

TEST REPORT**Report Number: 18020686HKG-001**

Application for Original Grant of 47 CFR Part 15 Certification

Single New of RSS-247 Issue 2 Equipment

FCC ID: RNL-KONOZ**IC: 4970A-KONOZ****PREPARED AND CHECKED BY:****APPROVED BY:**

Signed On File

Wong Cheuk Ho, Herbert
Lead EngineerWong Kwok Yeung, Kenneth
Senior Lead Engineer
Date: March 14, 2018

TEST REPORT

GENERAL INFORMATION

Applicant Name:	LUX Products Corporation
Applicant Address:	4747 South Broad Street Building 101, Suite 330, Philadelphia, PA 19112 United States Of America
FCC Specification Standard:	FCC Part 15, October 1, 2016 Edition
FCC ID:	RNL-KONOZ
FCC Model(s):	KN-Z-WH1-B04
IC Specification Standard:	RSS-247 Issue 2, February 2017 RSS-Gen Issue 4, November 2014
IC:	4970A-KONOZ
PMN:	KONOz Smart Hub Thermostat
HVIN:	KN-Z-WH1-B04
Type of EUT:	Spread Spectrum Transmitter
Description of EUT:	Programmable ZigBee Thermostat
Serial Number:	N/A
Sample Receipt Date:	February 15, 2018
Date of Test:	February 15, 2018 to February 28, 2018
Report Date:	March 14, 2018
Environmental Conditions:	Temperature: +10 to 40°C Humidity: 10 to 90%

TEST REPORT**TABLE OF CONTENTS**

1.0 Test Results Summary & Statement of Compliance	4
1.1 Summary of Test Results	4
1.2 Statement of Compliance.....	4
2.0 General Description	5
2.1 Product Description	5
2.2 Test Methodology.....	6
2.3 Test Facility	6
2.4 Related Submittal(s) Grants	6
3.0 System Test Configuration	7
3.1 Justification	7
3.2 EUT Exercising Software.....	8
3.3 Details of EUT and Description of Accessories.....	9
3.4 Measurement Uncertainty.....	9
4.0 Test Results	10
4.1 Maximum Conducted Output Power at Antenna Terminals	10
4.2 Minimum 6dB RF Bandwidth	12
4.3 Maximum Power Spectral Density	15
4.3 Maximum Power Spectral Density	15
4.4 Out of Band Conducted Emissions	20
4.5 Field Strength Calculation	25
4.6 Transmitter Radiated Emissions in Restricted Bands and Spurious Emissions	26
4.6.1 Radiated Emission Configuration Photograph.....	26
4.6.2 Radiated Emission Data.....	26
4.6.3 Radiated Emission Test Setup	31
4.6.4 Transmitter Duty Cycle Calculation	32
4.7 AC Power Line Conducted Emission	33
4.7.1 AC Power Line Conducted Emission Configuration Photograph	33
4.7.2 AC Power Line Conducted Emission Data.....	33
4.7.3 Conducted Emission Test Setup	36
4.8 Occupied Bandwidth.....	37
5.0 Equipment List	38

TEST REPORT

EXHIBIT 1 TEST RESULTS SUMMARY & STATEMENT OF COMPLIANCE

1.0 TEST RESULTS SUMMARY & STATEMENT OF COMPLIANCE

1.1 Summary of Test Results

TEST ITEMS	FCC PART 15 SECTION	RSS-247/ RSS-GEN# SECTION	RESULTS	DETAILS SEE SECTION
Antenna Requirement	15.203	8.3#	Pass	2.1
Max. Conducted Output Power (Peak)	15.247(b)(3)&(4)	5.4(d)	Pass	4.1
Min. 6dB RF Bandwidth	15.247(a)(2)	5.2(a)	Pass	4.2
Max. Power Density (average)	15.247(e)	5.2(b)	Pass	4.3
Out of Band Antenna Conducted Emission	15.247(d)	5.5	Pass	4.4
Radiated Emission in Restricted Bands and Spurious Emissions	15.247(d), 15.209 & 15.109	5.5 8.10#	Pass	4.6
AC Power Line Conducted Emission	15.207 & 15.107	8.8#	Pass	4.7

Note: Pursuant to FCC Part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over expected variations in temperature and supply voltage were considered.

1.2 Statement of Compliance

The equipment under test is found to be complying with the following standard:

FCC Part 15, October 1, 2016 Edition

RSS-247 Issue 2, February 2017

RSS-Gen Issue 4, November 2014

TEST REPORT

EXHIBIT 2 GENERAL DESCRIPTION

2.0 GENERAL DESCRIPTION

2.1 Product Description

The Equipment Under Test (EUT) is a Programmable ZigBee Thermostat, equipped with a ZigBee module. After connecting the EUT to the ZigBee home control system, user can control the home heater/cooler system. The EUT is powered by 4X size "AA" batteries or 24VAC.

The antenna(s) used in the EUT is integral, and the test sample is a prototype.

The circuit description is saved with filename: descri.pdf.

TEST REPORT

2.2 Test Methodology

Both AC power line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Preliminary radiated scans and all radiated measurements were performed in radiated emission test sites. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Justification Section**" of this Application. Antenna port conducted measurements were performed according to ANSI C63.10 (2013) and KDB Publication No.558074 D01 v04 (05-April-2017) All other measurements were made in accordance with the procedures in 47 CFR Part 2 and RSS-Gen Issue 4 (2014).

2.3 Test Facility

The radiated emission test site and antenna port conducted measurement facility used to collect the radiated data and conductive data are at Workshop No. 3, G/F., World-Wide Industrial Centre, 43-47 Shan Mei Street, Fo Tan, Sha Tin, N.T., Hong Kong. This test facility and site measurement data have been fully placed on file with the FCC and Industry Canada No.: 2042V-1.

2.4 Related Submittal(s) Grants

This is a single application for certification of a transceiver (ZigBee portion)

TEST REPORT

EXHIBIT 3 SYSTEM TEST CONFIGURATION

3.0 SYSTEM TEST CONFIGURATION

3.1 Justification

For radiated emissions testing, the equipment under test (EUT) was setup to transmit / receive continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables (if any) were manipulated to produce worst case emissions.

The EUT was powered by a 4X size "AA" batteries or 24VAC. Both powering method were tested. Only the worse-case data is shown in this report (powered by 24VAC).

For the measurements, the EUT was attached to a plastic stand if necessary and placed on the wooden turntable. If the base unit attached to peripherals, they were connected and operational (as typical as possible).

The signal was maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization were varied during the search for maximum signal level. The antenna height was varied from 1 to 4 meters. Radiated emissions were taken at three meters unless the signal level was too low for measurement at that distance. If necessary, a pre-amplifier was used and/or the test was conducted at a closer distance.

For any intentional radiator powered by AC power line, measurements of the radiated signal level of the fundamental frequency component of the emission was performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

Radiated emission measurement for transmitter were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Emission that are directly caused by digital circuits in the transmit path and transmitter portion were measured, and the limit are according to FCC Part 15 Section 15.209 / RSS-247 2.5. Digital circuitries used to control additional functions other than the operation of the transmitter are subject to FCC Part 15 Section 15.109 / RSS-247 Section 5.5 Limits.

TEST REPORT

3.1 Justification – Cont'd

Detector function for radiated emissions was in peak mode. Average readings, when required, were taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in section 4.8.3.

Determination of pulse desensitization was made according to *Hewlett Packard Application Note 150-2, Spectrum Analysis... Pulsed RF*. The effective period (Teff) was referred to Exhibit 4.8.3. With the resolution bandwidth 3MHz and spectrum analyzer IF bandwidth 3dB, the pulse desensitization factor was 0dB.

For AC line conducted emission test, the EUT along with its peripherals were placed on a 1.0m(W)x1.5m(L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN), which provided 50ohm coupling impedance for measuring instrument. The LISN housing, measuring instrument case, reference ground plane, and vertical ground plane were bounded together. The excess power cable between the EUT and the LISN was bundled.

All connecting cables of EUT and peripherals were manipulated to find the maximum emission.

Different data rates have been tested. Worst case is reported only.

All relevant operation modes have been tested, and the worst case data is included in this report.

3.2 EUT Exercising Software

The EUT exercise program (if any) used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

TEST REPORT

3.3 Details of EUT and Description of Accessories

Details of EUT:

An AC transformer was used to power the device. Their description are listed below.

