

RADIO TEST REPORT – 446890-2TRFWL

Type of assessment:

Final product testing

Applicant:

Blinq Wireless, Inc

Product:

Base station

Model:

FW6-B48-46-NA

FCC ID:

ROR0011

Specification:

FCC 47 CFR Part 15 Subpart E, §15.407

Date of issue: January 10, 2022

Fahar Abdul Sukkoor, Wireless/EMC Specialist

Tested by

Signature

Andrey Adelberg, Senior EMC/RF Specialist

Reviewed by

Signature

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada.

The tests included in this report are within the scope of this accreditation.

The SCC Accreditation Symbol is an official symbol of the Standards Council of Canada, used under licence.

SCC File Number: 15064 (Ottawa/Almonte); 151100 (Montreal); 151097 (Cambridge)

Lab locations

Company name	Nemko Canada Inc.			
Facilities	<i>Ottawa site:</i> 303 River Road Ottawa, Ontario Canada K1V 1H2	<i>Montréal site:</i> 292 Labrosse Avenue Pointe-Claire, Québec Canada H9R 5L8	<i>Cambridge site:</i> 1-130 Saltsman Drive Cambridge, Ontario Canada N3E 0B2	<i>Almonte site:</i> 1500 Peter Robinson Road West Carleton, Ontario Canada K0A 1L0
	Tel: +1 613 737 9680 Fax: +1 613 737 9691	Tel: +1 514 694 2684 Fax: +1 514 694 3528	Tel: +1 519 650 4811	Tel: +1 613 256-9117
Test site identifier	Organization FCC: ISED:	Ottawa/Almonte CA2040 2040A-4	Montreal CA2041 2040G-5	Cambridge CA0101 24676
Website	www.nemko.com			

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Table of Contents

Table of Contents	3
Report summary	4
1.1 Test specifications	4
1.2 Test methods	4
1.3 Exclusions	4
1.4 Statement of compliance	4
1.5 Test report revision history	4
Section 1 Engineering considerations	5
2.1 Modifications incorporated in the EUT for compliance	5
2.2 Technical judgment	5
2.3 Deviations from laboratory tests procedures	5
Section 2 Test conditions	6
3.1 Atmospheric conditions	6
3.2 Power supply range	6
Section 3 Measurement uncertainty	7
4.1 Uncertainty of measurement	7
Section 4 Information provided by the applicant	8
5.1 Disclaimer	8
Section 5.2 Applicant/Manufacture	8
5.3 EUT information	8
5.4 Radio technical information	9
5.5 EUT setup details	10
Section 6 Summary of test results	12
6.1 Testing location	12
6.2 Testing period	12
6.3 Sample information	12
6.4 FCC Part 15 Subpart A and C, general requirements test results	12
Section 7.5 FCC Part §15.407 test results	12
Section 8 Test equipment	13
7.1 Test equipment list	13
Section 8.1 Testing data	14
8.1 Variation of power source	14
8.2 Number of frequencies	15
8.3 Antenna requirement	17
8.4 AC power line conducted emissions limits	18
8.5 Emission bandwidth	21
Section 8.6 Occupied bandwidth	23
8.7 Transmitter output power and e.i.r.p. requirements for 5150–5250 MHz band	25
8.8 Spurious unwanted (undesirable) emissions	31
8.9 Frequency stability	43
Section 8.10 EUT photos	45
9.1 External photos	45

Report summary

1.1 Test specifications

FCC 47 CFR Part 15, Subpart E, Clause 15.407 Sé	Unlicensed National Information Infrastructure Devices operating in the 5.15–5.35 GHz, 5.47–5.725 GHz, 5.725–5.85 GHz, and 5.925–7.125 GHz bands.
--	---

1.2 Test methods

789033 D02 General U-NII Test Procedures New Rules v02r01 (December 14, 2017)	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E
662911 D01 Multiple Transmitter Output v02r01 (October 31, 2013)	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
662911 D02 MIMO with Cross Polarized Antenna v01 (October 25, 2011)	Emissions testing of transmitters with multiple outputs in the same band (MIMO) with Cross Polarized Antenna
ANSI C63.10 v2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.3 Exclusions

None

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.3 above. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
TRF	January 10, 2022	Original report issued

Engineering considerations

2.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment.
Section 2

2.2 Technical judgment

This EUT is designed and produced with six carriers numbered 0 to 5 where carriers 3 to 5 are exact replica of carriers 0 to 2 respectively in electrical, mechanical design and manufacturing process. Due to this similarity all conducted measurements were performed only on carriers 0 to 2.

Output power and PSD measurements for antenna (Brand: MTI, Model: MT – 465041/NVH, Peak Gain = 19 dBi) in section 8.7, are extracted from Nemko test report NEX 425119-2TRFWL

2.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Test conditions

3.1 Atmospheric conditions

Temperature	15 °C – 35 °C
Relative humidity	20 % – 75 %
Air pressure	86 kPa (860 mbar) – 106 kPa (1060 mbar)

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

3.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages $\pm 5\%$, for which the equipment was designed.

Measurement uncertainty

4.1 Uncertainty of measurement

UKAS Lab 34 and TIA-603-B have been used as guidance for measurement uncertainty reasonable estimations with regards to previous experience and validation of data. Nemko Canada, Inc. follows these test methods in order to satisfy ISO/IEC 17025 requirements for estimation of uncertainty of measurement for wireless products.

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of $K = 2$ with 95% certainty.

Table 4.1-1: Measurement uncertainty calculations

Test name	Measurement uncertainty, \pm dB
All antenna port measurements	0.55
Occupied bandwidth	4.45
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

Information provided by the applicant

5.1 Disclaimer

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

5.2 Applicant/Manufacture

Applicant name	Blinq Wireless, Inc.
Applicant address	140 Renfrew Dr Suite 205 Markham ON L3R6B3 Canada
Manufacture name	Same as applicant
Manufacture address	Same as applicant

5.3 EUT information

Product	Base station
Model	FW6-B48-46-NA
Serial number	F60D-21250001
Power supply requirements	DC: 48 V from external 100–240 V(AC) power adapter
Software details	BLiNQ_FW600_3.1.1_48507
Product description and theory of operation	The BLiNQ FW-600 system is a tri-sector and tri-carrier Long-Term Evolution (LTE) Evolved Node B (eNB) with the capability to operate in the following bands: 42, 43, 46 and 48 (Citizens Broadband Radio Service (CBRS)). With a distinctive feature set and integration level, the FW-600 brings an ideal solution to an “install anywhere” micro-base transceiver station (micro-BTS) that fully serves private networks, fixed wireless access and mobility use cases. This specific model incorporates dual FW600 system functionality with total of six sectors.

5.4 Radio technical information

Device type	<input checked="" type="checkbox"/> Outdoor access point <input type="checkbox"/> Indoor access point <input type="checkbox"/> Fixed point-to-point access point <input type="checkbox"/> Client device <input type="checkbox"/> Device installed in vehicles
Frequency band	5150–5250 MHz (U-NII-1)
Type of modulation	OFDM (QPSK to 64-QAM)
Antenna information	Option 1: 2 x 2 MIMO - Antenna gain: 21.9 dBi Brand name: CCI Products, Model: MBM12F-HJ5B Option 2: 2 x 2 MIMO – Antenna gain: 19.0 dBi Brand name: MTI, Model: MT – 465041/NVH Antennas are uncorrelated and cross polarized.

Channel Bandwidth	10 MHz	20 MHz
Frequency Min (MHz)	5175	5180
Frequency Max (MHz)	5245	5240
RF power Max (W), Conducted	0.0324 (15.10 dBm)	0.0655 (18.16 dBm)
Measured BW (MHz), 99% OBW	8.96	17.87
Emission classification	8M96W7D	17M8W7D
Transmitter spurious (conducted), dB μ V/m	62.12 @ 5150 MHz	64.04 @ 5150 MHz

5.5 EUT setup details

5.5.1 Radio exercise details

Operating conditions	The EUT was controlled from laptop via ethernet using ssh application. Power settings are as below:			
----------------------	--	--	--	--

Power settings for antenna - Brand: MTI Model: MT – 465041/NVH Antenna gain: 19 dBi

Carrier Configuration		1CC		2CC	
BW (MHz)		10	20	10	20
Aggregated BW (MHz)		10	20	20	40
Carrier 0	Power set per BW	12dBm	15dBm	12dBm	15dBm
Carrier 2	Power set per BW	12dBm	15dBm	12dBm	15dBm
Carrier 3	Power set per BW	12dBm	15dBm	12dBm	15dBm
Carrier 5	Power set per BW	12dBm	15dBm	12dBm	15dBm

Note:

For 2CC operations power levels specified are per carrier. Power settings referred to each MIMO channel.

Power settings for antenna - Brand: CCI Products, Model: MBM12F-HJ5B, Antenna gain: 21.9 dBi

Carrier Configuration		1CC		2CC	
BW (MHz)		10	20	10	20
Aggregated BW (MHz)		10	20	20	40
Carrier 0	Power set per BW	9dBm	12dBm	9dBm	12dBm
Carrier 2	Power set per BW	9dBm	12dBm	9dBm	12dBm
Carrier 3	Power set per BW	9dBm	12dBm	9dBm	12dBm
Carrier 5	Power set per BW	9dBm	12dBm	9dBm	12dBm

Note: For 2CC operations power levels specified are per carrier. Power settings referred to each MIMO channel.

Transmitter state	Transmitter set into continuous mode.
-------------------	---------------------------------------

Radio exercise details, continued

Table 5.5-1: EUT interface ports

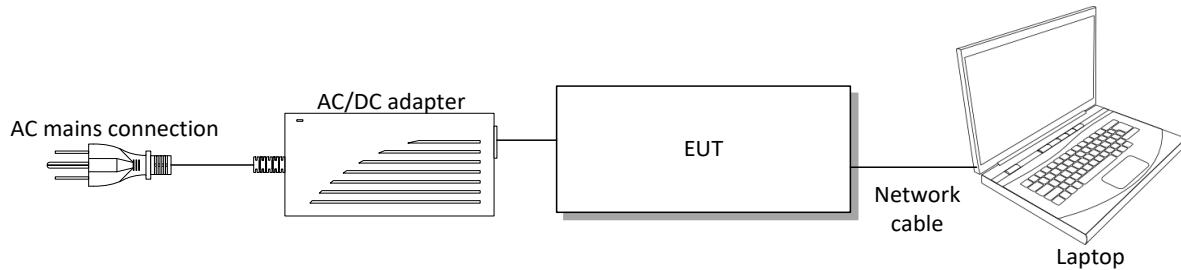

Description	Qty.
DC Power port	1
Ethernet port	2

Table 5.5-2: Support equipment

Description	Brand name	Model/Part number	Serial number
Power adaptor	Mean Well	HLG-600H-48	RB99055874
Laptop	Dell Latitude	E6440	FA002914

Table 5.5-3: Inter-connection cables

Cable description	From	To	Length (m)
DC Power port	EUT	Power adaptor	>3
AC power port	Power adaptor	AC mains	>3
Ethernet cable	EUT	laptop	>3

Figure 5.5-1: Setup block diagram

Summary of test results

6.1 Testing location

Test location (s)	Cambridge
Section 6	

6.2 Testing period

Test start date	September 17, 2021	Test end date	October 6, 2021
-----------------	--------------------	---------------	-----------------

6.3 Sample information

Receipt date	September 2, 2021	Nemko sample ID number(s)	1
--------------	-------------------	---------------------------	---

6.4 FCC Part 15 Subpart A and C, general requirements test results

Table 6.4-1: FCC general requirements results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31	Variation of power source	Pass
§15.31(m)	Number of tested frequencies	Pass
§15.203	Antenna requirement	Pass

Notes: None

6.5 FCC Part §15.407 test results

Table 6.5-1: FCC §15.407 requirements results

Part	Test description	Verdict
§15.403	Emission bandwidth	Pass
§15.407(a)(1)	Power and density limits within 5.15–5.25 GHz band	Pass
§15.407(b)(1)	Undesirable emission limits for 5.15–5.25 GHz band	Pass
§15.407(b)(8)	AC power line conducted limits	Pass
§15.407(g)	Frequency stability	Pass
§15.407(h)(1) ¹	Transmit power control (TPC)	Not applicable
§15.407(h)(2) ¹	Dynamic Frequency Selection (DFS)	Not applicable
§15.407(k)	Automated frequency coordination (AFC) system	Not applicable

