

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

Dates of Tests: June 19 ~ July 07, 2006 Test Report S/N: LR500110607C Test Site: LTA CO., LTD.

CERTIFICATIO OF COMPLIANCE

FCC ID.

RQKWMBGMR01

APPLICANT

SAMMI Information Systems Co., Ltd.

FCC Classification : Digital Transmission System (DTS)

FCC Part 15 Spread Spectrum Transceiver (DSS)

Manufacturing Description : 802.11g Wireless LAN SiP Module

Manufacturer : Universal Scientific Industrial Co., Ltd.

Model name : WM-BG-MR-01
Test Device Serial No.: : 8601-600160-30

Rule Part(s) : FCC Part 15.247 Subpart C; ANSI C-63.4-2003

Frequency Range : 2412MHz ~ 2462MHz (DSSS/OFDM)

2402 ~ 2480MHz (Bluetooth)

Max. Output Power : 14.6dBm Peak Conducted (802.11b)

13.3dBm Peak Conducted (802.11g)

1.52dBm Peak Conducted (bluetooth)

Data of issue : July 7, 2006

This test report is issued under the authority of:

The test was supervised by:

1 / .

Dong -Min JUNG, Technical Manager

Kyung-Taek LEE, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. This report must not be used by the applicant to claim product endorsement by any agency.

NVLAP

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION'S	3
2. INFORMATION'S ABOUT TEST ITEM	4
3. TEST REPORT	6
3.1 SUMMARY OF TESTS	6
3.2 TECHNICAL CHARACTERISTICS TEST(Bluetooth)	7
3.2.1 CARRIER FREQUENCY SEPARATION	7
3.2.2 NUMBER OF HOPPING FREQUENCIES	9
3.2.3 20 dB BANDWIDTH	12
3.2.4 Dwell Time	14
3.2.5 TTANSMITTER OUTPUT POWER	16
3.2.6 BAND - EDGE	18
3.2.7 FIELD STRENGTH OF HARMONICS	27
3.2.8 AC CONDUCTED EMISSIONS	28
3.3 TECHNICAL CHARACTERISTICS TEST(802.11b/g)	31
3.3.1 6dB BANDWIDTH	31
3.3.2 OUTPUT POWER	34
3.3.3 POWER SPECTRAL DENSITY	37
3.3.4 BAND - EDGE	40
3.3.5 FIELD STRENGTH OF HARMONICS	55
3.2.6 AC CONDUCTED EMISSIONS	57
APPENDIX	
APPENDIX TEST EQUIPMENT USED FOR TESTS	60

1. General information's

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2006-09-30	ECT accredited Lab.
RRL	KOREA	KR0049	2007-07-13	EMC accredited Lab.
FCC	U.S.A	610755	2008-03-28	FCC filing
VCCI	JAPAN	R2133, C2307	2008-06-22	VCCI registration
IC	CANADA	IC5799	2008-04-23	IC filing

2. Information's about test item

2-1 Client

Company name : SAMMI Information Systems Co., Ltd.

Address : 496, wonchun-dong, yeongtong-ku, suwon, kyung ki-do, Korea

Tel / Fax : +82-31-217-8252 / +82-31-217-8254

2-2 Manufacturer

Company name : Universal Scientific Industrial Co., Ltd.

Address : 141, Lane 351, Taiping Road, Sec. 1, Tsao-Tuen, Taiwan,

2-3 Equipment Under Test (EUT)

Trade name : 802.11g Wireless LAN SiP Module

FCC ID : RQKWMBGMR01

Model name : WM-BG-MR-01

Serial number : 8601-600160-30

Date of receipt : June 12, 2006

EUT condition : Production, not damaged

Antenna type : PIFA Antenna with 3.31dBi gain for 802.11B/G

PIFA Antenna with 2.81dBi gain for Bluetooth

Frequency Range : 2412MHz ~ 2462MHz (DSSS/OFDM)

2402 ~ 2480MHz (Bluetooth)

RF output power Range : 14.6 dBm Peak Conducted (802.11b)

13.3 dBm Peak Conducted (802.11g)1.52 dBm Peak Conducted (Bluetooth)

Number of channels : 11(DSSS/OFDM), 79(Bluetooth)

Type of Modulation : CCK, DQPSK, DBPSK for DSSS

64QAM, 16QAM, QPSK, BPSK for OFDM

GFSK for Bluetooth

Transfer Rate : 11/5.5/2/1Mbps for 802.11b

54/48/36/24/18/12/9/6Mbps for 802.11g

Duty cycle TX power : 78.4% (Bluetooth)

Power Source : 3.3Vdc from host equipment

2-4 Tested frequency

	LOW	MID	HIGH
Frequency (MHz) for Bluetooth	2402	2441	2480
Frequency (MHz) for 802.11b	2412	2437	2462
Frequency (MHz) for 802.11g	2412	2437	2462

2-5 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer
Notebook	Latitude D505	8N29F1S	DELL
-	-	-	-

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)
15.247(a)	Carrier Frequency Separation	> 25 kHz		С
15.247(a)	Number of Hopping Frequencies	> 75 hops		С
15.247(a)	20 dB Bandwidth	< 1 MHz		С
15.247	Dwell Time	< 0.4 seconds		С
15.247(b)	Transmitter Output Power	< 1Watt	Conducted	С
15.247(d)	Conducted Spurious emission	> 20 dBc		С
15.247(d)	Band Edge	> 20 dBc		С
15.247(a)	6 dB Bandwidth	> 500kHz		С
15.247(d)	Transmitter Power Spectral Density	< 8dBm @ 3kHz		С
15.209	Field Strength of Harmonics	< 54 dBuV (at 3m)	Radiated	С
15.207	AC Conducted Emissions	EN 55022	Line Conducted	С

 $\underline{\textit{Note 1}}$: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

Note 2: The data in this test report are traceable to the national or international standards.

The sample was tested according to the following specification:

FCC Parts 15.247; ANSI C-63.4-2003

3.2 Technical Characteristics Test (Bluetooth)

3.2.1 Carrier Frequency Separation

Procedure:

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

The spectrum analyzer is set to:

Span = 3 MHz (wide enough to capture the peaks of two adjacent channels)

RBW = 30 kHz (1% of the span or more) Sweep = auto

VBW = 30 kHz Detector function = peak

Trace = max hold

Measurement Data:

Test Res	ults
Carrier Frequency Separation (MHz)	Result
1.013	Complies

- See next pages for actual measured spectrum plots.

Minimum Standard:

The EUT shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

Measurement Setup

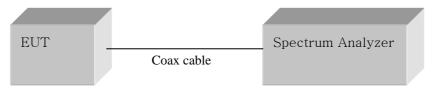
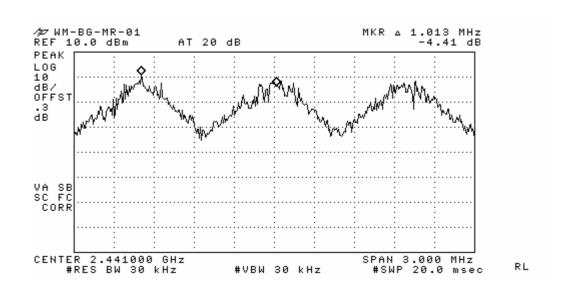



Figure 1: Measurement setup for the carrier frequency separation

Carrier Frequency Separation

3.2.2 Number of Hopping Frequencies

Procedure:

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, four frequency ranges within the 2400 ~ 2483.5 MHz FH band were examined.

