FCC TEST REPORT

for

Shenzhen KTC Technology Co., Ltd.

8" PAD

Model Number: 800P***(* can be A-Z or 0-9 or blank to denote various customer demand)

FCC ID: ROU00003

Prepared for : Shenzhen KTC Technology Co., Ltd.

Address : Northern Wuhe Road, Gangtou, Buji, Longgang,

Shenzhen, China

Prepared by : Keyway Testing Technology Co., Ltd.

Address : Baishun Industrial Zone, Zhangmutou Town,

Dongguan, Guangdong, China

Tel: 86-769-8718 2258 Fax: 86-769-8718 1058

Report No. : 13KWE07786F

Date of Test : Jul. 10~ 17, 2013

Date of Report : Jul. 22, 2013

TABLE OF CONTENTS

Test I	Report Declaration	Page
1. T	EST SUMMARY	4
2. 0	SENERAL PRODUCT INFORMATION	5
2.1.	Product Function	5
2.2.	Description of Device (EUT)	5
2.3.		
2.4.	Independent Operation Modes	6
3. T	EST SITES	7
3.1.		
3.2.	List of Test and Measurement Instruments	8
4. T	EST SET-UP AND OPERATION MODES	9
4.1.	Principle of Configuration Selection	9
4.2.		
4.3.		
4.4.	- h	
4.5.		
	MISSION TEST RESULTS	
5.1.		
5.2.		
5.3.	3	
5.4.		
5.5. 5.6.		
5.7.		
5.8.		
5.9.		
	HOTOGRAPHS OF TEST SET-UP	
6.1.		
6.2.		
7. P	HOTOGRAPHS OF THE EUT	

FCC ID: ROU00003

Keyway Testing Technology Co., Ltd.

Applicant: SHENZHEN KTC TECHNOLOGY OO.,LTD

Address: Northern Wuhe Road, Gangtou, Buji,Longgang,Shenzhen, China

Manufacturer: SHENZHEN KTC TECHNOLOGY OO.,LTD

Address: Northern Wuhe Road, Gangtou, Buji,Longgang,Shenzhen, China

E.U.T: 8" PAD

Model Number: 800P***(* can be A-Z or 0-9 or blank to denote various customer

demand)

Trade Name: ----- Serial No.: -----

Date of Receipt: Jul. 3, 2013 **Date of Test:** Jul. 10~ 17, 2013

Test Specification: FCC CFR Title 47 Part 2: 2012

FCC CFR Title 47 Part22 Subpart H: 2012 FCC CFR Title 47 Part24 Subpart E: 2012

Test Result: The equipment under test was found to be compliance with the

requirements of the standards applied.

Issue Date: Jul. 22, 2013

Tested by:

Reviewed by:

Andy Gao / Engineer

Jade Yang/ Supervisor

Chris Du / Manager

Approved by:

Other Aspects:

None.

Abbreviations: OK/P=passed

fail/F=failed

n.a/N=not applicable

E.U.T=equipment under tested

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Keyway Testing Technology Co., Ltd.

1.TEST SUMMARY

Test Items	Test Requirement	Result
Conducted Emission at the Mains Terminals	15.207	PASS
DE European (OAD)	Part 1.1307	Passed*
RF Exposure (SAR)	Part 2.1093	(Please refer to SAR Report)
Conducted RF Output Power	2.1046	PASS
Peak to average radio	24.232(d),	PASS
	2.1049,	
99% & -26 dB Occupied Bandwidth	22.917	PASS
	24.238,	
	2.1055,	
Frequency Stability	22.355	PASS
	24.235,	
	2.1051,2.1057	
Conducted Out of Band Emissions	22.917,	PASS
	24.238	
	2.1051,2.1057	
Band Edge	22.917,	PASS
	24.238	
Transmitter Radiated Power	22.913,	DACC
(EIPR/ERP)	24.232	PASS
	2.1053,2.1057	
Radiated Out of Band Emissions	22.917,	PASS
	24.238	

2.GENERAL PRODUCT INFORMATION

2.1. Product Function

Refer to Technical Construction Form and User Manual.

2.2. Description of Device (EUT)

Product Name:	8" PAD			
Model No.:	800P***(* can be A-Z or 0-9 or blank to denote various customer demand)			
	Bluetooth:2402~2480MHz			
	WIFI:2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))			
	2422MHz~2452MHz (802.11n(H40))			
	GSM 850MHz:			
	Tx: 824.20 - 848.80MHz (at intervals of 200kHz); Rx: 869.20 - 893.80MHz (at intervals of 200kHz)			
Operation Frequency:	GSM 1900MHz:			
	Tx: 1850.20 - 1909.80MHz (at intervals of 200kHz);			
	Rx: 1930.20 - 1989.80MHz (at intervals of 200kHz)			
	WCDMA 850MHz			
	Tx: 826.4 - 846.6MHz (at intervals of 00kHz);			
	Rx: 871.4 - 891.6MHz (at intervals of 200kHz)			
	Bluetooth:79 Channels			
Channel numbers:	WIFI:13 Channel for 802.11b/g/n(HT20),			
	7 Channel for 802.11n(HT40)			
Channel separation:	Bluetooth:1M			
Charmer Separation.	WIFI:5M			
	Bluetooth: FHSS(GFSK 1Mbps),Pi/4DQPSK(EDR 2Mbps),			
	8-DQPSK(EDR 3Mbps)			
	WIFI: Direct Sequence Spread Spectrum (DSSS)			
Modulation technology:	Orthogonal Frequency Division Multiplexing(OFDM)			
	GSM/GPRS Mode with GMSK Modulation			
	WCDMA Mode with QPSK Modulation			
	HSDPA Mode with QPSK Modulation			
	HSUPA Mode with QPSK Modulation			
Antenna Type:	Integral(BT &WIFI)			
	PIFA Antenna (GSM&WCDMA)			
Antenna gain:	3.4dBi (BT &WIFI)			
5-	-2.42dBi (GSM&WCDMA)			
Power supply:	DC 5V from adapter			
Multislot Class	12			
EGPRS Class	12			

Adapter

Description : Switching Adapter M/N : ASSA1b-050200

System Input Voltage : AC 100-240V/50-60Hz 0.45A

Output : 5V 2000mA

2.3. Difference between Model Numbers

Note: 800P***(800P***(800: express screen size is 8 inches; "P":express Pad; * can be any alphanumeric represent different customer code or the sales area, not affect the product performance)

2.4. Independent Operation Modes

The basic operation modes are:

- 1: The transmitter (Tx) frequency arrangement of the Cellular 850MHz band used by the EUT can be represented with the formula F(n)=824.2+0.2*(n-128), 128<=n<=251; the lowest, middle, highest channel numbers (ARFCHs) used and tested in this report are separately 128 (824.2MHz), 190 (836.6MHz) and 251 (848.8MHz).
- 2: The transmitter (Tx) frequency arrangement of the PCS 1900MHz band used by the EUT can be represented with the formula F(n)=1850.2+0.2*(n-512), 512<=n<=810; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 512 (1850.2MHz), 661 (1880.0MHz) and 810 (1909.8MHz).
- 3: The transmitter (Tx) frequency arrangement of the WCDMA 850MHz band used by the EUT can be represented with the formula F(n)=826.4+0.2*(n-4132), 4132<=n<=4233; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 4132 (826.4MHz), 4175(835MHz) and 4233 (846.6MHz).

FCC ID: ROU00003

3. TEST SITES

3.1. Test Facilities

Lab Qualifications: 944 Shielded Room built by ETS-Lindgren, USA

Date of completion: March 28, 2011

966 Chamber built by ETS-Lindgren, USA

Date of completion: March 28, 2011

Certificated by TUV Rheinland, Germany.

Registration No.: UA 50207153 Date of registration: July 13, 2011

Certificated by UL, USA Registration No.: 100567-237

Date of registration: September 1, 2011

Certificated by Intertek

Registration No.: 2011-RTL-L1-31 Date of registration: October 11, 2011

Certificated by Industry Canada

Registration No.: 9868A

Date of registration: December 8, 2011

Certificated by FCC, USA Registration No.: 370994

Date of registration: February 21, 2012

Certificated by CNAS China Registration No.: CNAS L5783 Date of registration: August 8, 2012

Name of Firm : Keyway Testing Technology Co., Ltd.

Site Location : Baishun Industrial Zone, Zhangmutou Town,

Dongguan, Guangdong, China

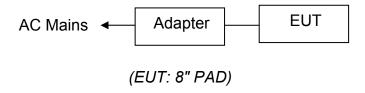
3.2. List of Test and Measurement Instruments

3.2.1. For conducted emission at the mains terminals test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESCI	101156	May 9,13	May 9,14
Artificial Mains Network	Rohde&Schwarz	ENV216	101315	May 9,13	May 9,14
Artificial Mains Network (AUX)	Rohde&Schwarz	ENV216	101314	May 9,13	May 9,14
RF Cable	FUJIKURA	3D-2W	944 Cable	May 9,13	May 9,14

3.2.2. For radiated emission test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESCI	101156	May 9,13	May 9,14
System Simulator	Agilent	E5515C	GB43130245	May 9,13	May 9,14
Power Splitter	Weinschel	1506A	NW425	May 9,13	May 9,14
Bilog Antenna	ETS-LINDGREEN	3142D	135452	May 20,13	May 20,14
Spectrum Analyzer	Agilent	E4411B	MY4511304	May 9,13	May 9,14
3m Semi-anechoic Chamber	ETS-LINDGREEN	966	KW01	May 9,13	May 9,14
Signal Amplifier	SONOMA	310	187016	May 9,13	May 9,14
Signal Amplifier	Agilent	8449B	3008A00251	May 9,13	May 9,14
RF Cable	IMRO	IMRO-400	966 Cable 1#	N/A	N/A
MULTI-DEVICE Controller	ETS-LINDGREEN	2090	126913	N/A	N/A
Horn Antenna	DAZE	ZN30701	11003	May. 11,13	May. 11,14
Horn Antenna	SCHWARZBECK	BBHA9170	9170-068	May. 11,13	May. 11,14
Spectrum Analyzer	Agilent	8593E	3911A04271	May. 9,13	May. 9,14
Spectrum Analyzer	Agilent	E4408B	MY44211125	May. 9,13	May. 9,14
Signal Amplifier	DAZE	ZN3380C	11001	May. 9,13	May. 9,14
High Pass filter	Micro	HPM50111	324216	May. 9,13	May. 9,14
Filter	COM-MW	ZBSF-C836.5-25 -X	KW032	May. 9,13	May. 9,14
Filter	COM-MW	ZBSF-C1747.5-7 5-X2	KW035	May. 9,13	May. 9,14
Filter	COM-MW	ZBSF-C1880-60- X2	KW037	May. 9,13	May. 9,14
Power Meter	R&S	NRVS	101824	May. 9,13	May. 9,14
Peak and Avg Power Sensor	Rohde&Schwarz	URV5-Z7	100655	May. 9,13	May. 9,14
DC Power Supply	LongWei	PS-305D	010964729	May 9,13	May 9,14
Constant temperature and humidity box	GF	GTH-800-40-1P	MAA9906-005	May 9,13	May 9,14


4. TEST SET-UP AND OPERATION MODES

4.1. Principle of Configuration Selection

Emission: The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the Operating Instructions.

