

The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, MI 48109-2122 Tel: (734) 764-0500

Measured Radio Frequency Emissions From

SPX Corporation Composite Device LF Transmitter Report Model: TPM

Report No. 415031-279-B February 17, 2006

Copyright © 2006

For: SPX Corporation 8001 Angling Rd. Suite 2-B Portage, MI 49024

> Contact: Bill Wittliff Tel: (269) 329-7648 Fax: (269) 329-0843

Tests supervised by:
Measurements made by: Joseph D. Brunett Report approved by:

Valdis V. Liepa Research Scientist

Summary

Tests for compliance with FCC Regulations, Part 15, Subpart C, and for compliance with Industry Canada RSS-210/Gen, were performed on SPX Corporation transmitter, model TPM. This device is subject to Rules and Regulations as a Composite Device.

In testing completed February 11, 2006, the device tested in the worst case met the allowed specifications for transmitter radiated emissions by 16.9 dB (see p. 7); digital emissions, Class B, were met by more than 20 dB. The conducted emissions tests do not apply, since the device is powered from three 1.5 V dc batteries.

1. Introduction

SPX Corporation model TPM was tested for compliance with FCC Regulations, Part 15, adopted under Docket 87-389, April 18, 1989, and with Industry Canada RSS-210/Gen, Issue 6, September 2005. The tests were performed at the University of Michigan Radiation Laboratory Willow Run Test Range following the procedures described in ANSI C63.4-2003 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The Site description and attenuation characteristics of the Open Site facility are on file with FCC Laboratory, Columbia, Maryland (FCC Reg. No: 91050) and with Industry Canada, Ottawa, ON (File Ref. No: IC 2057).

2. Test Procedures and Equipment Used

The pertinent test equipment commonly used in our facility for measurements is listed in Table 2.1 below. The middle column identifies the specific equipment used in these tests.

Table 2.1 Test Equipment.

Test Instrument	Eqpt. Used	Manufacturer/Model
Spectrum Analyzer (0.1-1500 MHz)		Hewlett-Packard, 182T/8558B
Spectrum Analyzer (9kHz-22GHz)	X	Hewlett-Packard 8593A SN: 3107A01358
Spectrum Analyzer (9kHz-26GHz)	X	Hewlett-Packard 8593E, SN: 3412A01131
Spectrum Analyzer (9kHz-26GHz)		Hewlett-Packard 8563E, SN: 3310A01174
Spectrum Analyzer (9kHz-40GHz)		Hewlett-Packard 8564E, SN: 3745A01031
Power Meter		Hewlett-Packard, 432A
Power Meter		Anritsu, ML4803A/MP
Harmonic Mixer (26-40 GHz)		Hewlett-Packard 11970A, SN: 3003A08327
Harmonic Mixer (40-60 GHz)		Hewlett-Packard 11970U, SN: 2332A00500
Harmonic Mixer (75-110 GHz)		Hewlett-Packard 11970W, SN: 2521A00179
Harmonic Mixer (140-220 GHz)		Pacific Millimeter Prod., GMA, SN: 26
S-Band Std. Gain Horn		S/A, Model SGH-2.6
C-Band Std. Gain Horn		University of Michigan, NRL design
XN-Band Std. Gain Horn		University of Michigan, NRL design
X-Band Std. Gain Horn		S/A, Model 12-8.2
X-band horn (8.2- 12.4 GHz)		Narda 640
X-band horn (8.2- 12.4 GHz)		Scientific Atlanta, 12-8.2, SN: 730
K-band horn (18-26.5 GHz)		FXR, Inc., K638KF
Ka-band horn (26.5-40 GHz)		FXR, Inc., U638A
U-band horn (40-60 GHz)		Custom Microwave, HO19
W-band horn(75-110 GHz)		Custom Microwave, HO10
G-band horn (140-220 GHz)		Custom Microwave, HO5R
Bicone Antenna (30-250 MHz)	X	University of Michigan, RLBC-1
Bicone Antenna (200-1000 MHz)	X	University of Michigan, RLBC-2
Dipole Antenna Set (30-1000 MHz)	X	University of Michigan, RLDP-1,-2,-3
Dipole Antenna Set (30-1000 MHz)		EMCO 2131C, SN: 992
Active Rod Antenna (30 Hz-50 MHz)		EMCO 3301B, SN: 3223
Active Loop Antenna (30 Hz-50 MHz)	X	EMCO 6502, SN:2855
Ridge-horn Antenna (300-5000 MHz)	X	University of Michigan
Amplifier (5-1000 MHz)	X	Avantek, A11-1, A25-1S
Amplifier (5-4500 MHz)	X	Avantek
Amplifier (4.5-13 GHz)		Avantek, AFT-12665
Amplifier (6-16 GHz)		Trek
Amplifier (16-26 GHz)		Avantek
LISN Box		University of Michigan
Signal Generator		Hewlett-Packard 8657B