The spectrum analyzer is set to:

Frequency range 1: Start = 2389.5MHz, Stop = 2414.5 MHz

2: Start = 2414.5MHz, Stop = 2439.5 MHz

3: Start = 2439.5MHz, Stop = 2464.5 MHz

4: Start = 2464.5MHz, Stop = 2489.5 MHz

RBW = 300 kHz (1% of the span or more) Sweep = auto

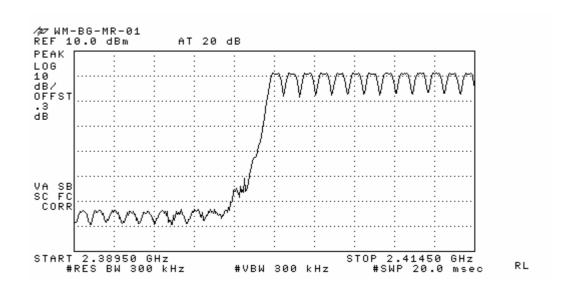
 $VBW = 300 \text{ kHz} (VBW \ge RBW)$ Detector function = peak

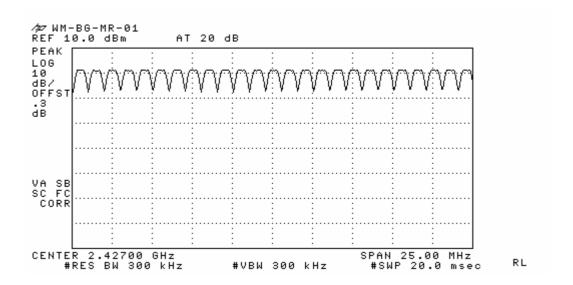
Trace = $\max \text{ hold}$ Span = 25MHz

Measurement Data: Complies

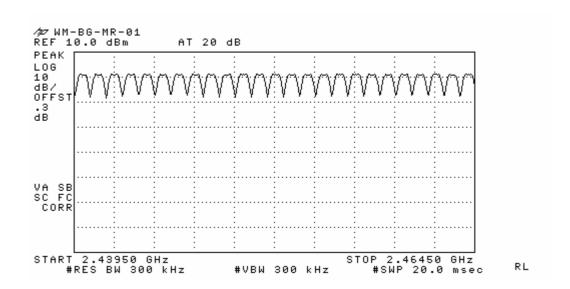
Total number of Hopping Channels	79
---	----

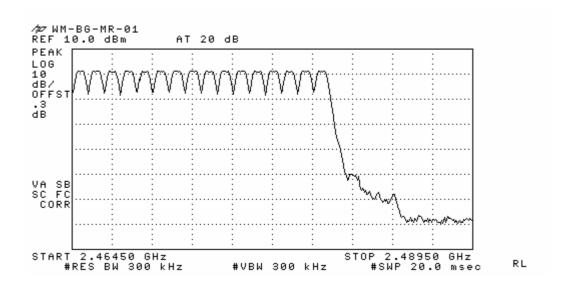
- See next pages for actual measured spectrum plots.


Minimum Standard:


At least 75 hopes

Measurement Setup


Same as the Chapter 3.2.1 (Figure 1)


Number of Hopping Frequencies

Number of Hopping Frequencies

3.2.3 20 dB Bandwidth

Procedure:

The bandwidth at 20 dB below the highest inband spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

Span = 2 MHz (approximately 2 or 3 times of the 20 dB bandwidth)

RBW = 30 kHz Sweep = auto

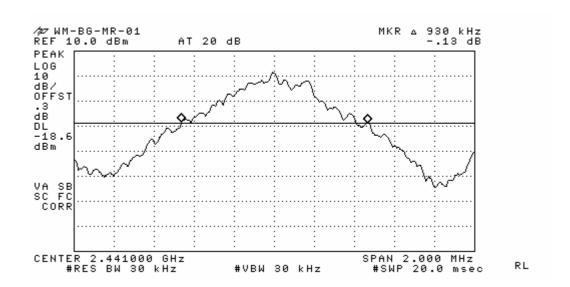
 $VBW = 30 \text{ kHz} (VBW \ge RBW)$ Detector function = peak

Trace = max hold

Measurement Data:

Frequency	Channel No.	Test Res	cults
(MHz)	Channel 140.	Measured Bandwidth (MHz)	Result
2441	39	0.930	Complies

⁻ See next pages for actual measured spectrum plots.


Minimum Standard:

The transmitter shall have a maximum 20dB bandwidth of 1 MHz.

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

20 dB Bandwidth

3.2.4 Time of Occupancy (Dwell Time)

Procedure:

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to:

Center frequency = 2441 MHz Span = zero

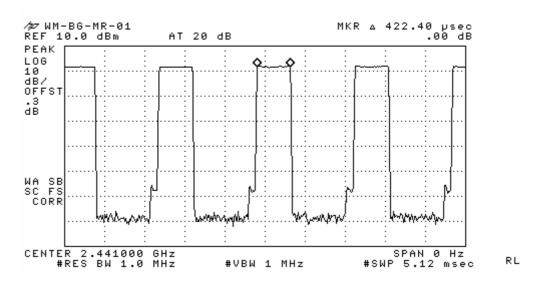
RBW = 1 MHz $VBW = 1 MHz (VBW \ge RBW)$

Trace = max hold Detector function = peak

Measurement Data:

Channel	Channel	Daakat Tuna	Test 1	Results
Number	Frequency (MHz)	Packet Type	Dwell Time (ms)	Result
		DH 1	135.21	Complies
39	2441	DH 3	268.17	Complies
		DH 5	310.78	Complies

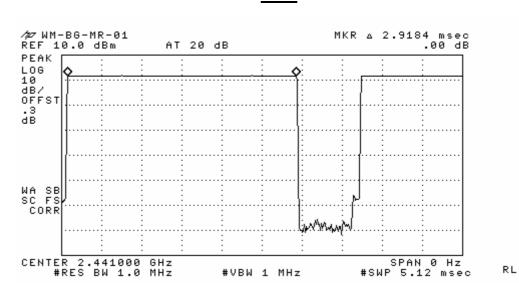
⁻ See next pages for actual measured spectrum plots.