Notes ¹DFS and TPC requirements are only applicable to 5.25–5.35 GHz and 5.47–5.725 GHz bands

Test equipment

7.1 Test equipment list

Section 7

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA003012	1 year	Apr 12/22
Flush mount turntable	SUNAR	FM2022	FA003006	—	NCR
Controller	SUNAR	SC110V	FA002976	—	NCR
Antenna mast	SUNAR	TLT2	FA003007	—	NCR
Receiver/spectrum analyzer	Rohde & Schwarz	ESR26	FA002969	1 year	Nov 12/21
Spectrum analyzer	Rohde & Schwarz	FSW43	FA002971	1 year	Nov 13/21
Temperature chamber	Espec	EPX-4H	FA003033	1 year	VOU
Radiated Emissions cable set	Huber + Suhner Inc	—	FA003047	—	NCR
Radiated Emissions cable set	Huber + Suhner Inc	—	FA003044	—	NCR
Preamp (1–18 GHz)	ETS-Lindgren	124334	FA002956	1 year	Apr 05/22
Bilog antenna (20–2000 MHz)	Sun AR	JB1	FA003009	1 year	Feb 02/22
Horn antenna (1–18 GHz)	Electro-Metrics	3115	FA000649	1 year	May 10/22
Horn antenna (18–40 GHz)	ETS Lindgren	3116	FA002948	1 year	Jan 22/22
Two-line v-network	Rohde & Schwarz	ENV216	FA002964	1 year	Nov 30/21
50 Ω coax cable	Rohde & Schwarz	None	FA003074	1 year	Dec 17/21

Notes: NCR - no calibration required, VOU - verify on use

Testing data

8.1 Variation of power source

8.1.1 References, definitions and limits

FCC §15.31 (e):

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

8.1.2 Test summary

Verdict	Pass
Tested by	Fahar Abdul Sukkoor

Test date

September 21, 2021

8.1.3 Observations, settings and special notes

The testing was performed as per ANSI C63.10 Section 5.13.

- a) Where the device is intended to be powered from an external power adapter, the voltage variations shall be applied to the input of the adapter provided with the device at the time of sale. If the device is not marketed or sold with a specific adapter, then a typical power adapter shall be used.
- b) For devices, where operating at a supply voltage deviating $\pm 15\%$ from the nominal rated value may cause damages or loss of intended function, test to minimum and maximum allowable voltage per manufacturer's specification and document in the report.
- c) For devices with wide range of rated supply voltage, test at 15% below the lowest and 15% above the highest declared nominal rated supply voltage.
- d) For devices obtaining power from an input/output (I/O) port (USB, firewire, etc.), a test jig is necessary to apply voltage variation to the device from a support power supply, while maintaining the functionalities of the device.

For battery-operated equipment, the equipment tests shall be performed using a variable power supply.

8.1.4 Test data

EUT Power requirements:

If EUT is an AC or a DC powered, was the noticeable output power variation observed?	<input type="checkbox"/> AC	<input checked="" type="checkbox"/> DC	<input type="checkbox"/> Battery
If EUT is battery operated, was the testing performed using fresh batteries?	<input type="checkbox"/> YES	<input checked="" type="checkbox"/> NO	<input type="checkbox"/> N/A
If EUT is rechargeable battery operated, was the testing performed using fully charged batteries?	<input type="checkbox"/> YES	<input type="checkbox"/> NO	<input checked="" type="checkbox"/> N/A

8.2 Number of frequencies

8.2.1 References, definitions and limits

FCC §15.31:

(m) Measurements on intentional radiators or receivers shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table.

Table 8.2-1: Frequency Range of Operation

Frequency range over which the device operates (in each band)	Number of test frequencies required	Location of measurement frequency inside the operating frequency range
1 MHz or less	1	Center (middle of the band)
1–10 MHz	2	1 near high end, 1 near low end
Greater than 10 MHz	3	1 near high end, 1 near center and 1 near low end

Notes: "near" means as close as possible to or at the centre / low end / high end of the frequency range over which the device operates.

8.2.2 Test summary

Verdict	Pass
Tested by	Fahar Abdul Sukkoor

Test date

September 21, 2021

8.2.3 Observations, settings and special notes

ANSI C63.10, Clause 5.6.2.1:

The number of channels tested can be reduced by measuring the center channel bandwidth first and then applying the following relaxations as appropriate:

- For each operating mode, if the measured channel bandwidth on the middle channel is at least 150% of the minimum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.
- For multiple-input multiple-output (MIMO) systems, if the measured channel bandwidth on testing the middle channel exceeds the minimum permitted bandwidth by more than 50% on one transmit chain, then it is not necessary to repeat testing on the other chains.
- If the measured channel bandwidth on the middle channel is less than 50% of the maximum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.

ANSI C63.10, Clause 5.6.2.2:

For devices with multiple operating modes, measurements on the middle channel can be used to determine the worst-case mode(s). The worst-case modes are as follows:

- Band edge requirements—Measurements on the mode with the widest bandwidth can be used to cover the same channel (center frequency) on modes with narrower bandwidth that have the same or lower output power for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- Spurious emissions—Measure the mode with the highest output power and the mode with the highest output power spectral density for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- In-band PSD—Measurements on the mode with the narrowest bandwidth can be used to cover all modes within the same modulation family of an equal or lower output power provided the result is less than 50% of the limit.

8.2.4 Test data

Table 8.2-2: Test channels selection 10 MHz

Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	Low channel, MHz	Mid channel, MHz	High channel, MHz
5150	5250	100	5175	5200	5245

Table 8.2-3: Test channels selection 20 MHz

Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	Low channel, MHz	Mid channel, MHz	High channel, MHz
5150	5250	100	5180	5200	5240

8.3 Antenna requirement

8.3.1 References, definitions and limits

FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

8.3.2 Test summary

Verdict	Pass
Tested by	Fahar Abdul Sukkoor

Test date September 17, 2021

8.3.3 Observations, settings and special notes

All antenna configurations listed below are used in 2 × 2 MIMO configuration

8.3.4 Test data

Does the EUT have detachable antenna(s)? YES NO

If detachable, is the antenna connector(s) non-standard? YES NO N/A

If non-standard, is the EUT be professionally installed? YES NO N/A

Table 8.3-1: Antenna information

Antenna type	Manufacturer	Maximum gain
External Antenna	CCI Products	21.9 dBi
External Antenna	MTI	19.0 dBi

8.4 AC power line conducted emissions limits

8.4.1 References, definitions and limits

FCC §15.407(b):

(8) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207.

FCC §15.207:

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

ANSI C63.10, Clause 6.2:

If the EUT normally receives power from another device that in turn connects to the public utility ac power lines, measurements shall be made on that device with the EUT in operation to demonstrate that the device continues to comply with the appropriate limits while providing the EUT with power. If the EUT is operated only from internal or dedicated batteries, with no provisions for connection to the public utility ac power lines (600 VAC or less) to operate the EUT (such as an adapter), then ac power-line conducted measurements are not required. For direct current (dc) powered devices where the ac power adapter is not supplied with the device, an "off-the-shelf" unmodified ac power adapter shall be used. If the device is supposed to be installed in a host (e.g., the device is a module or PC card), then it is tested in a typical compliant host.

Table 8.4-1: Conducted emissions limit

Frequency of emission, MHz	Conducted emissions limit, dB μ V	
	Quasi-peak	Average**
0.15–0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50

Notes: * - The level decreases linearly with the logarithm of the frequency.

** - A linear average detector is required.

8.4.2 Test summary

Verdict	Pass		
Tested by	Fahar Abdul Sukkoor	Test date	September 17, 2021

8.4.3 Observations, settings and special notes

Port under test – Coupling device	AC power report – Artificial Mains Network (AMN)
EUT power input during test	48 V _{DC} (vía external 100–240 V _{AC} , 50/60 Hz power adaptor)
EUT setup configuration	Table top
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 10 dB or above the limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.
Additional notes:	<ul style="list-style-type: none"> – The EUT was set up as tabletop configuration per ANSI C63.10-2013 measurement procedure. – The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance. Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB) – Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Conducted AC line emissions test was performed as per ANSI C63.10, Clause 6.2. Spectrum analyzer settings:

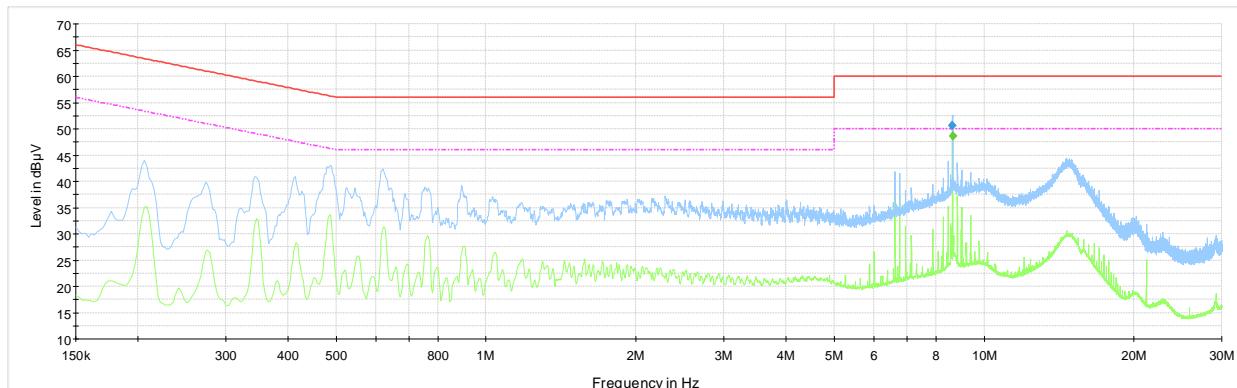
Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	Peak and Average (Preview), Quasi-peak and CAverage (Final)
Trace mode	Max Hold
Measurement time	100 ms (Preview), 160 ms (Final)

8.4.4 Test data

Table 8.4-2: Conducted emissions results on phase line

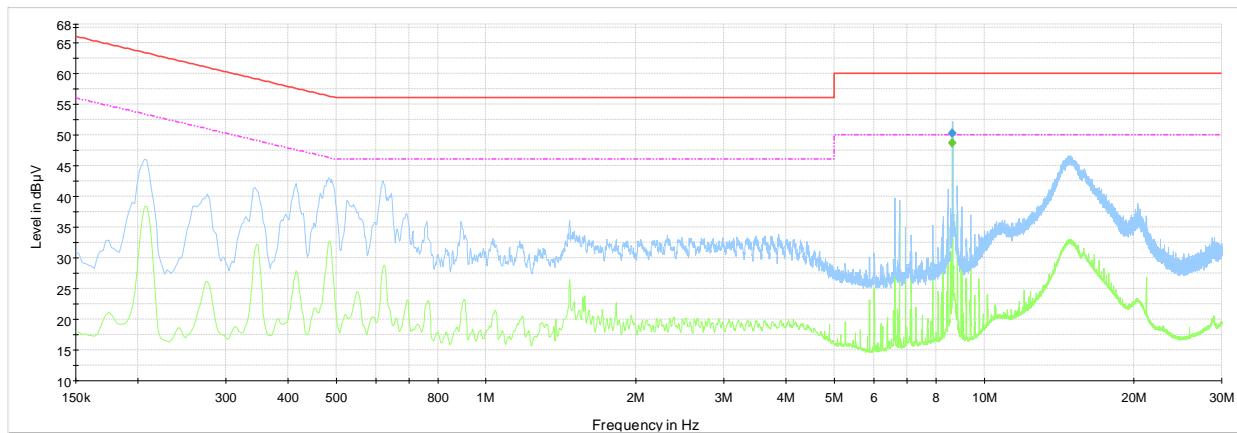
Frequency, MHz	Quasi-Peak result, dB μ V	Quasi-Peak limit, dB μ V	Quasi-Peak margin, dB	Correction factor, dB
8.64	50.6	60.0	9.4	15.7