(1) 24V AC transformer (Input: 120V, Output: 24V) (Provided by Intertek)

Description of Accessories:

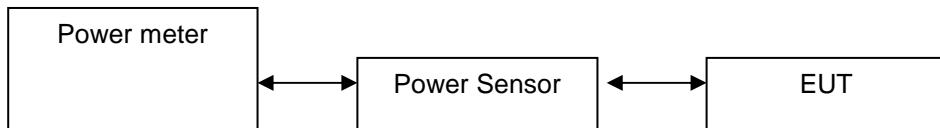
(1) N/A

3.4 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test at a level of confidence of 95% has been considered. The values of the Measurement uncertainty for radiated emission test and RF conducted measurement test are $\pm 5.3\text{dB}$ and $\pm 0.99\text{dB}$ respectively. The value of the Measurement uncertainty for conducted emission test is $\pm 4.2\text{dB}$.

Uncertainty and Compliance - Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.

TEST REPORT


EXHIBIT 4 TEST RESULTS

4.0 TEST RESULTS

4.1 Maximum Conducted (peak) Output Power at Antenna Terminals

RF Conduct Measurement Test Setup

The figure below shows the test setup, which is utilized to make these measurements.

The antenna port of the EUT was connected to the input of a spectrum analyzer.

- The antenna power of the EUT was connected to the input of a power meter. Power was read directly and cable loss correction was added to the reading to obtain power at the EUT antenna terminals. The measurement procedure 9.1.3 was used.
- The EUT should be configured to transmit continuously (at a minimum duty cycle of 98%) at full power over the measurement duration. The measurement procedure AVG1 was used.

Antenna Gain = -3.2 dBi

Frequency (MHz)	Output in dBm	Output in mWatt
Low Channel: 2405	20.0	100.0
Middle Channel: 2440	18.8	75.9
High Channel: 2480	-4.0	0.4

TEST REPORT**4.1 Maximum Conducted Output Power at Antenna Terminals – Cont'd**

Cable loss : 0.5 dB External Attenuation : 0 dB

Cable loss, external attenuation: included in OFFSET function
 added to SA raw reading

max. conducted (peak) output level = 20.0 dBm

Limits:

1W (30dBm) for antennas with gains of 6dBi or less

___W (___dBm) for antennas with gains more than 6dBi

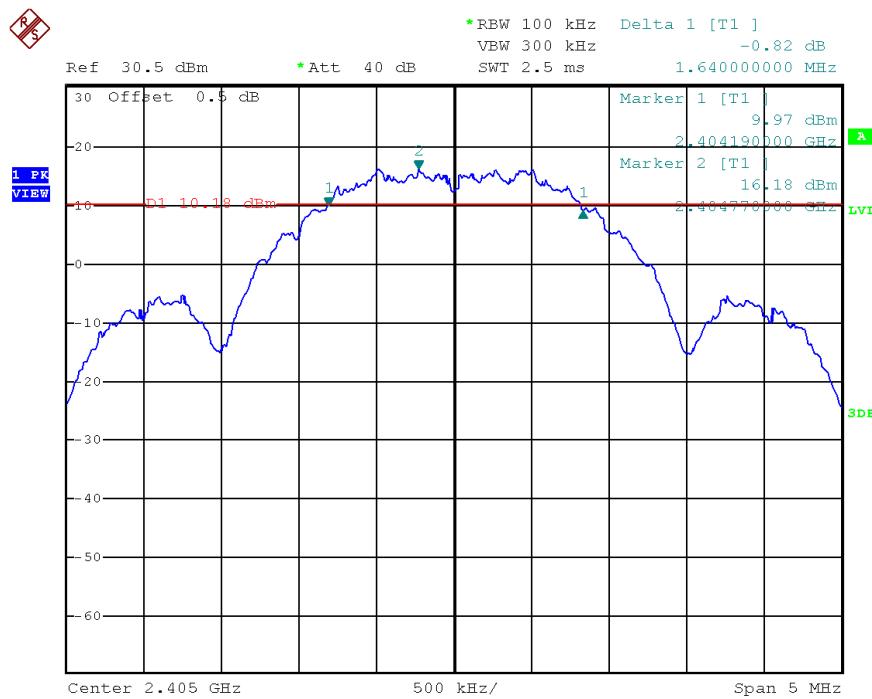
The plots of conducted output power are saved as below.

TEST REPORT**4.2 Minimum 6dB RF Bandwidth**

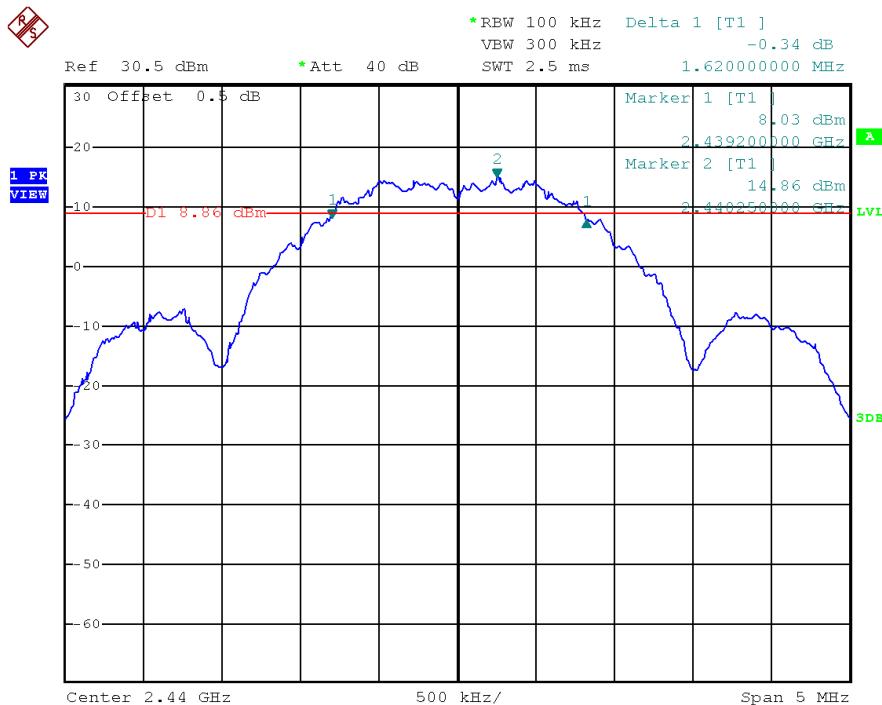
The antenna port of the EUT was connected to the input of a spectrum analyzer. The EBW measurement procedure was used. A PEAK output reading was taken, a DISPLAY line was drawn 6dB lower than PEAK level. The 6dB bandwidth was determined from where the channel output spectrum intersected the display line.

Frequency (MHz)	6dB Bandwidth (MHz)
Low Channel: 2405	1.64
Middle Channel: 2440	1.62
High Channel: 2480	1.62

Limits

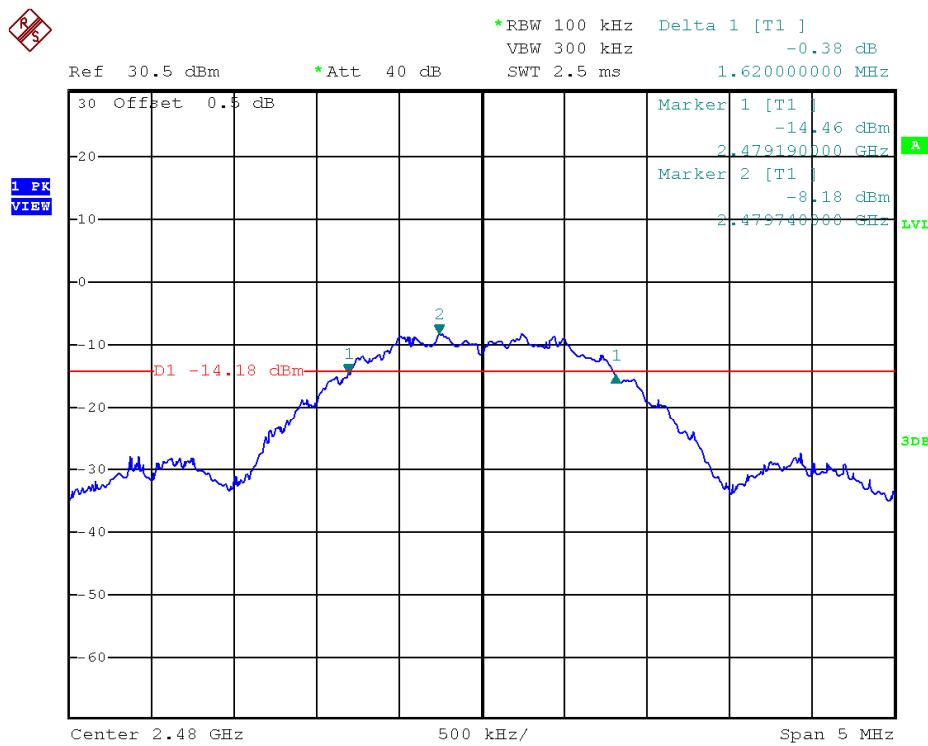

6 dB bandwidth shall be at least 500kHz

The plots of 6dB RF bandwidth are saved as below.