3. Configurations and Identification of Device Under Test

The DUT is a composite device consisting of a 315 MHz transmitter, a 433 MHz transmitter, a 125 kHz transmitter, a 315 MHz receiver, and a 433 MHz receiver. This report details the emissions relating to the 125 kHz transmitter portion of the device. This device transmits a 125 kHz CW signal for 6.75 seconds upon activation. The carrier signal is generated via a LC tank. The antenna is integral to the device, consisting of a ferrite loaded coil protruding from the top of the device. The DUT is 4.5 x 10 x 2 inches in size.

The DUT was designed and manufactured by Nu-Di Corporation, 12730 Triskett Rd, Cleveland, OH 44111 on behalf of SPX Corporation, 8001 Angling Rd. Suite 2-B, Portage, MI 49024. It is identified as:

SPX Corporation Composite Device

Model: TPM

P/N(s): J-46079 (black), J-46915 (grey)

FCC ID: RP3-J46079 IC: 4811A-J46079

Note 1: One of each part number was provided for testing. Both parts have identical electronics, the only difference is in the color of the plastic housing.

3.1 EMI Relevant Modifications

No EMI relevant modifications were performed by this test laboratory. However, during testing software revisions were made by SPX to bring the device into compliance with the FCC/IC rules and regulations.

4. Emission Limits

4.1 Radiated Emission Limits

The DUT tested falls under the category of an Intentional Radiators and the Digital Devices, subject to Subpart C, Section 15.209; and Subpart B, Section 15.109 (transmitter generated signals excluded); and Subpart A, Section 15.33. The applicable testing frequencies with corresponding emission limits are given in Tables 4.1 and 4.2 below. As a digital device, it is exempt.

Table 4.1. Radiated Emission Limits (FCC: 15.205, 15.35; IC: RSS-210, 2.6 Tab. 1 & 3) (Transmitter)

Freque (MH	Fundamental and Spurious* (µV/m)	
0.009-0 0.490-1	2400/F(kHz), 300m 24,000/F(kHz), 30m	
0.090-0.110 0.49-0.51 2.1735-2.190 3.020-3.026 (IC) 4.125-4.128 4.17725-4.17775 4.20725-4.20775 5.677-5.683 (IC) 6.215-6.218 6.26775-6.26825 6.31175-6.31225	8.291-8.294 8.37625 - 8.38675 8.41425 - 8.41475 12.29 - 12.293 12.51975 - 12.52025 12.57675 - 12.57725 13.36 - 13.41 16.42 - 16.423 16.69475 - 16.69525 16.80425 - 16.80475 25.5 - 25.67	Restricted Bands

^{*} Harmonics must be below the fundamental.

For extrapolation to other distances, see Section 6.6.

Table 4.2. Radiated Emission Limits (FCC: 15.33, 15.35, 15.109; IC: RSS-210, 2.7 Table 2) (Digital Class B)

Freq. (MHz)	E_{lim} (3m) μ V/m	$E_{lim} dB(\mu V/m)$
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-2000	500	54.0

Note: Average readings apply above 1000 MHz (1 MHz BW)
Quasi-Peak readings apply to 1000 MHz (120 kHz BW)

4.2 Conductive Emission Limits

Table 4.3 Conducted Emission Limits (FCC:15.107 (CISPR); IC: RSS-Gen, 7.2.2 Table 2).