Frequency, MHz	Average result, dB μ V	Average limit, dB μ V	Average margin, dB	Correction factor, dB
8.64	48.5	50.0	1.5	15.7


Table 8.4-3: Conducted emissions results on neutral line

Frequency, MHz	Quasi-Peak result, dB μ V	Quasi-Peak limit, dB μ V	Quasi-Peak margin, dB	Correction factor, dB
8.64	50.3	60.0	9.7	15.7

Frequency, MHz	Average result, dB μ V	Average limit, dB μ V	Average margin, dB	Correction factor, dB
8.64	48.7	50.0	1.3	15.7


Test data, continued

NEX-446890 Conducted emissions 150 kHz - 30 MHz 120 vac 60 Hz phase UNII-1

— Preview Result 2-AVG
— Preview Result 1-PK+
— CISPR 32 Limit - Class B, Mains (Quasi-Peak)
— CISPR 32 Limit - Class B, Mains (Average)
◆ Final_Result QPK
◆ Final_Result CAV

Plot 8.4-1: Conducted emissions on phase line

NEX-446890 Conducted emissions 150 kHz - 30 MHz 120 Vac 60 Hz neutral UNII-1

— Preview Result 2-AVG
— Preview Result 1-PK+
— CISPR 32 Limit - Class B, Mains (Quasi-Peak)
— CISPR 32 Limit - Class B, Mains (Average)
◆ Final_Result QPK
◆ Final_Result CAV

Plot 8.4-2: Conducted emissions on neutral line

8.5 Emission bandwidth

8.5.1 References, definitions and limits

FCC §15.403:

For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

8.5.2 Test summary

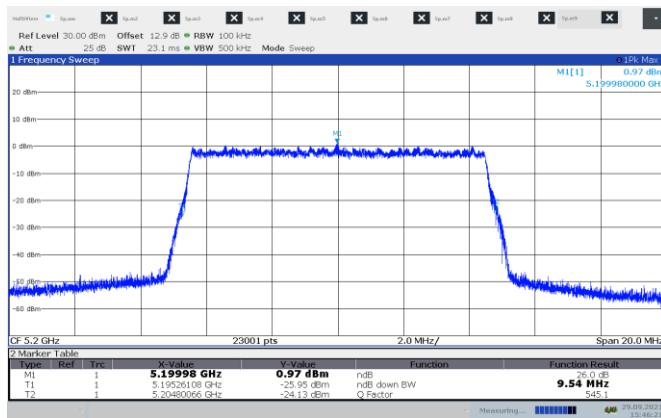
Verdict	Pass		
Tested by	Fahar Abdul Sukkoor	Test date	September 28, 2021

8.5.3 Observations, settings and special notes

The emission bandwidth was tested per ANSI C63.10, Clause 12.4 and KDB 789033 D02, Clause II(C)(1). Spectrum analyzer settings:

Resolution bandwidth	approximately 1% of the emission bandwidth
Video bandwidth	> RBW
Detector mode	Peak
Trace mode	Max Hold

8.5.4 Test data


Table 8.5-1: 26 dB bandwidth 10 MHz results

Sector	Modulation	Frequency, MHz	26 dB bandwidth at ch0, MHz	26 dB bandwidth at ch1, MHz
0	QPSK	5175	9.56	9.60
		5200	9.54	9.39
		5245	9.56	9.52
		5175	9.62	9.49
	64 QAM	5200	9.52	9.56
		5245	9.52	9.62
		5175	9.60	9.55
		5200	9.54	9.61
2	QPSK	5245	9.51	9.59
		5175	9.54	9.60
	64QAM	5200	9.49	9.59
		5245	9.60	9.62

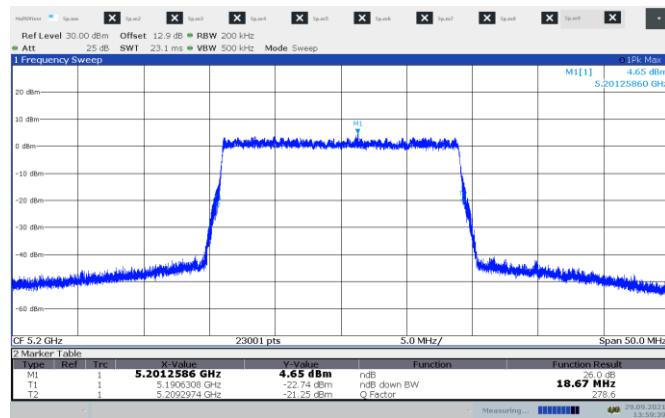

Test data, continued

Table 8.5-2: 26 dB bandwidth 20 MHz results

Sector	Modulation	Frequency, MHz	26 dB bandwidth at ch0, MHz	26 dB bandwidth at ch1, MHz
0	QPSK	5180	19.30	18.56
		5200	18.68	18.82
		5240	18.55	18.52
		5180	18.65	18.81
	64 QAM	5200	18.74	18.74
		5240	18.95	18.85
		5180	18.66	18.72
		5200	18.99	18.70
2	QPSK	5240	19.23	18.98
		5180	18.75	18.57
		5200	18.67	18.83
		5240	18.75	18.59

Figure 8.5-1: 26 dB bandwidth 10 MHz, sample plot

Figure 8.5-2: 26 dB bandwidth 20 MHz, sample plot

8.6 Occupied bandwidth

8.6.1 References, definitions and limits

ANSI C63.10-2013, Clause 6.9.3:

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

8.6.2 Test summary

Verdict	Pass
Tested by	Fahar Abdul Sukkoor

Test date

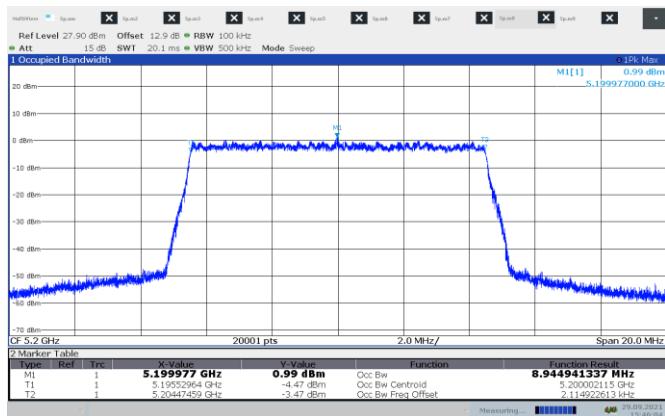
September 28, 2021

8.6.3 Observations, settings and special notes

The emission bandwidth was tested per ANSI C63.10, Clause 6.9.3 and KDB 789033 D02, Clause II(D). Spectrum analyser settings:

Resolution bandwidth:	1% of bandwidth
Video bandwidth:	$\geq 3 \times$ RBW
Detector mode:	Peak
Trace mode:	Max Hold

8.6.4 Test data


Table 8.6-1: 99% bandwidth 10 MHz results

Sector	Modulation	Frequency, MHz	99% bandwidth at ch0, MHz	99% bandwidth at ch1, MHz
0	QPSK	5175	8.95	8.95
		5200	8.95	8.94
		5245	8.94	8.95
	64 QAM	5175	8.96	8.95
		5200	8.95	8.96
		5245	8.96	8.96
2	QPSK	5175	8.94	8.94
		5200	8.95	8.94
		5245	8.94	8.94
	64QAM	5175	8.96	8.96
		5200	8.95	8.95
		5245	8.96	8.95

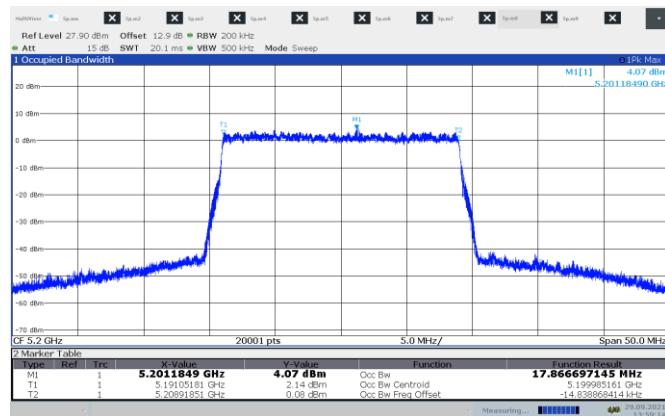

Test data, continued

Table 8.6-2: 99% bandwidth 20 MHz results

Sector	Modulation	Frequency, MHz	99% bandwidth at ch0, MHz	99% bandwidth at ch1, MHz
0	QPSK	5180	17.85	17.86
		5200	17.86	17.86
		5240	17.86	17.85
	64 QAM	5180	17.87	17.86
		5200	17.85	17.87
		5240	17.86	17.85
2	QPSK	5180	17.86	17.86
		5200	17.86	17.86
		5240	17.86	17.86
	64QAM	5180	17.87	17.84
		5200	17.87	17.87
		5240	17.85	17.87

Figure 8.6-1: 99% bandwidth 10 MHz, sample plot

Figure 8.6-2: 99% bandwidth 20 MHz, sample plot

8.7 Transmitter output power and e.i.r.p. requirements for 5150–5250 MHz band

8.7.1 References, definitions and limits

FCC §15.407:

- (a) Power limits:
 - (1) For the band 5.15–5.25 GHz.
 - (i) For an outdoor access point operating in the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
 - (ii) For an indoor access point operating in the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
 - (iii) For fixed point-to-point access points operating in the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
 - (iv) For client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
 - (11) The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.
 - (12) Power spectral density measurement. The maximum power spectral density is measured as either a conducted emission by direct connection of a calibrated test instrument to the equipment under test or a radiated measurement. Measurements in the 5.725–5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in all other bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth

8.7.2 Test summary

Verdict	Pass
Tested by	Fahar Abdul Sukkoor

Test date

September 28, 2021

8.7.3 Observations, settings and special notes

Combined average output power was calculated as follows: $P_{combined} = 10 \times \log_{10} \left((10^{P_{cho}/10}) + (10^{P_{ch1}/10}) \right)$

EIRP was calculated as follows: $EIRP = P_{combined} + \text{antenna gain}$

Combined PPSD was calculated as follows: $PPSD_{combined} = 10 \times \log_{10} \left((10^{PPSD_{cho}/10}) + (10^{PPSD_{ch1}/10}) \right)$

For antenna (Brand: CCI Products, Model: MBM12F-HJ5B, Peak Gain = 21.9 dBi) with the directional gain greater than 6 dBi, the maximum FCC output power limit was calculated as follows:

Limit = 30 dBm – ((Maximum antenna gain – Path Loss) – 6 dBi)

Limit = 30 dBm – ((21.9 dBi – 1.5 dB) – 6 dBi)

Limit = 15.6 dBm

For antenna (Brand: CCI Products, Model: MBM12F-HJ5B, Peak Gain = 21.9 dBi) with the directional gain greater than 6 dBi, the maximum FCC power spectral density limit was calculated as follows:

Limit = 17 dBm/MHz – ((Maximum antenna gain – Path Loss) – 6 dBi)

Limit = 17 dBm/MHz – (21.9 dBi – 1.5 dB) – 6 dBi)

Limit = 2.6 dBm/MHz

Measurement data for antenna (Brand: MTI, Model: MT – 465041/NVH, Peak Gain = 19 dBi) is extracted from Nemko test report NEX 425119-2TRFWL

For antenna (Brand: MTI, Model: MT – 465041/NVH, Peak Gain = 19 dBi) with the directional gain greater than 6 dBi, the maximum FCC output power limit was calculated as follows:

Limit = 30 dBm – ((Maximum antenna gain – path loss) – 6 dBi)

Limit = 30 dBm – ((19 dBi – 2.0 dB) – 6 dBi)

Limit = 30 dBm – ((19 dBi – 2.0 dB) – 6 dBi)

Limit = 19 dBm

For antenna (Brand: MTI, Model: MT – 465041/NVH, Peak Gain = 19 dBi) with the directional gain greater than 6 dBi, the maximum FCC power spectral density limit was calculated as follows:

Limit = 17 dBm/MHz – ((Maximum antenna gain – Path Loss) – 6 dBi)

Limit = 17 dBm/MHz – (19 dBi – 2.0 dB) – 6 dBi)

Limit = 6.0 dBm/MHz

Power spectral density was tested per ANSI C63.10, Clause 12.5 and 789033 D02, Clause II(F).