Minimum Standard:

0.4 seconds within a 30 second period per any frequency


Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)


DH 1

DH 3

<u>DH 5</u>

3.2.5 Transmitter Output Power

Procedure:

The peak output power was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

Span = 5 MHz (approximately 5 times of the 20 dB bandwidth)

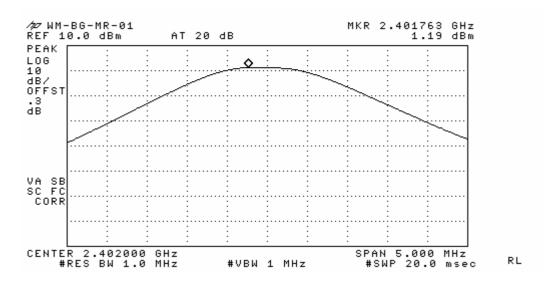
RBW = 1 MHz (greater than the 20dB bandwidth of the emission being measured)

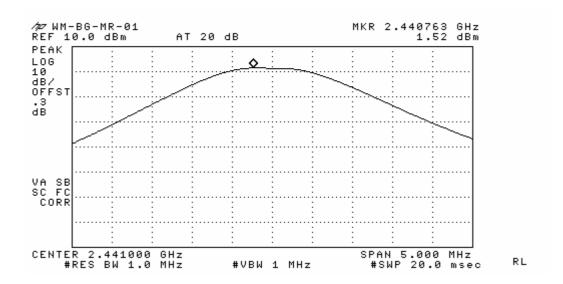
 $VBW = 1 MHz (VBW \ge RBW)$ Detector function = peak

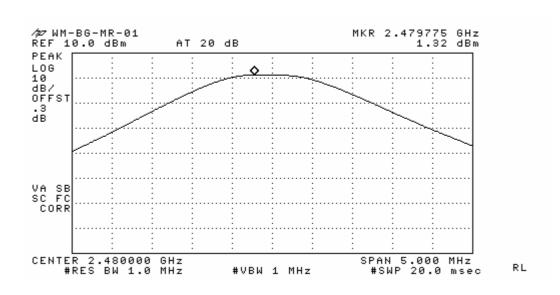
Trace = $\max \text{ hold}$ Sweep = auto

Measurement Data:

Frequency	Ch.		Test Results	
(MHz)	CII.	dBm	mW	Result
2402	0	1.19	1.315	Complies
2441	39	1.52	1.419	Complies
2480	78	1.32	1.355	Complies


⁻ See next pages for actual measured spectrum plots.


Minimum Standard:	< 1W


Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Peak Output Power

3.2.6 Band - edge

Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

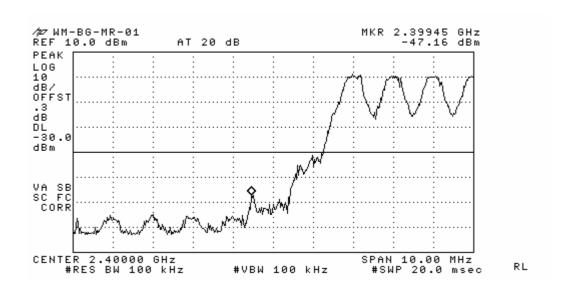
Center frequency = the highest, middle and the lowest channels

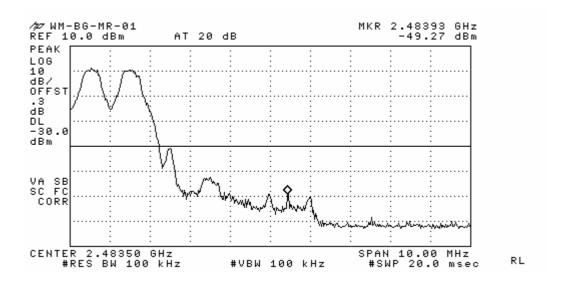
RBW = 100 kHz VBW = 100 kHz

Span = 10 MHz Detector function = peak

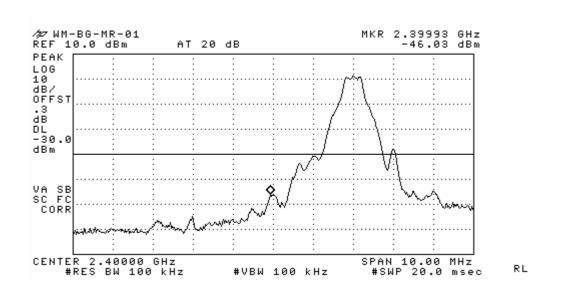
Trace = \max hold Sweep = auto

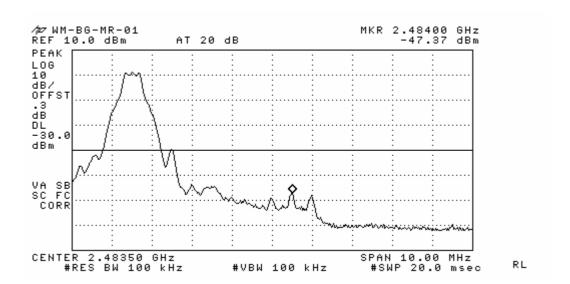
Measurement Data: Complies

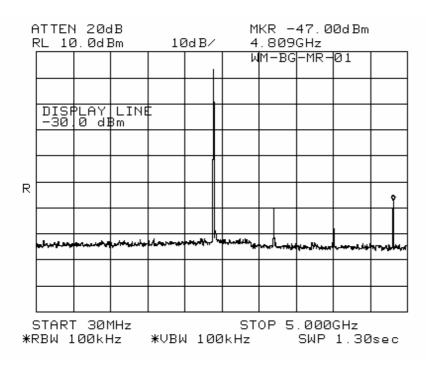

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

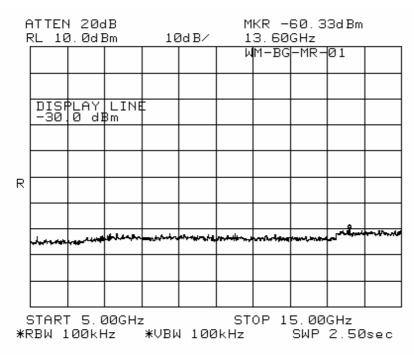

Minimum Standard:

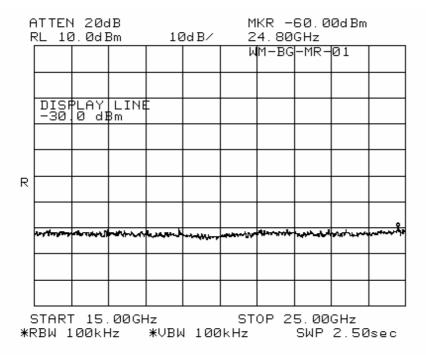
Measurement Setup

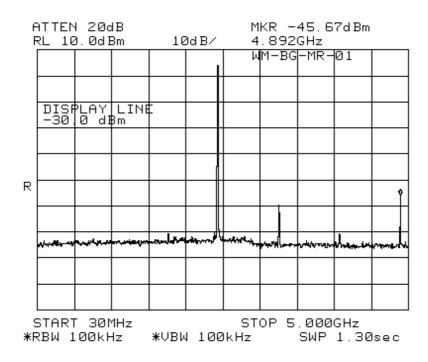

Same as the Chapter 3.2.1 (Figure 1)

