	-12.18	106.00	348.00
3	9608.00 AV	52.28	9.54	41.82	54.00	-12.18	106.00	348.00
4	12010.00 PK	53.62	10.82	64.43	74.00	-9.57	134.00	56.00
4	12010.00 AV	53.62	10.82	44.43	54.00	-9.57	134.00	56.00

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
No.	Frequency MHz	Factor dB	Reading dBuV/m	Emission dBuV/m	Limit dBuV/m	Margin dB	Tower cm	Table deg
1	4804.00 PK	41.13	13.98	55.11	74.00	-18.89	199.00	19.00
1	4804.00 AV	41.13	13.98	35.11	54.00	-18.89	199.00	19.00
2	7206.00 PK	48.78	11.74	60.52	74.00	-13.48	100.00	43.00
2	7206.00 AV	48.78	11.74	40.52	54.00	-13.48	100.00	43.00
3	9608.00 PK	52.28	9.40	61.68	74.00	-12.32	150.00	86.00
3	9608.00 AV	52.28	9.40	41.68	54.00	-12.32	150.00	86.00
4	12010.00 PK	53.62	9.85	63.46	74.00	-10.54	138.00	25.00
4	12010.00 AV	53.62	9.85	43.46	54.00	-10.54	138.00	25.00

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
3. The other emission levels were very low against the limit.
4. Margin value = Emission level – Limit value.
5. Based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle is equal to: $20\log(3.125/100) = -30$ dB.
6. Average value = peak reading –20dB

EUT		Bluetooth Free Hands Free	MEASUREMENT DETAIL			
MODEL		GW-BT-002	FREQUENCY RANGE		Above 1GHz	
CHANNEL		Channel 39	DETECTOR FUNCTION		Peak (PK) Average (AV) 1 MHz	
MODULATION TYPE		GFSK	ENVIRONMENTAL CONDITIONS		20deg. C, 60%RH, 1001hPa	
TEST MODE		A	INPUT POWER		3.7Vdc from battery	
TESTED BY		Bright Tong				

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
No.	Frequency MHz	Factor dB	Reading dBuV/m	Emission dBuV/m	Limit dBuV/m	Margin dB	Tower cm	Table deg
1	4882.00 PK	41.41	12.01	53.42	74.00	-20.58	100.00	246.00
1	4882.00 AV	41.41	12.01	33.42	54.00	-20.58	100.00	246.00
2	7323.00 PK	49.03	11.35	60.37	74.00	-13.63	230.00	203.00
2	7323.00 AV	49.03	11.35	40.37	54.00	-13.63	230.00	203.00
3	9764.00 PK	52.46	8.90	61.37	74.00	-12.63	200.00	315.00
3	9764.00 AV	52.46	8.90	41.37	54.00	-12.63	200.00	315.00
4	12205.00 PK	53.52	11.26	64.78	74.00	-9.22	120.00	226.00
4	12205.00 AV	53.52	11.26	44.78	54.00	-9.22	120.00	226.00

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
No.	Frequency MHz	Factor dB	Reading dBuV/m	Emission dBuV/m	Limit dBuV/m	Margin dB	Tower cm	Table deg
1	4882.00 PK	41.41	13.98	55.11	74.00	-18.89	101.00	181.00
1	4882.00 AV	41.41	13.98	35.11	54.00	-18.89	101.00	181.00
2	7323.00 PK	49.03	11.74	60.52	74.00	-13.48	112.00	134.00
2	7323.00 AV	49.03	11.74	40.52	54.00	-13.48	112.00	134.00
3	9764.00 PK	52.46	9.40	61.68	74.00	-12.32	156.00	113.00
3	9764.00 AV	52.46	9.40	41.68	54.00	-12.32	156.00	113.00
4	12205.00 PK	53.52	9.85	63.46	74.00	-10.54	159.00	151.00
4	12205.00 AV	53.52	9.85	43.46	54.00	-10.54	159.00	151.00

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
3. The other emission levels were very low against the limit.
4. Margin value = Emission level – Limit value.
5. Based upon bluetooth theory the transmitter is on $0.625 * 5$ per 296.25 ms per channel. Therefore, the duty cycle is equal to: $20\log(3.125/100) = -30$ dB.
6. Average value = peak reading – 20dB

EUT		Bluetooth Hands Free	MEASUREMENT DETAIL		
MODEL		GW-BT-002	FREQUENCY RANGE		Above 1GHz
CHANNEL		Channel 78	DETECTOR FUNCTION		Peak (PK) Average (AV) 1 MHz
MODULATION TYPE		GFSK	ENVIRONMENTAL CONDITIONS		20deg. C, 60%RH, 1001hPa
TEST MODE		A	INPUT POWER		3.7Vdc from battery
TESTED BY		Bright Tong			

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
No.	Frequency MHz	Factor dB	Reading dBuV/m	Emission dBuV/m	Limit dBuV/m	Margin dB	Tower cm	Table deg
1	4960.00 PK	41.67	14.43	56.11	74.00	-17.89	158.00	102.00
1	4960.00 AV	41.67	14.43	36.11	54.00	-17.89	158.00	102.00
2	7440.00 PK	49.25	11.10	60.35	74.00	-13.65	276.00	147.00
2	7440.00 AV	49.25	11.10	40.35	54.00	-13.65	276.00	147.00
3	9920.00 PK	52.46	10.82	63.27	74.00	-10.73	129.00	25.00
3	9920.00 AV	52.46	10.82	43.27	54.00	-10.73	129.00	25.00
4	12400.00 PK	53.43	11.13	64.56	74.00	-9.44	248.00	38.00
4	12400.00 AV	53.43	11.13	44.56	54.00	-9.44	248.00	38.00

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
No.	Frequency MHz	Factor dB	Reading dBuV/m	Emission dBuV/m	Limit dBuV/m	Margin dB	Tower cm	Table deg
1	4960.00 PK	41.67	13.11	54.78	74.00	-19.22	118.00	48.00
1	4960.00 AV	41.67	13.11	34.78	54.00	-19.22	118.00	48.00
2	7440.00 PK	49.25	11.75	61.00	74.00	-13.00	139.00	128.00
2	7440.00 AV	49.25	11.75	41.00	54.00	-13.00	139.00	128.00
3	9920.00 PK	52.46	10.69	63.15	74.00	-10.85	227.00	109.00
3	9920.00 AV	52.46	10.69	43.15	54.00	-10.85	227.00	109.00
4	12400.00 PK	53.43	11.37	64.80	74.00	-9.20	204.00	69.00
4	12400.00 AV	53.43	11.37	44.80	54.00	-9.20	204.00	69.00

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
3. The other emission levels were very low against the limit.
4. Margin value = Emission level – Limit value.
5. Based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle is equal to: $20\log(3.125/100) = -30$ dB.
6. Average value = peak reading –20dB

4.3 NUMBER OF HOPPING FREQUENCY USED

4.3.1 LIMIT OF HOPPING FREQUENCY USED

At least 15 channels frequencies, and should be equally spaced.