Conducted output power was tested per ANSI C63.10, Clause 12.3 and 789033 D02, Clause II(E) using method b) Method SA-1(trace averaging with the EUT transmitting at full power throughout each sweep):

Resolution bandwidth	1 MHz
Video bandwidth	≥ 3 MHz
Frequency span	Enough to encompass the entire 26 dB EBW or 99% OBW of the signal
Detector mode	RMS
Trace mode	Average
Power aggregation	Over 26 dB EBW or 99% OBW

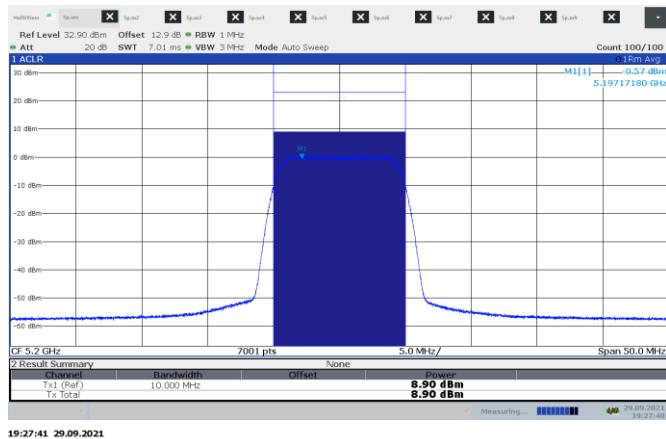
8.7.4 Test data

Table 8.7-1: Output power measurements results for sector 0, CCI Antenna

Bandwidth	Modulation	Frequency, MHz	Measured average conducted output power, dBm			Power limit, dBm	Margin, dB
			On ch0	On ch1	Combined		
10 MHz	QPSK	5175	8.89	8.74	11.83	15.60	3.77
		5200	8.90	8.85	11.89	15.60	3.71
		5245	8.68	8.58	11.64	15.60	3.96
	64 QAM	5180	8.68	8.63	11.67	15.60	3.93
		5200	8.86	8.55	11.72	15.60	3.88
		5240	8.57	8.70	11.65	15.60	3.95
20 MHz	QPSK	5180	11.48	11.43	14.47	15.60	1.13
		5200	11.77	11.81	14.80	15.60	0.80
		5240	11.70	11.87	14.80	15.60	0.80
	64 QAM	5180	11.57	11.71	14.65	15.60	0.95
		5200	11.61	11.68	14.66	15.60	0.94
		5240	11.62	11.79	14.72	15.60	0.88

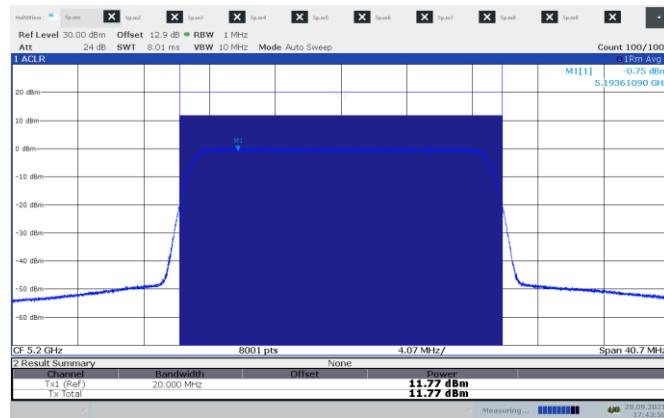
Table 8.7-2: PPSD measurements results for sector 0, CCI Antenna

Bandwidth	Modulation	Frequency, MHz	Peak Power Spectral Density, dBm/MHz			PPSD limit, dBm/MHz	Margin, dB
			On ch0	On ch1	Combined		
10 MHz	QPSK	5175	-0.38	-0.79	2.43	2.60	0.17
		5200	-0.57	-0.43	2.51	2.60	0.09
		5245	-0.81	-0.39	2.42	2.60	0.18
	64 QAM	5180	-0.48	-0.56	2.49	2.60	0.11
		5200	-0.53	-0.65	2.42	2.60	0.18
		5240	-0.83	-0.47	2.36	2.60	0.24
20 MHz	QPSK	5180	-0.43	-0.51	2.54	2.60	0.06
		5200	-0.75	-0.80	2.24	2.60	0.36
		5240	-0.47	-0.41	2.57	2.60	0.03
	64 QAM	5180	-0.60	-0.30	2.56	2.60	0.04
		5200	-0.67	-0.48	2.44	2.60	0.16
		5240	-0.52	-0.44	2.53	2.60	0.07


Table 8.7-3: Output power measurements results for sector 2, CCI Antenna

Bandwidth	Modulation	Frequency, MHz	Measured average conducted output power, dBm			Power limit, dBm	Margin, dB
			On ch0	On ch1	Combined		
10 MHz	QPSK	5175	8.81	8.81	11.82	15.60	3.78
		5200	8.87	8.80	11.85	15.60	3.75
		5245	8.53	8.76	11.66	15.60	3.94
	64 QAM	5180	8.68	8.63	11.67	15.60	3.93
		5200	8.86	8.55	11.72	15.60	3.88
		5240	8.57	8.70	11.65	15.60	3.95
20 MHz	QPSK	5180	11.48	11.43	14.47	15.60	1.13
		5200	11.77	11.81	14.80	15.60	0.80
		5240	11.70	11.87	14.80	15.60	0.80
	64 QAM	5180	11.57	11.56	14.58	15.60	1.02
		5200	11.61	11.80	14.72	15.60	0.88
		5240	11.71	11.62	14.68	15.60	0.92

Test data, continued


Table 8.7-4: PPSD measurements results for sector 2, CCI Antenna

Bandwidth	Modulation	Frequency, MHz	Peak Power Spectral Density, dBm/MHz			PPSD limit, dBm/MHz	Margin, dB
			On ch0	On ch1	Combined		
10 MHz	QPSK	5175	-0.54	-0.48	2.50	2.60	0.10
		5200	-0.50	-0.59	2.47	2.60	0.13
		5245	-0.98	-0.43	2.31	2.60	0.29
	64 QAM	5180	-0.48	-0.56	2.49	2.60	0.11
		5200	-0.53	-0.65	2.42	2.60	0.18
		5240	-0.83	-0.47	2.36	2.60	0.24
20 MHz	QPSK	5180	-0.43	-0.51	2.54	2.60	0.06
		5200	-0.75	-0.80	2.24	2.60	0.36
		5240	-0.47	-0.41	2.57	2.60	0.03
	64 QAM	5180	-0.32	-0.51	2.60	2.60	0.00
		5200	-0.79	-0.36	2.44	2.60	0.16
		5240	-0.39	-0.99	2.33	2.60	0.27

19:27:41 29.09.2021

Figure 8.7-1: Sample plot for power and PPSD on 10 MHz, CCI Antenna

17:43:59 28.09.2021

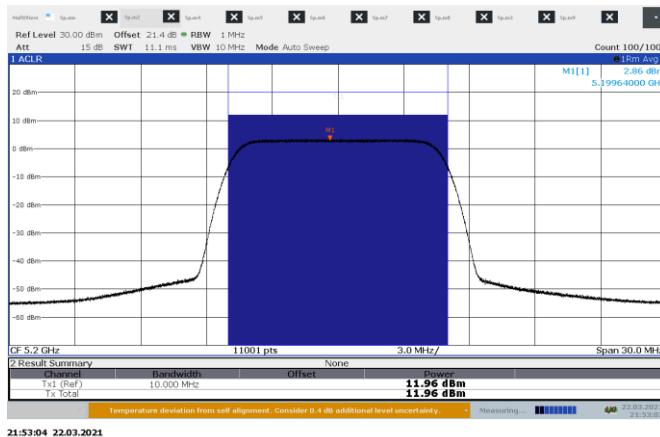
Figure 8.7-2: Sample plot for power and PPSD on 20 MHz, CCI Antenna

8.7.1 Test data
Table 8.7-5: Output power measurements results for sector 0, MTI Antenna

Bandwidth	Modulation	Frequency, MHz	Measured average conducted output power, dBm			Power limit, dBm	Margin, dB
			On ch0	On ch1	Combined		
10 MHz	QPSK	5175	11.94	11.85	14.91	19.00	4.09
		5200	11.96	12.00	14.99	19.00	4.01
		5245	11.87	11.88	14.89	19.00	4.11
	64 QAM	5180	11.92	12.11	15.03	19.00	3.97
		5200	12.13	12.05	15.10	19.00	3.90
		5240	11.96	11.86	14.92	19.00	4.08
20 MHz	QPSK	5180	15.08	14.82	17.96	19.00	1.04
		5200	15.03	15.04	18.05	19.00	0.95
		5240	15.11	15.18	18.16	19.00	0.84
	64 QAM	5180	15.05	14.85	17.96	19.00	1.04
		5200	15.01	15.12	18.08	19.00	0.92
		5240	14.91	15.04	17.99	19.00	1.01

Table 8.7-6: PPSD measurements results for sector 0, MTI Antenna

Bandwidth	Modulation	Frequency, MHz	Peak Power Spectral Density, dBm/MHz			PPSD limit, dBm/MHz	Margin, dB
			On ch0	On ch1	Combined		
10 MHz	QPSK	5175	2.45	3.09	5.79	6.00	0.21
		5200	2.86	2.85	5.87	6.00	0.13
		5245	2.60	2.91	5.77	6.00	0.23
	64 QAM	5180	2.85	2.93	5.90	6.00	0.10
		5200	3.09	2.83	5.97	6.00	0.03
		5240	3.05	2.66	5.87	6.00	0.13
20 MHz	QPSK	5180	3.00	2.97	5.99	6.00	0.01
		5200	2.90	2.76	5.84	6.00	0.16
		5240	2.79	2.92	5.87	6.00	0.13
	64 QAM	5180	2.73	2.96	5.86	6.00	0.14
		5200	2.84	2.66	5.76	6.00	0.24
		5240	2.67	3.07	5.88	6.00	0.12


Table 8.7-7: Output power measurements results for sector 2, MTI Antenna

Bandwidth	Modulation	Frequency, MHz	Measured average conducted output power, dBm			Power limit, dBm	Margin, dB
			On ch0	On ch1	Combined		
10 MHz	QPSK	5175	11.98	12.03	15.02	19.00	3.98
		5200	12.05	11.95	15.01	19.00	3.99
		5245	11.97	12.06	15.03	19.00	3.97
	64 QAM	5180	12.02	11.95	15.00	19.00	4.00
		5200	11.88	11.93	14.92	19.00	4.08
		5240	11.96	12.05	15.02	19.00	3.98
20 MHz	QPSK	5180	15.02	14.89	17.97	19.00	1.03
		5200	15.15	15.07	18.12	19.00	0.88
		5240	15.09	15.01	18.06	19.00	0.94
	64 QAM	5180	15.15	15.07	18.12	19.00	0.88
		5200	14.91	14.98	17.96	19.00	1.04
		5240	14.98	15.08	18.04	19.00	0.96