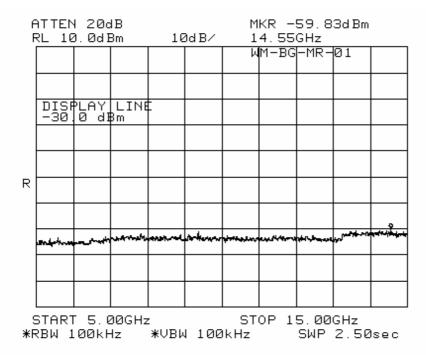

Band - edge (with Hopping)



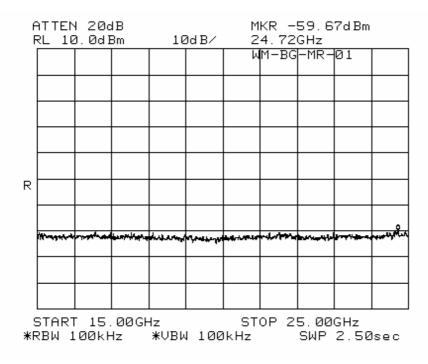

Band - edge (without Hopping)


Band - edge (at 20 dB blow) – Low channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

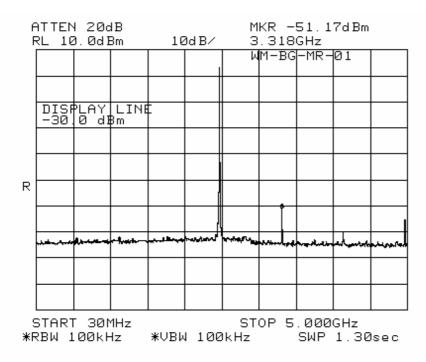


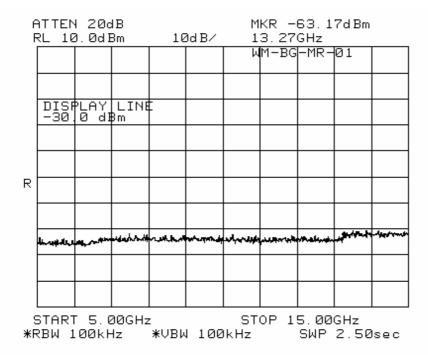

- Continues

Band - edge (at 20 dB blow) – Low channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonics.

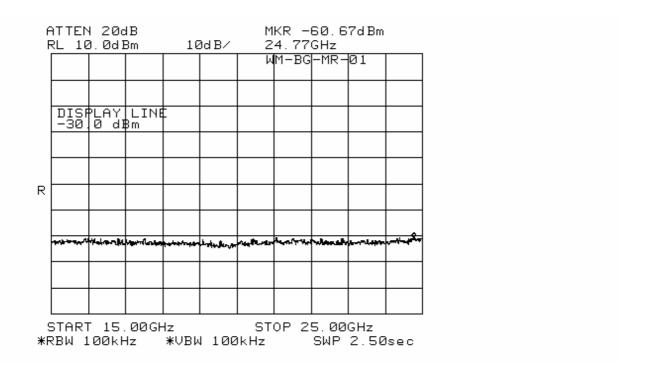


Band - edge (at 20 dB blow) – Mid channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.





Band - edge (at 20 dB blow) – Mid channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonics. - Continues



Band - edge (at 20 dB blow) – High channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

Band - edge (at 20 dB blow) – High channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonics. - Continues

3.2.7 Field Strength of Harmonics

Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

 $RBW = 100 \text{ kHz} (30 \text{MHz} \sim 1 \text{ GHz})$ $VBW \geq RBW$

= 1 MHz $(1 \text{ GHz} \sim 10^{\text{th}} \text{ harmonic})$

Span = 100 MHz Detector function = peak

Trace = \max hold Sweep = auto

Measurement Data: Complies

Low channel		Mid channel		High channel		
Frequency (MHz)	Level (dBuV)	Frequency (MHz)	Level (dBuV)	Frequency (MHz)	Level (dBuV)	
3211	35.2	3269	37.1	3318	32.4	
4809	39.7	4892	41.3	4967	34.7	
-	-	-	-	-	-	
Measuremen	Measurement uncertainty		± 6 dB			

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

3.2.8 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Complies

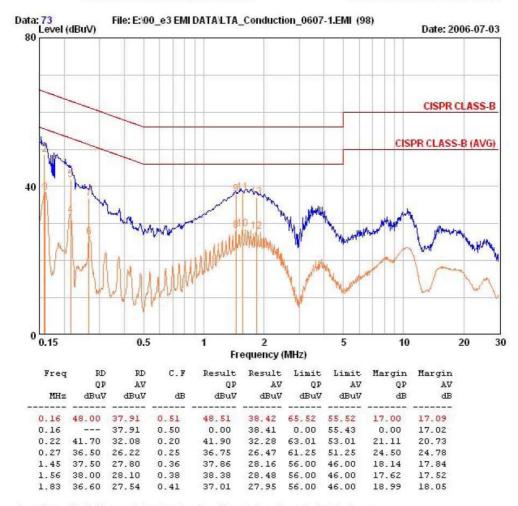
- See next pages for actual measured spectrum plots.
- No emissions were detected at a level greater than 10dB below limit.

Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted Limit (dBuV)	
(MHz)	Quasi-Peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50

^{*} Decreases with the logarithm of the frequency

Bluetooth-AC Conducted Emissions –Line

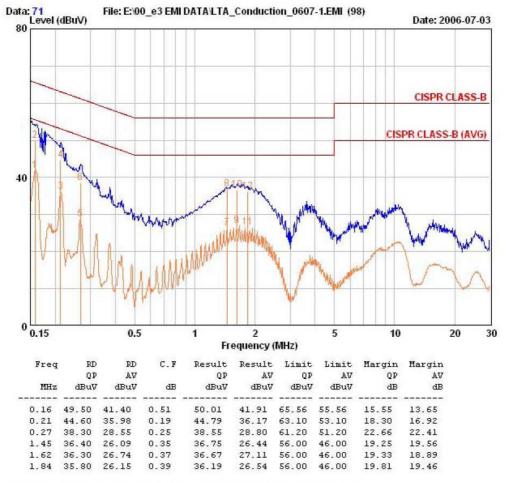


243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

EUT / Model No. : WM-BG-MR-01 Phase : LINE

Test Mode : BT Mode Test Power : 120 / 60

Temp./Humi. : 24 / 77 Test Engineer : K.T. LEE


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

Bluetooth-AC Conducted Emissions –Neutral

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

EUT / Model No. : WM-BG-MR-01 Phase : NEUTRAL

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

3.3 Technical Characteristics Test (802.11b/g)

3.3.1 6 dB Bandwidth

Procedure:

The bandwidth at 6dB below the highest in-band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz Span = 40 MHz

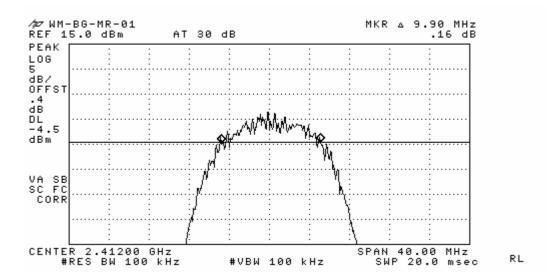
 $VBW = 100 \text{ kHz} (VBW \ge RBW)$ Sweep = auto