Frequency	Class A	(dBµV)	Class B (dBµV)		
MHz	Quasi-peak	Average	Quasi-peak	Average	
.150 - 0.50	79	66	66 - 56*	56 - 46*	
0.50 - 5	73	60	56	46	
5 - 30	73	60	60	50	

Notes:

1. The lower limit shall apply at the transition frequency

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15-0.50 MHz:

*Class B Quasi-peak: $dB\mu V = 50.25 - 19.12*log(f)$ *Class B Average: $dB\mu V = 40.25 - 19.12*log(f)$

3. 9 kHz RBW

5. Radiated Emission Tests and Results

5.1 Semi-Anechoic Chamber Measurements

To become familiar with the radiated emission behavior of the DUT, the DUT was first studied and measured in a shielded semi-anechoic chamber. In the chamber there is a set-up similar to that of an outdoor 3-meter site, with a turntable, an antenna mast, and a ground plane. Instrumentation includes spectrum analyzers and other equipment as needed. In this case, the receiving antenna was an active loop, placed on a tripod, approximately 1.5 meters above ground.

The DUT was laid on the test table as seen in the included photos. Using the loop antenna we studied emissions up to 30 MHz. The spectrum analyzer resolution and video bandwidths were so as to measure the DUT emission without decreasing the EBW (emission bandwidth) of the device. Emissions were studied for all orientations of the DUT and loop antenna. In the chamber we also recorded the spectrum and modulation characteristics of the carrier. These data are presented in subsequent sections.

5.2 Outdoor Measurements

After the chamber measurements, the emissions on our outdoor 3-meter site were measured. For transmitter emissions a loop antenna was used; the resolution bandwidth maintained at such a level that the EBW (emission bandwidth) of the DUT was not reduced. See the attachment Test Setup Photos for measurement set-up. For digital emissions, bicone and dipole antennas were used. See Section 6.6 for low frequency field extrapolation of transmitter data from 3 m to 300 m.

5.3 Computations and Results

To convert the dBm measured on the spectrum analyzer to $dB(\mu V/m)$, we use expression

$$E_3(dB\mu V/m) = 107 + P_R + K_A - K_G + K_E - C_F$$

where

 P_R = power recorded on spectrum analyzer, dB, measured at 3 m

 K_A = antenna factor, dB/m

 K_G = pre-amplifier gain, including cable loss, dB K_E = pulse operation correction factor, dB (see 6.1)

 $C_F = 3/300 \text{ m or } 3/30 \text{ m conversion factor, dB}$

When presenting the data, at each frequency the highest measured emission under all of the possible orientations is given. Computations and results are given in Table 5.1. There we see that as a transmitter, the DUT meets the limit by 16.9 dB. Digital emissions, Class Transmitter, were met by 20 dB.

6. Other Measurements and Computations

6.1 Correction For Pulse Operation

Under normal operation the transmitter is continuously transmitting, and thus a 0.0 dB duty factor is applied. See Figure 6.1.

6.2 Emission Spectrum

Using a loop antenna the relative emission spectrum was recorded and is shown in Figure 6.2.

6.3 Bandwidth of the Emission Spectrum

The measured spectrum of the signal is shown in Figure 6.3. From the plot we see that the -20 dB bandwidth is 3.5 kHz and the signal is down by 29.0 dB in the restricted band at 110 kHz.

6.4 Effect of Supply Voltage Variation

For this test, the relative power radiated was measured at the fundamental as the voltage was varied from 3.75 to 5.25 volts. The emission variation is shown in Figure 6.4.

6.5 Input Voltage and Current

V = 4.5 V dc

I = 2.5 A dc

6.6 Field Behavior of Low Frequency Loop Transmitters

Because at the specified 300/30 m measurement distance the signal-to-noise (SNR) ratio of the test receiver is insufficient, measurements were made at 3 m. To translate the measurement from 3 m to the 300/30 m distance, we refer to the journal paper: *Extrapolating Near-Field Emissions of Low-Frequency Loop Transmitters*, J.D.Brunett, V.V. Liepa, D.L.Sengupta, IEEE Trans. EMC, Vol. 47, No. 3, August 2005. The applicable worst-case field conversion tables are included here for reference.