TEST REPORT

PLOTS OF 6dB RF BANDWIDTH

Lowest Channel


Middle Channel

TEST REPORT

PLOTS OF 6dB RF BANDWIDTH

Highest Channel

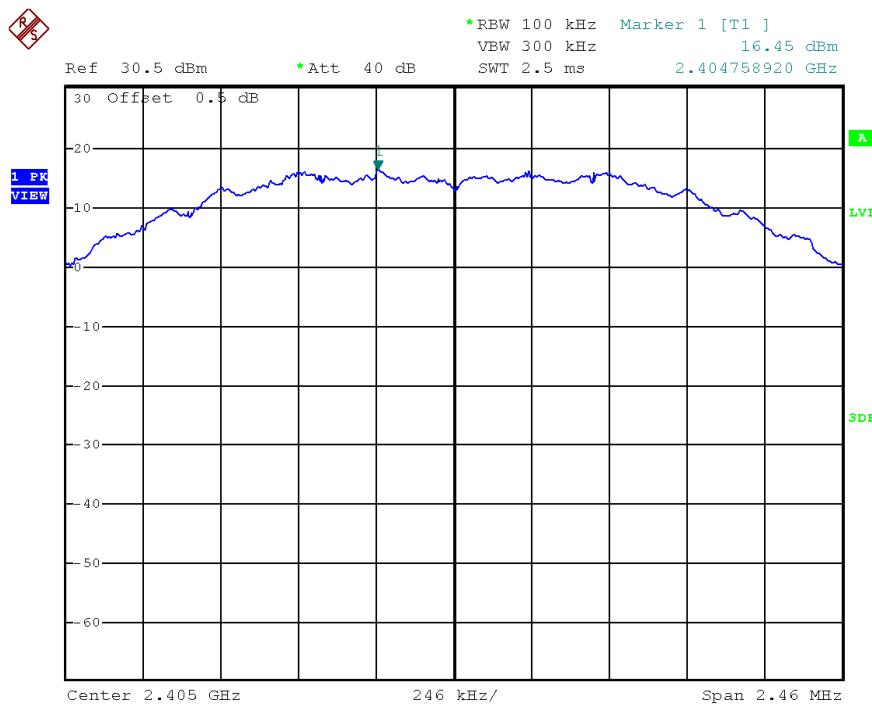
TEST REPORT**4.3 Maximum Power Spectral Density**

Antenna output of the EUT was coupled directly to spectrum analyzer. The measurement procedure 10.2 PKPSD was used. If an external attenuator and/or cable was used, these losses are compensated for using the OFFSET function of the analyser.

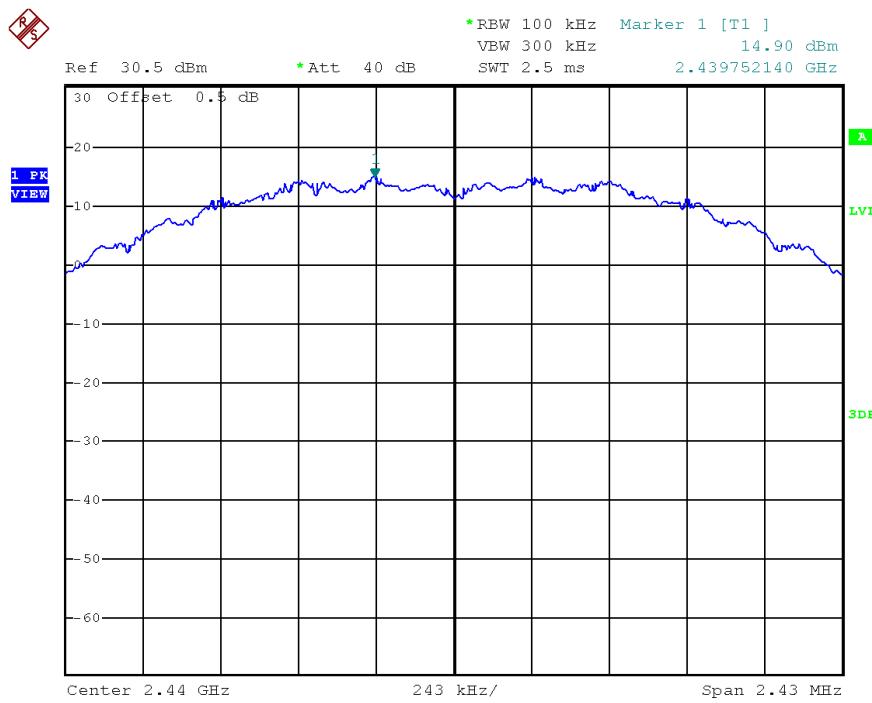
Frequency (MHz)	PSD in 100kHz (dBm)	PSD in 3kHz (dBm)
Low Channel: 2405	16.45	4.46
Middle Channel: 2440	14.90	2.35
High Channel: 2480	-8.38	-20.30

Cable Loss: 0.5 dB

Limit:
8dBm

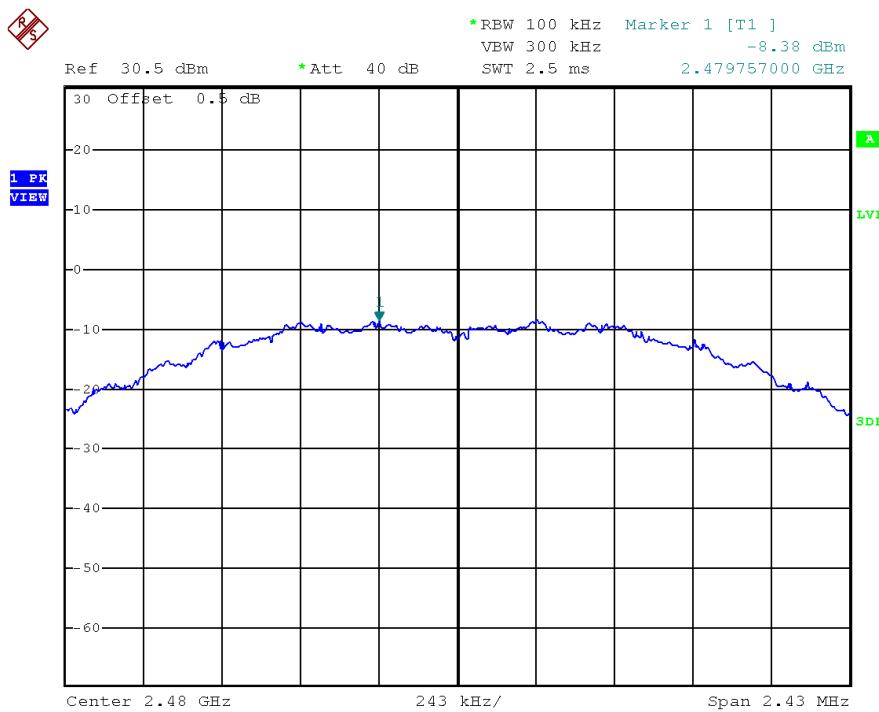

The plots of power spectral density are as below.

4.3 Maximum Power Spectral Density


TEST REPORT

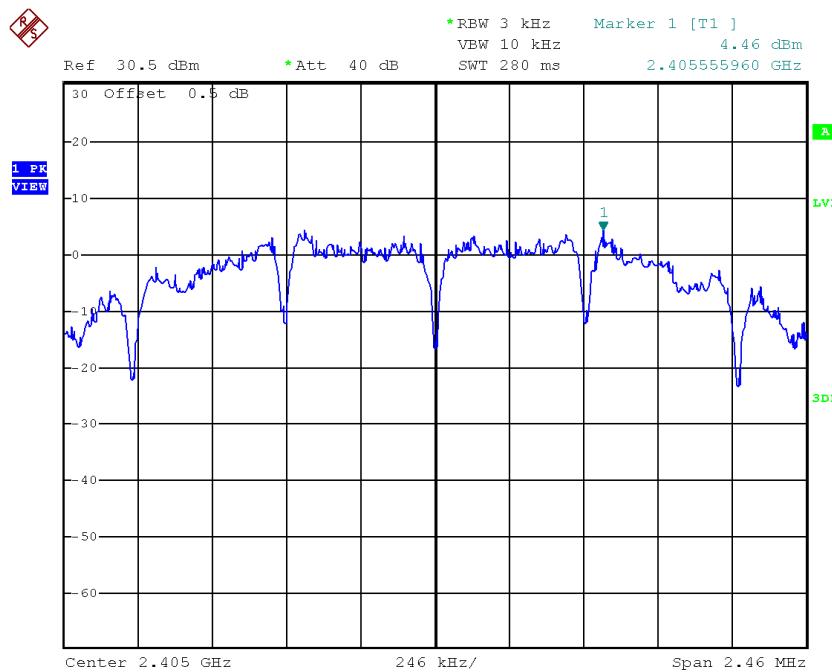
PLOTS OF POWER SPECTRAL DENSITY (100kHz RBW)