4.2. Block Diagram of Test Set-up

System Diagram of Connections between EUT and Simulators

- 4.3. Test Operation Mode and Test Software None.
- 4.4. Special Accessories and Auxiliary Equipment None.
- 4.5. Countermeasures to Achieve EMC Compliance None.

5. EMISSION TEST RESULTS

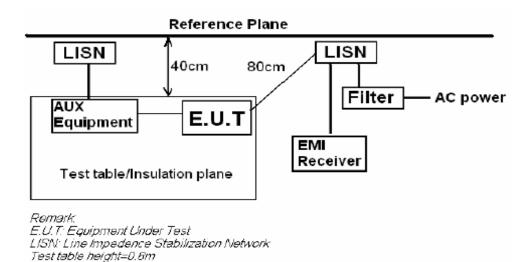
5.1. Conducted Emission at the Mains Terminals Test

5.1.1. Limit 15.207 limits

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)		
	Quasi-peak	Average	
0.15-0.5 0.5-5 5-30	66 to 56 56 60	56 to 46 46 50	

5.1.2. Test Setup

The EUT was put on a wooden table which was 0.8 m high above the ground and connected to the AC mains through the Artificial Mains Network (AMN). Where the mains cable supplied by the manufacture was longer than 0.8 m, the excess was folded back and forth parallel to the cable at the centre so as to form a bundle no longer than 0.4 m.


The EUT was kept 0.4 m from any other earthed conducting surface. Both sides of AC line were checked to find out the maximum conducted emission levels according to the test procedure during the conducted emission test.

The frequency range from 150 kHz to 30 MHz was investigated.

The bandwidth of the test receiver was set at 9 kHz.

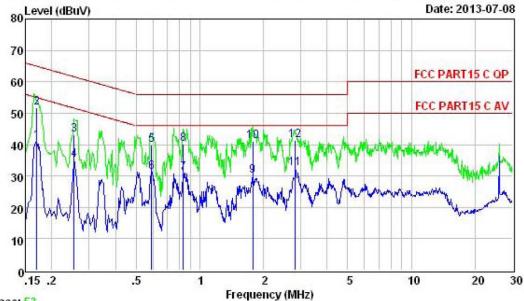
Pretest for all mode, The test data of the worst case condition(s) was reported on the following page.

Measurement Uncertainty: ±2.6 dB.

5.1.3. Test Mode

Set EUT in TX mode.

Test Data



Keyway Testing Technology Co., Ltd. Baishun Industrial Zone, Zhangmutou Town, Dongguan, Guangdong, China

Tel: 0769-87182258 Fax: 0769-87181058

Mail: kwtest@keywaytest.com

Data: 54 File: F:\944 Data\conduction\13Report\13KW060701SS-PAD.EM6 (80) 80 Level (dBuV)

Trace: 53

Site : 944 Shielded Room : FCC PART15 C QP LINE Condition

: 8" PAD EUT

POWER : DC 5V from adapter input AC 120V/60Hz

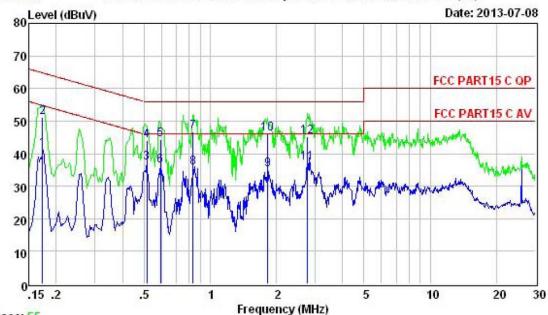
M/N : 800P11B Test Engineer: Andy

Comment : Temp:24.9'; Humi:56%; Press; 101.52kPa

Test Mode : TX mode (GSM)

Over Limit Freq Level Line Limit Remark

	MHz	dBuV	dBuV	dB	
1	0.169	41.17	54.99	-13.82	Average
2	0.169	51.70	64.99	-13.29	QP
3	0.255	43.10	61.59	-18.49	QP
4	0.255	35.15	51.58	-16.43	Average
5	0.593	39.80	56.00	-16.20	QP
6	0.593	31.35	46.00	-14.65	Average
7	0.838	30.93	46.00	-15.07	Average
8	0.838	40.20	56.00	-15.80	QP
9	1.779	29.95	46.00	-16.05	Average
10	1.779	40.90	56.00	-15.10	QP
11	2.816	32.42	46.00	-13.58	Average
12	2.816	41.30	56.00	-14.70	QP



Keyway Testing Technology Co.,Ltd. Baishun Industrial Zone,Zhangmutou Town,Dongguan,Guangdong,China

Tel: 0769-87182258 Fax: 0769-87181058

Mail: kwtest@keywaytest.com

Trace: 55

Site : 944 Shielded Room

Condition : FCC PART15 C QP NEUTRAL

EUT : 8" PAD

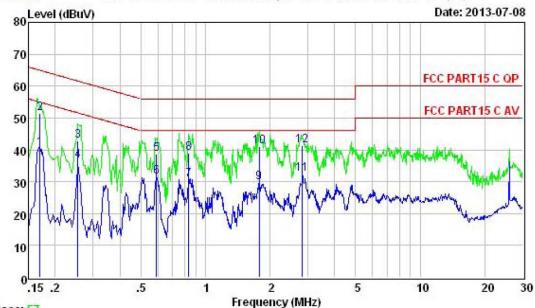
POWER : DC 5V from adapter input AC 120V/60Hz

M/N : 800P11B Test Engineer: Andy

Comment : Temp:24.9'; Humi:56%; Press; 101.52kPa

Test Mode : TX mode (GSM)

			Limit	Over	
	Freq	Level	Line	Limit	Remark
A.	MHz	dBuV	dBuV	dB	-
1	0.173	41.48	54.81	-13.33	Average
2	0.173	51.30	64.81	-13.51	QP
3	0.516	37.10	46.00	-8.90	Average
4	0.516	43.90	56.00	-12.10	QP
5	0.594	44.30	56.00	-11.70	QP
6	0.595	36.16	46.00	-9.84	Average
7	0.834	46.70	56.00	-9.30	QP
8	0.835	35.83	46.00	-10.17	Average
9	1.829	35.00	46.00	-11.00	Average
10	1.829	46.20	56.00	-9.80	QP
11	2.750	37.12	46.00	-8.88	Average
12	2.750	45.30	56.00	-10.70	OP



Keyway Testing Technology Co.,Ltd. Baishun Industrial Zone,Zhangmutou Town,Dongguan,Guangdong,China

Tel: 0769-87182258 Fax: 0769-87181058

Mail: kwtest@keywaytest.com

Trace: 57

Site : 944 Shielded Room Condition : FCC PART15 C QP LINE

EUT : 8" PAD

POWER : DC 5V from adapter input AC 120V/60Hz

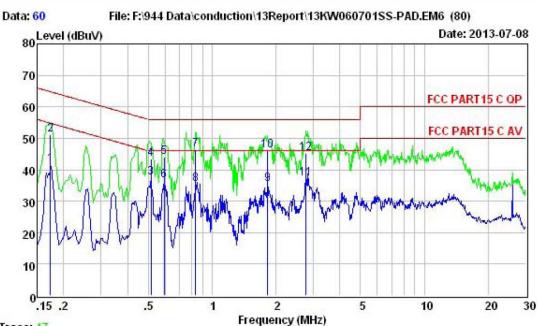
M/N : 800P11B Test Engineer: Andy

Comment : Temp:24.9'; Humi:56%; Press; 101.52kPa

Limit

Over

Test Mode : TX mode (WCDMA)


	Freq	Level	Line	Limit	Remark
-	MHz	dBuV	dBuV	——dB	7 -
1	0.169	40.30	54.99	-14.69	Average
2	0.169	51.40	64.99	-13.59	QP
3	0.255	42.70	61.59	-18.89	QP
4	0.255	36.50	51.58	-15.08	Average
5	0.593	38.70	56.00	-17.30	QP
6	0.593	31.50	46.00	-14.50	Average
7	0.838	30.60	46.00	-15.40	Average
8	0.838	38.90	56.00	-17.10	QP
9	1.779	29.70	46.00	-16.30	Average
10	1.779	40.90	56.00	-15.10	QP
11	2.816	32.42	46.00	-13.58	Average
12	2.816	41.30	56.00	-14.70	QP

Keyway Testing Technology Co.,Ltd. Baishun Industrial Zone,Zhangmutou Town,Dongguan,Guangdong,China

Tel: 0769-87182258 Fax: 0769-87181058

Mail: kwtest@keywaytest.com

Trace: 47

Site

: 944 Shielded Room

Condition : FCC PART15 C QP NEUTRAL

EUT : 8" PAD

POWER : DC 5V from adapter input AC 120V/60Hz

M/N : 800P11B Test Engineer: Andy

Comment : Temp:24.9'; Humi:56%; Press; 101.52kPa

Test Mode : TX mode (WCDMA)

Limit Over Freq Level Line Limit Remark

_	MHz	dBuV	dBuV	dB	
1	0.173	41.52	54.81	-13.29	Average
2	0.173	51.10	64.81	-13.71	QP
3	0.516	37.50	46.00	-8.50	Average
4	0.516	43.40	56.00	-12.60	QP
5	0.594	44.10	56.00	-11.90	QP
6	0.595	36.50	46.00	-9.50	Average
7	0.834	46.30	56.00	-9.70	QP
8	0.835	35.30	46.00	-10.70	Average
9	1.829	35.30	46.00	-10.70	Average
10	1.829	46.20	56.00	-9.80	QP
11	2.750	37.30	46.00	-8.70	Average
12	2.750	45.10	56.00	-10.90	QP

5.2. Conducted RF Output Power

5.2.1. Limit

According to FCC section 2.1046(a), for transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in FCC section 2.1033(c)(8).

5.2.2. Test Setup

The EUT, which is powered by the adapter, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power.

5.2.3. Test Result

Here the lowest, middle and highest channels are selected to perform testing to verify the conducted RF output power of the EUT.

Note: Measurement Uncertainty: ±2.6 dB.