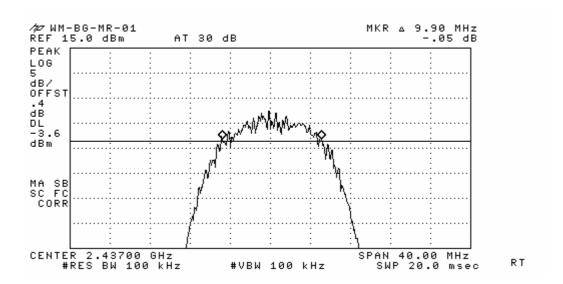
Trace = max hold Detector function = peak

Measurement Data:

Mode	Frequency (MHz)	Channel No.	Test Results		
			Measured Bandwidth (MHz)	Result	
-	2412	1	9.9	Complies	
802.11b	2437	6	9.9	Complies	
	2462	11	9.9	Complies	
802.11g	2412	1	16.6	Complies	
	2437	6	16.6	Complies	
	2462	11	16.6	Complies	

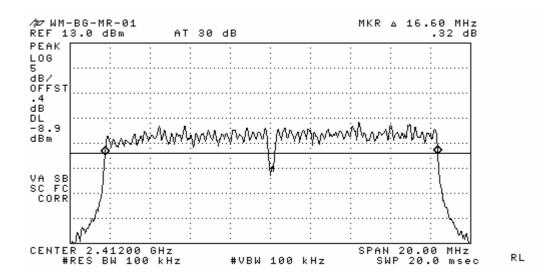
⁻ See next pages for actual measured spectrum plots.

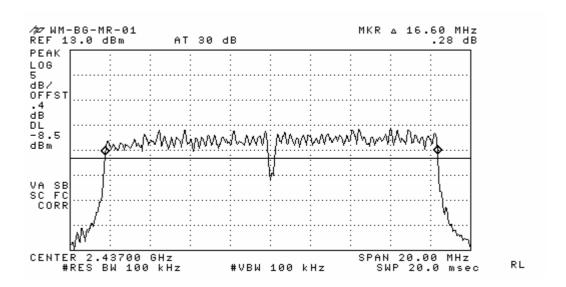

Minimum Standard:

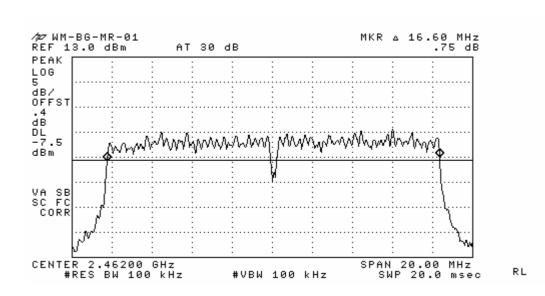

6 dB Bandwidth > 500kHz


Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)


802.11b





802.11g

3.3.2 Output Power Measurement

Procedure:

A transmitter antenna terminal of EUT is connected to the input of a RF power sensor. Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.

Measurement Data:

- See next pages for actual measured data.

Minimum Standard:

< 1W

Measurement Setup

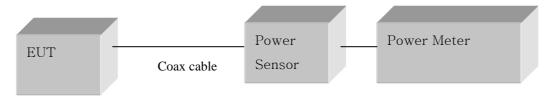


Figure 2

802.11b Output Power Measurement

Frequency (MHz)	Channel	Rate (MBps)	Power (dBm)
	1	1	13.4
2412		2	13.5
2412		5.5	13.4
		11	13.5
2437	6	1	13.8
		2	13.7
		5.5	13.8
		11	13.8
2462	11	1	14.6
		2	14.5
		5.5	14.5
		11	14.6

802.11g Output Power Measurement

Frequency (MHz)	Channel	Rate (MBps)	Power (dBm)
2412	1	6	11.6
		9	11.6
		12	11.5
		18	11.5
2412		24	11.4
		36	11.3
		48	11.5
		54	11.5
		6	12.7
	6	9	12.0
		12	12.6
2425		18	12.2
2437		24	12.5
		36	12.0
		48	12.6
		54	11.9
	11	6	13.3
		9	13.2
		12	13.1
2462		18	13.3
2462		24	13.0
		36	12.7
		48	13.0
		54	12.7

3.3.3 Power Spectral Density

Procedure:

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The spectrum analyzer is set to:

RBW = VBW = 3 kHz

Span = 3 MHz

Sweep = 1000 sec

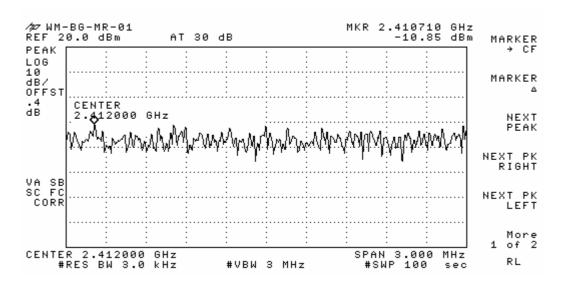
Trace = max hold

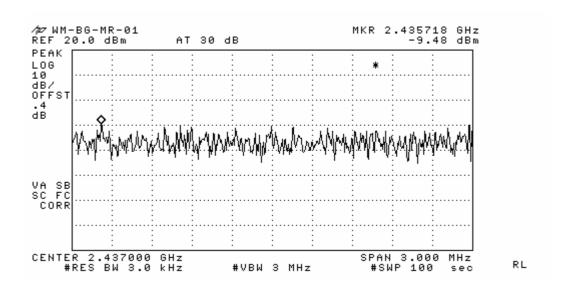
Detector function = peak

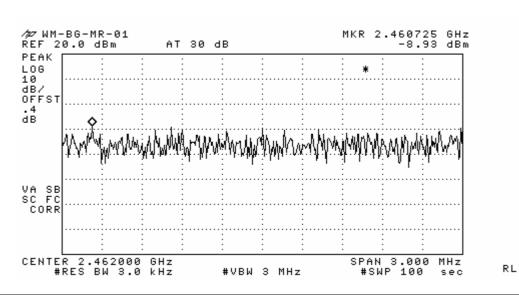
Measurement Data:

Mode	Frequency (MHz)	Ch.	Test Results		
Wiouc			dBm	Result	
	2412	1	-10.85	Complies	
802.11b	2437	6	-9.48	Complies	
	2462	11	-8.93	Complies	
	2412	1	-16.50	Complies	
802.11g	2437	6	-15.93	Complies	
	2462	11	-15.00	Complies	

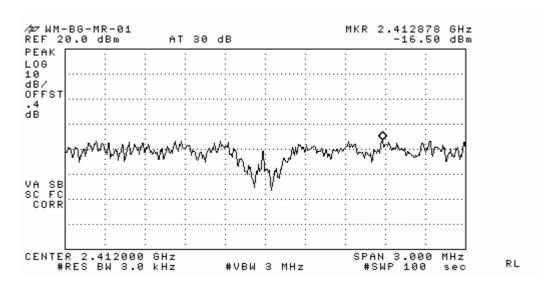
⁻ See next pages for actual measured spectrum plots.