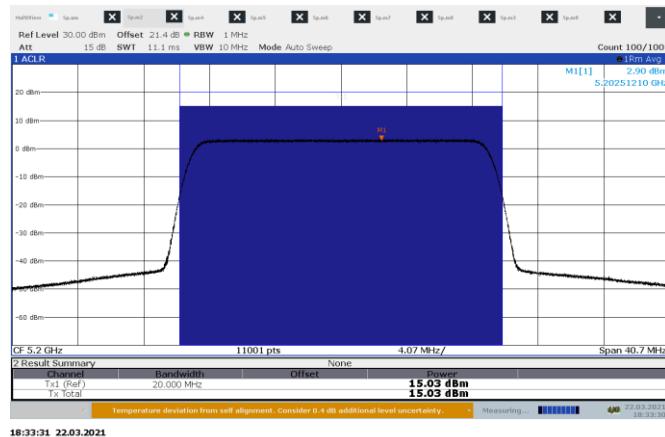

Test data, continued

Table 8.7-8: PPSD measurements results for sector 2, MTI Antenna

Bandwidth	Modulation	Frequency, MHz	Peak Power Spectral Density, dBm/MHz	PPSD limit, dBm/MHz	Margin, dB
		On ch0	On ch1	Combined	
10 MHz	QPSK	5175	2.89	2.85	5.88
		5200	2.78	2.95	5.88
		5245	2.86	2.99	5.94
	64 QAM	5180	2.69	3.01	5.86
		5200	2.60	2.77	5.70
		5240	2.87	2.71	5.80
20 MHz	QPSK	5180	2.83	2.86	5.86
		5200	2.76	2.95	5.87
		5240	2.86	2.87	5.88
	64 QAM	5180	3.06	2.85	5.97
		5200	3.08	2.67	5.89
		5240	2.50	2.98	5.76

Figure 8.7-3: Sample plot for power and PPSD on 10 MHz, MTI Antenna

Figure 8.7-4: Sample plot for power and PPSD on 20 MHz, MTI Antenna

The maximum e.i.r.p. at any elevation angle above 30 degrees

Table 8.7-9: EIRP results at elevation above 30° for CCI Antenna

Maximum output power, dBi	Antenna gain @ 30°, dBi	EIRP @ 30°, dBm	EIRP @ 30° limit, dBm	Margin, dB
14.80	6.00	20.80	21.00	0.20

Table 8.7-10: EIRP results at elevation above 30° for MTI Antenna

Maximum output power, dBi	Antenna gain @ 30°, dBi	EIRP @ 30°, dBm	EIRP @ 30° limit, dBm	Margin, dB
18.16	-3.10	15.06	21.00	5.94

8.8 Spurious unwanted (undesirable) emissions

8.8.1 References, definitions and limits

FCC §15.407:

(b) Undesirable emission limits.

Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15–5.25 GHz band: All emissions outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (7) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (8) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207.
- (9) The provisions of § 15.205 apply to intentional radiators operating under this section.
- (10) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

Table 8.8-1: FCC §15.209 – Radiated emission limits

Field strength of emissions			
Frequency, MHz	µV/m	dBµV/m	Measurement distance, m
0.009–0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300
0.490–1.705	24000/F	87.6 – 20 × log ₁₀ (F)	30
1.705–30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

References, definitions and limits, continued

Table 8.8-2: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090–0.110	16.42–16.423	399.9–410	4.5–5.15
0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725–4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362–8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625–8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322–335.4	3600–4400	Above 38.6
13.36–13.41			

8.8.2 Test summary

Verdict	Pass		
Tested by	Fahar Abdul Sukkoor	Test date	September 29, 2021

8.8.3 Observations, settings and special notes

- As part of the current assessment, the test range of 9 kHz to 40 GHz has been fully considered and compared to the actual frequencies utilized within the EUT. Since the EUT contains a transmitter in the GHz range, the EUT has been deemed compliant without formal testing in the 9 kHz to 30 MHz test range, therefore formal test results (tabular data and/or plots) are not provided within this test report.
- EUT was set to transmit with 100 % duty cycle. The EUT was transmitting on both MIMO chains simultaneously
- Cabinet spurious measurements were performed at a distance of 3 m. This test was performed at the antenna ports and radiated with both antennas terminated with 50 Ohm load.
- The spurious emission was tested per ANSI C63.10, Clause 12.7 and 789033 D02, Clause II(G).
- Antennae are completely uncorrelated cross polarized antenna so EIRP limit should be individually below limit.

Spectrum analyzer for peak conducted measurements within restricted bands below 1 GHz:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyzer for peak conducted measurements within restricted bands above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

Average limit line was set as follows:

$$\text{Limit/MHz} = 54 \text{ dB}\mu\text{V/m} - 95.23 \text{ dB} - (\text{Antenna Gain (dBi)} - \text{Path Loss(dB)})$$

$$\text{Limit/MHz} = 54 \text{ dB}\mu\text{V/m} - 95.23 \text{ dB} - (21.9 \text{ dBi} - 1.5 \text{ dB})$$

$$\text{Limit/MHz} = -61.63 \text{ dBm/MHz}$$

Spectrum analyzer for average conducted measurements within restricted bands above 1 GHz for frequencies where peak results were above the average limit:

Resolution bandwidth:	1 MHz
Video bandwidth:	10 MHz
Detector mode:	RMS
Trace mode:	Power average
Number of averaging traces:	100

Peak limit is 20 dB higher than the average limit: $-61.63 \text{ dBm/MHz} + 20 \text{ dB} = -41.63 \text{ dBm/MHz}$

Spectrum analyzer for peak conducted measurements outside restricted bands:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

Conducted emissions measurements outside restricted bands were performed on each individual MIMO chain.

$-27 \text{ dBm/MHz} - 20.4 \text{ dBi} = -47.4 \text{ dBm/MHz}$. For peak measurements, non-restricted band limits are more stringent than restricted band is taken as peak limit.

8.8.4 Test data

Table 8.8-3: Conducted Band edge emission measurements for both restricted and non-restricted bands sector 0

Modulation	Antenna port	Channel and bandwidth (MHz)	Frequency, MHz	Peak Emissions, dBm/MHz			Average emissions, dBm/MHz		
				Measured	Limit	Margin, dB	Measured	Limit	Margin, dB
QPSK	0	10(low)	5150	-54.00	-47.40	6.60	-64.12	-61.63	2.49
	1	10(low)	5150	-53.94	-47.40	6.54	-64.57	-61.63	2.94
64 QAM	0	10(low)	5150	-54.12	-47.40	6.72	-63.56	-61.63	1.93
	1	10(low)	5150	-53.51	-47.40	6.11	-64.29	-61.63	2.66
QPSK	0	20(low)	5150	-51.96	-47.40	4.56	-68.74	-61.63	7.11
	1	20(low)	5150	-53.02	-47.40	5.62	-66.34	-61.63	4.71
64 QAM	0	20(low)	5150	-53.15	-47.40	5.75	-61.64	-61.63	0.01
	1	20(low)	5150	-53.40	-47.40	6.00	-61.92	-61.63	0.29

Table 8.8-4: Conducted peak spurious emission measurement results for sector 0

Modulation	Antenna port	Channel BW, MHz	Frequency of max emission, MHz	Emission level, dBm/MHz	Limit, dBm/MHz	Margin, dB
QPSK	1	20(mid)	36388.44	-50.83	-47.40	3.43
	0	10(low)	34947.02	-50.86	-47.40	3.46
64 QAM	0	10(low)	25587.50	-50.90	-47.40	3.50
	1	20(mid)	36388.44	-50.83	-47.40	3.43

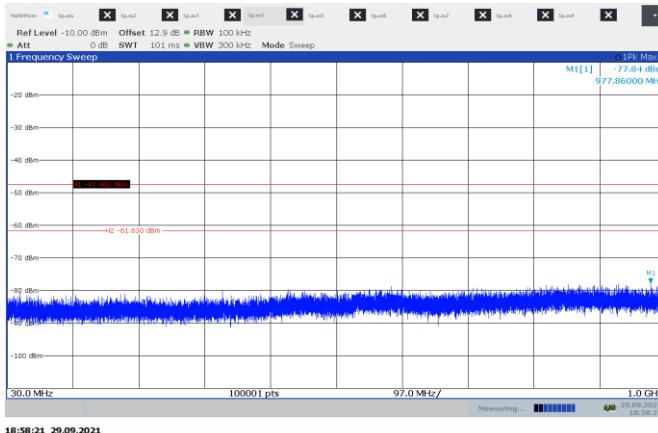
Table 8.8-5: Conducted average spurious emission measurement results for sector 0

Modulation	Antenna port	Channel BW, MHz	Frequency of max emission, MHz	Emission level, dBm/MHz	Limit, dBm/MHz	Margin, dB
QPSK	0	10(low)	4915.15	-61.64	-61.63	0.01
	1	10(low)	4915.21	-61.76	-61.63	0.13
	0	10(low)	5146.71	-61.90	-61.63	0.27
	1	10(low)	5146.71	-62.54	-61.63	0.91
	0	10(mid)	4915.21	-61.98	-61.63	0.35
	1	10(mid)	4915.21	-61.70	-61.63	0.07
	0	10(high)	4915.37	-61.75	-61.63	0.12
	1	10(high)	4915.37	-61.97	-61.63	0.34
	0	20(low)	4915.37	-62.32	-61.63	0.69
	1	20(low)	4915.18	-62.27	-61.63	0.64
	0	20(mid)	4914.98	-62.12	-61.63	0.49
	1	20(mid)	4915.21	-62.96	-61.63	1.33
	0	20(high)	4915.21	-63.44	-61.63	1.81
	1	20(high)	4915.23	-62.85	-61.63	1.22
	0	10(low)	4915.37	-61.69	-61.63	0.06
64QAM	1	10(low)	4915.37	-63.44	-61.63	1.81
	0	10(low)	5147.00	-62.35	-61.63	0.72
	1	10(low)	5147.00	-63.41	-61.63	1.78
	0	10(mid)	4915.37	-61.71	-61.63	0.08
	1	10(mid)	4915.37	-61.82	-61.63	0.19
	0	10(high)	4915.37	-62.42	-61.63	0.79
	1	10(high)	4915.37	-61.82	-61.63	0.19
	0	20(low)	4915.20	-62.44	-61.63	0.81
	1	20(low)	4915.21	-62.92	-61.63	1.29
	0	20(mid)	4915.20	-62.74	-61.63	1.11
	1	20(mid)	4915.18	-62.94	-61.63	1.31
	0	20(high)	4915.18	-63.44	-61.63	1.81
	1	20(high)	4915.18	-62.90	-61.63	1.27

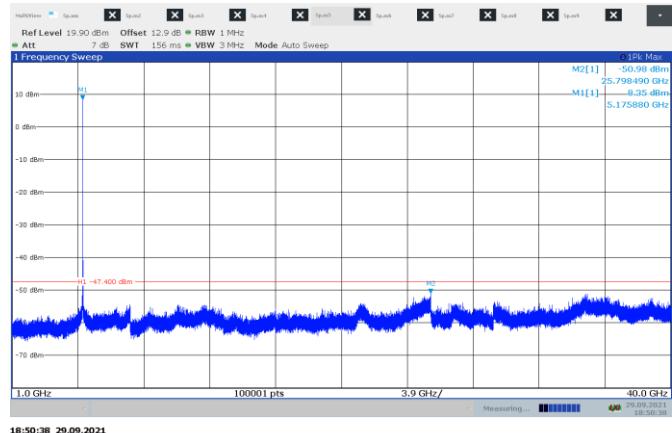
Test data, continued

Table 8.8-6: Conducted Band edge emission measurements for both restricted and non-restricted bands sector 2

Modulation	Antenna port	Channel and bandwidth (MHz)	Frequency, MHz	Peak Emissions, dBm/MHz			Average emissions, dBm/MHz		
				Measured	Limit	Margin, dB	Measured	Limit	Margin, dB
QPSK	0	10(low)	5150	-54.22	-47.40	6.82	-64.41	-61.63	2.78
	1	10(low)	5150	-54.41	-47.40	7.01	-65.18	-61.63	3.55
64 QAM	0	10(low)	5150	-54.39	-47.40	6.99	-64.51	-61.63	2.88
	1	10(low)	5150	-54.45	-47.40	7.05	-65.28	-61.63	3.65
QPSK	0	20(low)	5150	-53.02	-47.40	5.62	-61.91	-61.63	0.28
	1	20(low)	5150	-53.74	-47.40	6.34	-62.48	-61.63	0.85
64 QAM	0	20(low)	5150	-51.76	-47.40	4.36	-61.70	-61.63	0.07
	1	20(low)	5150	-51.59	-47.40	4.19	-61.79	-61.63	0.16