4.3.2 TEST INSTRUMENTS

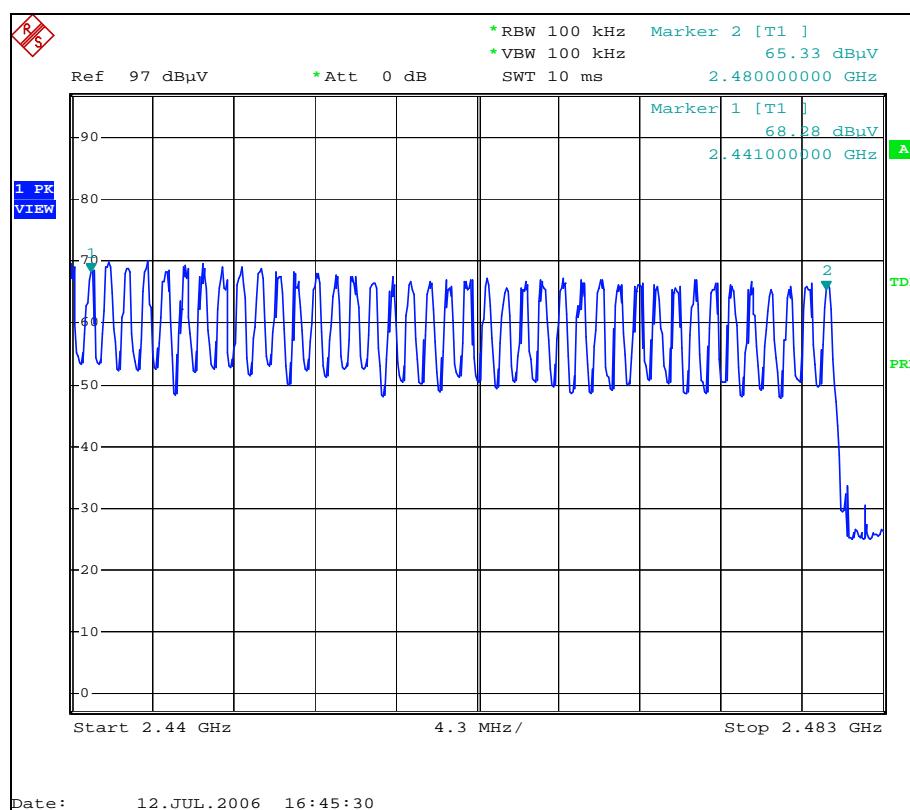
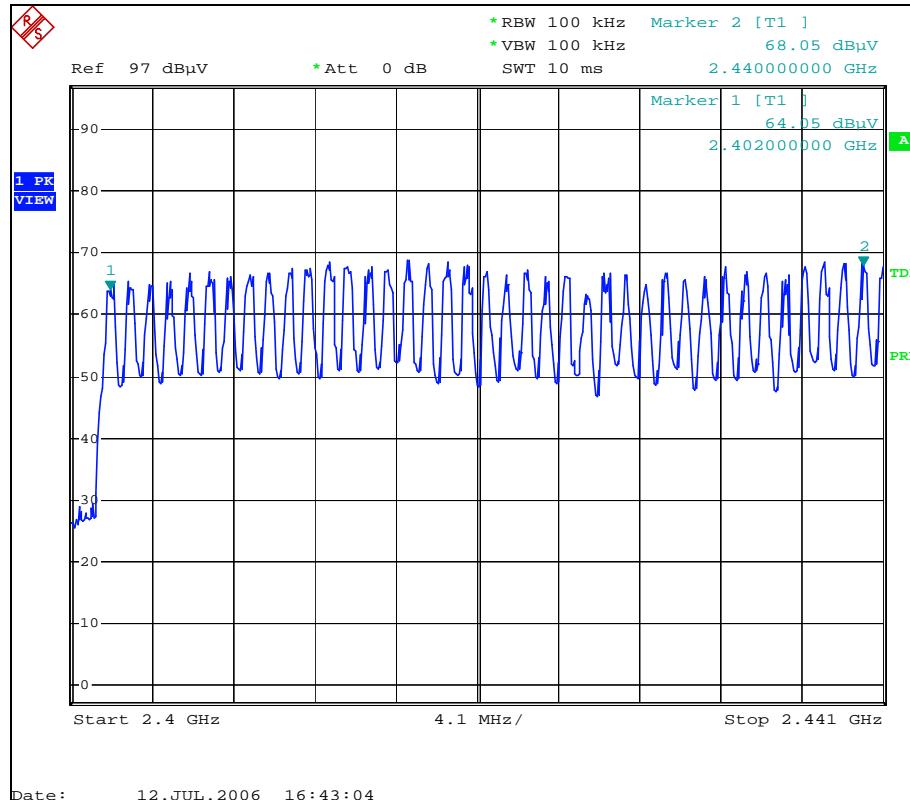
DESCRIPTION &	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Spectrum Analyzer ROHDE & SCHWARZ	FSP30	E1S1002	May.15, 2007

NOTE: The calibration interval of the above test instruments is 12 months.

4.3.3 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.3.4 DEVIATION FROM TEST STANDARD



No deviation.

4.3.5 TEST SETUP

4.3.6 TEST RESULTS

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

4.4 DWELL TIME ON EACH CHANNEL

4.4.1 LIMIT OF DWELL TIME USED

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
*Spectrum Analyzer ROHDE & SCHWARZ	FSP30	E1S1002	May.15, 2007

NOTES: The calibration interval of the above test instruments is 12 months.