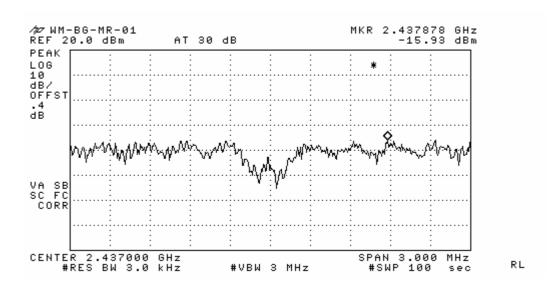

Minimum Standard:

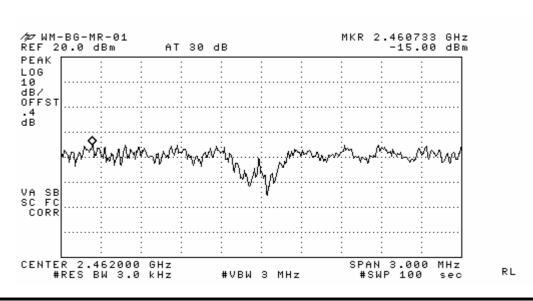

Power Spectral Density	< 8dBm @ 3kHz BW
------------------------	------------------


Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)


802.11b Power Density Measurement





802.11g Power Density Measurement

3.3.4 Band - edge

Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

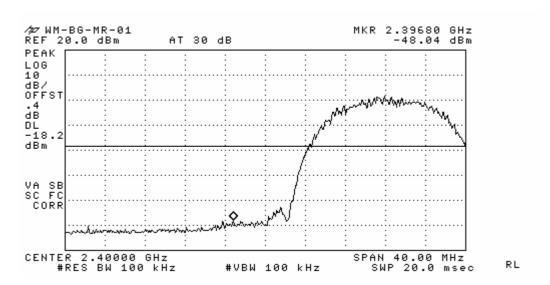
Center frequency = the highest, middle and the lowest channels

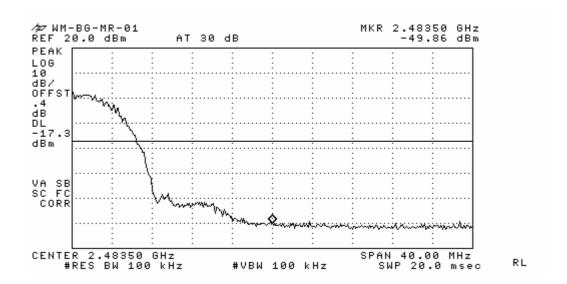
RBW = 100 kHz VBW = 100 kHz

Span = 40 MHz Detector function = peak

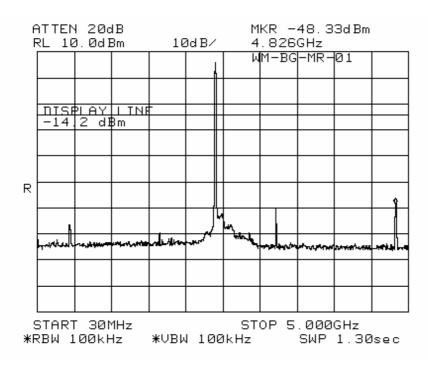
Trace = \max hold Sweep = auto

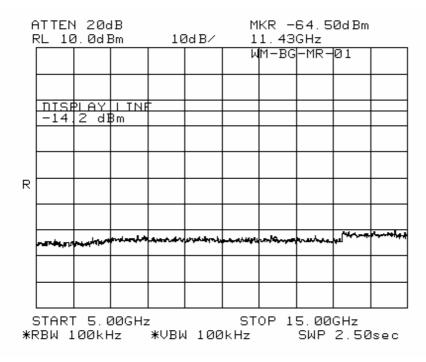
Measurement Data: Complies

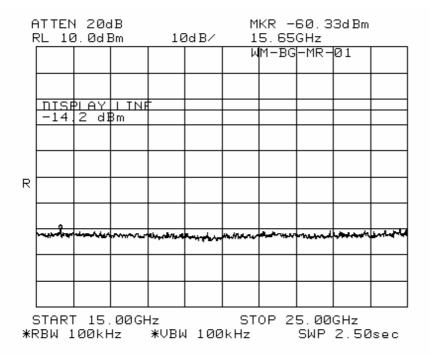

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

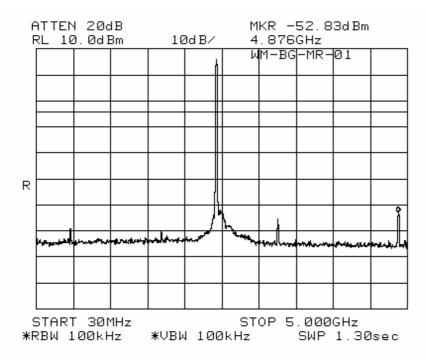

Minimum Standard:	> 20 dBc

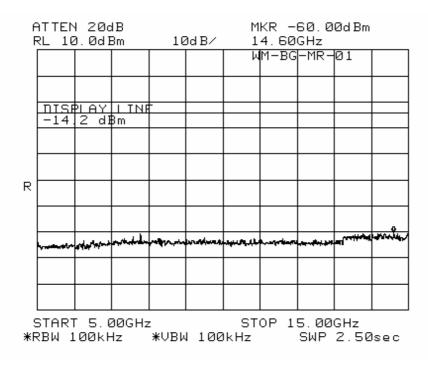
Measurement Setup


Same as the Chapter 3.2.1 (Figure 1)

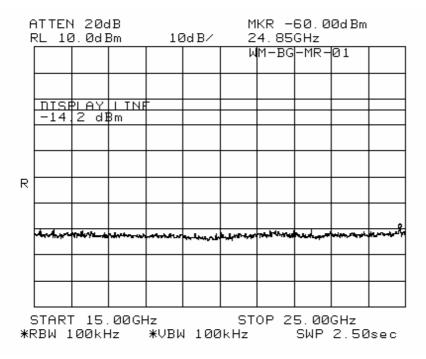

802.11b Band-edge Measurements

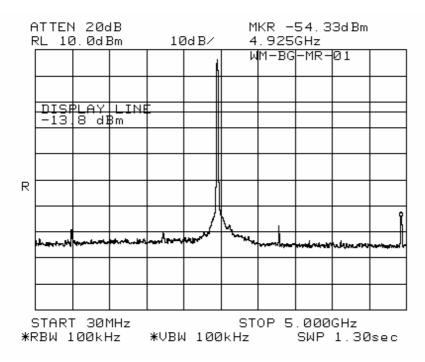

Band - edge (at 20 dB blow) – Low channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

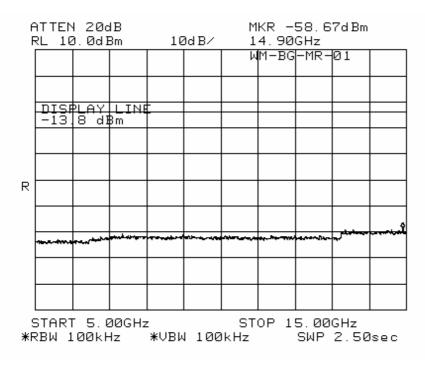



- Continues

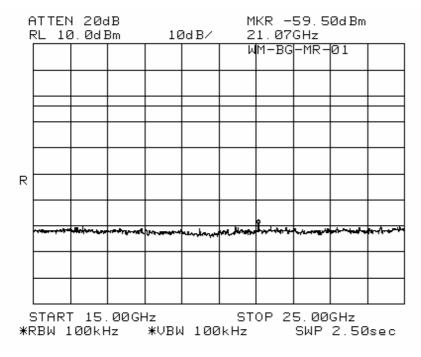
Band - edge (at 20 dB blow) – Low channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonics.