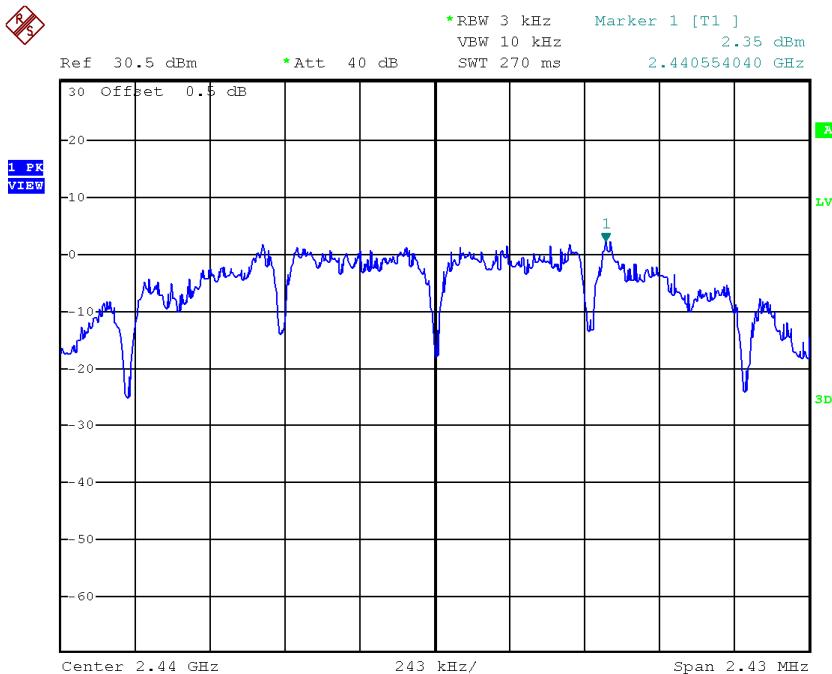
Lowest channel



Middle channel

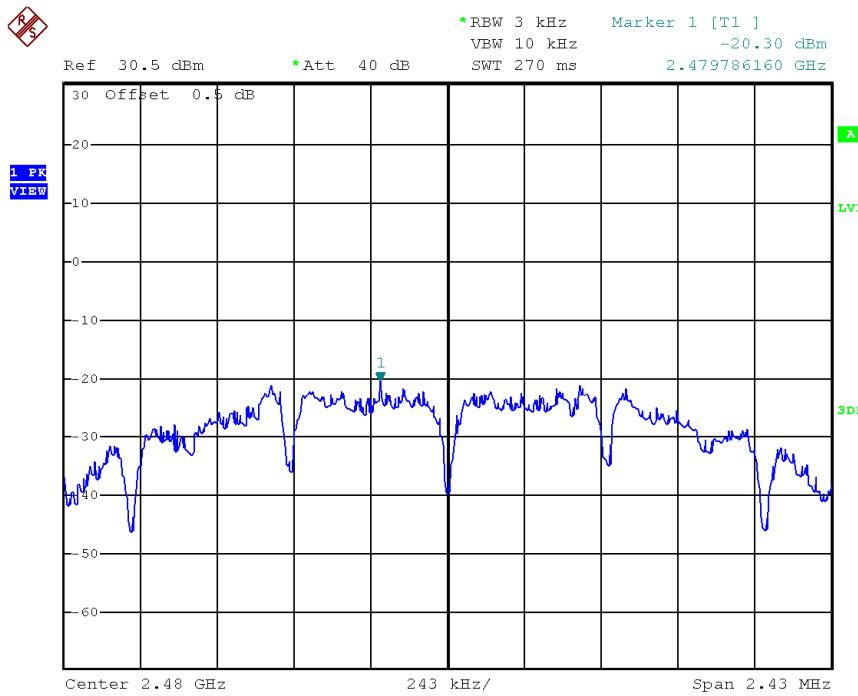
TEST REPORT**PLOTS OF POWER SPECTRAL DENSITY (100kHz RBW)**


Highest channel


TEST REPORT

PLOTS OF POWER SPECTRAL DENSITY (3kHz RBW)

Lowest channel



Middle channel

TEST REPORT**PLOTS OF POWER SPECTRAL DENSITY (3kHz RBW)**

Highest channel

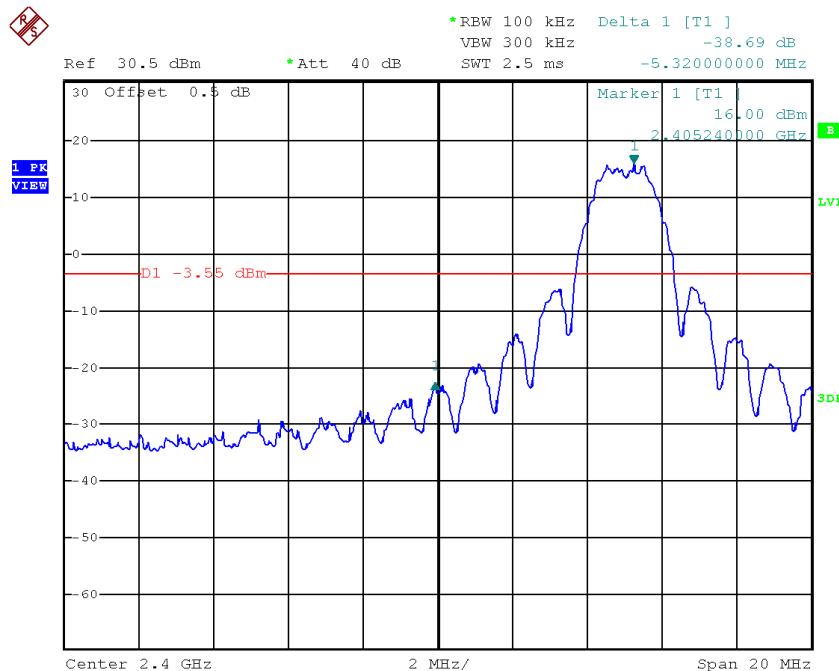
TEST REPORT

4.4 Out of Band Conducted Emissions

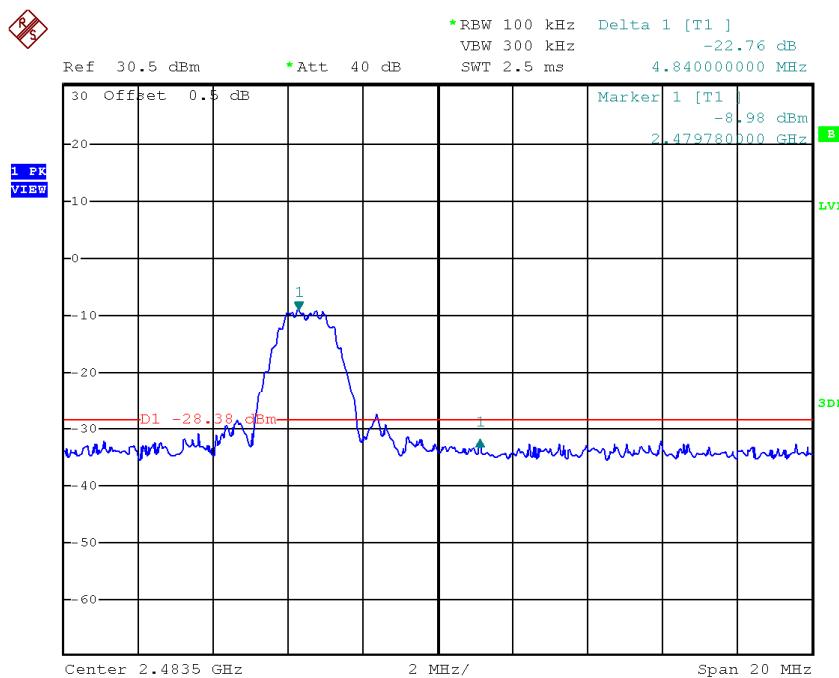
The maximum conducted (peak) output power was used to demonstrate compliance as described in 9.1. Then the display line (in red) shown in the following plots denotes the limit at 20dB below maximum measured in-band peak PSD level in 100 KHz bandwidth.

The measurement procedures under sections 11 of KDB558074 D01 v04 (05-April-2017) were used.

Furthermore, delta measurement technique for measuring bandedge emissions was incorporated in the test of the edge at 2483.5MHz.