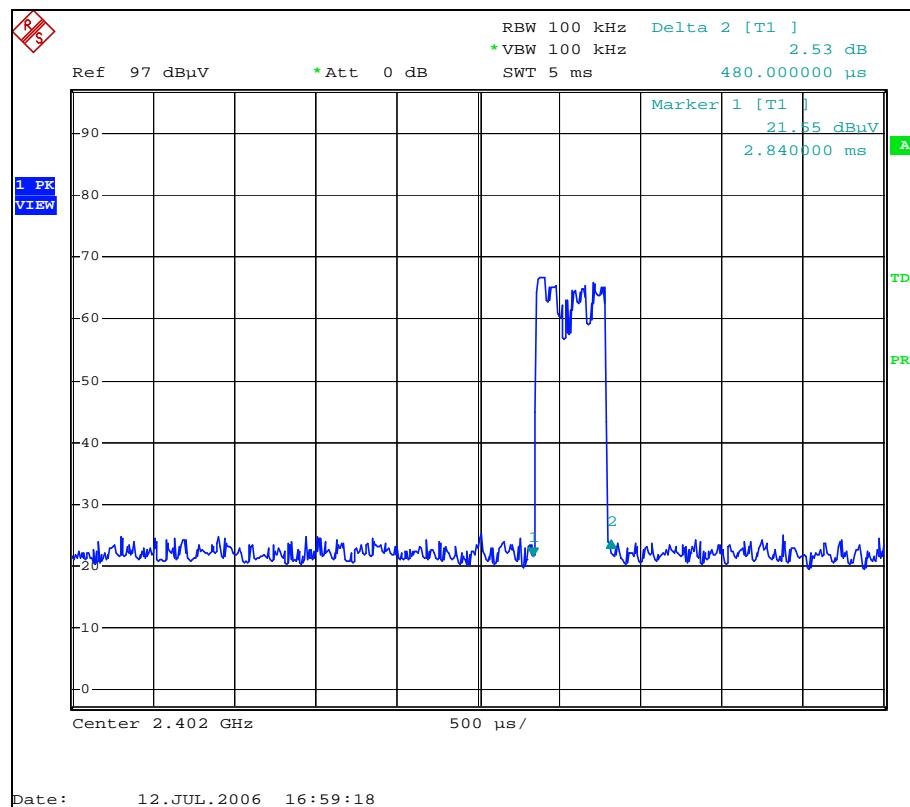
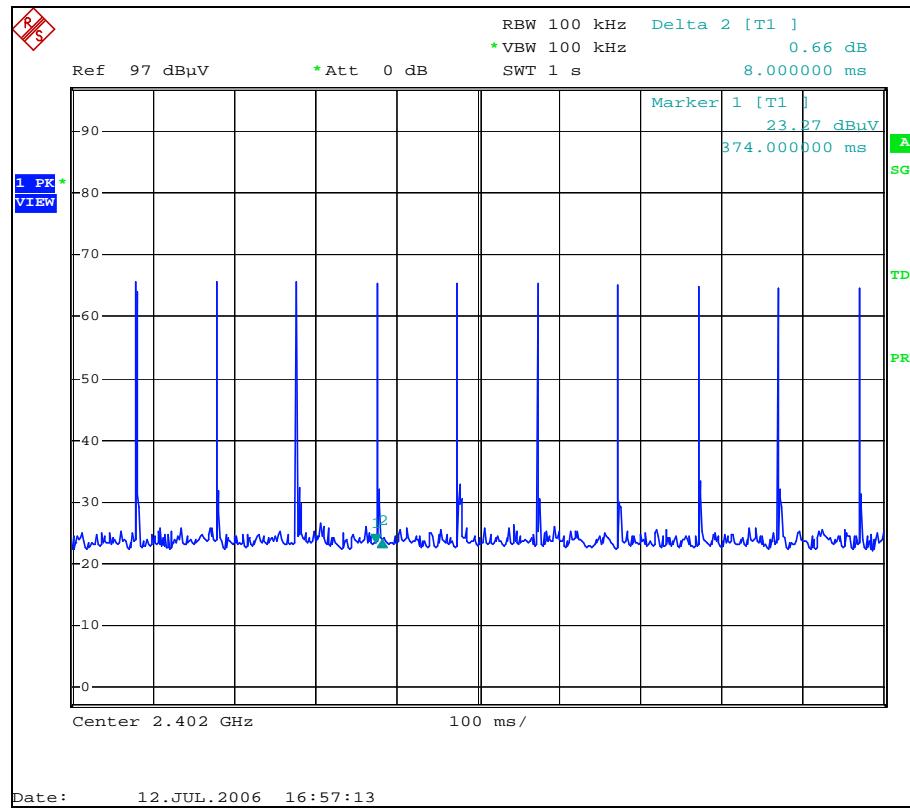
4.4.3 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency to be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

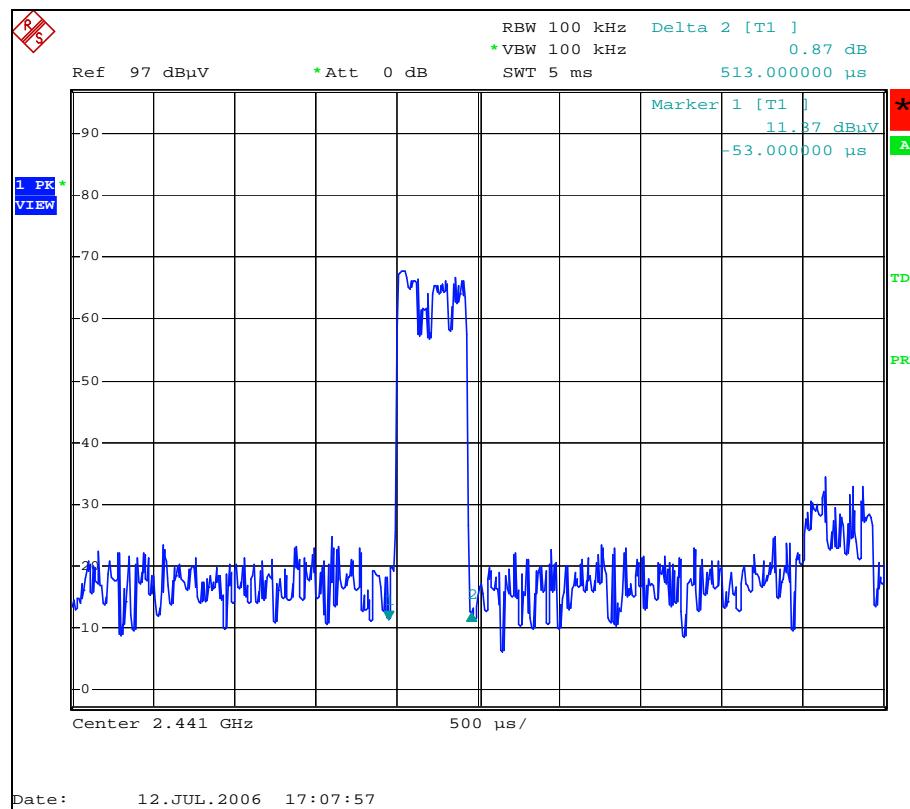
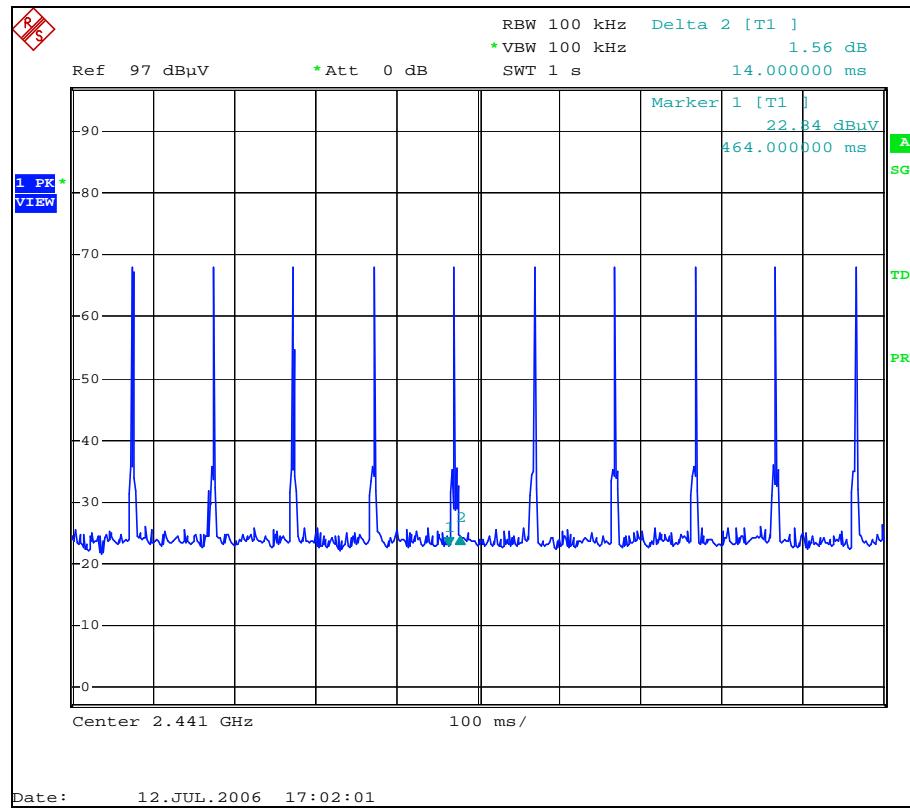
4.4.4 DEVIATION FROM TEST STANDARD

No deviation.