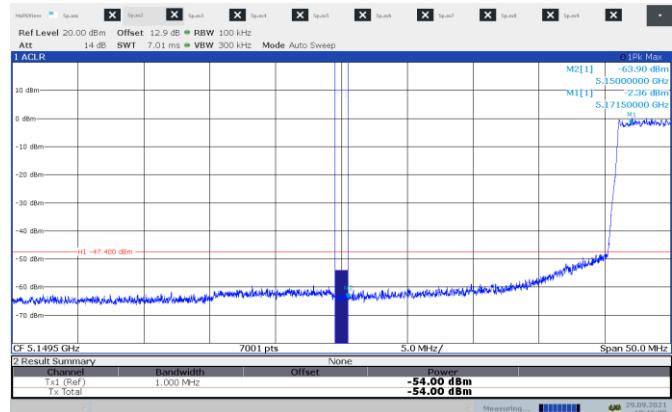

Table 8.8-7: Conducted peak spurious emission measurement results for sector 2

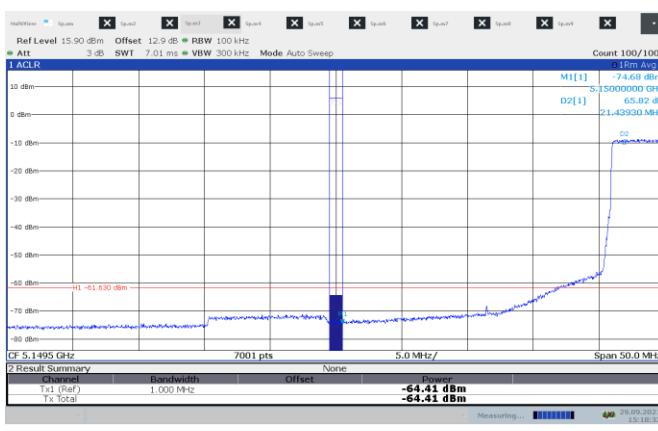
Modulation	Antenna port	Channel BW, MHz	Frequency of max emission, MHz	Emission level, dBm/MHz	Limit, dBm/MHz	Margin, dB
QPSK	0	10(low)	25768.46	-50.94	-47.40	3.54
	1	20(mid)	10404.95	-52.65	-47.40	5.25
64 QAM	0	20(low)	7937.84	-52.91	-47.40	5.51


Table 8.8-8: Conducted average spurious emission measurement results for sector 2

Modulation	Antenna port	Channel BW, MHz	Frequency of max emission, MHz	Emission level, dBm/MHz	Limit, dBm/MHz	Margin, dB
QPSK	0	10(low)	4914.98	-62.91	-61.63	1.28
	1	10(low)	4914.98	-62.07	-61.63	0.44
	0	10(low)	5146.50	-62.42	-61.63	0.79
	1	10(low)	5147.50	-62.94	-61.63	1.31
	0	10(mid)	4914.98	-62.83	-61.63	1.20
	1	10(mid)	4914.98	-62.07	-61.63	0.44
	0	10(high)	4914.98	-62.80	-61.63	1.17
	1	10(high)	4914.98	-61.87	-61.63	0.24
	0	20(low)	4915.37	-65.41	-61.63	3.78
	1	20(low)	4915.37	-62.62	-61.63	0.99
	0	20(mid)	4915.37	-64.62	-61.63	2.99
	1	20(mid)	4915.37	-62.68	-61.63	1.05
	0	20(high)	4915.37	-64.92	-61.63	3.29
	1	20(high)	4915.37	-62.79	-61.63	1.16
	0	10(low)	4915.27	-62.81	-61.63	1.18
	1	10(low)	4915.20	-61.98	-61.63	0.35
64QAM	0	10(low)	5147.5	-62.20	-61.63	0.57
	1	10(low)	5147.5	-63.04	-61.63	1.41
	0	10(mid)	4914.98	-62.57	-61.63	0.94
	1	10(mid)	4914.98	-62.02	-61.63	0.39
	0	10(high)	4914.98	-62.78	-61.63	1.15
	1	10(high)	4914.98	-62.01	-61.63	0.38
	0	20(low)	4914.98	-64.50	-61.63	2.87
	1	20(low)	4914.98	-62.43	-61.63	0.80
	0	20(mid)	4915.37	-64.46	-61.63	2.83
	1	20(mid)	4915.37	-62.54	-61.63	0.91
	0	20(high)	4915.37	-64.64	-61.63	3.01
	1	20(high)	4915.37	-63.28	-61.63	1.65

Test data, continued


Figure 8.8-1: Conducted peak spurious emissions 30 MHz - 1 GHz on low channel 10 MHz sample plot


Figure 8.8-2: Conducted peak spurious emissions 1-40 GHz on low channel 10 MHz sample plot

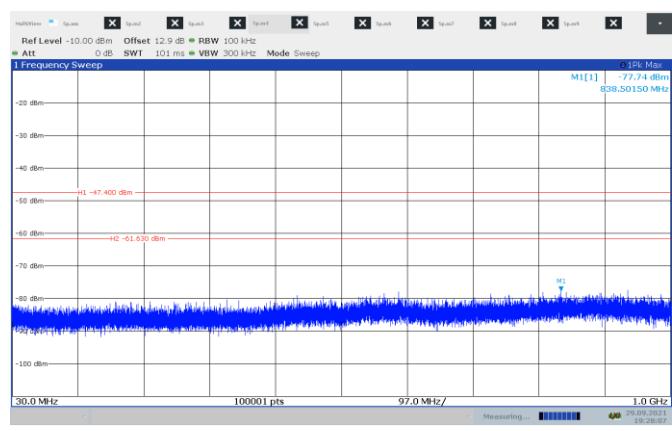

Figure 8.8-3: Conducted average spurious emissions 1-40 GHz on low channel 10 MHz sample plot

Figure 8.8-4: Conducted peak low band edge emissions on low channel 10 MHz sample plot

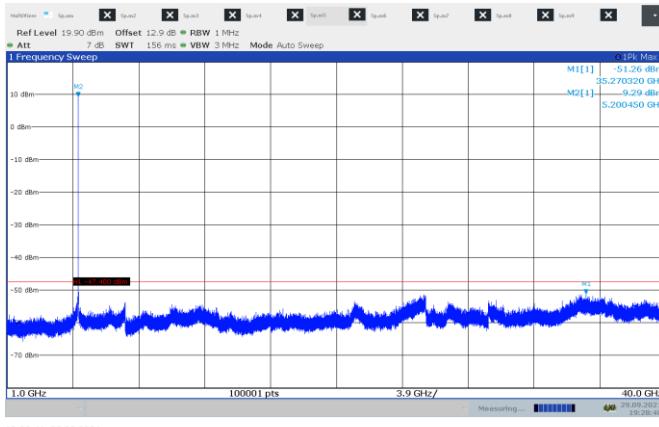
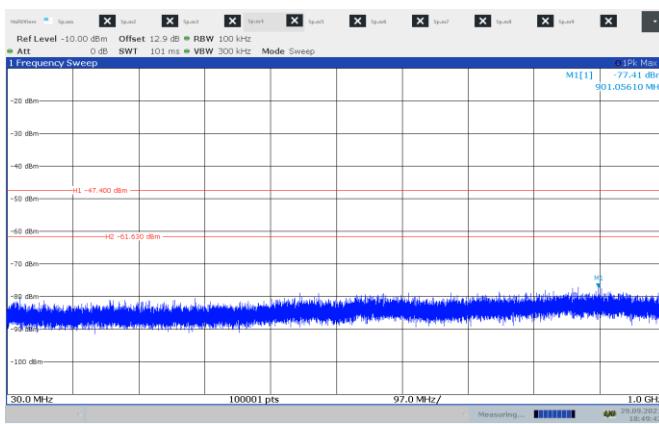
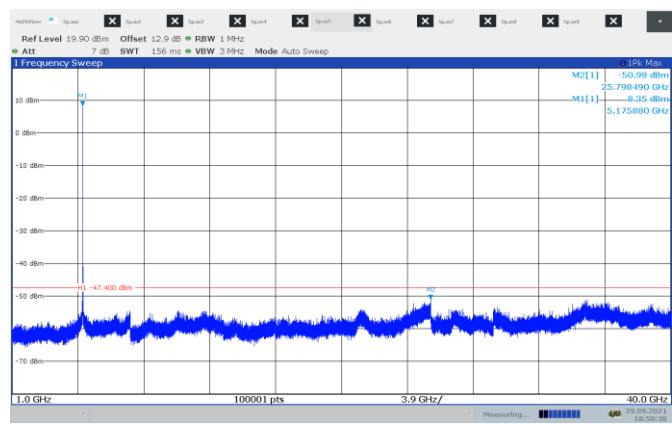


Figure 8.8-5: Conducted average low band edge emissions on low channel 10 MHz sample plot

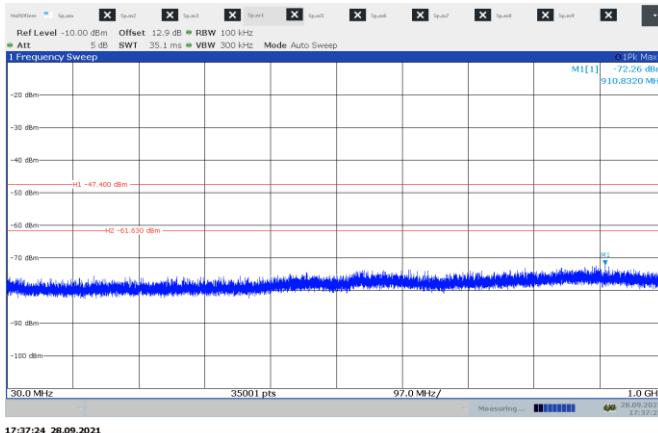
Figure 8.8-6: Conducted peak spurious emissions 30 MHz-1 GHz on mid channel 10 MHz sample plot


Test data, continued

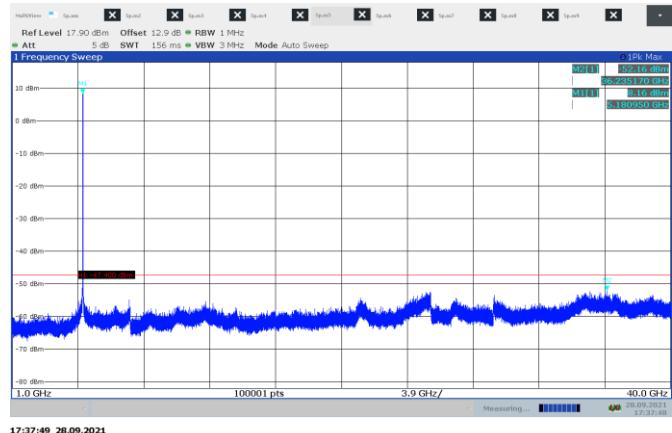

19:28:41 29.09.2021

19:29:55 29.09.2021

18:49:42 29.09.2021



18:50:38 29.09.2021


18:51:46 29.09.2021

Test data, continued

17:37:24 28.09.2021

Figure 8.8-12: Conducted peak spurious emissions 30 MHz-1 GHz on low channel 20 MHz sample plot

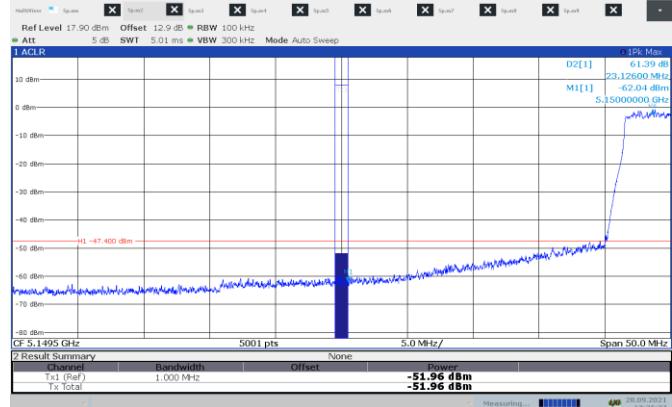

17:37:49 28.09.2021

Figure 8.8-13: Conducted peak spurious emissions 1-40 GHz on low channel 20 MHz sample plot