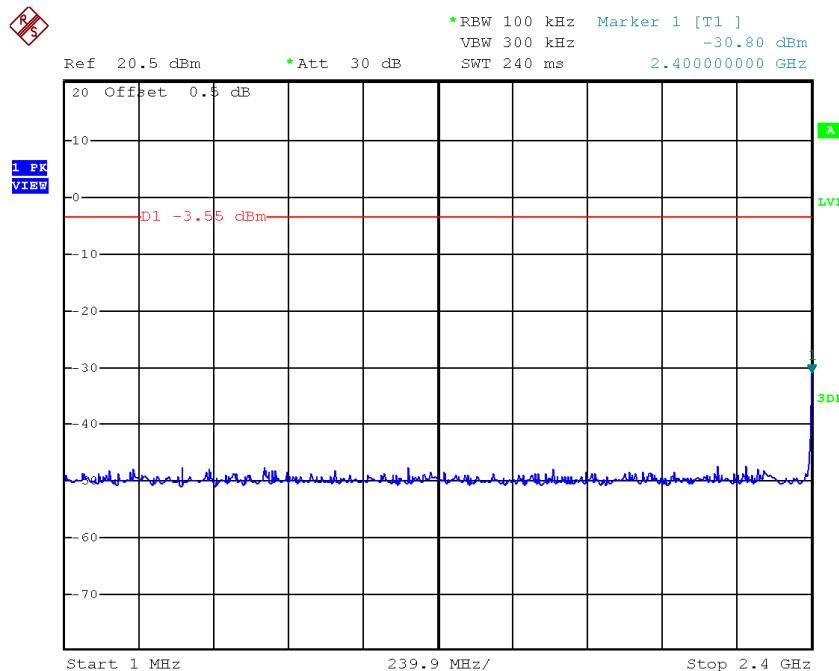

Limits:

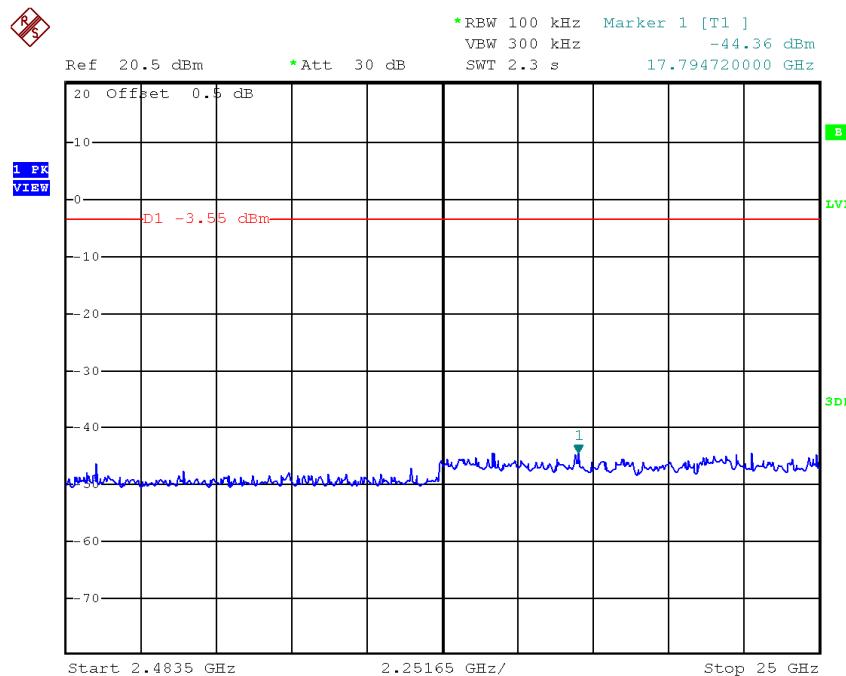
All spurious emission and up to the tenth harmonic was measured and they were found to be at least 20dB below the maximum measured in-band peak PSD level.


