FCC TEST REPORT

CATEGORY: Portable

PRODUCT NAME: Xbox Basic Wireless Controller

FCC ID. : RNIX827608-D

FILING TYPE: Certification

BRAND NAME: Hip Interactive

MODEL NAME: LM608

APPLICANT : Esel International Co. Ltd

Rm 15-17, 5/F, Cardinal Ind, Bldg, No. 17 On Lok Mun St.,

Fanling, N.T., Hong Kong

MANUFACTURER : Eastern Sources Electronics Manufacturer

Daji Industrial Zone, Hengshan District, Shipai Town,

Dongguan City, Guangdong, China

ISSUED BY: SPORTON INTERNATIONAL INC.

6F, No. 106, Sec. 1, Hsin Tai Wu Rd., His Chih, Taipei Hsien,

Taiwan, R.O.C.

Statements:

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

Certificate or Test Report could not be used by the applicant to claim the product endorsement by CNLA, NVLAP or any agency of U.S. government.

The test equipment used to perform the test are calibrated and traceable to NML/ROC or NIST/USA.

Dr. Alan Lane

Vice General Manager Sporton International Inc. Lab Code: 200079-0

Table of Contents

History of this test report	ii
CERTIFICATE OF COMPLIANCE	iii
1. General Description of Equipment under Test. 1.1. Applicant. 1.2. Manufacturer. 1.3. Basic Description of Equipment under Test. 1.4. Features of Equipment under Test. 1.5. Table for Carrier Frequencies.	1 1 1
2. Test Configuration of the Equipment under Test	3
2.1. Connection Diagram of Test System 2.2. The Test Mode Description 3.3. Description of Test Supporting Units	3
3. General Information of Test	4
3.1. Test Facility	4 4
3.5. Frequency Range Investigated 3.6. Test Distance 3.7. Test Software	4
4. List of Measurements	5
4.1. Summary of the Test Results	5
5. Test Result	6
Test of Maximum Carrier Field Strength Test of Band Edges Emission Test of AC Power Line Conducted Emission	8
5.4. Test of Spurious Radiated Emission	
5.5. Photographs of Radiated Emission Test Configuration	17
5.6. Antenna Requirements	18
6. List of Measuring Equipments Used	19
Appendix A. Photographs of EUT	A1 ~ A10

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255:

Original Report Issue Date: Nov. 12, 2004

Report No.: FR492801

FCC ID: RNIX827608-D Issued on Nov. 12, 2004

History of this test report

Attachment No.	Issue Date	Description

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255:

CERTIFICATE OF COMPLIANCE

with

47 CFR FCC Part 15 Subpart C (Section 15.249)

PRODUCT NAME: Xbox Basic Wireless Controller

BRAND NAME: Hip Interactive

MODEL NAME: LM608

APPLICANT : Esel International Co. Ltd

Rm 15-17, 5/F, Cardinal Ind, Bldg, No. 17 On Lok Mun St.,

Fanling, N.T., Hong Kong

MANUFACTURER : Eastern Sources Electronics Manufacturer

Daji Industrial Zone, Hengshan District, Shipai Town,

Dongguan City, Guangdong, China

I **HEREBY** CERTIFY THAT:

The measurements shown in this test report were made in accordance with the procedures given in ANSI C63.4 - 2003 and all test are performed according to 47 CFR FCC Part 15. Testing was carried out on Nov. 11, 2004 at SPORTON International Inc. LAB.

Dr. Alan Lane

Vice General Manager Sporton International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255: Page No. : iii

Issued Date : Nov. 12, 2004

Report No.: FR492801

1. General Description of Equipment under Test

1.1. Applicant

Esel International Co. Ltd

Rm 15-17, 5/F, Cardinal Ind, Bldg, No. 17 On Lok Mun St., Fanling, N.T., Hong Kong

1.2. Manufacturer

Eastern Sources Electronics Manufacturer

Daji Industrial Zone, Hengshan District, Shipai Town, Dongguan City, Guangdong, China

1.3. Basic Description of Equipment under Test

This product is a set of wireless controller. There are two parts for the EUT, the joystick (controller) and the receiver which is powered by XBOX. Both of them are transceiver. This report is for the controller part only. The technical data has been listed on section "Features of Equipment under Test".