1. GSM Mode

Band	Channel	Frequency (MHz)	Measured Output Power dBm
GSM	128	824.2	32.57
850MHz	190	836.6	32.16
	251	848.8	32.08
GSM	512	1850.2	29.68
1900MHz	661	1880.0	29.45
	810	1909.8	29.32
GPRS	128	824.2	32.42
850MHz	190	836.6	32.13
	251	848.8	32.06
GPRS	512	1850.2	29.44
1900MHz	661	1880.0	29.37
	810	1909.8	29.41
EGPRS	128	824.2	27.45
850MHz	190	836.6	27.32
	251	848.8	27.37
EGPRS	512	1850.2	25.76
1900MHz	661	1880.0	25.62
	810	1909.8	25.55

Note 1: For the GPRS and EGPRS model, all the slots were tested and just the worst data was record in this report.

2. WCDMA Mode

	band	WCDMA 850				
Item	ARFCN	4132	4175	4233		
	subtest		dBm			
WCDMA	non	22.54	22.42	22.65		
	1	22.45	22.32	22.53		
HSDPA	2	22.43	22.31	22.19		
I HODI A	3	22.48	22.33	22.17		
	4	22.18	22.09	22.18		
	1	22.60	22.56	22.31		
HSUPA	2	22.37	22.53	22.35		
	3	22.41	22.61	22.55		
	4	22.51	22.33	22.52		

5.3. Peak to Average Radio

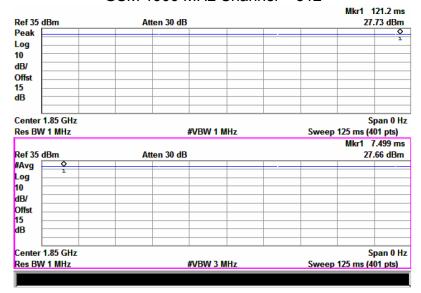
5.3.1. Limit

According to FCC section 2.1049 and FCC 24.232(d), the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

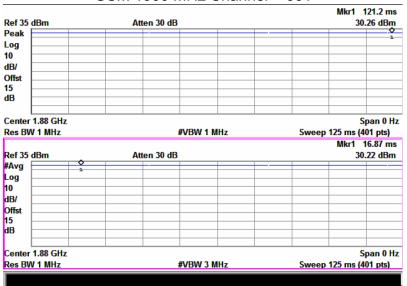
5.3.2. Test Setup

The EUT, which is powered by the adapter, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power.

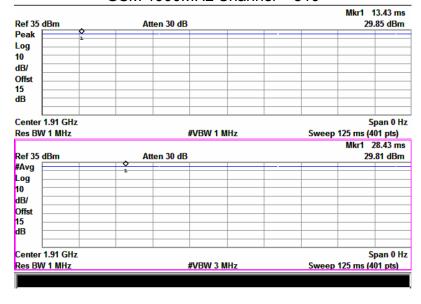
A .For GSM/EGPRS operating mode:

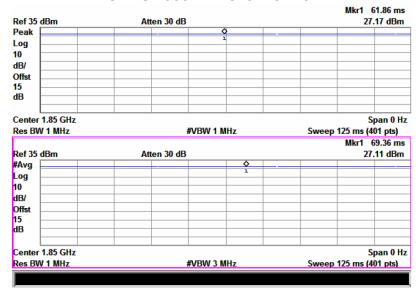

- 1. Set RBW=1MHz, VBW=1MHz, peak detector in spectrum analyzer.
- 2. Set EUT in maximum output power, and triggered the bust signal.
- 3. Measured respectively the peak level and mean level, and the deviation was recorded as Peak to Average radio.
- B. For UMTS operating mode:
- 1. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- 2. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1%.

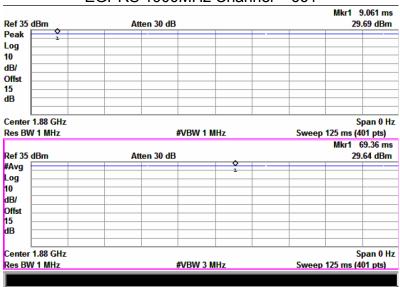
5.3.3. Test Result

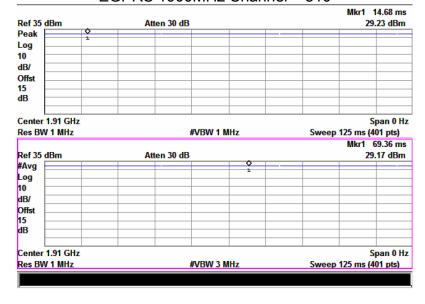

Band	Channel	Frequency (MHz)	Measured Output Power dBm	Limit	Result
GSM 1900MHz	512	1850.2	0.07	13	PASS
	661	1880.0	0.04		PASS
	810	1909.8	0.04		PASS
EGPRS 1900MHz	512	1850.2	0.06	13	PASS
	661	1880.0	0.05		PASS
	810	1909.8	0.06		PASS
WCDMA 850MHz	4132	826.4	3.13		PASS
	4182	836.4	3.08	13	PASS
	4233	846.6	3.01		PASS

Note: Measurement Uncertainty: ±2.6 dB at a level of confidence of 95%.


GSM 1900 MHz Channel = 512

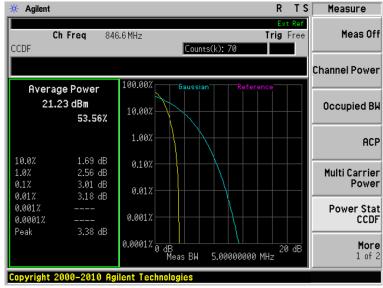

GSM 1900 MHz Channel = 661


GSM 1900MHz Channel = 810


EGPRS 1900MHz Channel = 512

EGPRS 1900MHz Channel = 661

EGPRS 1900MHz Channel = 810


WCDMA 850MHz Channel=4132

WCDMA 850MHz Channel=4175

WCDMA 850MHz Channel=4233

FCC ID: ROU00003

5.4. 99% & -26 dB Occupied Bandwidth

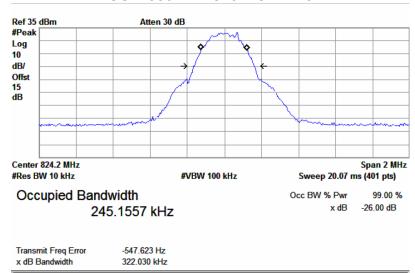
5.4.1. Limit

According to FCC section 2.1049 and FCC 22.917 &24.238 and 27.53(g), the occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

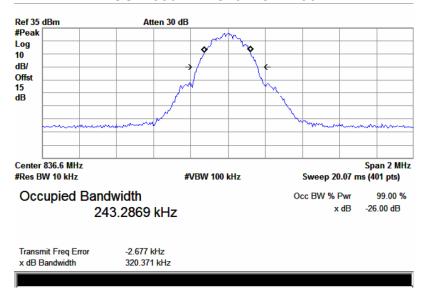
Occupied bandwidth is also known as the 99% emission bandwidth,

5.4.2. Test Setup

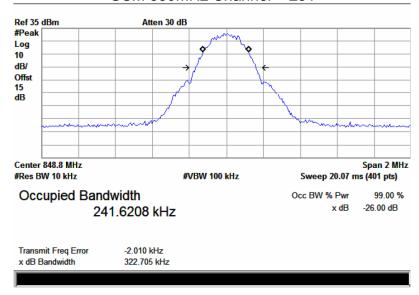
The EUT, which is powered by the adapter, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power.

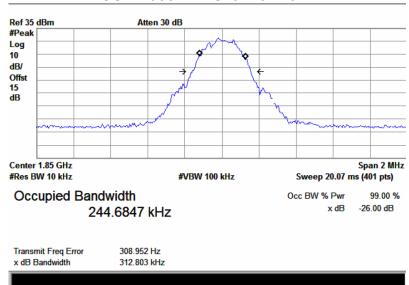

5.4.3. Test Result

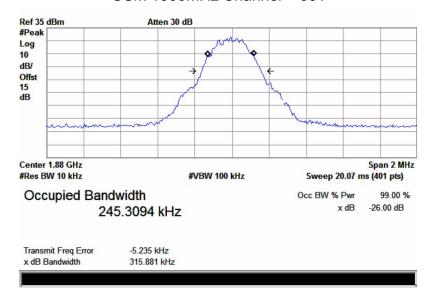
Band	Channel	Frequency (MHz)	26dB bandwidth	99% occupied bandwidth
GSM 850MHz	128	824.2	322.030 kHz	245.1557 kHz
	190	836.6	320.371 kHz	243.2869 kHz
	251	848.8	322.705 kHz	241.6208 kHz
	512	1850.2	312.803 kHz	244.6847 kHz
GSM 1900MHz	661	1880.0	315.881 kHz	245.3094 kHz
	810	1909.8	320.064 kHz	244.4599 kHz
	128	824.2	316.293 kHz	247.5679 kHz
EDGE 850MHz	190	836.6	316.551 kHz	244.2915 kHz
	251	848.8	321.768 kHz	246.9843 kHz
	512	1850.2	321.488 kHz	245.5149 kHz
EDGE 1900MHz	661	1880.0	320.132 kHz	247.3285 kHz
	810	1909.8	322.577 kHz	247.5883 kHz
	4132	826.4	4.706 MHz	4.1682 MHz
WCDMA	4182	836.4	4.721 MHz	4.1860 MHz
850MHz	4233	846.6	7.705 MHz	4.1487 MHz
HSDPA 850MHz	4132	826.4	4.709 MHz	4.1640 MHz
	4182	836.4	4.710 MHz	4.1779 MHz
	4233	846.6	4.730 MHz	4.1478 MHz
	4132	826.4	4.705 MHz	4.1682 MHz
HSUPA 850MHz	4182	836.4	4.733 MHz	4.1753 MHz
	4233	846.6	4.701 MHz	4.1635 MHz

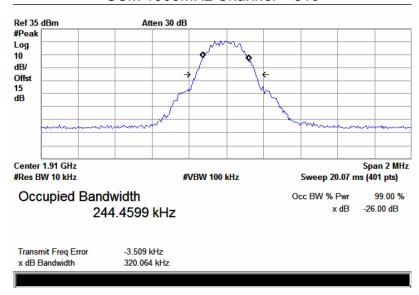

Note: Measurement Uncertainty: ±20Hz.