TEST REPORT

PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

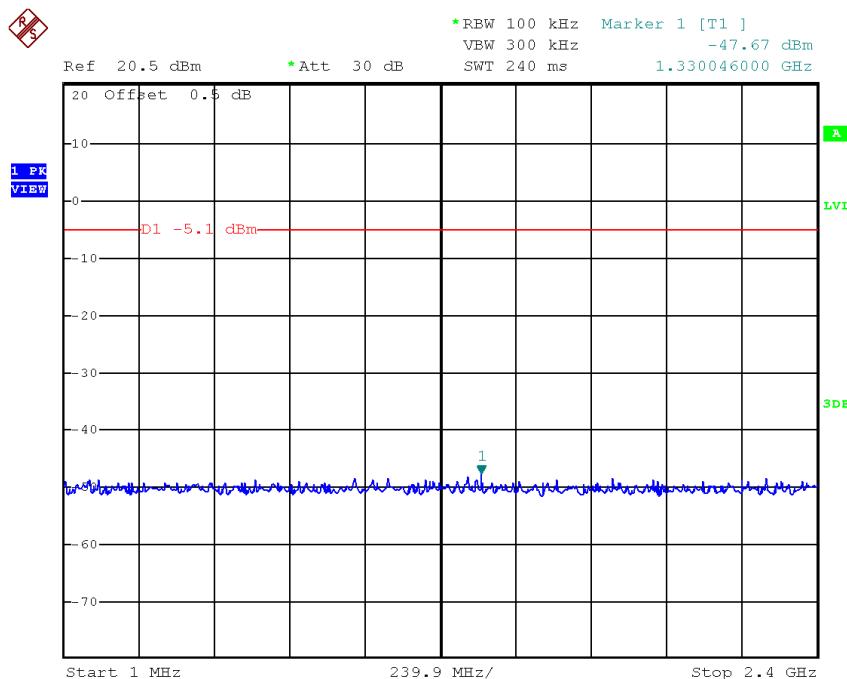
Lowest Channel, Bandedge

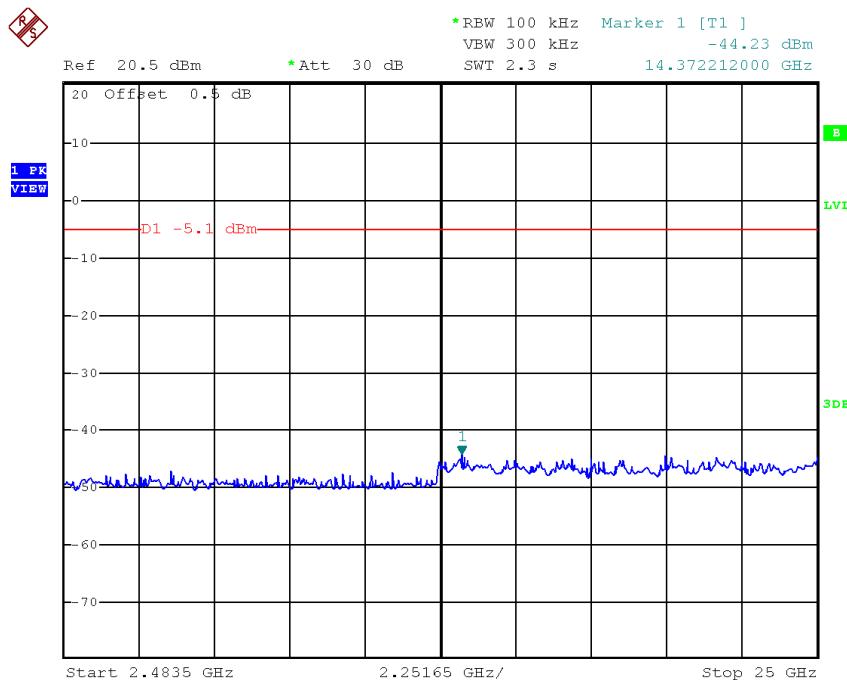

Highest Channel, Bandedge


TEST REPORT

PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

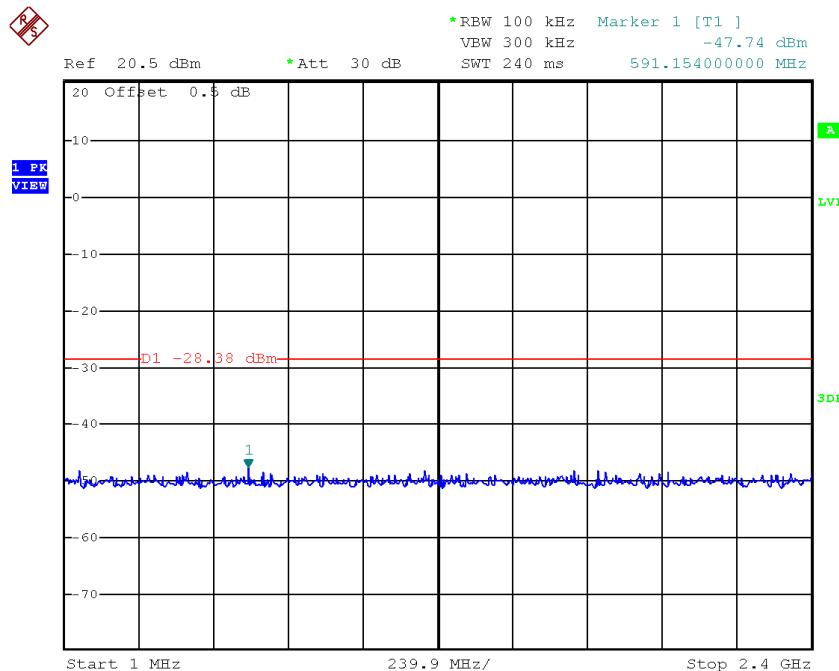
Lowest Channel, Plot A

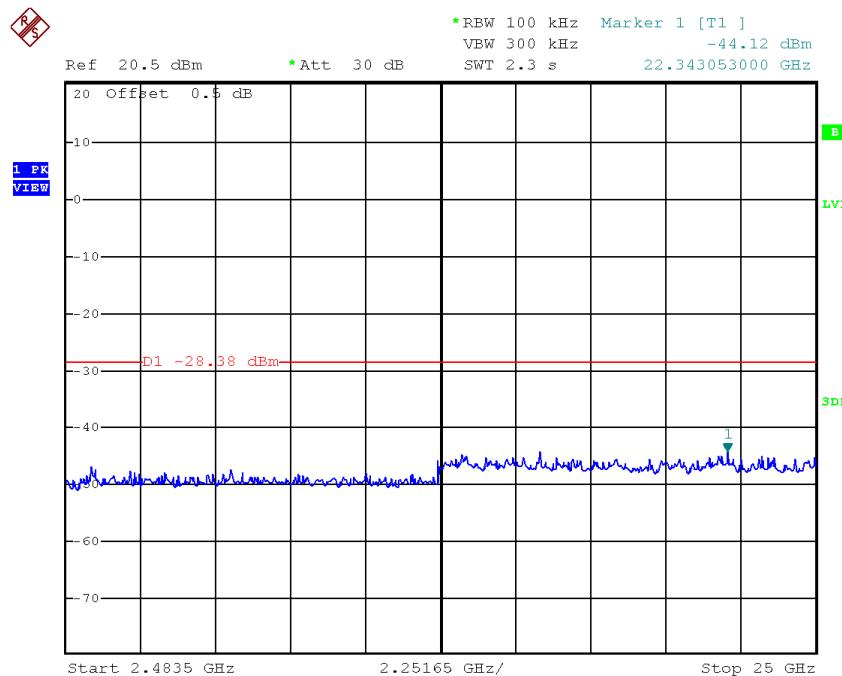

Lowest Channel, Plot B


TEST REPORT

PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

Middle Channel, Plot A


Middle Channel, Plot B


TEST REPORT

PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

Highest Channel, Plot A

Highest Channel, Plot B

TEST REPORT

4.5 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

$$FS = RA + AF + CF - AG + PD + AV$$

Where FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$

RA = Receiver Amplitude (including preamplifier) in $\text{dB}\mu\text{V}$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

PD = Pulse Desensitization in dB

AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

$$FS = RA + AF + CF - AG + PD + AV$$

Example

Assume a receiver reading of 62.0 $\text{dB}\mu\text{V}$ is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29.0 dB is subtracted. The pulse desensitization factor of the spectrum analyzer is 0.0 dB, and the resultant average factor is -10.0 dB. The net field strength for comparison to the appropriate emission limit is 32.0 $\text{dB}\mu\text{V}/\text{m}$. This value in $\text{dB}\mu\text{V}/\text{m}$ is converted to its corresponding level in $\mu\text{V}/\text{m}$.

RA = 62.0 $\text{dB}\mu\text{V}$

AF = 7.4 dB

CF = 1.6 dB

AG = 29.0 dB

PD = 0.0 dB

AV = -10 dB

$$FS = 62.0 + 7.4 + 1.6 - 29.0 + 0.0 + (-10.0) = 32.0 \text{ dB}\mu\text{V}/\text{m}$$

$$\text{Level in } \mu\text{V}/\text{m} = \text{Common Antilogarithm } [(32.0 \text{ dB}\mu\text{V}/\text{m})/20] = 39.8 \mu\text{V}/\text{m}$$

TEST REPORT

4.6 Transmitter Radiated Emissions in Restricted Bands and Spurious Emissions

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

4.6.1 Radiated Emission Configuration Photograph

Worst Case Restricted Band Radiated Emission
at

2390.000 MHz

The worst case radiated emission configuration photographs are saved with filename: config photos.pdf

4.6.2 Radiated Emission Data

The data in tables 1-4 list the significant emission frequencies, the limit and the margin of compliance.

Judgement -

Passed by 1.2 dB margin

TEST REPORT

RADIATED EMISSION DATA

Mode: TX-Channel 2405MHz

Table 1

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dB μ V/m)	Average Limit at 3m (dB μ V/m)	Margin (dB)
H	2390.000	56.4	33	29.4	52.8	54.0	-1.2
H	4810.000	44.7	33	34.9	46.6	54.0	-7.4
H	12025.000	34.9	33	40.5	42.4	54.0	-11.6

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m - Peak (dB μ V/m)	Peak Limit at 3m (dB μ V/m)	Margin (dB)
H	2390.000	69.0	33	29.4	65.4	74.0	-8.6
H	4810.000	56.9	33	34.9	58.8	74.0	-15.2
H	12025.000	45.9	33	40.5	53.4	74.0	-20.6

NOTES:

1. Peak detector is used for the emission measurement.
2. Average measurement method is according to ANSI C63.10.
3. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
4. Negative value in the margin column shows emission below limit.
5. Horn antenna is used for the emission over 1000MHz.
6. Emission (the row indicated by ***bold italic***) within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.

TEST REPORT

Mode: TX-Channel 2440MHz

Table 2

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dB μ V/m)	Average Limit at 3m (dB μ V/m)	Margin (dB)
H	4880.000	44.6	33	34.9	46.5	54.0	-7.5
H	7320.000	42.5	33	37.9	47.4	54.0	-6.6
H	12200.000	34.7	33	40.5	42.2	54.0	-11.8

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m - Peak (dB μ V/m)	Peak Limit at 3m (dB μ V/m)	Margin (dB)
H	4880.000	57.6	33	34.9	59.5	74.0	-14.5
H	7320.000	57.8	33	37.9	62.7	74.0	-11.3
H	12200.000	46.5	33	40.5	54.0	74.0	-20.0

NOTES:

1. Peak detector is used for the emission measurement.
2. Average measurement method is according to ANSI C63.10.
3. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
4. Negative value in the margin column shows emission below limit.
5. Horn antenna is used for the emission over 1000MHz.
6. Emission (the row indicated by ***bold italic***) within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.

TEST REPORT

Mode: TX-Channel 2480MHz

Table 3

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dB μ V/m)	Average Limit at 3m (dB μ V/m)	Margin (dB)
H	2483.500	50.4	33	29.4	46.8	54.0	-7.2
H	4960.000	36.9	33	34.9	38.8	54.0	-15.2
H	7440.000	35.9	33	37.9	40.8	54.0	-13.2
H	12400.000	35.3	33	40.5	42.8	54.0	-11.2

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m - Peak (dB μ V/m)	Peak Limit at 3m (dB μ V/m)	Margin (dB)
H	2483.500	65.2	33	29.4	61.6	74.0	-12.4
H	4960.000	41.7	33	34.9	43.6	74.0	-30.4
H	7440.000	42.5	33	37.9	47.4	74.0	-26.6
H	12400.000	45.6	33	40.5	53.1	74.0	-20.9

NOTES:

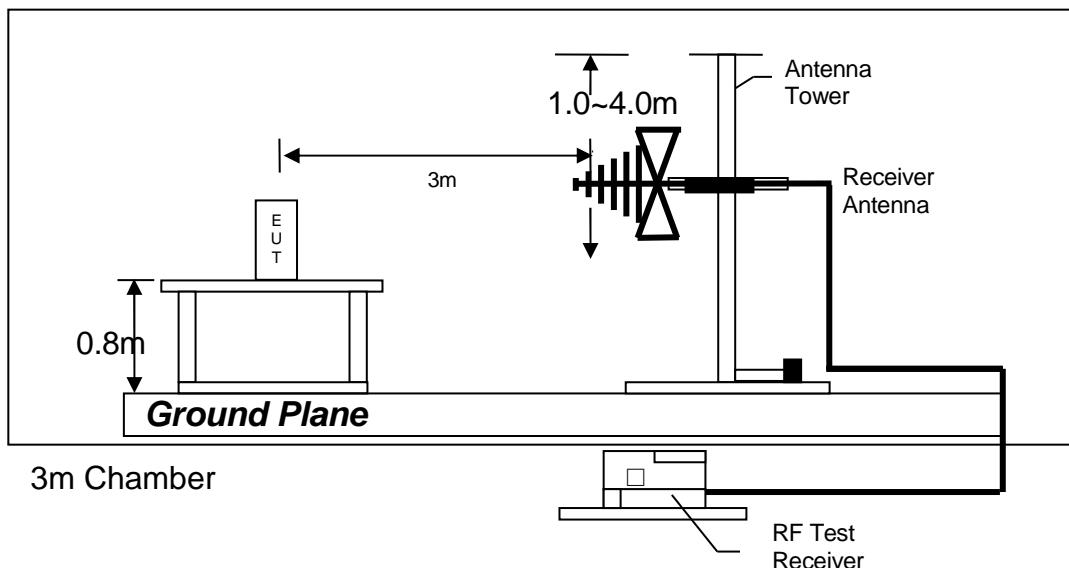
1. Peak detector is used for the emission measurement.
2. Average measurement method is according to ANSI C63.10.
3. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
4. Negative value in the margin column shows emission below limit.
5. Horn antenna is used for the emission over 1000MHz.
6. Emission (the row indicated by ***bold italic***) within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.

TEST REPORT

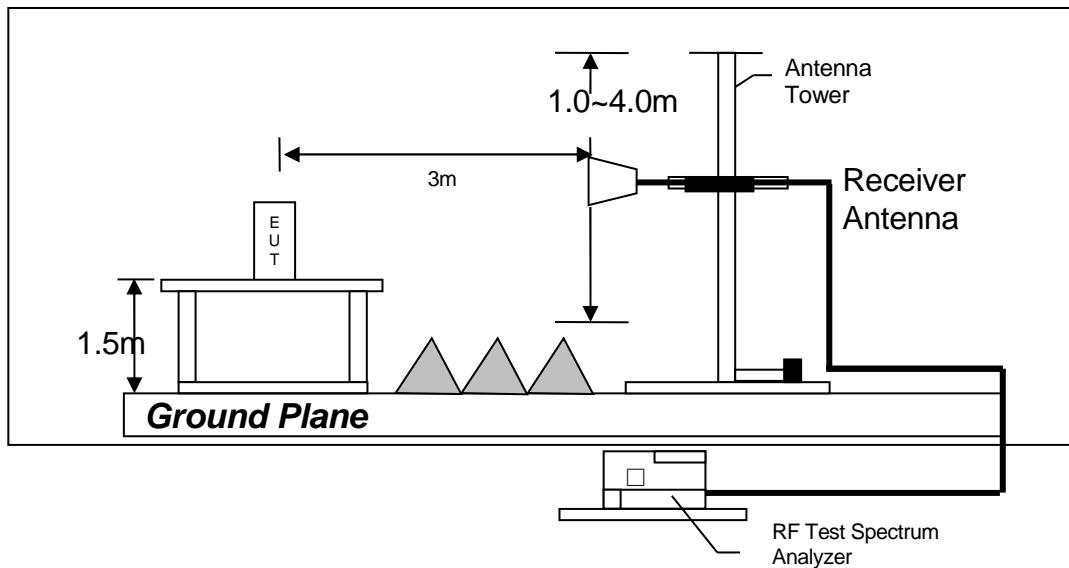
Mode: ZigBee Operating

Table 4

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-amp (dB)	Antenna Factor (dB)	Net at 3m (dB μ V/m)	Limit at 3m (dB μ V/m)	Margin (dB)
V	99.008	45.5	16	12.0	41.5	43.5	-2.0
V	100.880	44.2	16	12.0	40.2	43.5	-3.3
V	101.572	45.0	16	13.0	42.0	43.5	-1.5
H	214.508	32.5	16	17.0	33.5	43.5	-10.0
H	233.770	31.0	16	19.0	34.0	46.0	-12.0
H	234.948	27.6	16	19.0	30.6	46.0	-15.4


NOTES: 1. Quasi-Peak detector is used for the emission measurement.

2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.
4. Emission (the row indicated by ***bold italic***) within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.


TEST REPORT

4.6.3 Radiated Emission Test Setup

The figure below shows the test setup, which is utilized to make these measurements.

Test setup of radiated emissions up to 1GHz

Test setup of radiated emissions above 1GHz

TEST REPORT

4.6.4 Transmitter Duty Cycle Calculation

Not applicable – No average factor is required.

TEST REPORT

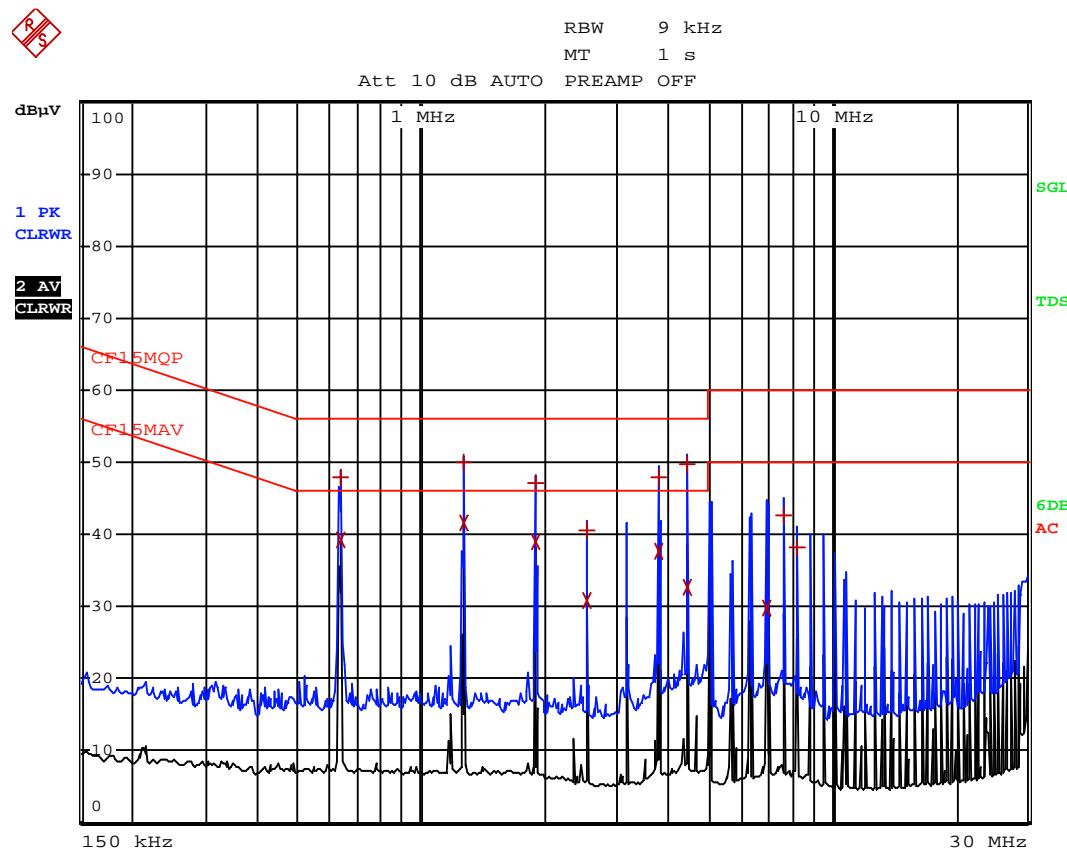
4.7 AC Power Line Conducted Emission

- Not applicable – EUT is only powered by battery for operation.
- EUT connects to AC power line. Emission Data is listed in following pages.
- Base Unit connects to AC power line and has transmission. Handset connects to AC power line but has no transmission. Emission Data of Base Unit is listed in following pages.