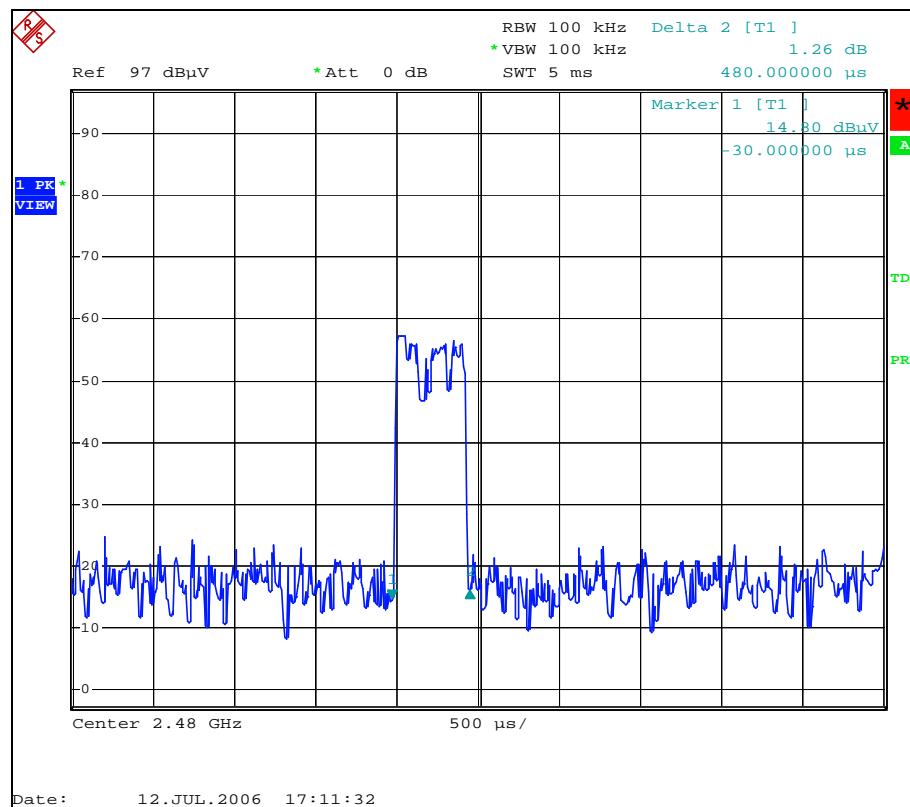
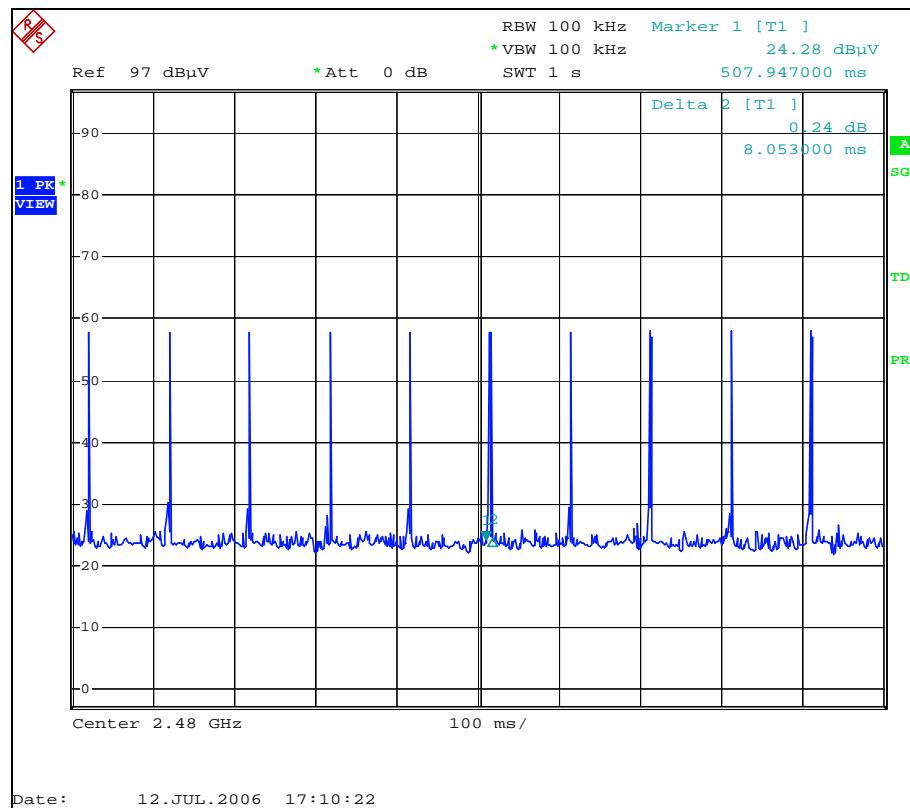
4.4.5 TEST SETUP



4.4.6 TEST RESULTS

EUT	Bluetooth Hands Free	MODEL	GW-BT-002
MODULATION TYPE	GFSK	ENVIRONMENTAL CONDITIONS	20deg. C, 60%RH, 1001Hpa
INPUT POWER	3.7Vdc from battery	TESTED BY	Bright Tong



MODE	NUMBER OF TRANSMISSION IN A 31.6 (79HOPPING * 0.4)	LENGTH OF TRANSMISSION TIME (msec)	RESULT (msec)	LIMIT (msec)
CH0	10(times/1sec)*31.6=316 times	0.480	151.68	400
CH39	10(times/1sec)*31.6=316 times	0.513	162.11	400
CH78	10(times/1sec)*31.6=316 times	0.480	151.68	400

NOTE: Test plots of the transmitting time slot are shown on next 3 pages.



CH0

CH39

CH78

4.5 CHANNEL BANDWIDTH

4.5.1 LIMITS OF CHANNEL BANDWIDTH

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dB bandwidth of hopping channel shall be a minimum limit for the hopping channel separation.

4.5.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Spectrum Analyzer ROHDE & SCHWARZ	FSP30	E1S1002	May. 15, 2007

NOTE: The calibration interval of the above test instruments is 12 months.