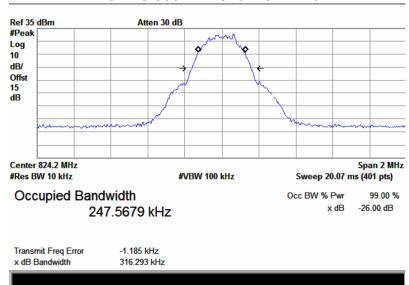
Test plot as follows:

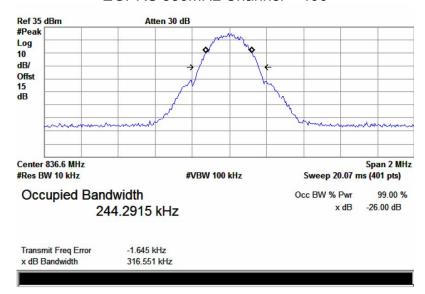

GSM 850MHz Channel = 128

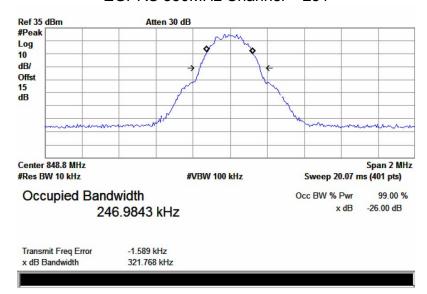

GSM 850MHz Channel = 190

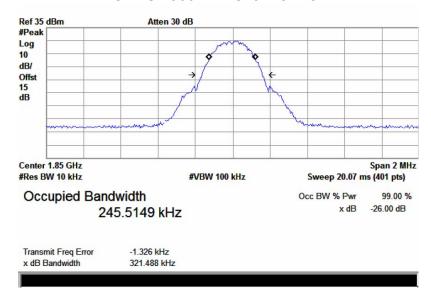

GSM 850MHz Channel = 251

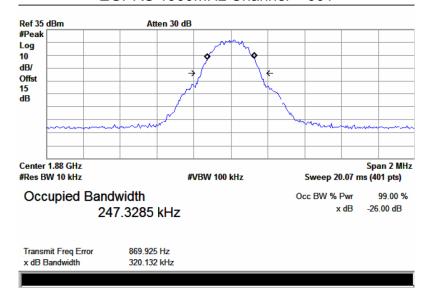

GSM 1900MHz Channel = 512

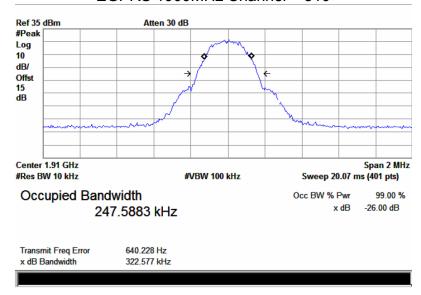

GSM 1900MHz Channel = 661

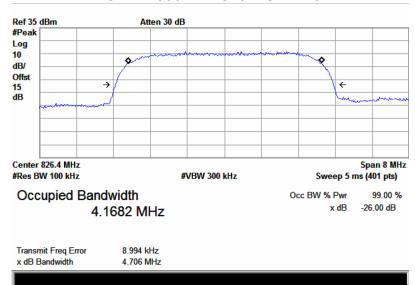

GSM 1900MHz Channel = 810

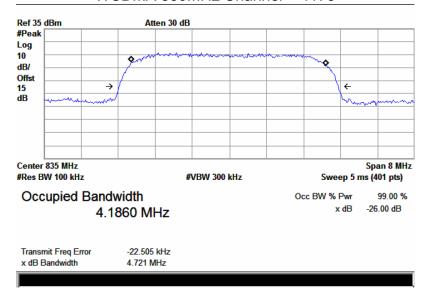

EGPRS 850MHz Channel = 128

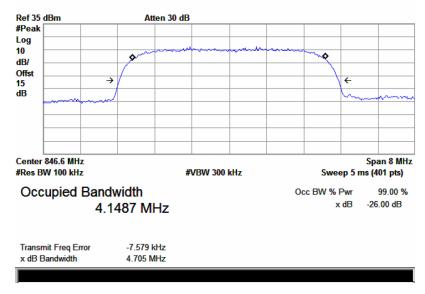

EGPRS 850MHz Channel = 190

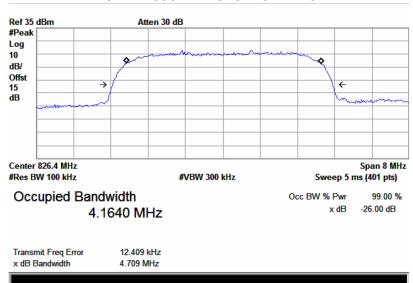

EGPRS 850MHz Channel = 251

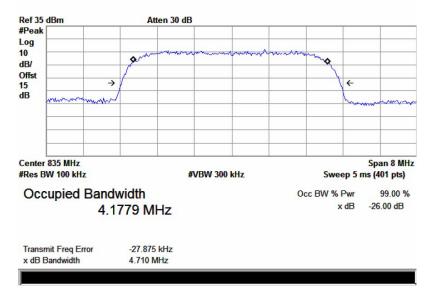

EGPRS 1900MHz Channel = 512

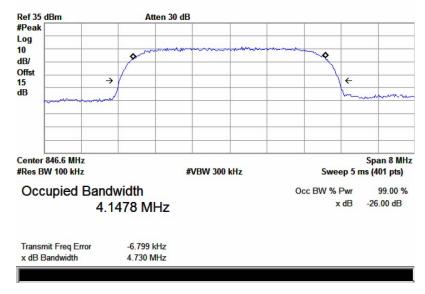

EGPRS 1900MHz Channel = 661

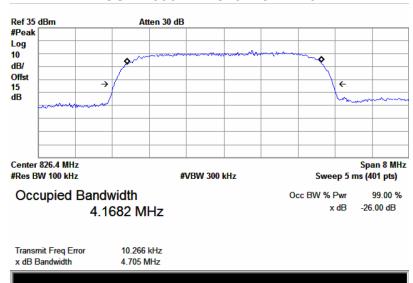

EGPRS 1900MHz Channel = 810

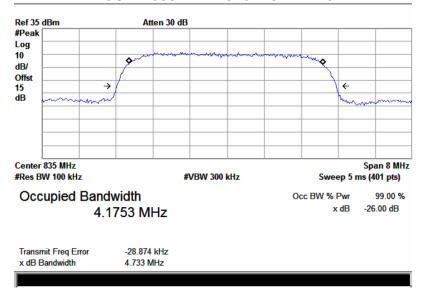

WCDMA 850MHz Channel = 4132

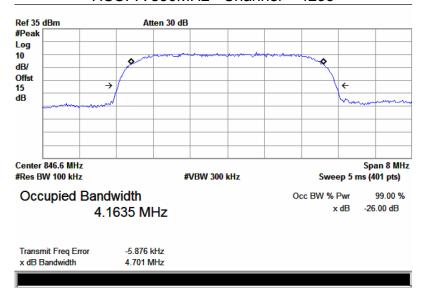

WCDMA 850MHz Channel = 4175


WCDMA 850MHz Channel = 4233


HSDPA 850MHz Channel = 4132

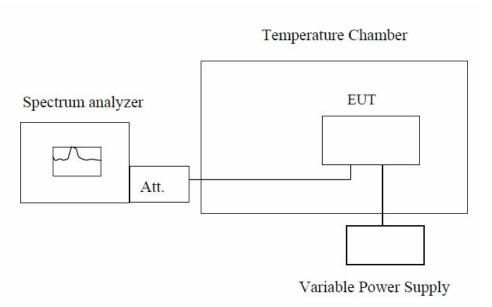

HSDPA 850MHz Channel = 4175


HSDPA 850MHz Channel = 4233


HSUPA 850MHz Channel = 4132

HSUPA 850MHz Channel = 4175

HSUPA 850MHz Channel = 4233


5.5. Frequency Stability

5.5.1. Limit

According to FCC section 22.355 and FCC section 24.235, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. According to FCC section 2.1055, the test conditions are:

- (a) The temperature is varied from -30°C to +50°C at intervals of not more than 10°C.
- (b) For hand carried battery powered equipment, the primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacture. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

5.5.2. Test Setup

Note: Measurement setup for testing on Antenna connector

The EUT, which is powered by the DC Power Supply directly, is located in the Temperature Chamber.

The EUT is commanded by the System Simulator (SS) to operate at the maximum output power

5.5.3. Test Result

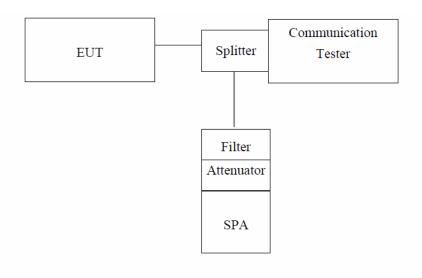
The nominal, highest and lowest extreme voltages are separately 3.7VDC, 4.2VDC and 3.6VDC which are specified by the applicant; the normal temperature here used is 25°C. The frequency deviation limit of 850MHz band is ±2.5ppm, and 1900MHz is ±1ppm

Page 29 of 67

Test Conditions		Frequency Deviation				
Band	Power(Vdc)	Temperature(℃)	Frequency Error(Hz)	Limit	Result	
	3.7	-30	-19.11			
	3.7	-20	11.39			
	3.7	-10	-17.56			
	3.7	0	32.11			
GSM 850	3.7	10	-24.03			
Middle	3.7	20	-16.19	±2.5	PASS	
channel=190	3.7	30	18.33			
	3.7	40	17.61			
	3.7	55	21.27			
	4.2	25	28.91			
	3.6	25	36.23			
	3.7	-30	21.62			
	3.7	-20	27.13			
	3.7	-10	-21.28			
	3.7	0	-13.16			
GSM 1900	3.7	10	-18.38			
Middle	3.7	20	-21.61	±1	PASS	
channel=661	3.7	30	-15.52			
	3.7	40	-7.68			
	3.7	55	-33.27			
	4.2	25	-28.82			
	3.6	25	-15.32			
	3.7	-30	-18.56			
	3.7	-20	-13.47			
	3.7	-10	12.18			
	3.7	0	-14.06			
EGPRS 850	3.7	10	18.79			
Middle	3.7	20	22.39	±2.5	PASS	
channel=190	3.7	30	37.27			
	3.7	40	2.37			
	3.7	55	-11.52			
	4.2	25	-5.41			
	3.6	25	12.65			

Note: Measurement Uncertainty: ±20Hz.