1.4. Features of Equipment under Test

Items	Description				
Type of Modulation	:	FSK			
Number of Channels	:	80			
Frequency Band	:	2400MHz ~ 2483.5MHz			
Carrier Frequency	:	See section 0 for details			
Channel Bandwidth	:	1MHz			
Antenna Type	:	Printed Antenna			
Testing Duty Cycle	:	100.00%			
Power Rating (DC/AC, Voltage)	:	3.0 VDC(battery powered)			
Test Power Source	:	NA			
Temperature Range (Operating)	:	0 ~ 55 ℃			

Page No. : 1 of 19 TEL: 886-2-2696-2468 Issued Date : Nov. 12, 2004

FAX: 886-2-2696-2255

1.5. Table for Carrier Frequencies

Channel Channel Frequency Frequency Channel **Frequency** Channel Frequency 00 2402 MHz 20 2422 MHz 40 2442 MHz 60 2462 MHz 01 2403 MHz 2423 MHz 41 2443 MHz 61 2463 MHz 21 02 2404 MHz 22 2424 MHz 42 2444 MHz 62 2464 MHz 03 2405 MHz 2425 MHz 2445 MHz 23 43 63 2465 MHz 04 2406 MHz 24 2426 MHz 44 2446 MHz 64 2466 MHz 05 2407 MHz 25 2427 MHz 45 2447 MHz 65 2467 MHz 06 2408 MHz 26 2428 MHz 46 2448 MHz 66 2468 MHz 07 2409 MHz 27 2429 MHz 47 2449 MHz 67 2469 MHz 80 2410 MHz 28 2430 MHz 48 2450 MHz 68 2470 MHz 09 2411 MHz 29 2431 MHz 49 2451 MHz 69 2471 MHz 10 2412 MHz 30 2432 MHz 50 2452 MHz 70 2472 MHz 11 2413 MHz 31 2433 MHz 51 2453 MHz 71 2473 MHz 12 2414 MHz 32 2434 MHz 52 2454 MHz 72 2474 MHz 13 2415 MHz 2435 MHz 2455 MHz 73 2475 MHz 33 53 14 2416 MHz 34 2436 MHz 54 2456 MHz 74 2476 MHz 15 2417 MHz 35 2437 MHz 2457 MHz 75 2477 MHz 55 16 2418 MHz 36 2438 MHz 56 2458 MHz 76 2478 MHz 17 2419 MHz 37 2439 MHz 57 2459 MHz 77 2479 MHz 18 2420 MHz 38 2440 MHz 58 2460 MHz 78 2480 MHz 19 2421 MHz 39 2441 MHz 59 2461 MHz 79 2481MHz

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Issued Date : Nov. 12, 2004

2. Test Configuration of the Equipment under Test

2.1. Connection Diagram of Test System

EUT	

2.2. The Test Mode Description

Spurious emission below 1GHz is independent of channel selection, so only channel 79 was tested. AC conduction emission is independent of channel selection, so only channel 79 was tested.

2.3. Description of Test Supporting Units

Support unit	Brand	Model No.	Serial No.	FCC ID	Data cable (m)
X BOX	MICROSOFT	-	-	DoC	-

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 3 of 19 Issued Date : Nov. 12, 2004

Report No.: FR492801

3. General Information of Test

3.1. Test Facility

Test Site Location : No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiag, Tao

Yuan Hsien, Taiwan, R.O.C.

: TEL 886-3-327-3456

: FAX 886-3-318-0055

Test Site No : 03CH03-HY / CO04-HY

3.2. Test Conditions

: 3VDC Normal Voltage Extreme Voltages : NA Normal Temperature : **20**℃

Extreme Temperature : 0 °C and 55 °C

3.3. Standards for Methods of Measurement

Here is the list of the standards followed in this test report.

ANSI C63.4-2003

47 CFR Part 15 Subpart C (Section 15.249)

3.4. DoC Statement

This EUT is also classified as a device of computer peripheral Class B which DoC has to be followed. It has been verified according to the rule of 47 CFR part 15 Subpart B, and found that all the requirements has been fulfilled.

3.5. Frequency Range Investigated

Radiated emission test: from 30 MHz to 10th carrier harmonic

3.6. Test Distance

The test distance of radiated emission (30MHz~1GHz) test from antenna to EUT is 3 M. The test distance of radiated emission (1GHz~10th carrier harmonic) test from antenna to EUT is 1 M.