4.5.3 TEST PROCEDURE

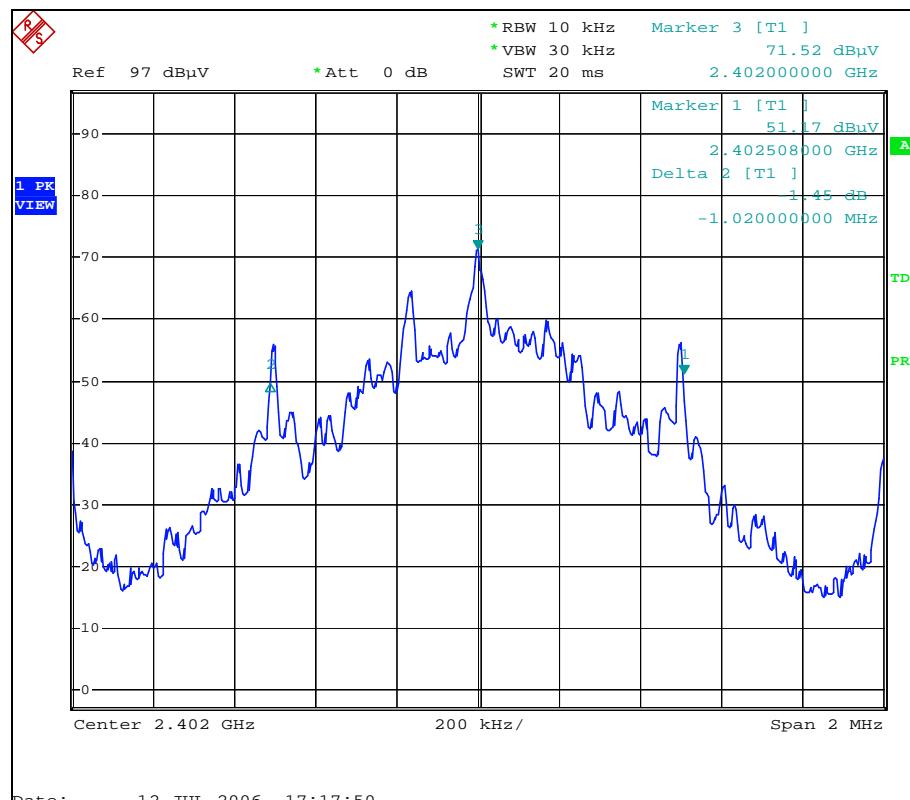
- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.4 DEVIATION FROM TEST STANDARD

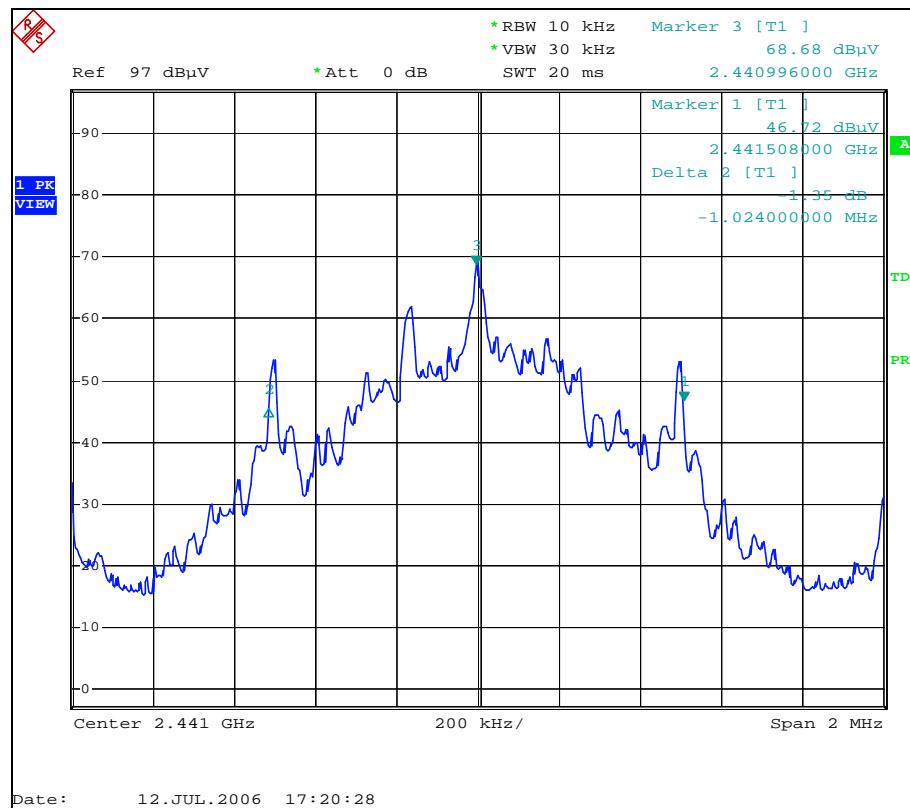
No deviation.

4.5.5 TEST SETUP

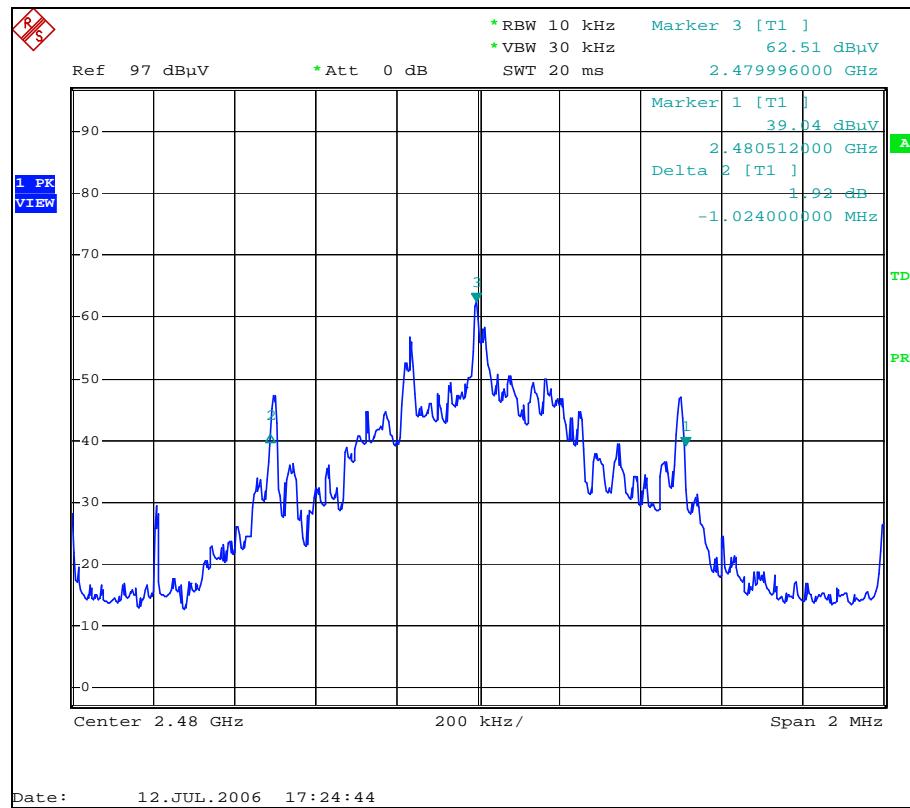
4.5.6 EUT OPERATING CONDITION


The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 TEST RESULTS


EUT	Bluetooth Hands Free	MODEL	GW-BT-002
MODULATION TYPE	GFSK	ENVIRONMENTAL CONDITIONS	20deg. C, 60%RH, 1001Hpa
INPUT POWER	3.7Vdc from battery	TESTED BY	Bright Tong

CHANNEL	CHANNEL FREQUENCY (MHz)	20dB BANDWIDTH (MHz)
0	2402	1.020
39	2441	1.024
78	2480	1.024


CH0

CH39

CH78

4.6 HOPPING CHANNEL SEPARATION

4.6.1 LIMIT OF HOPPING CHANNEL SEPARATION

At least 25 kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.6.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Spectrum Analyzer ROHDE & SCHWARZ	FSP30	E1S1002	May. 15, 2007

NOTES: The calibration interval of the above test instruments is 12 months.