Test Conditions		Frequency Deviation			
Band	Power(Vdc)	Temperature(°C)	Frequency	Limit	Result
Danu	. ,	remperature(c)	Error(Hz)	LIIIII	
_	3.7	-30	57.26		
_	3.7	-20	28.79		
	3.7	-10	3.28		
	3.7	0	27.29		
EGPRS 1900	3.7	10	-4.29		
Middle	3.7	20	10.89	±1	PASS
channel=661	3.7	30	9.50		
	3.7	40	43.76		
	3.7	55	60.11		
	4.2	25	53.02		
	3.6	25	47.73		
	3.7	-30	13.82		
	3.7	-20	-0.59		
	3.7	-10	21.45		
	3.7	0	12.42		
WCDMA 850	3.7	10	3.31		
Middle	3.7	20	-12.52	±2.5	PASS
Channel=4175	3.7	30	30.61		
	3.7	40	13.45		
Ī	3.7	55	-12.52		
Ī	4.2	25	30.62		
Ī	3.6	25	-18.05		
	3.7	-30	-24.37		
Ī	3.7	-20	-13.96		
Ī	3.7	-10	35.23		
Ī	3.7	0	-8.31		
HSDPA 850	3.7	10	-13.95		
Middle	3.7	20	-24.37	±2.5	PASS
Channel=4175	3.7	30	12.88		
	3.7	40	-14.75		
t	3.7	55	23.37		
Ţ	4.2	25	7.93		
	3.6	25	-31.21		
	3.7	-30	11.51		
Ţ	3.7	-20	-12.31		
Ţ	3.7	-10	-11.79		
Ţ	3.7	0	-0.44		
HSUPA 850	3.7	10	0.01		
Middle	3.7	20	-6.64	±2.5	PASS
Channel=4175	3.7	30	24.25	-	
	3.7	40	9.63		
	3.7	55	23.76		
†	4.2	25	-4.57		
ţ	3.6	25	5.25		


Note: Measurement Uncertainty: ±20Hz.

5.6. Conducted Out of Band Emissions

5.6.1. Limit

According to FCC section 22.917(a) and FCC section 24.238(a), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

5.6.2. Test Setup

Note: Measurement setup for testing on Antenna connector

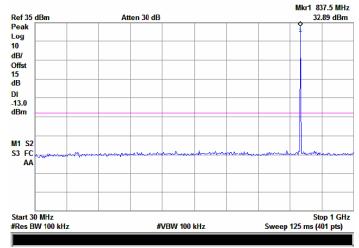
5.6.3. Measurement Procedure

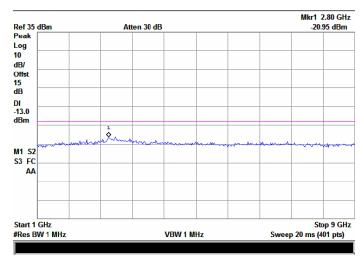
The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.

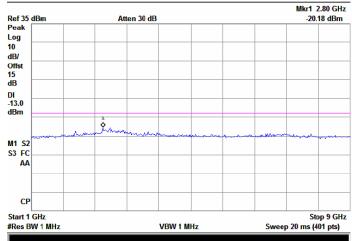
For the out of band: Set the RBW, VBW = 100KHz, Start=30MHz, Stop= 10th harmonic.

Limit = -13dBm

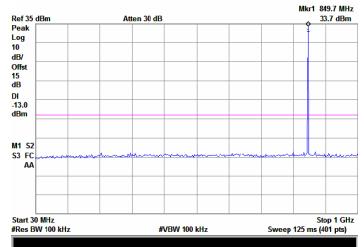
5.6.4. Test Result

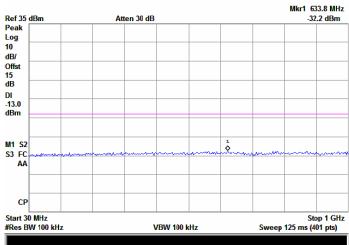

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the out of band emissions.

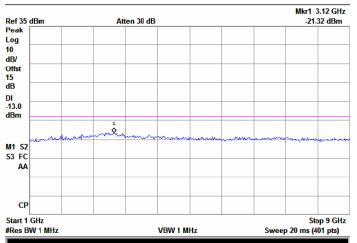

Test plot as follows:

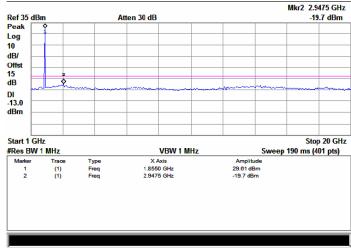

GSM 850MHz Channel = 128

GSM 850MHz Channel = 190

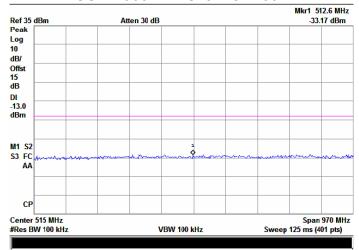


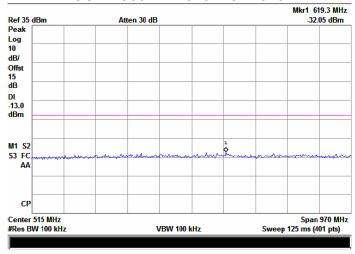


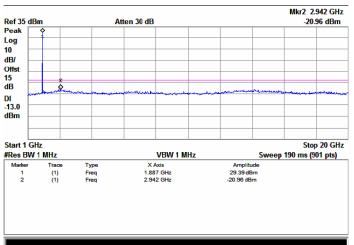


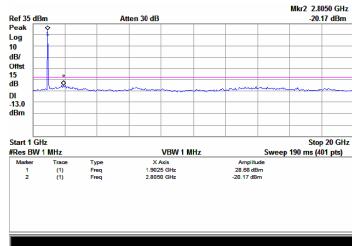

GSM 850MHz Channel = 251

GSM 1900MHz Channel = 512

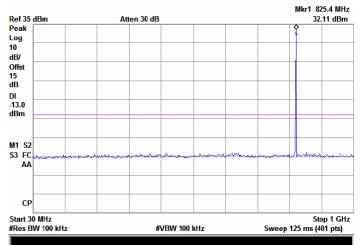


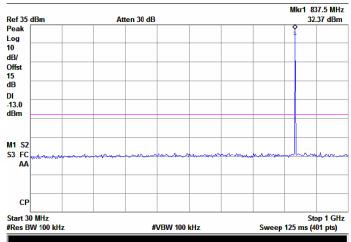


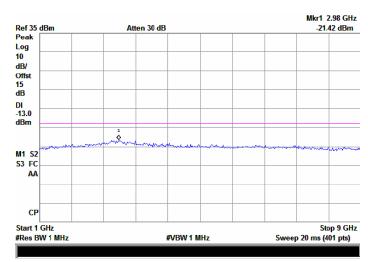


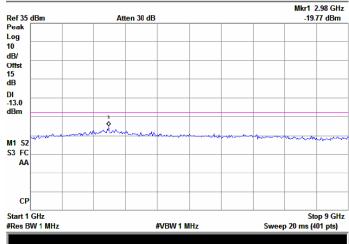

GSM 1900MHz Channel = 661

GSM 1900MHz Channel = 810

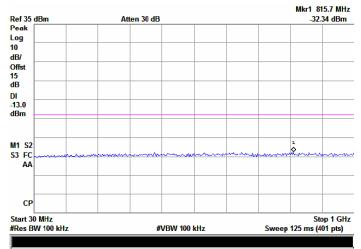


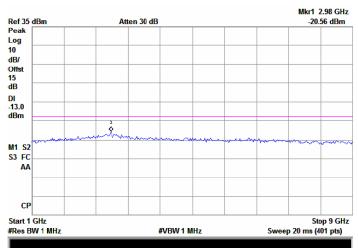


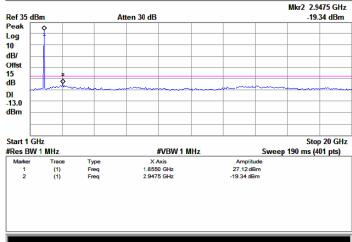



EGPRS 850MHz Channel = 128

EGPRS 850MHz Channel = 190

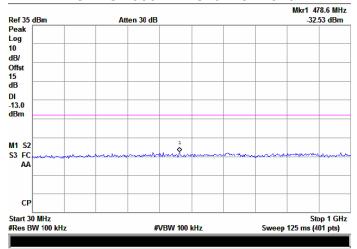


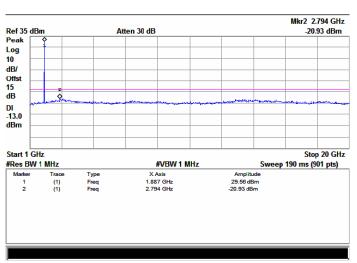


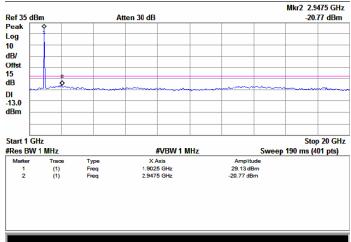

EGPRS 850MHz Channel = 251

| Mkr1 849.7 MHz | Stop 1 GHz | Sweep 125 ms (401 pts) | Sweep 125 ms (401 pts) |

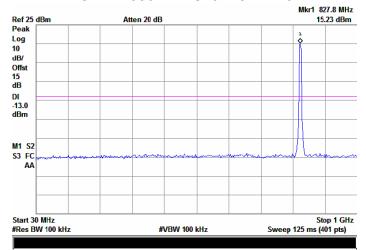
EGPRS 1900MHz Channel = 512

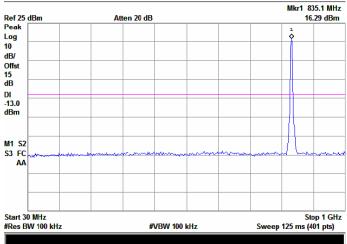


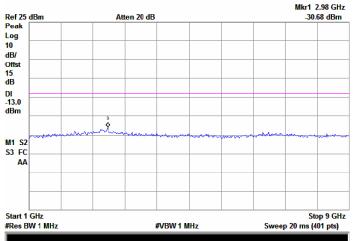



EGPRS 1900MHz Channel = 661

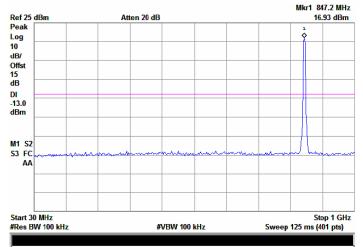
Mkr1 801.2 MHz Ref 35 dBm -32.64 dBm Peak Log 10 dB/ Offst 15 dB DI -13.0 dBm M1 S2 S3 FC AA СР Stop 1 GHz Sweep 125 ms (401 pts) Start 30 MHz #Res BW 100 kHz **#VBW 100 kHz**