3.7. Test Software

During testing, Channel & Power Controlling Software: This was provided by the manufacturer and is able to let the test engineer select the operating channel as well as the RF output power. The parameters for channel selection is trying to offer the test engineer the ability to fix the operating channel for testing, both normal data and continuously transmitting modes are allowed, and that for RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

SPORTON International Inc.

Page No. : 4 of 19 TEL: 886-2-2696-2468 Issued Date: Nov. 12, 2004

FAX: 886-2-2696-2255

Issued on Nov. 12, 2004 Report No.: FR492801

4. List of Measurements

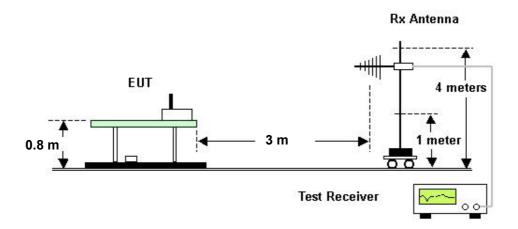
4.1. Summary of the Test Results

Applied Standard: 47 CFR Part 15 and Part 2

Paragraph	FCC Rule	Description of Test	Result
5.1	15.249	Maximum Carrier Field Strength	Pass
5.2	15.249	Band Edges Emission	Pass
5.3	15.207	AC Power Line Conducted Emission	Pass
5.4	15.209/15.249	Spurious Radiated Emission	Pass
5.6	15.203	Antenna Requirement	Pass

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255

5. Test Result


5.1. Test of Maximum Carrier Field Strength

5.1.1. Measuring Instruments

Item 6~17 of the table is on section 6.

5.1.2. Test Procedures

- 1. Configure the EUT according to ANSI C63.4.
- 2. The turn table was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 4. For carrier field strength emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. For carrier field strength emission, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 6. Test Setup Layout

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 6 of 19 Issued Date : Nov. 12, 2004

5.1.3. Test Result:

Temperature: 26°CRelative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Ted Chou

Channel	Frequency	Level	Over	Limit	Read	Detector
			Limit	Line	Level	
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	
00	2402 MHz	69.47	-24.53	94.00	39.44	Average
00	2402 MHz	74.16	-39.84	114.00	44.13	Peak
39	2441 MHz	70.84	-23.16	94.00	40.70	Average
39	2441 MHz	76.15	-37.85	114.00	46.01	Peak
79	2481 MHz	69.42	-24.58	94.00	39.15	Average
79	2481 MHz	74.77	-39.23	114.00	44.50	Peak

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 7 of 19 Issued Date : Nov. 12, 2004

Issued on Nov. 12, 2004 Report No.: FR492801

Test of Band Edges Emission

5.2.1. Measuring Instruments

Item 6~17 of the table is on section 6.

5.2.2. Test Procedures

- 1. The transmitter is set to the lowest and highest channel.
- 2. Configure the EUT according to ANSI C63.4.
- 3. The turn table was rotated by 360 degrees to determine the position of the highest radiation.
- 4. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 5. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For band edge emission, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.

5.2.3. Test Result:

Temperature: 26°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Ted Chou

Test	Test Freq.		Margin	Limit	Read	Trace
Channel	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(PK/AV)
00	2337.540	55.80	-18.20	74	25.93	PK
00	2337.540	40.81	-13.19	54	10.94	AV
79	2483.670	57.44	-16.56	74	27.16	PK
79	2483.670	50.43	-3.57	54	20.15	AV

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level*.

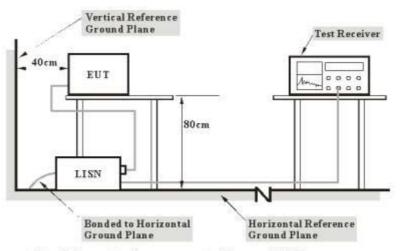
Level*: The max field strength in the restricted bands.

SPORTON International Inc.

Page No. : 8 of 19 TEL: 886-2-2696-2468 Issued Date : Nov. 12, 2004 FAX: 886-2-2696-2255

Issued on Nov. 12, 2004 Report No.: FR492801

Test of AC Power Line Conducted Emission


5.3.1. Measuring Instruments

Please reference item 1~5 in chapter 6 for the instruments used for testing.