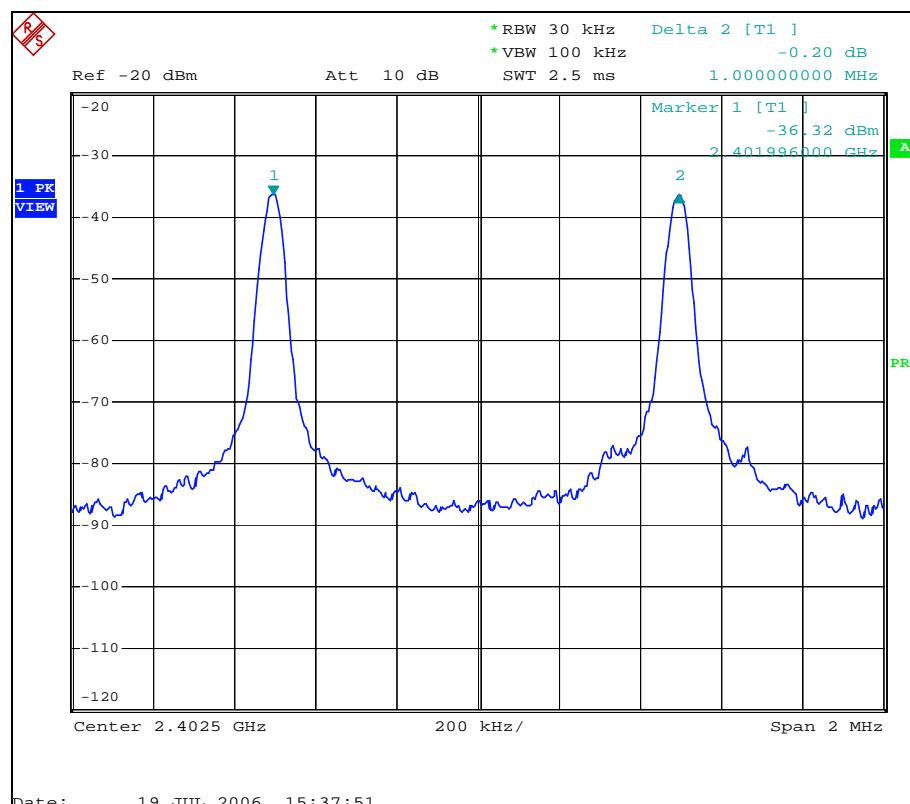
4.6.3 TEST PROCEDURES

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
3. By using the MaxHold function record the separation of two adjacent channels.
4. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
5. Repeat above procedures until all frequencies measured were complete.

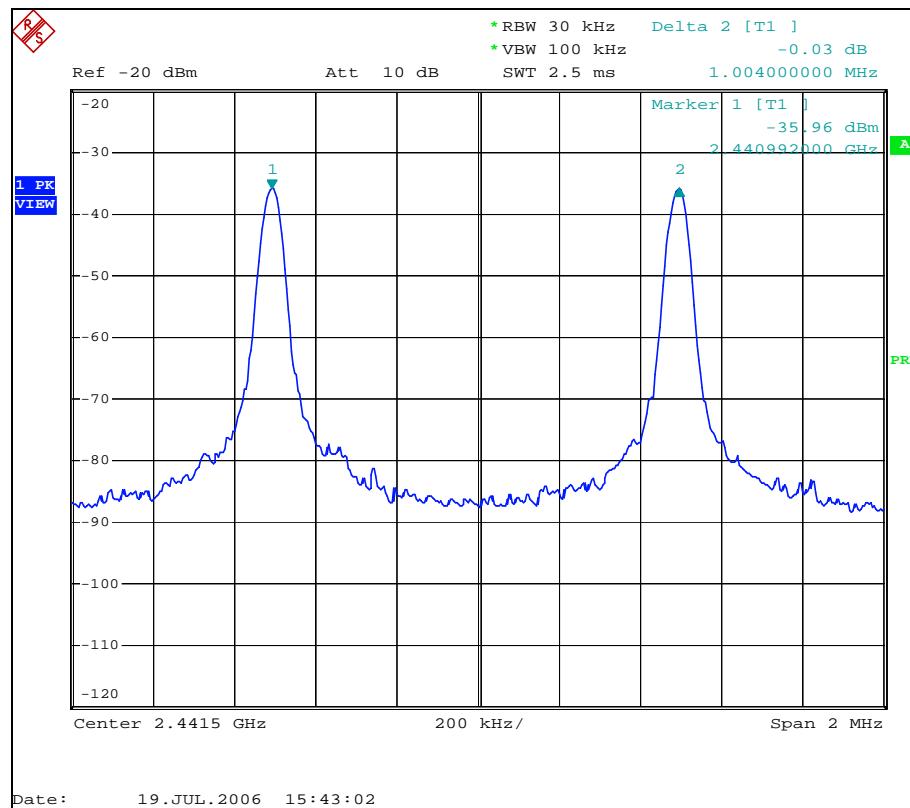
4.6.4 DEVIATION FROM TEST STANDARD

No deviation.