17:38:56 28.09.2021

Figure 8.8-14: Conducted average spurious emissions 1-40 GHz on low channel 20 MHz sample plot

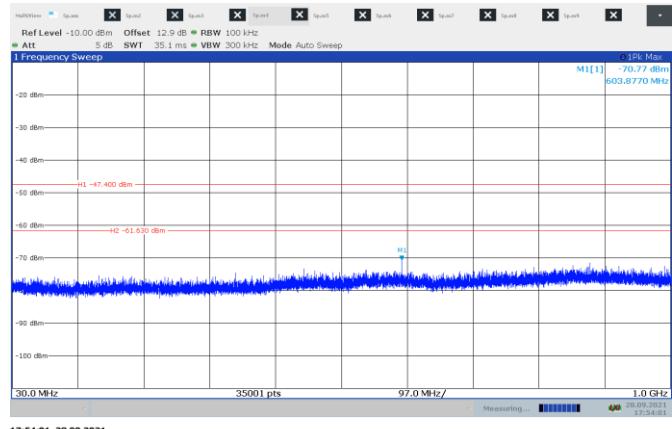
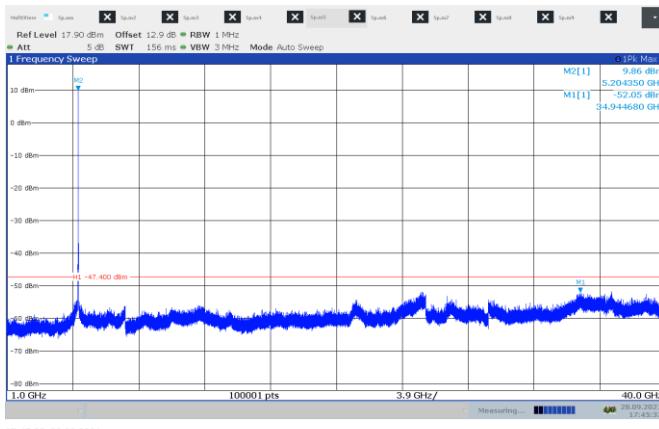

17:35:38 28.09.2021

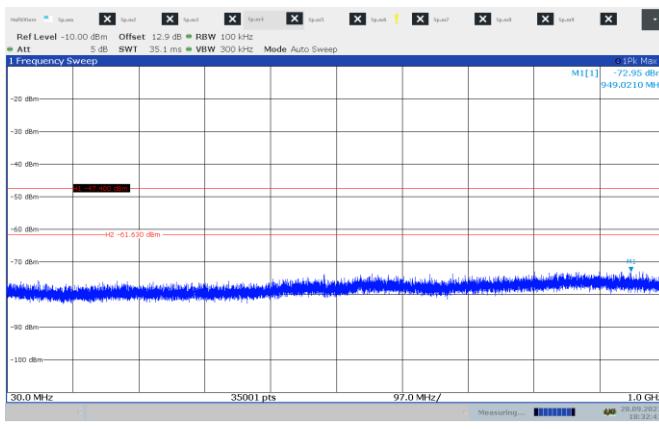
Figure 8.8-15: Conducted peak low band edge emissions on low channel 20 MHz sample plot

17:37:00 28.09.2021


Figure 8.8-16: Conducted average low band edge emissions on low channel 20 MHz sample plot

17:54:01 28.09.2021

Figure 8.8-17: Conducted peak spurious emissions 30 MHz-1 GHz on mid channel 20 MHz sample plot


Test data, continued

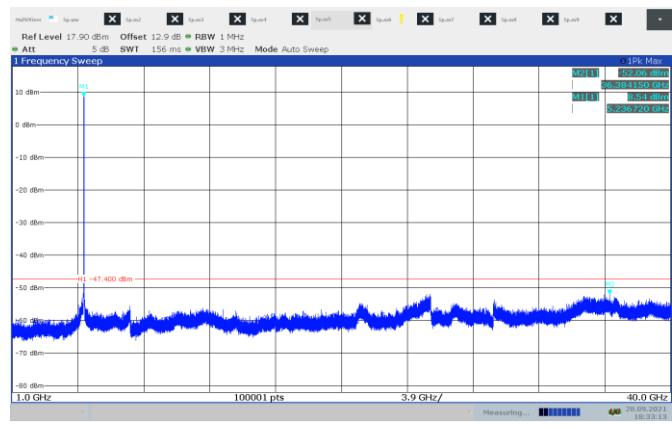
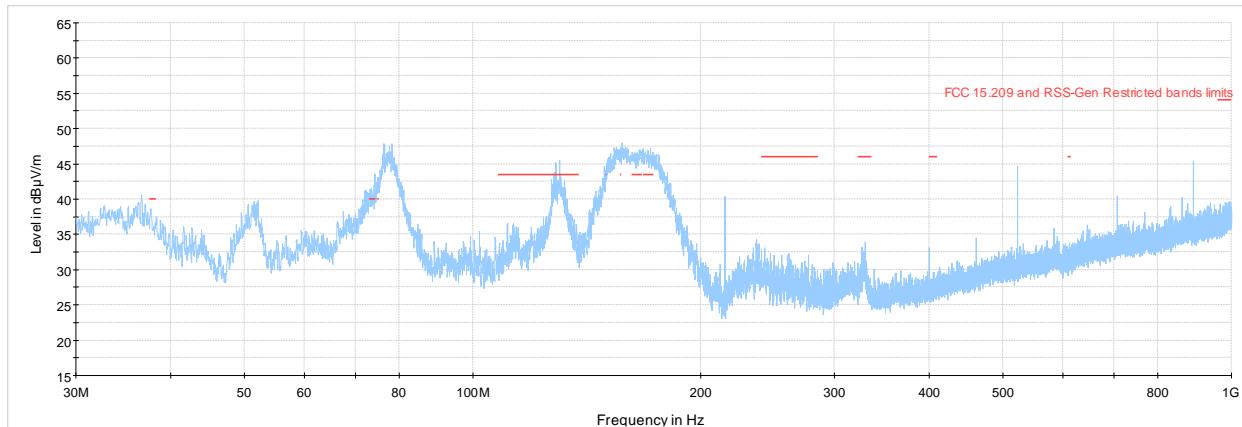

Figure 8.8-18: Conducted peak spurious emissions 1-40 GHz on mid channel 20 MHz sample plot

Figure 8.8-19: Conducted average spurious emissions 1-40 GHz on mid channel 20 MHz sample plot

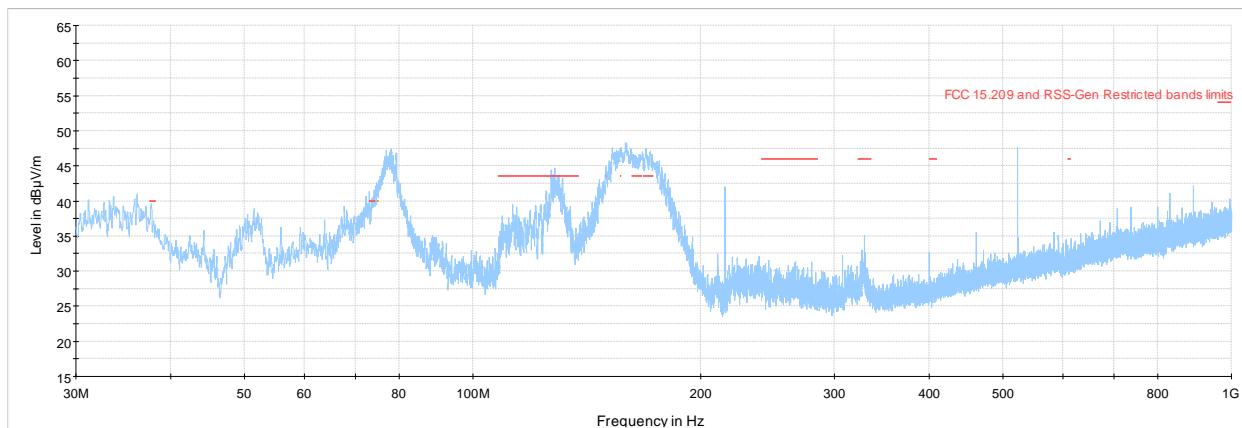
Figure 8.8-20: Conducted peak spurious emissions 30 MHz-1 GHz on high channel 20 MHz sample plot

Figure 8.8-21: Conducted peak spurious emissions 1-40 GHz on high channel 20 MHz sample plot

Figure 8.8-22: Conducted average spurious emissions 1-40 GHz on high channel 20 MHz sample plot

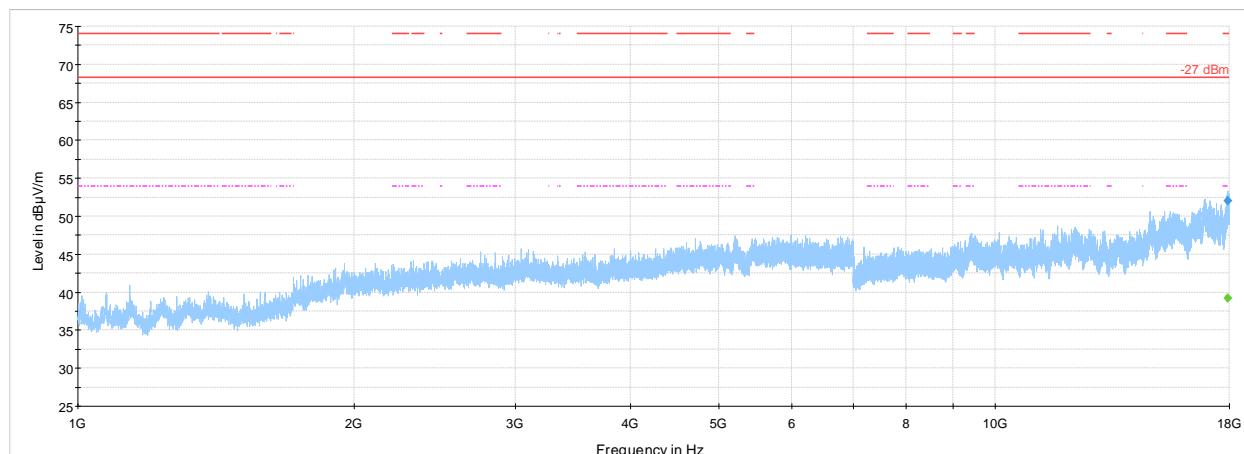


Test data, continued

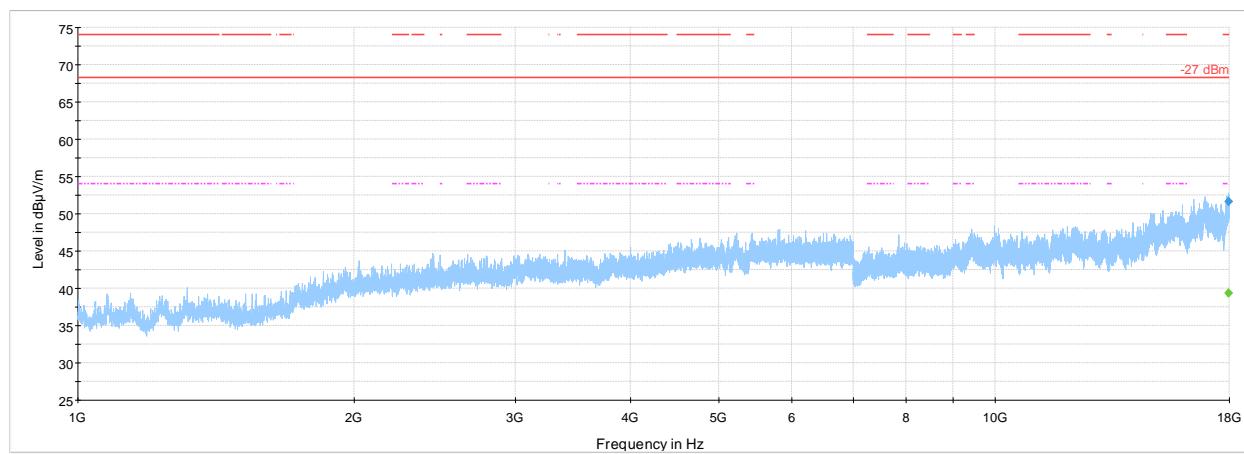

Test data, continued

NEX-446890 Cabinet spurious 30-1000 MHz UNII-1 10 MHz
Preview Result 1-PK+
FCC 15.209 and RSS-Gen Restricted bands limits

Figure 8.8-23: Cabinet spurious emissions 30 MHz – 1 GHz, 10 MHz channel



NEX-446890 Cabinet spurious 30-1000 MHz UNII-1 20 MHz
Preview Result 1-PK+
FCC 15.209 and RSS-Gen Restricted bands limits


Figure 8.8-24: Cabinet spurious emissions 30 MHz -1 GHz, 20-MHz channel

Note: All emissions above restricted bands are EMC digital noise. EUT is class A unit.