5.3.2. Test Procedures

- 1. Configure the EUT according to ANSI C63.4.
- 2. The EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN)
- 4. All the support units are connected to the other LISNs. The LISN should provides 50uH/50ohms coupling impedance.
- 5. The frequency range from 150 KHz to 30 MHz was searched.
- 6. Use the Channel & Power Controlling software to make the EUT working on selected channel and expected output power, then use the "H" Patter Generator software to make the supporting equipments stay on working condition.
- 7. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 8. The measurement has to be done between each power line and ground at the power terminal for each RF channel. Only one RF channel has to be investigated since this test is independent with the RF channel selection.

5.3.3. Test Setup Layout

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

Page No. : 9 of 19 TEL: 886-2-2696-2468 Issued Date: Nov. 12, 2004 FAX: 886-2-2696-2255

Issued on Nov. 12, 2004 Report No.: FR492801

5.3.4. Test Result of Conducted Emission

Temperature: 26°CRelative Humidity: 64%Test Engineer: Hikaru Chan

Line to Ground

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark	
	MHz	dBuV	- dB	dBuV	dBuV	dB	dВ	E .	
1	0.2134510	49.59	-13.48	63.07	49.48	0.10	0.01	QP	
2	0.2134510	49.38	-3.69	53.07	49.27	0.10	0.01	Average	
3	0.6338280	43.58	-2.42	46.00	43.45	0.10	0.03	Average	
4	0.6338280	43.63	-12.37	56.00	43.50	0.10	0.03	QP	
5	1.164	40.04	-5.96	46.00	39.90	0.10	0.04	Average	
6	1.164	44.68	-11.32	56.00	44.54	0.10	0.04	QP	
7	1.270	43.68	-2.32	46.00	43.55	0.10	0.03	Average	
8	1.270	46.33	-9.67	56.00	46.20	0.10	0.03	QP	
9	1.480	48.68	-7.32	56.00	48.55	0.10	0.03	QP	
10	@ 1.480	44.96	-1.04	46.00	44.83	0.10	0.03	Average	
11	1.590	39.77	-16.23	56.00	39.64	0.10	0.03	QP	
12	1.590	32.41	-13.59	46.00	32.28	0.10	0.03	Average	

Neutral to Ground

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	-
1	0.2094380	50.91	-2.32	53.23	50.80	0.10	0.01	Average
2	0.2094380	51.18	-12.05	63.23	51.07	0.10	0.01	QP
3	0.5293420	42.02	-3.98	46.00	41.89	0.10	0.03	Average
4	0.5293420	42.43	-13.57	56.00	42.30	0.10	0.03	QP
5	0.6339000	44.29	-1.71	46.00	44.16	0.10	0.03	Average
6	0.6339000	44.64	-11.36	56.00	44.51	0.10	0.03	
7	1.160	45.14	-10.86	56.00	45.00	0.10	0.04	QP
8	1.160	38.89	-7.11	46.00	38.75	0.10	0.04	Average
9	1.267	42.99	-3.01	46.00	42.86	0.10	0.03	Average
10	1.267	46.19	-9.81	56.00	46.06	0.10	0.03	QP
11	1.481	43.77	-2.23	46.00	43.64	0.10	0.03	Average
12	1.481	49.73	-6.27	56.00	49.60	0.10	0.03	QP

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 10 of 19 Issued Date : Nov. 12, 2004

5.3.5. Photographs of Conducted Emission Test Configuration

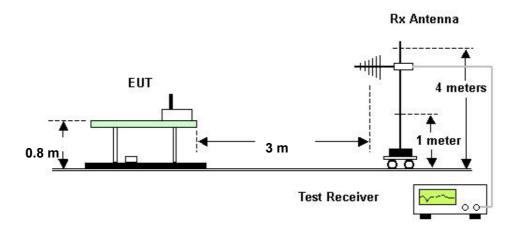
FRONT VIEW

REAR VIEW

SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 11 of 19 Issued Date : Nov. 12, 2004

5.4. Test of Spurious Radiated Emission


5.4.1. Measuring Instruments

Please reference item 6~17 in chapter 6 for the instruments used for testing.

