

TRANSMETTEUR IMMERGEABLE PAA-26/80965

SPECIFICATIONS GENERALES

Désignation Keller PAA-26 / 80985
Mode de fonctionnement Pression absolue
Etendue de Mesure 800...1400 mbar abs.

Surpressions admissibles 3 bar

Températures de stockage / service - 40...80 °C / - 10...65 °C

Température compensée 0...40 °C Alimentation électrique 3...5,5 Vcc

Signaux de sortie pression et température Ratiométriques avec la tension d'alimentation

Raccordement électrique Câble 6 conducteurs, non blindé, 5 m (voir ci-dessous)

Protection inversions de polarités Sa

Consommation ≈ 2,5 mA (sans lecture d'EEProm)

Indice de protection IP68

Matériaux en contact avec fluide mesuré Voir ci-dessous

Conditionnement expédition Pochette plastique de 5 pièces. Câble roulé sur ∅ 30 cm

Précision globale*, alimentation 5 Vcc ± 3 mbar (± 0,5 %EM) de 0 à 40 °C et de 800 à 1400 mbar

Erreur additionnelle, alimentation 3 Vcc 3 mbar

Position d'étalonnage A convenir, verticale ou horizontale

Effet de la position sur le zéro Env. 0,5 mbar / 90 °

Signal pression (p out), alimentation 5 Vcc

Plage maxi du signal de sortie 0,2...4,8 V

Position électrique du zéro
 Signal pleine échelle
 0,2...2 V à 800 mbar absolus
 2.5...4,8 V à 1400 mbar absolus

Signal température, alimentation 5 Vcc

Plage maxi du signal de sortie
 2,5...4,8 V à température ambiante

Sensibilité typique 6 mV/°C

Compensation Par modèle mathématique (voir ci-dessous) EEProm I²C Microchip 24LC01B, 128 Byte, (voir ci-dessous)

MATERIAUX EN CONTACT AVEC LE FLUIDE MESURE

Câble Voir ci-dessus

Joint torique d'étanchéité interne Viton Garniture de presse étoupe câble Viton

Boîtier Acier inoxydable 1.4305 (type AISI 303)
Capteur de pression Acier inoxydable 1.4435 (type AISI 316L)

Embout transmetteur Polyamide (Grivory HTV-4H1)

Presse étoupe Laiton nickelé

CABLE DE RACCORDEMENT 6 CONDUCTEURS

classe 5

Fils Cuivre étamé, 0,12 mm² (7x0,12 mm), Øext 0,48 mm, CEI228

Isolation fils Isolant adapté au dénudage automatique. Øext. 1 mm

Gaine interne PCV spécial, épaisseur env. 0,45 mm

Gaine externe Hytrel noir, épaisseur maxi 0,30 mm, \emptyset ext. 4,6 \pm 0,1 mm Couleurs, affectation Selon DIN 47100 : vert GND, brun +Vcc, rose p_OUT, gris t OUT, jaune SDA, blanc SCL

Tension de service nominale 300 Vac

Tension d'essai 1000 V, 50 Hz, 1 min.

Température extérieure, câble fixe - 20...70 °C Température extérieure, câble mobile - 5...70 °C

Rayon de courbure mini Ø extérieur câble x 8
Masse Env. 26 kg / 1000 m
Compatibilité gaine extérieure Essences et fuel

^{*} La précision s'entend après modélisation. Elle comprend la linéarité, l'hystérésis, la répétabilité, les influences de la température et les imprécisions d'ajustement du zéro et de la sensibilité

COMPENSATION

La compensation du transmetteur, dans les domaines de pression et de température spécifiés plus haut, est réalisée à l'aide d'une modélisation mathématique. Cette modélisation n'est pas faite par le transmetteur. Elle est à effectuer par l'utilisateur.