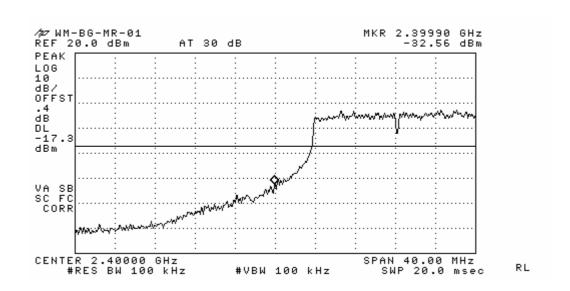

Band - edge (at 20 dB blow) – Mid channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

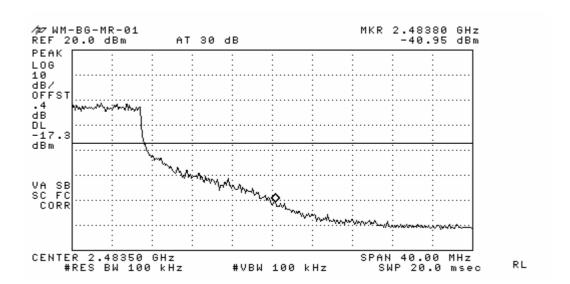



- Continues

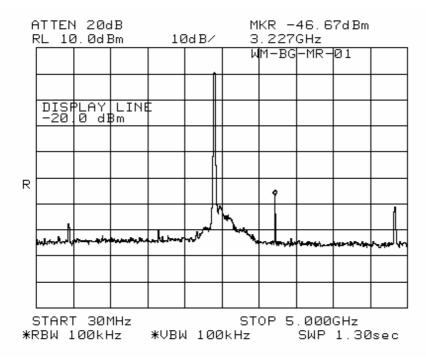
Band - edge (at 20 dB blow) – Mid channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonics.

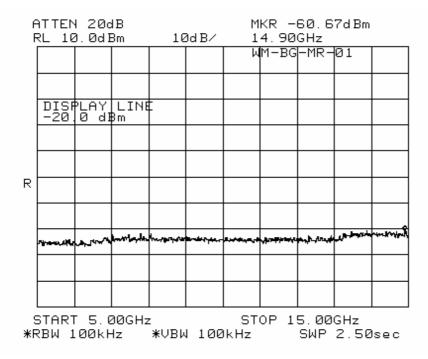

Band - edge (at 20 dB blow) – High channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

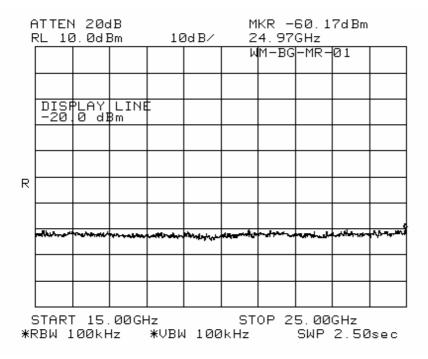


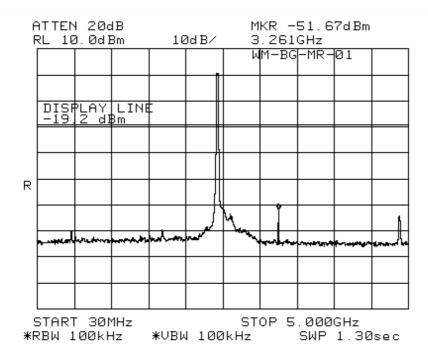

Band - edge (at 20 dB blow) – High channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonics.

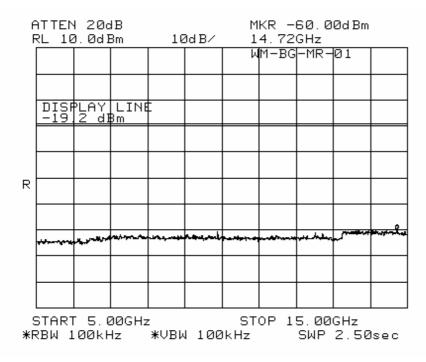
- Continues



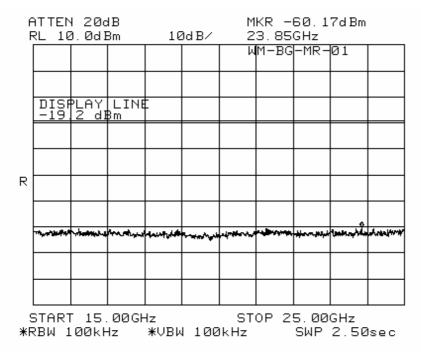

802.11g Band-edge Measurements

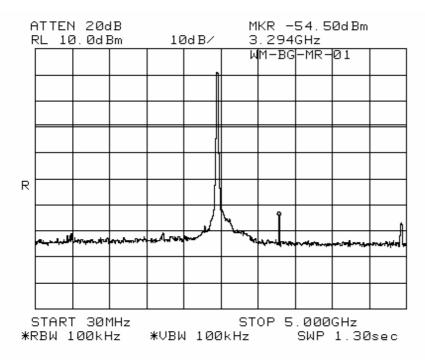

Band - edge (at 20 dB blow) – Low channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

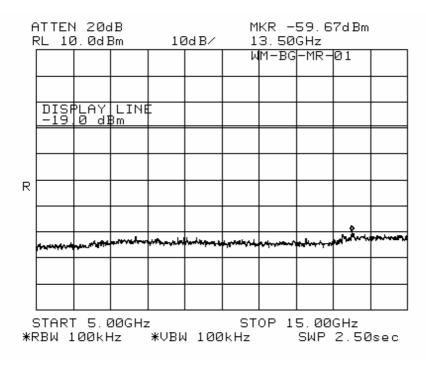



- Continues

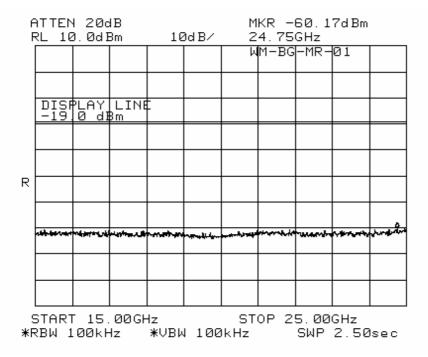
Band - edge (at 20 dB blow) – Low channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonics.