5.4.2. Test Procedures

- 1. Configure the EUT according to ANSI C63.4.
- 2. The EUT was placed on the top of the turn table 0.8 meter above ground.
- 3. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turn table.
- 4. Power on the EUT and all the supporting units.
- 5. The turn table was rotated by 360 degrees to determine the position of the highest radiation.
- 6. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 7. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 8. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 9. For emission above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 10. If the emission level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz and average method for above the 1GHz, the reported.
- 11. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB higher than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

5.4.3. Test Setup Layout

SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 12 of 19
Issued Date : Nov. 12, 2004

Report No.: FR492801

5.4.4. Test Results for CH 79 / 2481 MHz (for emission below 1GHz)

Temperature: 26°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Ted Chou

(A) Polarization: Horizontal

		Freq	Level	Over Limit		Read Level	Probe Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	50	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB		cm	deg
1		133.190	31.39	-12.11	43.50	44.07	12.42	2.03	27.13	Peak	222	
2	į	144.070	42.21	-1.29	43.50	54.89	12.31	2.12	27.11	QP		0444
3	!	192.350 400.000	38.90 39.87			48.24 47.30		2.49	27.01 27.70		===	
2		749.600	32.93	-13.07	46.00	34.69	21.30	4.84	27.90	Peak		
3		900.000	33.09	-12.91	46.00	33.25	21.70	5.34	27.20	Peak		

(B) Polarization: Vertical

	Freq		Level	Over Limit			Probe Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	-	MHz	MHz dBuV/m	MHz dBuV/m dB dBuV/m dBu	dBuV	dB	dB dB		· 2	cw	deg	
1	.1	48.020	39.78	-0.22	40.00	54.41	11.78	1.17	27.58	QP	122	33
2	į	144.070	41.31	-2.19	43.50	53.99	12.31	2.12	27.11	QP		
3		192.350 298.400		-14.92 -11.33		37.92 44.35		2.49	27.01 26.51		===	-
2		749.600	35.48	-10.52	46.00	37.24	21.30	4.84	27.90	Peak		
3		838 400	35 91	-10 09	46 00	36 33	21 82	5 27	27 51	Dook	10-0-0	10

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Page No. : 13 of 19 TEL: 886-2-2696-2468 Issued Date : Nov. 12, 2004

FAX: 886-2-2696-2255

Report No.: FR492801

5.4.5. Test Results for CH 00 / 2402 MHz (for emission above 1GHz)

 Temperature: 26°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Ted Chou

(A) Polarization: Horizontal

	Freq	Freq	Freq	Level	Over Limit			Probe Factor				Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	: ::	cm	deg		
1	1072.000	48.38	-25.62	74.00	62.10	24.32	1.19	39.23	Peak				
2	4838.000	44.51	-29.49	74.00	49.08	33.02	2.55	40.14	Peak		0.444		
3	6712.000	47.21	-26.79	74.00	49.23	34.63	2.98	39.63	Peak				

(B) Polarization: Vertical

	Freq	Freq L	Freq	Freq	Over Freq Level Limit		Probe Factor		Preamp Factor		Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	· · · · · · · · · · · · · · · · · · ·	cm	deg	
1	1920.000	49.08	-24.92	74.00	60.07	27.02	1.56	39.57	Peak			
2	13716.000	56.87	-17.13	74.00	49.04	40.72	5.57	38.46	Peak			
3	13716.000	46.84	-7.16	54.00	39.01	40.72	5.57	38.46	Average			
4	14160.000	58.33	-15.67	74.00	48.90	41.62	6.25	38.44	Peak		12770700	
5	14160.000	48.22	-5.78	54.00	38.79	41.62	6.25	38.44	Average			

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Page No. : 14 of 19 TEL: 886-2-2696-2468 Issued Date : Nov. 12, 2004

FAX: 886-2-2696-2255

5.4.6. Test Results for CH 39 / 2441 MHz (for emission above 1GHz)

Temperature: 26°CRelative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Ted Chou

(A) Polarization: Horizontal

	(50000000)	Freq 1	Freq	Level	Over Limit			Probe Factor				Ant Pos	Table Pos
		dBuV/m	dBuV/m dB	dBuV/m dBuV	dB	dB	dB	· 8	cm -	deg			
.1	4919.600	43.25	-30.75	74.00	47.75	33.18	2.47	40.15	Peak				
2	7313.200	48.40	-25.60	74.00	48.52	36.03	3.30	39.45	Peak				
3	9799.000	50.11	-23.89	74.00	46.70	38.56	3.55	38.70	Peak				

(B) Polarization: Vertical

	Freq	Level	Over Limit			Probe Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB		CIV.	deg
1	2688.000	39.11	-34.89	74.00	47.57	29.09	1.97	39.52	Peak		-
2	4572.000	44.76	-29.24	74.00	50.03	32.52	2.33	40.12	Peak		0444
3	9502.000	49.80	-24.20	74.00	46.53	38.00	4.06	38.79	Peak		