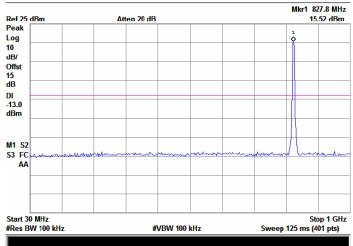

EGPRS 1900MHz Channel = 810

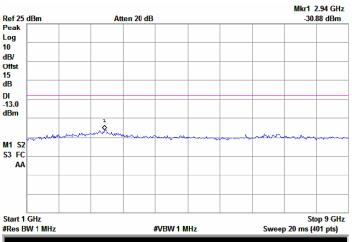


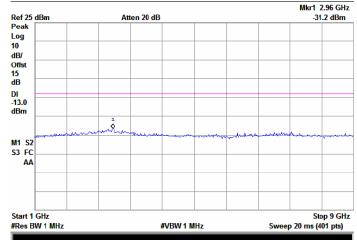


WCDMA 850MHz Channel = 4132

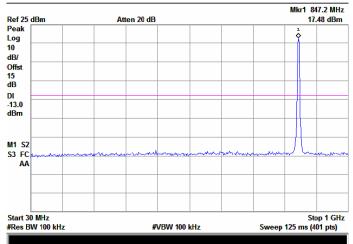

WCDMA 850MHz Channel = 4175

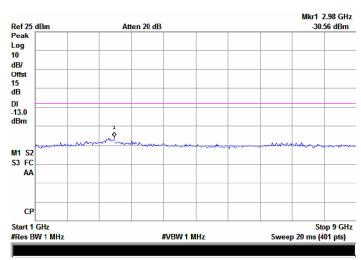


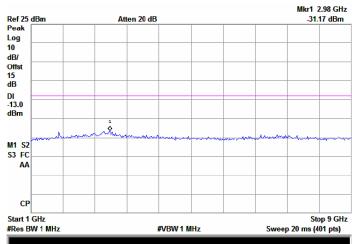




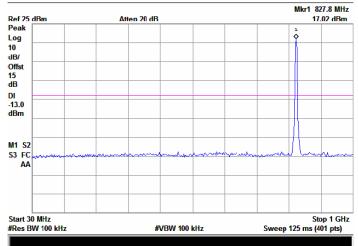
WCDMA 850MHz Channel = 4233

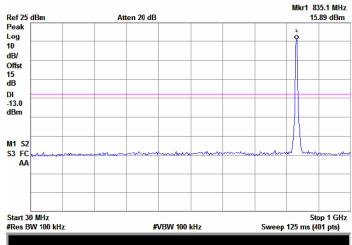

HSDPA 850MHz Channel = 4175

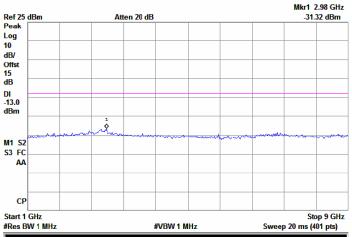


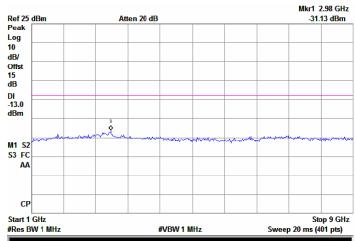

#VBW 100 kHz

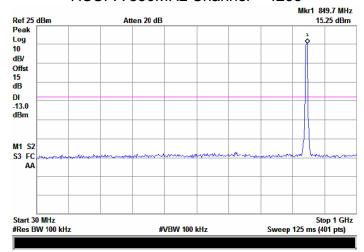
Start 30 MHz #Res BW 100 kHz Stop 1 GHz

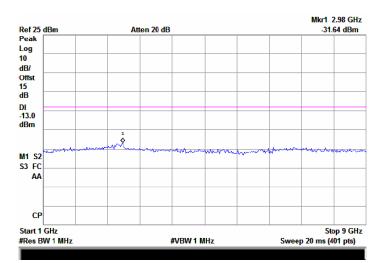

Sweep 125 ms (401 pts)

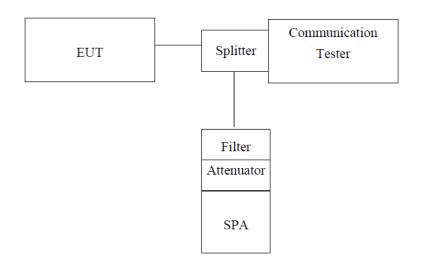







HSUPA 850MHz Channel = 4132





5.7. Conducted Out of Band Emissions

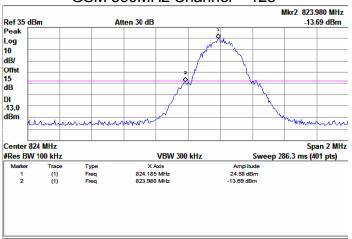
5.7.1. Limit

According to FCC section 22.917(b) and FCC section 24.238(b), 27.53(g)(h) in the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth (26dB emission bandwidth) of the fundamental emission of the transmitter may be employed.

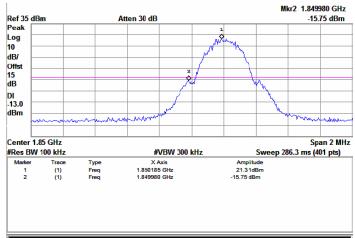
5.7.2. Test Setup

Note: Measurement setup for testing on Antenna connector

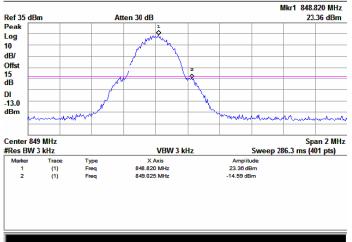
5.7.3. Measurement Procedure

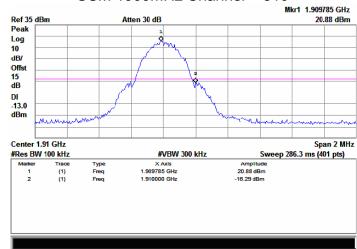

The EUT, which is powered by the adapter, is coupled to the Spectrum Analyzer and the System Simulator with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the System Simulator to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the System Simulator.

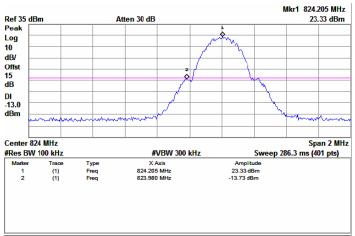
5.7.4. Test Result

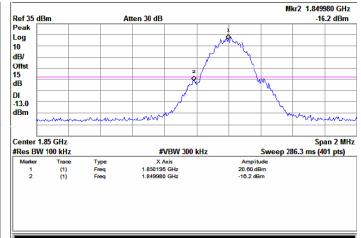

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the out of band emissions.

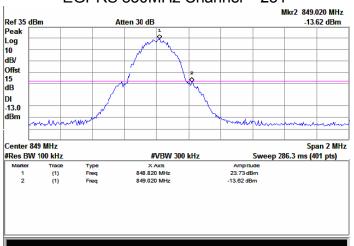
Test plot as follows:

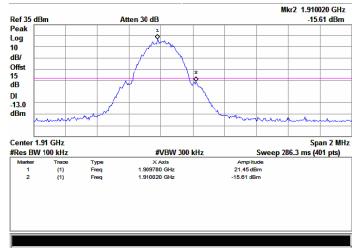

GSM 850MHz Channel = 128


GSM 1900MHz Channel = 512


GSM 850MHz Channel = 251


GSM 1900MHz Channel = 810


EGPRS 850MHz Channel = 128


EGPRS 1900MHz Channel = 512

EGPRS 850MHz Channel = 251

EGPRS 1900MHz Channel = 810

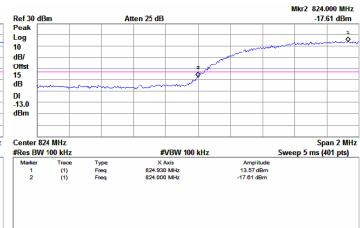
WCDMA 850MHz Channel = 4132

Ref 30 dBm

Peak

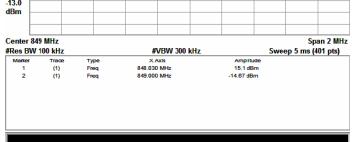
Log

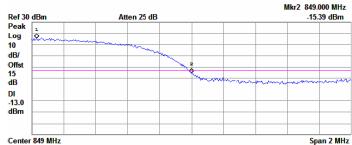
10


dB/

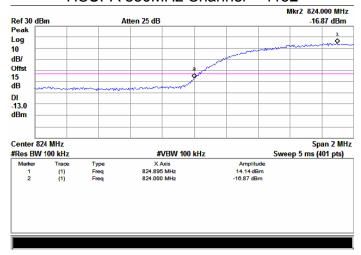
Offst 15 dB

Mkr2 824.000 MHz Atten 25 dB -16.26 dBm



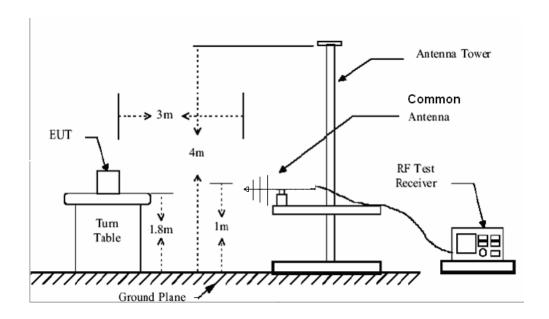

HSDPA 850MHz Channel = 4132

WCDMA 850MHz Channel = 4233



#Res BW 100 kHz		#VBW 100 kHz		Sweep 5 ms (401 pts)	
Marker	Trace	Туре	X Axis	Amplitude	
1	(1)	Freq	848.030 MHz	14.97 dBm	
2	(1)	Freq	849.000 MHz	-15.39 dBm	

HSUPA 850MHz Channel = 4132



5.8. Transmitter Radiated Power (EIRP/ERP)

5.8.1. Limit

According to FCC section 22.913, the Effective Radiated Power (ERP) of mobile transmitters and auxiliary test transmitters must not exceed 7Watts, and FCC section 24.232, the broadband PCS mobile station is limited to 2 Watts e.i.r.p. peak power.

5.8.2. Test Setup

5.8.3. Measurement Procedure

The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer. all test in Full-Anechoic Chamber.

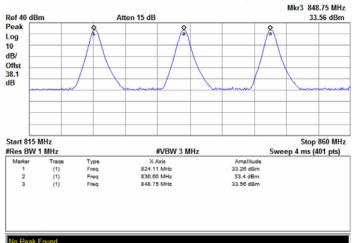
During the measurement, the EUT was communication with the station. The highest emission was recorded with the rotation of the turntable and the lowering of the test antenna from 4m to 1m. The reading was recorded and the field strength (E in dBuV/m) was calculated.