Limit Location:	300 (m)		Limit Location:	30 (m)	
Meas. Distance:	3 (m)	10 (m)	Meas. Distance:	3 (m)	10 (m)
Frequency (kHz)	CF (dB)	CF (dB)	Frequency (MHz)	CF (dB)	CF (dB)
9.0	116.7	81.8	0.490	56.4	9.6
10.6	116.7	81.8	0.582	56.2	11.1
12.6	116.7	81.8	0.690	56.0	12.9
14.8	116.7	81.8	0.820	55.7	15.0
17.5	116.6	81.9	0.973	55.4	17.3
20.7	116.6	81.9	1.155	54.9	19.5
24.4	116.6	81.9	1.371	54.4	20.8
28.9	116.6	82.0	1.627	53.7	21.0
34.1	116.5	82.0	1.931	52.9	20.5
40.3	116.4	82.1	2.292	52.0	19.8
47.6	116.3	82.2	2.721	49.8	19.1
56.2	116.2	82.4	3.230	46.6	15.8
66.4	116.0	82.6	3.834	43.3	12.7
78.4	115.8	82.9	4.551	40.1	10.3
92.7	115.4	83.1	5.402	36.8	9.0
109.4	115.0	83.4	6.412	33.5	8.5
129.3	114.5	83.3	7.612	30.3	8.5
152.7	113.9	82.6	9.035	27.0	8.6
180.4	113.1	81.0	10.725	23.9	8.8
213.1	112.2	78.7	12.730	21.2	9.0
251.7	111.3	76.0	15.111	19.3	9.1
297.3	108.3	73.3	17.937	18.4	9.2
351.2	105.2	70.8	21.292	18.2	9.3
414.8	102.1	68.4	25.274	18.3	9.3
490.0	99.1	66.3	30.000	18.4	9.4

In the data table (Table 5.1), the measured field is decreased by the dB values given above to represent the field at 300m or 30m, whichever is applicable.