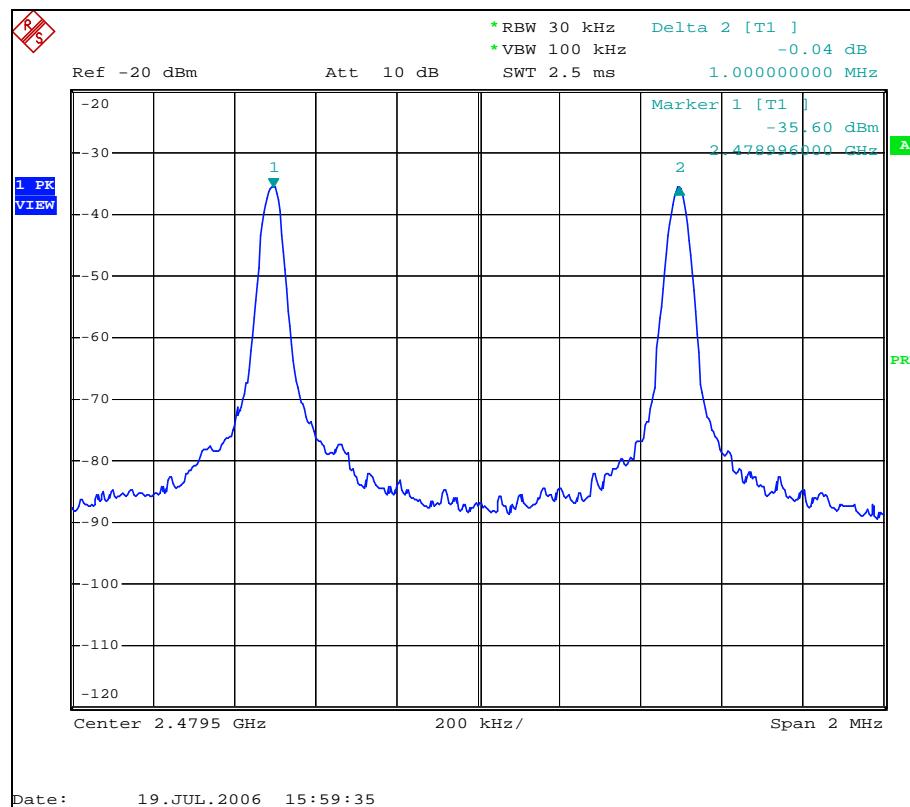
4.6.5 TEST SETUP


4.6.6 TEST RESULTS

EUT	Bluetooth Hands Free	MODEL	GW-BT-002
MODULATION TYPE	GFSK	ENVIRONMENTAL CONDITIONS	20deg. C, 60%RH, 1001Hpa
INPUT POWER	3.7Vdc from battery	TESTED BY	Bright Tong


CHANNEL	FREQUENCY (MHz)	ADJACENT CHANNEL SEPARATION (MHz)	20dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS / FAIL
0	2402	1.000	1.020	0.680	pass
39	2441	1.004	1.024	0.683	pass
78	2480	1.000	1.024	0.683	pass

NOTE: The minimum limit is two-third of 20dB bandwidth.


CH0

CH39

CH78

4.7 MAXIMUM PEAK OUTPUT POWER

4.7.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

The Maximum Peak Output Power Measurement is 30dBm.

4.7.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
*Spectrum Analyzer ROHDE & SCHWARZ	FSP30	E1S1002	May. 15, 2007

NOTE: The calibration interval of the above test instruments is 12 months.

4.7.3 TEST PROCEDURES

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 1 MHz RBW and 3 MHz VBW.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

4.7.4 DEVIATION FROM TEST STANDARD

No deviation

4.7.5 TEST SETUP

For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration.

4.7.6 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.7.7 TEST RESULTS

EUT	Bluetooth Hands Free	MODEL	GW-BT-002
MODULATION TYPE	GFSK	ENVIRONMENTAL CONDITIONS	20deg. C, 60%RH, 1001Hpa
INPUT POWER	3.7Vdc from battery	TESTED BY	Bright Tong

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (mW)	PEAK POWER OUTPUT (dBm)	PEAK POWER LIMIT (mW)	PASS/FAIL
0	2402	2.153	3.33	125	PASS
39	2441	2.153	3.34	125	PASS
78	2480	2.333	3.68	125	PASS

4.8 BAND EDGES MEASUREMENT

4.8.1 LIMITS OF BAND EDGES MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100 KHz RBW).

4.8.2 TEST INSTRUMENTS

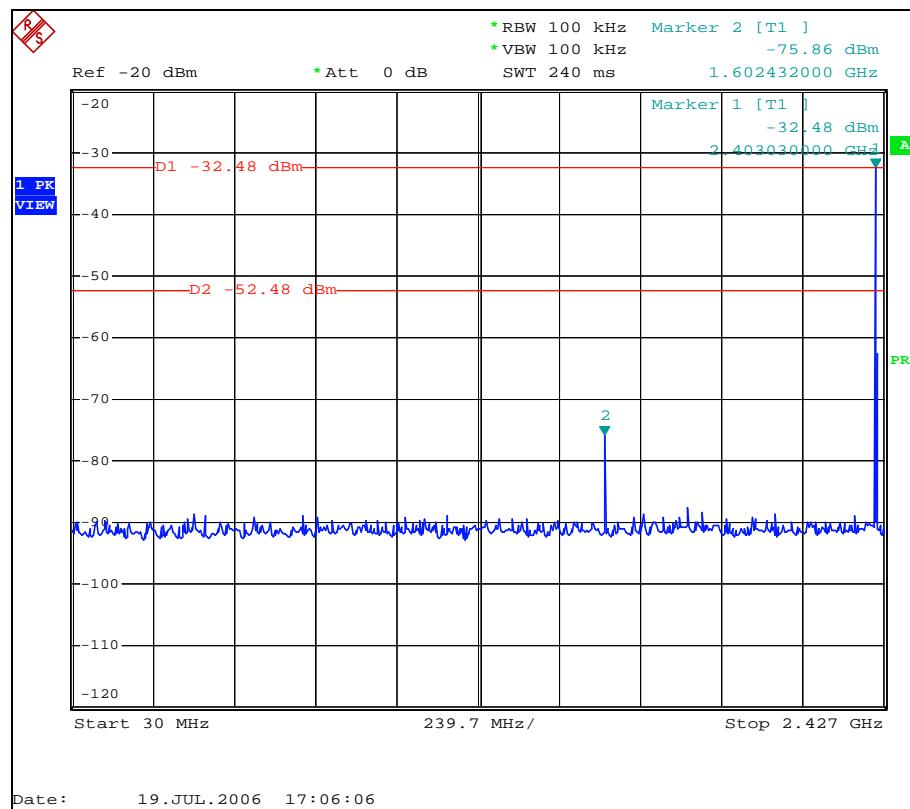
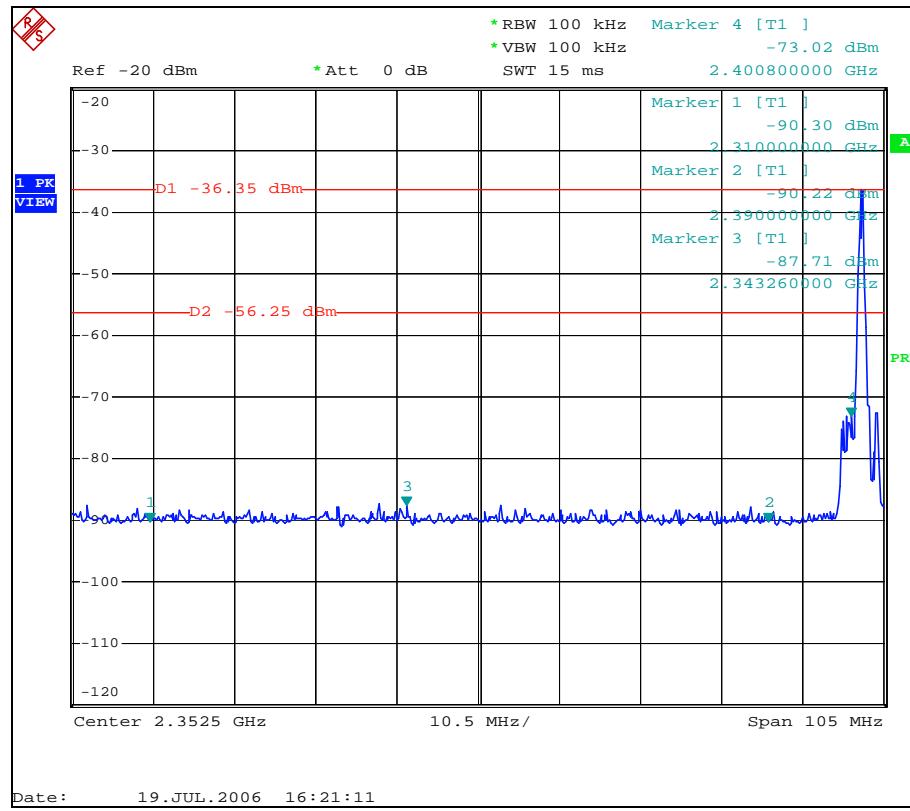
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Spectrum Analyzer ROHDE & SCHWARZ	FSP30	E1S1002	May.15, 2007