Test data, continued

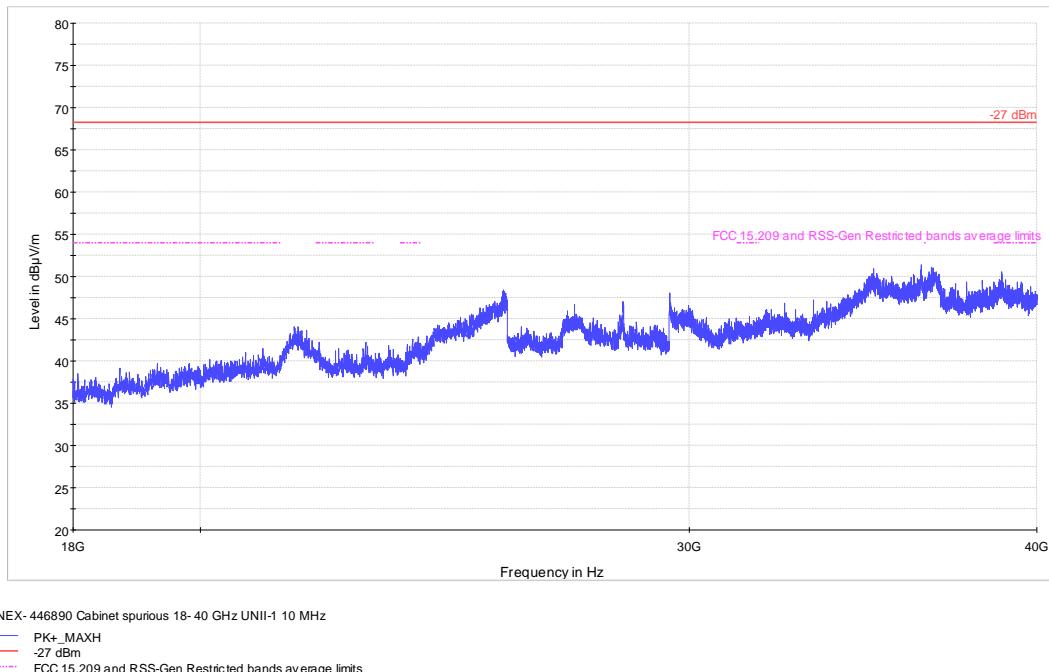


Figure 8.8-25: Cabinet spurious emissions 1 - 18 GHz, 10 MHz Channel

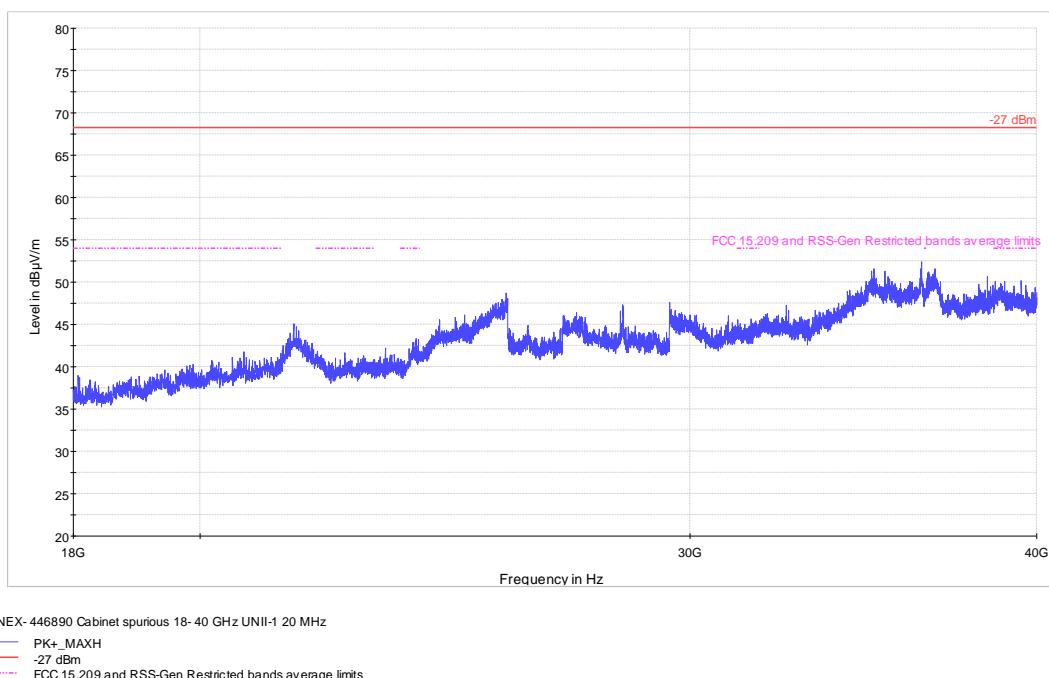


Figure 8.8-26: Cabinet spurious emissions 1 - 18 GHz, 20 MHz Channel

Test data, continued

Figure 8.8-27: Cabinet spurious emissions 18-40 GHz, 10 MHz Channel

Figure 8.8-28: Cabinet spurious emissions 18-40 GHz, 20 MHz Channel

8.9 Frequency stability

8.9.1 References, definitions and limits

FCC §15.407:

(g) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

8.9.2 Test summary

Verdict	Pass
Tested by	Fahar Abdul Sukkoor
Test date	October 5, 2021

8.9.3 Observations, settings and special notes

Frequency stability test was performed as per ANSI C63.10, Clause 6.8 and 789033 D02, Clause II(A)(3). Spectrum analyzer settings:

Resolution bandwidth:	1% of bandwidth
Video bandwidth:	3 x RBW
Detector mode:	Peak
Trace mode:	Max Hold

8.9.4 Test data

Table 8.9-1: Frequency drift measurement

Test conditions	Frequency, GHz	Drift, Hz
+60 °C, Nominal	5.199981530	-2640
+50 °C, Nominal	5.199984548	378
+40 °C, Nominal	5.199985723	1553
+30 °C, Nominal	5.199982397	-1773
+20 °C, +15 %	5.199984189	19
+20 °C, Nominal	5.199984170	0
+20 °C, -15 %	5.199979576	-4594
+10 °C, Nominal	5.199983259	-911
0 °C, Nominal	5.199982653	-1517
-10 °C, Nominal	5.199982790	-1380
-20 °C, Nominal	5.199984771	601
-30 °C, Nominal	5.199981968	-2202
-40 °C, Nominal	5.199982802	-1368

Test data, continued

Table 8.9-2: Lower band edge drift calculation

Modulation	-26 dBc lower cross		Drifted lower cross		Margin, MHz
	point, GHz	Max negative drift, Hz	point, GHz	Band edge, GHz	
QPSK	5.1705075	4594	5.1705029	5.15	2.05
64QAM	5.1705175	4594	5.1705129	5.15	2.05

Notes: Drifted lower cross point = -26 dBc lower cross point – max negative drift.

Table 8.9-3: Upper band edge drift calculation

Modulation	-26 dBc upper cross		Drifted upper cross		Margin, MHz
	point, GHz	Max positive drift, Hz	point, GHz	Band edge, GHz	
QPSK	5.2296767	1553	5.2296783	5.25	2.03
64QAM	5.2299850	1553	5.2299866	5.25	2.00

Notes: Drifted upper cross point = -26 dBc upper cross point + max positive drift.

EUT photos

9.1 External photos

Sec

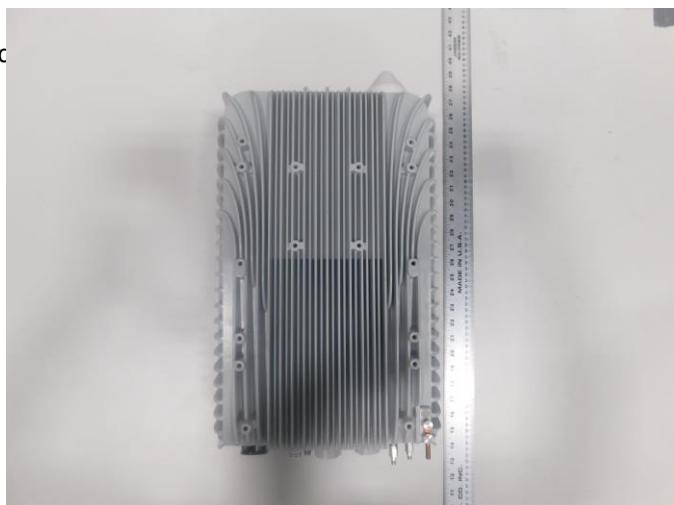


Figure 9.1-1: Front view photo

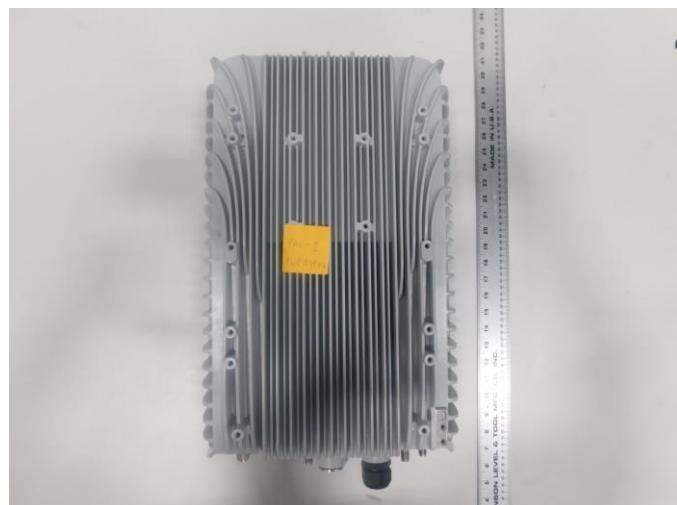


Figure 9.1-2: Rear view photo

Figure 9.1-3: Side view photo

Figure 9.1-4: Side view photo

External photos continued

Figure 9.1-5: Top view photo

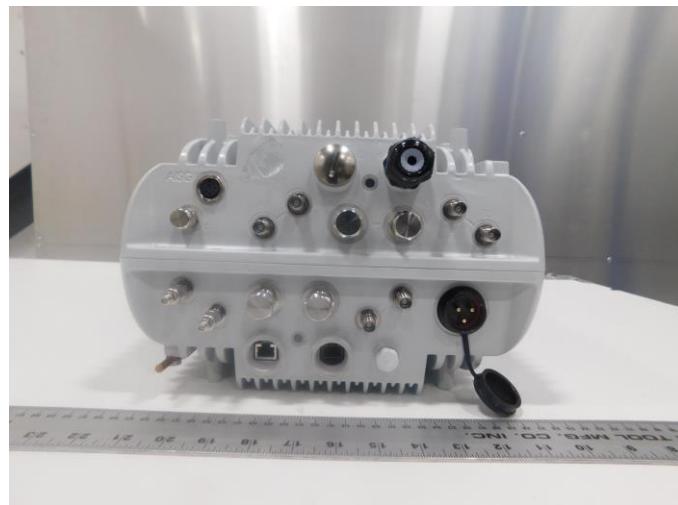


Figure 9.1-6:Bottom view photo

End of the test report