The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, MI 48109-2122

Tel: (734) 764-0500

Table 5.1 Highest Emissions Measured

Transmitter Radiated Emissions S									SPX TPM Tool; FCC/IC			
								Pass				
#	kHz		Orien.	-		dB/m	-	3/30/300 m	$dB\mu V/m$	dBµV/m	dB	Comments
1	125.5	Loop	V/perp	- 6.8	Pk	9.9	0.0	114.7	- 4.6	25.6	30.2	loop perp. (axis in dir. of prop.)
2	125.5	Loop	V/par	-13.7	Pk	9.9	0.0	114.7	-11.5	25.6	37.1	loop paral. (loop in dir. of prop.)
3	125.5	Loop	Н	-14.7	Pk	9.9	0.0	114.7	-12.5	25.6	38.1	loop horiz. (loop in horiz. plane)
4	250.9	Loop	V/perp	-46.4	Pk	9.8	0.0	110.7	-40.3	19.6	59.9	loop perp. (axis in dir. of prop.)
5	250.9	Loop	V/par	-53.2	Pk	9.8	0.0	110.7	-47.1	19.6	66.7	loop paral. (loop in dir. of prop.)
6	250.9	Loop	Н	-53.4	Pk	9.8	0.0	110.7	-47.3	19.6	66.9	loop horiz. (loop in horiz. plane)
7	376.4	Loop	V/perp	-63.5	Pk	9.8	0.0	104.1	-50.8	16.1	66.9	noise
8	376.4	Loop	V/par	-67.6	Pk	9.8	0.0	104.1	-54.9	16.1	71.0	noise
9	376.4	Loop	Н	-65.9	Pk	9.8	0.0	104.1	-53.2	16.1	69.3	noise
10	501.8	Loop	V/perp	-71.8	Pk	9.8	0.0	56.3	-11.3	33.6	44.9	noise
11	501.8	Loop	V/par	-76.2	Pk	9.8	0.0	56.3	-15.7	33.6	49.3	noise
12	501.8	Loop	Н	-75.4	Pk	9.8	0.0	56.3	-14.9	33.6	48.5	noise
13	627.3	Loop	V/perp	-71.1	Pk	9.8	0.0	56.1	-10.4	31.7	42.1	noise
14	627.3	Loop	V/par	-72.5	Pk	9.8	0.0	56.1	-11.8	31.7	43.5	noise
15	627.3	Loop	Н	-71.9	Pk	9.8	0.0	56.1	-11.2	31.7	42.9	noise
16	752.7	Loop	All	-70.7	Pk	9.8	0.0	55.9	- 9.8	30.1	39.9	background
17	878.2	Loop	All	-79.4	Pk	9.8	0.0	55.6	-18.2	28.7	46.9	noise
18	1003.6	Loop	All	-71.2	Pk	9.8	0.0	55.3	- 9.7	27.6	37.3	background
19	1129.1	Loop	All	-52.2	Pk	9.8	0.0	55.0	9.6	26.5	16.9	background
20	1254.5	Loop	All	-60.1	Pk	9.8	0.0	54.6	2.1	25.6	23.6	background
21												
22	* Avera	ging ap	pplies u	p to 49	0 kHz,	0.0 dE	3 in tl	nis case				
23	Limit	at 3001	m for f<	<0.490N	ИHz; 3	0m for	f>0.	490MHz				
24												
25	9 kHz	RBW	for f >	150 kH	Z.							
26	** Repr	esents	the wor	rst case	conve	rsion f	actor	for all possib	ole orientatio	ns and groun	d mate	
27												
28												
				0				issions, Clas	s B			
	Freq.	Ant.	Ant.	Pr	Det.	Ka	Kg		E3	E3lim	Pass	
#	kHz	Used	Pol.	dBm	Used	dB/m	dB		$dB\muV/m$	$dB\mu V/m$	dB	Comments
1												
2												
3												
4												
5												
6												
7												
8												
9												

Meas. 02/11/2005; U of Mich.

Figure 6.1. Transmission modulation characteristics.

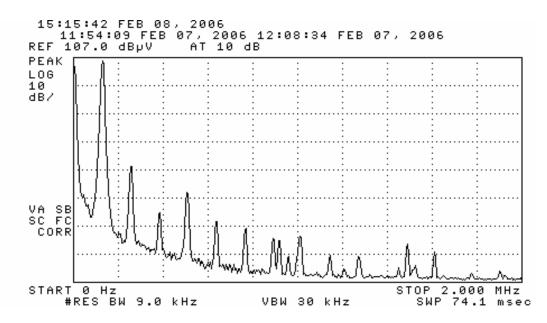


Figure 6.2. Emission spectrum of the DUT. The amplitudes are only indicative (not calibrated).

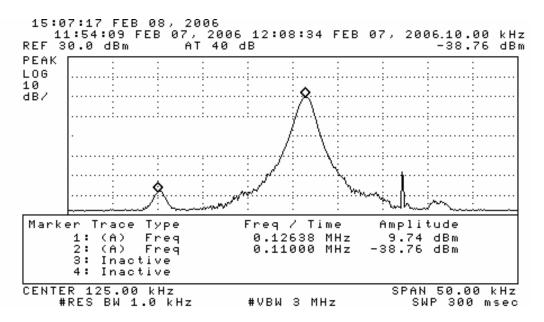


Figure 6.3.Measured bandwidth of the DUT.

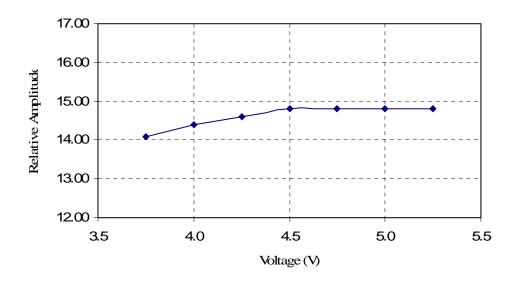


Figure 6.4. Relative emission at 125 kHz vs. supply voltage.

DUT on OATS

DUT on OATS (close-up)