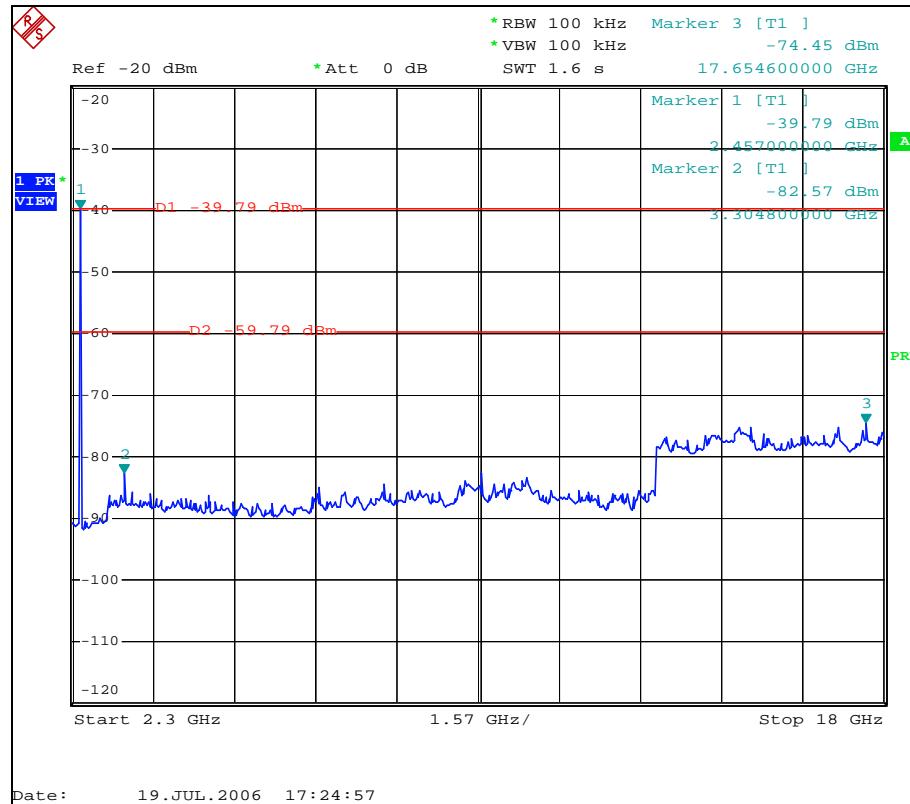
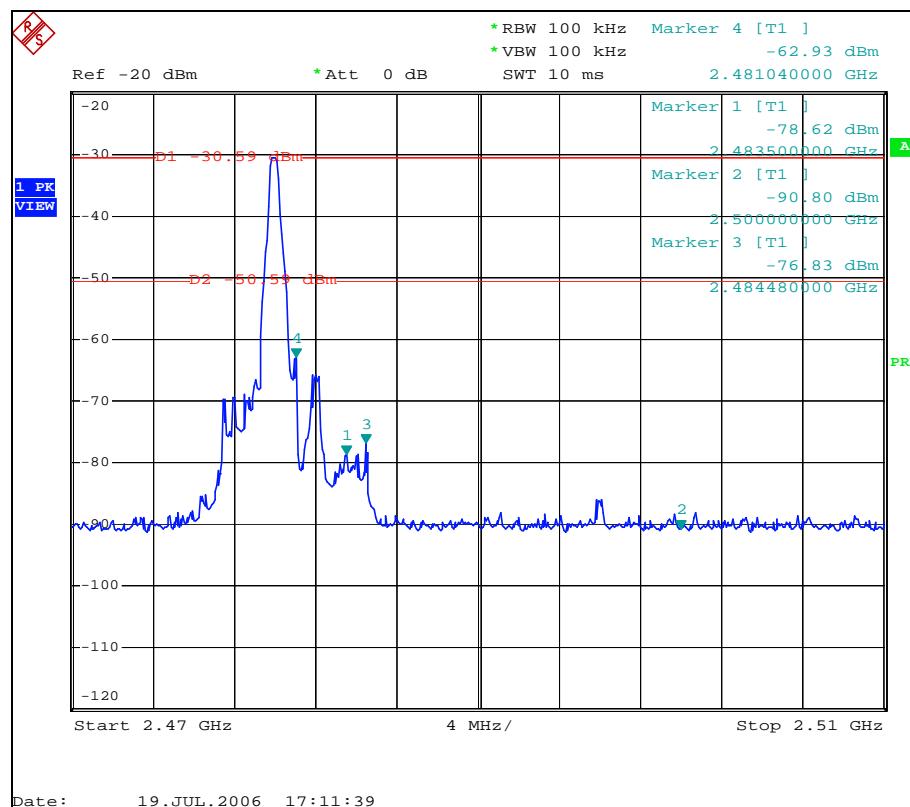
NOTES: The calibration interval of the above test instruments is 12 months.

4.8.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low loss cable. Set both RBW and VBW of spectrum analyzer to 100 kHz with suitable frequency span including bandwidth from band edge. The band edges was measured and recorded.

4.8.4 DEVIATION FROM TEST STANDARD



No deviation.



4.8.5 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.8.6 TEST RESULTS

The spectrum plots are attached on the following 4 images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement in part 15.247(d).

4.9 ANTENNA REQUIREMENT

4.9.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.9.2 ANTENNA CONNECTED CONSTRUCTION

The antenna used in this product is soldered on PCB without antenna connector. The maximum gain of this antenna is 2dBi.

5. INFORMATION ON THE TESTING LABORATORIES

We, ADT (Shanghai) Corp., were founded in 2003 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

JAPAN

USA

Norway

VCCI

FCC, A2LA

DNV

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.cnadt.com

If you have any comments, please feel free to contact us at the following:

ADT (Shanghai) Corporation

TEL :86-21-6465-9091

Fax : 86-21-6465-9092

Email: adtsh@vip.163.com

Web Site: www.cnadt.com

FCC ID: RR7BT-002

APPENDIX-A

MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.