ERP in frequency band 824.2 –848.80.8MHz were measured using a substitution method. The EUT was replaced by dipole antenna connected, the S.G. output was recorded and ERP was calculated as follows:

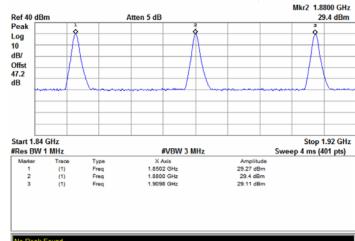
EIRP in frequency band 1850.2 –1909.8MHz were measured using a substitution method. The EUT was replaced by or horn antenna connected, the S.G. output was recorded and EIRP was calculated as follows:

ERP = S.G. output (dBm) + Antenna Gain (dBd) - Cable Loss (dB)

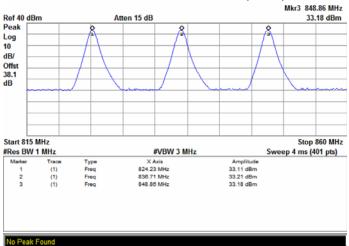
EIRP = S.G. output (dBm) + Antenna Gain (dBi) – Cable Loss (dB)

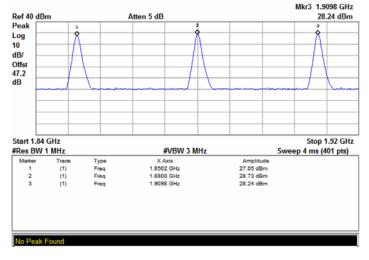

5.8.4. Test Result

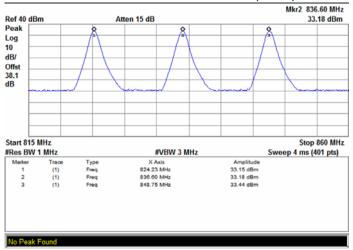
Band	СН	Frequency(MHz)	ERP(dBm)	Limit (dBm)	Result
	128	824.2	33.26		
GSM 850	190	836.6	33.40		
	251	848.8	33.56		PASS
	128	824.2	33.11		
GPRS 850	190	836.6	33.21	38.5	
	251	848.8	33.18		
	128	824.2	33.15		
EGPRS 850	190	836.6	33.18		
	251	848.8	33.44		

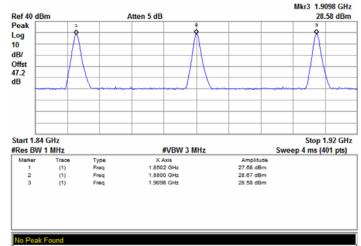

Band	СН	Frequency(MHz)	EIRP(dBm)	Limit (dBm)	Result
	512	1852.4	29.27		
GSM 1900	661	1880.0	29.40		
	810	1907.6	29.11		
	512	1852.4	27.05		
GPRS 1900	661	1880.0	28.73	38.5	PASS
	810	1907.6	28.24		
	512	1852.4	27.68		
EGPRS 1900	661	1880.0	28.67		
	810	1907.6	28.58		

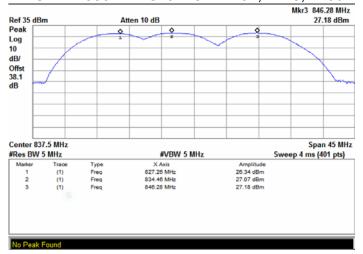
Band	СН	Frequency(MHz)	ERP(dBm)	Limit (dBm)	Result
	4132	826.4	26.34		
WCDMA 850	4175	835.0	27.07		
	4233	846.6	27.18		
	4132	826.4	26.31		
HSDPA 850	4175	835.0	27.12	38.5	PASS
	4233	846.6	27.08		
	4132	826.4	26.38		
HSUPA 850	4175	835.0	27.20		
	4233	846.6	27.03		

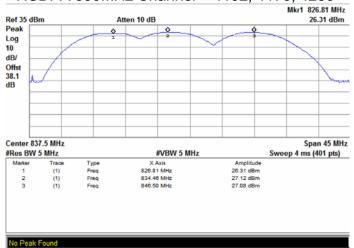

GSM 850MHz Channel = 128, 190, 251

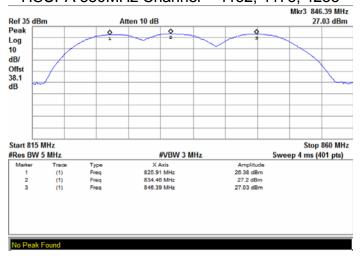

GSM 1900MHz Channel = 512, 661, 810


GPRS 850MHz Channel = 128, 190, 251


GPRS 1900MHz Channel = 512, 661, 810


EGPRS 850MHz Channel = 128, 190, 251

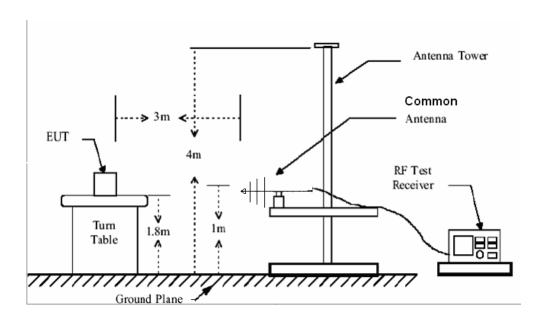

EGPRS 1900MHz Channel = 512, 661, 810


WCDMA 850MHz Channel = 4132, 4175, 4233

HSDPA 850MHz Channel = 4132, 4175, 4233

HSUPA 850MHz Channel = 4132, 4175, 4233

5.9. Radiated Out of Band Emissions


5.9.1. Limit

According to FCC section 22.917(a) and section 24.238(a), 27.53(g) the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power

(P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

The spurious emission with frequency band 1900 according to FCC section 2.1057.

5.9.2. Test Setup

5.9.3. Measurement Procedure

The EUT was placed on a non-conductive, The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations. all test in Full-Anechoic Chamber.

The frequency range up to tenth harmonic was investigated for each of three fundamental frequency

(low, middle and high channels). Once spurious emission was identified, the power of the emission was determined using the substitution method.

The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency.

EIRP = S.G. output (dBm) + Antenna Gain(dBi) – Cable Loss (dB)

Note: Measurement Uncertainty: ±3.6 dB.

Band	Frequency	Spurio	ous Emission	Limit	Result
Dallu	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	77.24	Vertical	-73.25		
	1648.40	Vertical	-23.53		
	2472.60	Vertical	-32.54		
	3296.80	Vertical	-39.28		PASS
	4121.00	Vertical	-45.45		
GSM 850	4945.20	Vertical	-37.34	40	
channel=128	79.03	Horizontal	-74.25	-13	
	2472.60	Horizontal	-25.62		
	3296.80	Horizontal	-31.21		
	4121.00	Horizontal	-42.42		
	4945.20	Horizontal	-47.34		
	5769.40	Horizontal	-39.26		

Band	Frequency	Spurio	ous Emission	Limit	Result
Бапа	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	77.52	Vertical	-73.97		
	1673.20	Vertical	-23.30		
	2509.80	Vertical	-26.84		
	3346.40	Vertical	-38.46		
	4183.00	Vertical	-40.35		
GSM 850	5019.60	Vertical	-38.86	40	PASS
channel=190	78.14	Horizontal	-74.05	-13	
	1673.20	Horizontal	-22.29		
	2509.80	Horizontal	-28.43		
	3346.40	Horizontal	-41.66		
	4183.00	Horizontal	-43.74		
	5019.60	Horizontal	-38.59		

Band	Frequency	Spurio	ous Emission	Limit	Booult
Danu	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	75.26	Vertical	-73.09		
	1697.60	Vertical	-21.36		
	2546.40	Vertical	-24.37		PASS
	3395.20	Vertical	-31.93	40	
	4244.00	Vertical	-38.37		
GSM 850	5092.80	Vertical	-43.64		
channel=251	77.41	Horizontal	-74.56	-13	
	1697.60	Horizontal	-20.87		
	2546.40	Horizontal	-26.55		
	3395.20	Horizontal	-34.69		
	4244.00	Horizontal	-40.04		
	5092.80	Horizontal	-45.67		

Band	Frequency	Spuri	ous Emission	Limit	Result
Danu	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	72.26	Vertical	-72.23		
	3700.40	Vertical	-41.60		
	5550.60	Vertical	-41.31		PASS
	7400.80	Vertical	-34.77		
	9251.00	Vertical	-38.74	40	
GSM 1900	11101.20	Vertical	-37.40		
channel=512	74.57	Horizontal	-72.51	-13	
	3700.40	Horizontal	-43.45	-	
	5550.60	Horizontal	-42.28		
	7400.80	Horizontal	-36.48		
	9251.00	Horizontal	-41.30		
	11101.20	Horizontal	-39.52		

Band	Frequency	Spurio	ous Emission	Limit	Result
Бапо	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	75.06	Vertical	-70.46		
	3760.00	Vertical	-42.56		
	5640.00	Vertical	-42.37		
	7520.00	Vertical	-37.05		
	9400.00	Vertical	-37.24		
GSM 1900	11280.00	Vertical	-38.35	-13	PASS
channel=661	77.11	Horizontal	-72.64	-13	PASS
	3760.00	Horizontal	-41.29		
	5640.00	Horizontal	-41.69		
	7520.00	Horizontal	-33.82		
	9400.00	Horizontal	-37.12		
	11280.00	Horizontal	-36.58		

Band	Frequency	Spurio	ous Emission	Limit	Result
Бапи	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	74.86	Vertical	-71.31		
	3819.60	Vertical	-42.30		
	5729.40	Vertical	-36.41		PASS
	7639.20	Vertical	-32.95		
	9549.00	Vertical	-38.62	-13	
GSM 1900	11458.80	Vertical	-38.60		
channel=810	77.44	Horizontal	-71.66	-13	
	3819.60	Horizontal	-40.26		
	5729.40	Horizontal	-35.33		
	7639.20	Horizontal	-31.71		
	9549.00	Horizontal	-36.47		
	11458.80	Horizontal	-36.65		

Dand	Frequency	Spurio	us Emission	Limit	Booult
Band	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	77.12	Vertical	-73.28		
	1648.40	Vertical	-23.34		
	2472.60	Vertical	-24.26		
	3296.80	Vertical	-31.34		PASS
	4121.00	Vertical	-38.23	40	
EGPRS 850	4945.20	Vertical	-43.15		
channel=128	78.43	Horizontal	-74.06	-13	
	2472.60	Horizontal	-20.72		
	3296.80	Horizontal	-26.46		
	4121.00	Horizontal	-34.26		
	4945.20	Horizontal	-40.45		
	5769.40	Horizontal	-45.61		

Band	Frequency	Spurio	Spurious Emission		Result
Danu	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	75.26	Vertical	-73.26		
	1673.20	Vertical	-22.43		
	2509.80	Vertical	-24.26		
	3346.40	Vertical	-31.22		PASS
	4183.00	Vertical	-38.06		
EGPRS 850	5019.60	Vertical	-43.37	-13	
channel=190	71.43	Horizontal	-74.97	-13	
	1673.20	Horizontal	-20.29		
	2509.80	Horizontal	-26.45		
	3346.40	Horizontal	-34.34		
	4183.00	Horizontal	-40.64		
	5019.60	Horizontal	-45.21		