4.7.1 AC Power Line Conducted Emission Configuration Photograph

Worst Case Line-Conducted Configuration
at
1.271 MHz

The worst case line conducted configuration photographs are attached in the Appendix and saved with filename: config photos.pdf


4.7.2 AC Power Line Conducted Emission Data

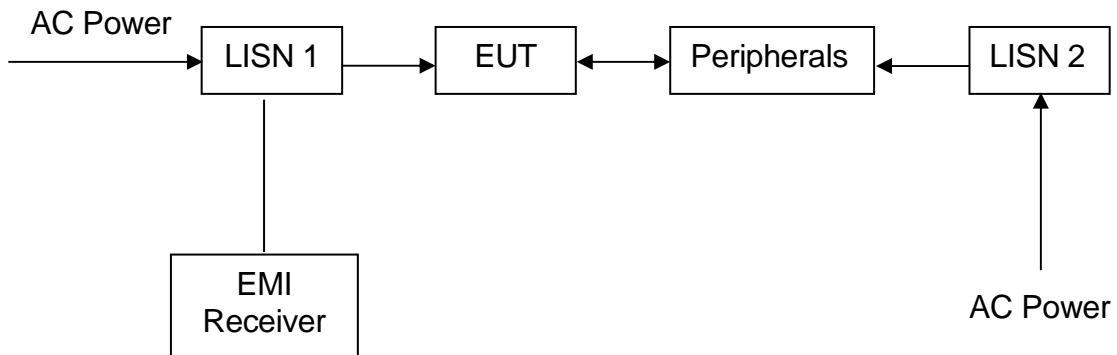
The plot(s) and data in the following pages list the significant emission frequencies, the limit and the margin of compliance.

Passed by 4.5 dB margin compare with CISPR Average limit

TEST REPORT**AC POWER LINE CONDUCTED EMISSION**

Worst Case: ZigBee Operating

Date: 23.FEB.2018 05:16:53

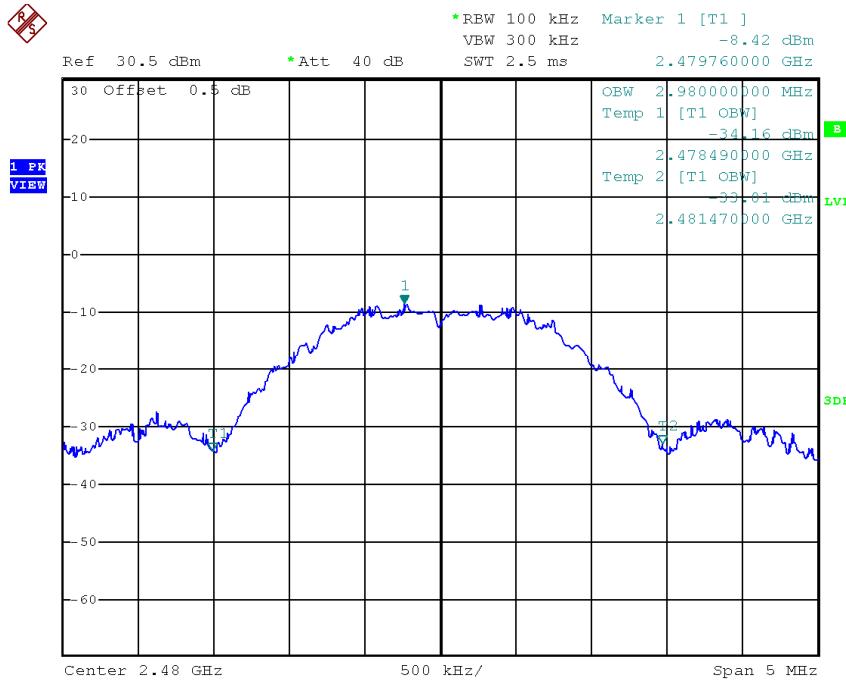

TEST REPORT**Worst Case: ZigBee Operating**

EDIT PEAK LIST (Final Measurement Results)					
Trace1:	CF15MQP	TRACE	FREQUENCY	LEVEL dB μ V	DELTA LIMIT dB
Trace2:	CF15MAV	1	Quasi Peak 636 kHz	47.83 N	-8.16
Trace3:	---	2	CISPR Average 636 kHz	39.19 L1	-6.80
		1	Quasi Peak 1.2705 MHz	49.93 N	-6.06
		2	CISPR Average 1.2705 MHz	41.49 L1	-4.50
		1	Quasi Peak 1.905 MHz	47.20 N	-8.80
		2	CISPR Average 1.905 MHz	38.93 L1	-7.06
		1	Quasi Peak 2.5395 MHz	40.62 N	-15.37
		2	CISPR Average 2.5395 MHz	30.93 N	-15.06
		1	Quasi Peak 3.8085 MHz	47.81 L1	-8.18
		2	CISPR Average 3.8085 MHz	37.59 L1	-8.40
		2	CISPR Average 4.4385 MHz	32.71 L1	-13.28
		1	Quasi Peak 4.443 MHz	49.78 N	-6.21
		2	CISPR Average 6.981 MHz	29.81 L1	-20.19
		1	Quasi Peak 7.6155 MHz	42.68 L1	-17.31
		1	Quasi Peak 8.2545 MHz	38.05 L1	-21.94

Date: 23.FEB.2018 05:16:32

TEST REPORT

4.7.3 Conducted Emission Test Setup



TEST REPORT

Occupied Bandwidth Results: (ZigBee)

(ZigBee)	Occupied Bandwidth (MHz)
Low Channel: 2405MHz	2.46
Middle Channel: 2440MHz	2.42
High Channel: 2480MHz	2.98

The worst case is shown as below

TEST REPORT

EXHIBIT 5 EQUIPMENT LIST

5.0 EQUIPMENT LIST

1) Radiated Emissions Test

EQUIPMENT	EMI Test Receiver	BICONICAL ANTENNA	LOG PERIODIC ANTENNA
Registration No.	EW-2500	EW-2512	EW-1042
Manufacturer	ROHDE SCHWARZ	EMCO	EMCO
Model No.	ESCI	3104C	3148
Calibration Date	Oct. 13, 2017	Nov. 16, 2016	Jun. 19, 2017
Calibration Due Date	Oct. 13, 2018	May. 16, 2018	Dec. 19, 2018

EQUIPMENT	SPECTRUM ANALYZER	Pyramidal Horn Antenna	DOUBLE RIDGED GUIDE ANTENNA
Registration No.	EW-2253	EW-0905	EW-1015
Manufacturer	ROHDE SCHWARZ	EMCO	EMCO
Model No.	FSP40	3160-09	3115
Calibration Date	Jul. 24, 2017	Aug. 18, 2017	Nov. 17, 2017
Calibration Due Date	Jul. 24, 2018	Feb. 18, 2019	May. 17, 2019

Equipment	Active Loop H-field (9kHz to 30MHz)	RF Cable 9kHz to 1000MHz	RF Cable 14m (1GHz to 26.5GHz)
Registration No.	EW-3326	EW-3170	EW-2781
Manufacturer	EMCO	N/A	GREATBILLION
Model No.	6502	9kHz to 1000MHz	SMA m/SHF5MPU /SMA m ra14m,26G
Calibration Date	Sep. 27, 2017	Mar. 20, 2017	Sep. 25, 2017
Calibration Due Date	Mar. 27, 2019	Mar. 20, 2018	Sep. 25, 2018

Equipment	RF PRE-AMPLIFIER 3 PCS (9KHZ TO 40GHZ)	Notch Filter (cutoff frequency 2.4GHz to 2.5GHz)
Registration No.	EW-3006	EW-2213
Manufacturer	SCHWARZBECK	MICROTRONICS
Model No.	BBV 9718	BRM50701-02
Calibration Date	Mar. 23, 2017	May. 26, 2017
Calibration Due Date	Mar. 23, 2018	May. 26, 2018

TEST REPORT

2) Conducted Emissions Test

Equipment	RF Power Meter with Power Sensor (N1921A)	RF Cable (up to 40GHz) 1.5m length	SPECTRUM ANALYZER
Registration No.	EW-2270	EW-3104	EW-2253
Manufacturer	AGILENTTECH	N/A	ROHDE SCHWARZ
Model No.	N1911A	SMA-M to SMA-M	FSP40
Calibration Date	Jan. 15, 2018	Feb. 28, 2017	Jul. 24, 2017
Calibration Due Date	Jan. 15, 2019	Feb. 28, 2018	Jul. 24, 2018

3) Bandedge/Bandwidth Measurement

EQUIPMENT	RF Cable (up to 40GHz) 1.5m length	SPECTRUM ANALYZER
Registration No.	EW-3104	EW-2253
Manufacturer	N/A	ROHDE SCHWARZ
Model No.	SMA-M to SMA-M	FSP40
Calibration Date	Feb. 28, 2017	Jul. 24, 2017
Calibration Due Date	Feb. 28, 2018	Jul. 24, 2018

TEST REPORT

4) Conducted Emissions Test

Equipment	EMI Test Receiver	RF Cable 9kHz to 1000MHz	Artificial Mains Network
Registration No.	EW-2500	EW-3170	EW-0192
Manufacturer	ROHDE SCHWARZ	N/A	ROHDE SCHWARZ
Model No.	ESCI	9kHz to 1000MHz	ESH3-Z5
Calibration Date	Oct. 13, 2017	Mar. 20, 2017	Oct. 27, 2017
Calibration Due Date	Oct. 13, 2018	Mar. 20, 2018	Aug. 25, 2018

- End of Report -