Band - edge (at 20 dB blow) – Mid channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.




Band - edge (at 20 dB blow) – Mid channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonics.

- Continues


Band - edge (at 20 dB blow) – High channel Frequency Range = $30 \text{ MHz} \sim 10^{th}$ harmonic.

- Continues

Band - edge (at 20 dB blow) – High channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonics.

3.3.5 Field Strength of Harmonics

Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}} \text{ harmonic.}$

 $RBW = 100 \text{ kHz} (30 \text{MHz} \sim 1 \text{ GHz})$ $VBW \geq RBW$

= 1 MHz $(1 \text{ GHz} \sim 10^{\text{th}} \text{ harmonic})$

Span = 100 MHz Detector function = peak

Trace = \max hold Sweep = auto

Measurement Data: Complies

- See next pages for actual measured data.

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

802.11b Measurement Data:

Low channel		Mid channel		High channel			
Frequency (MHz)	Level (dBuV)	Frequency (MHz)	Level (dBuV)	Frequency (MHz)	Level (dBuV)		
-	-	-	-	-	-		
-	-	-	-	-	-		
	No emissions were detected at a level greater than 10dB below limit.						
-	-	-	-	-	-		
-	-	-	-	-	-		
Measuremen	Measurement uncertainty		± 6 dB				

802.11g Measurement Data:

Low channel		Mid channel		High channel			
Frequency (MHz)	Level (dBuV)	Frequency (MHz)	Level (dBuV)	Frequency (MHz)	Level (dBuV)		
-	-	-	-	-	-		
-	-	-	-	-	-		
	No emissions were detected at a level greater than 10dB below limit.						
-	-	-	-	-	-		
-	-	-	-	-	-		
Measurement uncertainty		± 6 dB					

3.3.6 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Complies

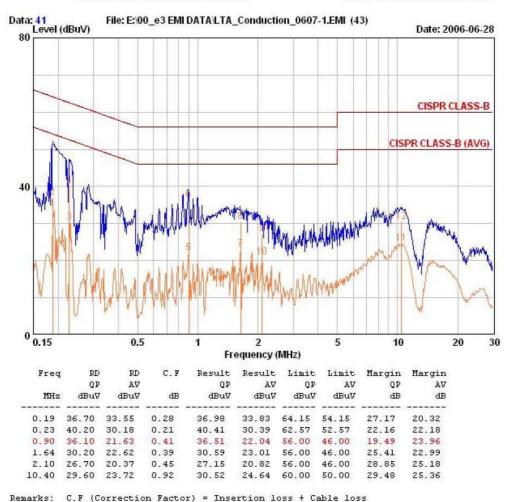
- See next pages for actual measured spectrum plots.
- No emissions were detected at a level greater than 10dB below limit.

Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted Limit (dBuV)		
(MHz)	Quasi-Peak	Average	
0.15 ~ 0.5	66 to 56 *	56 to 46 *	
0.5 ~ 5	56	46	
5 ~ 30	60	50	

^{*} Decreases with the logarithm of the frequency

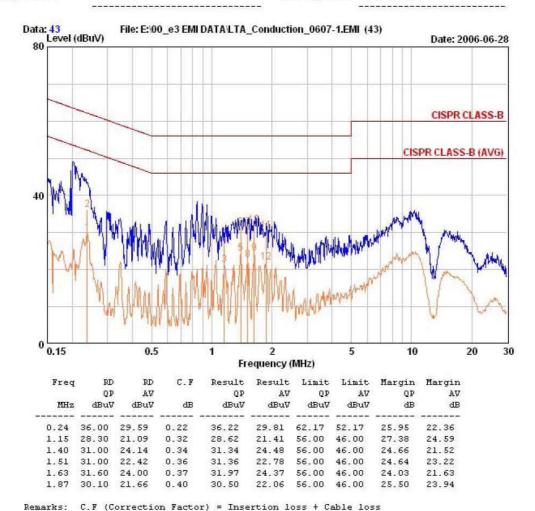
AC Conducted Emissions –Line



243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

EUT / Model No. : #1 Phase : LINE

Test Mode : Mode Test Power : 120 / 60


Temp./Humi. : 24 / 77 Test Engineer : K.T. LEE

AC Conducted Emissions - Neutral

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Next Cal. Date
1	Spectrum Analyzer	8594E	3649A03649	НР	Dec-06
2	Signal Generator	8657A	3430U02049	НР	Dec-06
3	Attenuator (3dB)	8491A	37822	НР	Dec-06
4	Attenuator (3dB)	8491A	28881	НР	Dec-06
5	EMI Test Receiver	ESVD	843748/001	R&S	Dec-06
6	Spectrum Analyzer	8591E	3649A05888	НР	Jan-07
7	Spectrum Analyzer	8563E	3425A02505	НР	Jan-07
8	RF Amplifier	8447D	2949A02670	НР	Jan-07
9	RF Amplifier	8447D	2439A09058	НР	Jan-07
10	RF Amplifier	8449B	3008A02126	НР	Jun-07
11	TRILOG Antenna	VULB 9160	9160-3172	SCHWARZBECK	Feb-07
12	LogPer. Antenna	VULP 9118	9118 A 401	SCHWARZBECK	Feb-07
13	Biconical Antenna	BBA 9106	VHA 9103-2315	SCHWARZBECK	Feb-07
14	Horn Antenna	3115	00055005	ETS LINDGREN	Jun-07
15	Horn Antenna	BBHA 9120D	0499	Schwarzbeck	Jun-07
16	Hygro-Thermograph	THB-36	0041557-01	ISUZU	Feb-07
17	Splitter (BNC)	ZFM-150	15542	Mini-Circuits	-
18	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-
19	Power Divider	11636A	6243	HP	Apr-07
20	DC Power Supply	6622A	3448A03079	HP	Apr-07
21	Attenuator (30dB)	8498A	1801A06689	HP	Apr-07
22	Attenuator (10dB)	8491A	63196	НР	Apr-07
23	Power Meter	EPM-441A	GB32481702	НР	Apr-07
24	Power Sensor	8481A	2702A64048	НР	Apr-07
25	Audio Analyzer	8903B	3729A18901	HP	May-07
26	Modulation Analyzer	8901B	3749A05878	HP	May-07
27	Dipole Antenna	VHA9103	2116	Schwarzbeck	Oct-06
28	Dipole Antenna	VHA9103	2117	Schwarzbeck	Oct-06
29	Dipole Antenna	UHA9105	2261	Schwarzbeck	Oct-06
30	Dipole Antenna	UHA9105	2262	Schwarzbeck	Oct-06
31	Digital Multimeter	34401A	US36062141	HP	Apr-07
32	LISN	KNW-407	8-1430-1	Kyoritsu	Jan-07
33	Two-Line V-Network	ESH3-Z5	893045/017	R&S	Jan-07
34	Test Receiver	ESHS10	828404009	R&S	Jan-07
35	TEMP & HUMIDITY Chamber	YJ-500	L05022	JinYoung Tech	-