Band	Frequency	Spurio	Spurious Emission		Result
Бапа	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	77.13	Vertical	-73.28		
	1697.60	Vertical	-21.75		
	2546.40	Vertical	-26.86		PASS
	3395.20	Vertical	-31.58	40	
	4244.00	Vertical	-38.78		
EGPRS 850	5092.80	Vertical	-43.95		
channel=251	78.02	Horizontal	-74.38	-13	
	1697.60	Horizontal	-20.62		
	2546.40	Horizontal	-26.28		
	3395.20	Horizontal	-34.34		
	4244.00	Horizontal	-40.59		
	5092.80	Horizontal	-45.42		

Band	Frequency	Spurio	us Emission	Limit	Result
Dallu	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	73.38	Vertical	-72.45		
	3700.40	Vertical	-41.24		
	5550.60	Vertical	-37.52		
	7400.80	Vertical	-33.12	40	
	9251.00	Vertical	-37.25		
EGPRS 1900	11101.20	Vertical	-37.42		PASS
channel=512	74.42	Horizontal	-71.26	-13	PASS
	3700.40	Horizontal	-41.45		
	5550.60	Horizontal	-36.53		
	7400.80	Horizontal	-32.57		
	9251.00	Horizontal	-36.59		
	11101.20	Horizontal	-37.12		

Band	Frequency	Spurio	Spurious Emission Lim		Result
	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	74.15	Vertical	-70.68		
	3760.00	Vertical	-43.15		
	5640.00	Vertical	-38.87		
	7520.00	Vertical	-33.68	40	
	9400.00	Vertical	-37.59		
EGPRS 1900	11280.00	Vertical	-36.68		PASS
channel=661	76.53	Horizontal	-72.85	-13	PASS
	3760.00	Horizontal	-41.46		
	5640.00	Horizontal	-36.76		
	7520.00	Horizontal	-33.53		
	9400.00	Horizontal	-35.59		
	11280.00	Horizontal	-37.81		

Dand	Frequency	Spurio	us Emission	Limit	Result
Band	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	77.19	Vertical	-71.58		
	3819.60	Vertical	-43.68		
	5729.40	Vertical	-36.75		
	7639.20	Vertical	-33.26	40	PASS
	9549.00	Vertical	-37.58		
EGPRS 1900	11458.80	Vertical	-37.59		
channel=810	74.26	Horizontal	-71.56	-13	
	3819.60	Horizontal	-41.45		
	5729.40	Horizontal	-36.26		
	7639.20	Horizontal	-32.43		
	9549.00	Horizontal	-35.85		
	11458.80	Horizontal	-37.19		

Band	Frequency	Spurio	us Emission	Limit	Result
Dallu	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	74.33	Vertical	-72.87		
	1652.8	Vertical	-23.15		
	2479.2	Vertical	-23.87		
	3305.6	Vertical	-33.26	40	PASS
	4132.0	Vertical	-39.15		
WCDMA 850	4958.4	Vertical	-43.28		
channel=4132	76.91	Horizontal	-74.41	-13	
	1652.8	Horizontal	-22.43		
	2479.2	Horizontal	-27.28		
	3305.6	Horizontal	-35.16		
	4132.0	Horizontal	-41.75		
	4958.4	Horizontal	-46.84		

Band	Frequency	Spurio	us Emission	Limit	Result
Danu	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	76.59	Vertical	-72.59		
	1672.8	Vertical	-22.12		
	2509.2	Vertical	-25.13		PASS
	3345.6	Vertical	-32.74	40	
	4182.0	Vertical	-37.14		
WCDMA 850	5018.4	Vertical	-45.21		
channel=4175	74.76	Horizontal	-75.26	-13	
	1672.8	Horizontal	-22.75		
	2509.2	Horizontal	-26.59		
	3345.6	Horizontal	-33.12		
	4182.0	Horizontal	-41.48		
	5018.4	Horizontal	-46.59		

Band	Frequency	Spurio	us Emission	Limit	Result
Бапа	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	76.59	Vertical	-72.13		
	1693.2	Vertical	-21.45		
	2539.8	Vertical	-28.78		PASS
	3386.4	Vertical	-31.25	40	
	4233.0	Vertical	-37.45		
WCDMA 850	5079.6	Vertical	-42.59		
channel=4233	74.48	Horizontal	-72.48	-13	
	1693.2	Horizontal	-22.75		
	2539.8	Horizontal	-27.85		
	3386.4	Horizontal	-34.18		
	4233.0	Horizontal	-40.75		
	5079.6	Horizontal	-45.67		

Band	Frequency	Spurio	us Emission	Limit	Result
Бапа	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	78.11	Vertical	-72.45		
	1652.8	Vertical	-21.76		
	2479.2	Vertical	-26.59		
	3305.6	Vertical	-32.59	40	PASS
	4132.0	Vertical	-39.74		
HSDPA 850	4958.4	Vertical	-43.58		
channel=4132	76.16	Horizontal	-74.36	-13	PASS
	1652.8	Horizontal	-22.49		
	2479.2	Horizontal	-27.76		
	3305.6	Horizontal	-35.59		
	4132.0	Horizontal	-41.76		
	4958.4	Horizontal	-46.58		

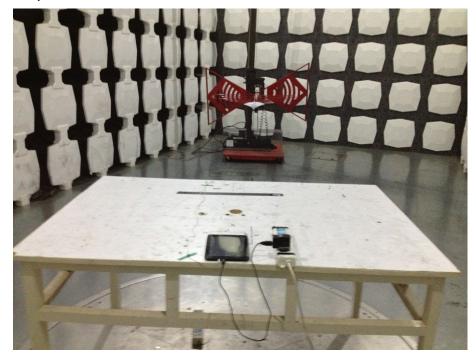
Band	Frequency	Spurio	us Emission	Limit	Result
	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	77.24	Vertical	-75.12		
	1672.8	Vertical	-21.45		
	2509.2	Vertical	-28.57		PASS
	3345.6	Vertical	-32.42	40	
	4182.0	Vertical	-37.59		
HSDPA 850	5018.4	Vertical	-43.58		
channel=4175	76.43	Horizontal	-75.12	-13	
	1672.8	Horizontal	-21.44		
	2509.2	Horizontal	-27.46		
	3345.6	Horizontal	-36.52		
	4182.0	Horizontal	-41.42		
	5018.4	Horizontal	-46.76		

Band	Frequency	Spurio	us Emission	Limit	Result
Бапа	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	75.16	Vertical	-72.45		
	1693.2	Vertical	-23.76		
	2539.8	Vertical	-25.46		PASS
	3386.4	Vertical	-32.59	40	
	4233.0	Vertical	-37.58		
HSDPA 850	5079.6	Vertical	-44.69		
channel=4233	74.29	Horizontal	-75.63	-13	
	1693.2	Horizontal	-22.46		
	2539.8	Horizontal	-27.23		
	3386.4	Horizontal	-33.89	- - -	
	4233.0	Horizontal	-41.48		
	5079.6	Horizontal	-46.59		

Band	Frequency	Spurio	us Emission	Limit	Result
	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	75.90	Vertical	-72.75		
	1652.8	Vertical	-24.15		
	2479.2	Vertical	-28.71		
	3305.6	Vertical	-32.59	40	PASS
	4132.0	Vertical	-36.96		
HSUPA 850	4958.4	Vertical	-43.78		
channel=4132	76.18	Horizontal	-74.26	-13	
	1652.8	Horizontal	-23.28		
	2479.2	Horizontal	-24.19		
	3305.6	Horizontal	-33.68		
	4132.0	Horizontal	-41.76		
	4958.4	Horizontal	-46.19		

Band	Frequency	Spurio	us Emission	Limit	Result
Danu	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	74.75	Vertical	-75.06		
	1672.8	Vertical	-23.62		
	2509.2	Vertical	-28.19		
	3345.6	Vertical	-33.25	40	
	4182.0	Vertical	-37.67		
HSUPA 850	5018.4	Vertical	-44.53		PASS
channel=4175	75.81	Horizontal	-75.29	-13	PASS
	1672.8	Horizontal	-22.37		
	2509.2	Horizontal	-28.19		
	3345.6	Horizontal	-35.12		
	4182.0	Horizontal	-41.72		
	5018.4	Horizontal	-46.82		

Band	Frequency	Spurious Emission		Limit	Result
	(MHz)	Polarization	Level(dBm)	(dBm)	Result
HSUPA 850 channel=4233	77.12	Vertical	-75.06	-13	PASS
	1693.2	Vertical	-23.95		
	2539.8	Vertical	-25.76		
	3386.4	Vertical	-33.94		
	4233.0	Vertical	-37.85		
	5079.6	Vertical	-44.59		
	76.12	Horizontal	-75.86		
	1693.2	Horizontal	-23.69		
	2539.8	Horizontal	-27.18		
	3386.4	Horizontal	-36.29		
	4233.0	Horizontal	-41.78		
	5079.6	Horizontal	-46.19		


6. PHOTOGRAPHS OF TEST SET-UP

6.1. Set-up for Conducted Emission Test

6.2. Set-up for Radiated Emission Test

7. PHOTOGRAPHS OF THE EUT

Figure 1
General Appearance of the EUT

Figure 2 General Appearance of the EUT

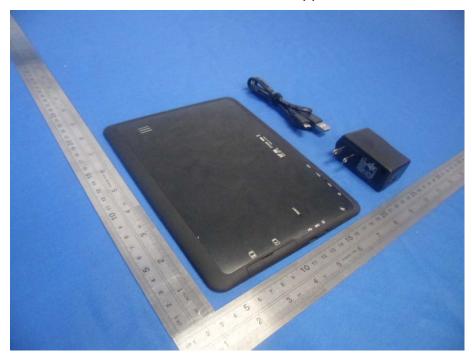


Figure 3 General Appearance of the EUT

Figure 4
General Appearance of the EUT

Figure 5
General Appearance of the Adapter

Figure 6 General Appearance of the PCB

Figure 7 General Appearance of the PCB

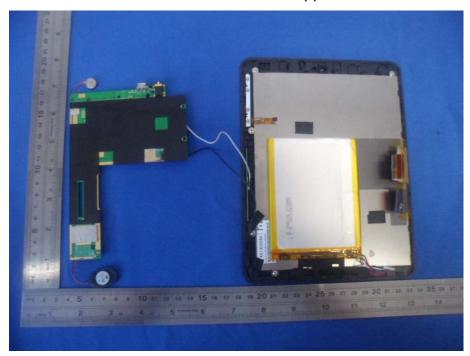


Figure 8 General Appearance of the PCB

Figure 9 General Appearance of the PCB

END.