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 15 of 19 Issued Date : Nov. 12, 2004

Issued on Nov. 12, 2004 Report No.: FR492801

5.4.7. Test Results for CH 79 / 2481 MHz (for emission above 1GHz)

 Temperature: 26°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Ted Chou

(A) Polarization: Horizontal

	Freq	Level	Over Limit			Probe Factor				Ant Pos	Table Pos
		z dBuV/m	ıV/m dB	dBuV/m	dBuV	dB	dB	dB	2 	cm_	deg
1	5310.000	44.43	-29.57	74.00	48.12	33.74	2.63	40.06	Peak		
2	6596.000	47.33	-26.67	74.00	49.40	34.44	3.16	39.67	Peak		
3	8580.000	49.27	-24.73	74.00	46.92	38.10	3.32	39.07	Peak		

(B) Polarization: Vertical

	(5,0000)\$	Freq	Level	Over Limit	Limit Line		Probe Factor				Ant Pos	Table Pos
		dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB		cm	deg	
1	4962.000	45.27	-28.73	74.00	49.74	33.24	2.44	40.15	Peak	222		
2	5760.000	45.92	-28.08	74.00	49.21	34.05	2.58	39.92	Peak	222	0444	
3	5884.000	46.07	-27.93	74.00	49.08	34.08	2.80	39.89	Peak			

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Page No. : 16 of 19 TEL: 886-2-2696-2468 Issued Date : Nov. 12, 2004 FAX: 886-2-2696-2255

5.5. Photographs of Radiated Emission Test Configuration

FRONT VIEW

REAR VIEW

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 17 of 19 Issued Date : Nov. 12, 2004

Issued on Nov. 12, 2004 Report No.: FR492801

5.6. Antenna Requirements

5.6.1. Standard Applicable

47 CFR Part15 Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.6.2. Antenna Connected Construction

There is no antenna connector for printed antenna.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 18 of 19 Issued Date : Nov. 12, 2004

6. List of Measuring Equipments Used

Items	Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
1	EMC Receiver	R&S	ESCS 30	100174	9 KHz – 2.75 GHz	Feb. 16, 2004	Conduction (CO04-HY)
2	LISN	MessTec	NNB-2/16Z	2001/004	9 KHz – 30 MHz	Jun. 09, 2004	Conduction (CO04-HY)
3	LISN (Support Unit)	MessTec	NNB-2/16Z	99041	9 KHz – 30 MHz	Apr. 27, 2004	Conduction (CO04-HY)
4	EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)
5	RF Cable-CON	UTIFLEX	3102-26886-4	CB044	9KHz~30MHz	Apr. 21, 2004	Conduction (CO04-HY)
6	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz~1GHz 3m	Jun. 21, 2004	Radiation (03CH03-HY)
7	Spectrum analyzer	R&S	FSP40	100004	9KHZ~40GHz	Aug. 22, 2004	Radiation (03CH03-HY)
8	Amplifier	HP	8447D	2944A09072	100KHz – 1.3GHz	Nov. 04, 2004	Radiation (03CH03-HY)
9	Biconical Antenna	SCHWARZBECK	VHBB 9124	301	30MHz –200MHz	Jul. 28, 2004	Radiation (03CH03-HY)
10	Log Antenna	SCHWARZBECK	VUSLP 9111	221	200MHz -1GHz	Jul. 28, 2004	Radiation (03CH03-HY)
11	RF Cable-R03m	Jye Bao	RG142	CB021	30MHz~1GHz	Dec. 03, 2003	Radiation (03CH03-HY)
12	Amplifier	MITEQ	AFS44	849984	100MHz~26.5GHz	Mar. 26, 2004	Radiation (03CH03-HY)
13	Horn Antenna	EMCO	3115	6821	1GHz – 18GHz	Sep. 11, 2004	Radiation (03CH03-HY)
14	Turn Table	HD	DS 420	420/650/00	0 ~ 360 degree	N/A	Radiation (03CH03-HY)
15	Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
16	Horn Antenna	Schwarzbeck	BBHA9170	154	15GHz~40GHz	Jun. 09, 2004	Radiation (03CH03-HY)
17	RF Cable-HIGH	Jye Bao	RG142	CB030-HIGH	1GHz~29.5GHz	Dec. 05, 2003	Radiation (03CH03-HY)

Calibration Interval of instruments listed above is one year.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 19 of 19

Report No.: FR492801

Issued Date : Nov. 12, 2004