A cette fin, l'utilisateur doit programmer des algorithmes de calcul sur PC. Les algorithmes sont des polynômes de la forme :

Les Signaux_bruts (température t_out et pression p_out) sont fournis par le transmetteur et constituent les variables des algorithmes de modélisation. Les coefficients de modélisation a, b, c, ... sont contenus dans l'E2prom du transmetteur. Chaque transmetteur possède ses propres coefficients (voir EE-Plan ci-après).

Calcul de la Température

Algorithme:
$$T = \sum_{i=0}^{n} (t_i * t_out^i)$$

Avec:
$$T en °C$$

 $n = 3$

Calcul de la Pression

Algorithme :
$$p = \sum_{i=0}^{n} (\sum_{k=0}^{m} p_{i,k} * T^{k}) * p_out^{i}$$

Avec:
$$p en bar$$

 $n = m = 3$

 $p_{i,k}$: Coefficients pour le calcul de la pression modélisée (voir table EE-Plan p00 .. p33) p_out : Signal de sortie pression du transmetteur (signal brut, ratiométrique, normé à 5V)

T : Température en °C (issue de l'algorithme ci-dessus)

Remarques

- Les coefficients de modélisation de la température et de la pression sont toujours donnés pour une modélisation du 3^{ème} ordre (voir table EE-Plan ci-après). Dans le cas où le transmetteur peut être modélisé en production avec un ordre inférieur, les coefficients correspondants ont une valeur = 0.
- Si l'application particulière nécessite de corriger la pression modélisée des variations locales de la pression atmosphérique, la valeur de la pression atmosphérique locale devra être déduite de la valeur de p. On aura alors :

pression relative = pression p - pression atmosphérique locale.

EEPROM ORGANISATION (EE-Plan)

Format des coefficients, voir colonne "Type" ci-dessous. Single selon IEEE754

EE Addr.	G2 70 / 0	Value [decimal]	[hex]	Type
0	SN0 (n° de série)	2	02	int 32
1	SN1 (n° de série)	0	00	
2	SN2 (n° de série)	0	00	
3	SN3 (n° de série)	0	00	
4	Date Day	21	15	uint8
5	Date Month	2	02	uint8
6	Date Year0	7	07	uint16
7	Date Year1	209	D1	
8	free	255	FF	
9	free	255	FF	
10	free	255	FF	
11	free	255	FF	
12	free	255	FF	
13	free	255	FF	
14	free	255	FF	
15	free	255	FF	
16	t0	-6.11111E+01	C2	single
17			74	
18			71	
19			C4	
20	tl	4.4444E+01	42	single
21			31	
22			C7	
23			10	
24	t2	9.95488E-14	29	single
25	LZ.	7.75400E-14	E0	Siligic
26			29	
27			F9	-
	42	0.00000E±00		منسماء
28	t3	0.00000E+00	00	single
29				ļ
30			00	
31	00	6.050.41E.01	00	
32	p00	6.05941E-01	3F	single
33			1B	
34			1E	ļ
35			F3	
36	p01	1.73723E-04	39	single
37			36	
38			29	
39			69	
40	p02	-1.08814E-06	B5	single
41			92	
42			0C	
43			34	
44	p03	0.00000E+00	00	single
45			00	
46			00	
47			00	
48	p10	1.80617E-01	3E	single
49	î î		38	
50			F3	
51			A9	
52	p11	1.14990E-04	38	single
53	1		F1	
54			26	
55			C9	
56	p12	-2.81713E-07	B4	single
57	P12	2.01/13£-0/	97	Singi
58			3E	
59			57	1
	n12	0 00000E±00		ginal.
60	p13	0.00000E+00	00	single
61			00	1
62			00	
63	i l		00	1

EE Addr.		Value [decimal]	[hex]	Type
64	p20	4.20635E-04	39	single
65			DC	
66			88	
67			AC	
68	p21	4.33129E-06	36	single
69			91	
70			55	
71			7F	
72	p22	-1.42430E-07	B4	single
73			18	
74			EE	
75			DC	
76	p23	0.00000E+00	00	single
77			00	
78			00	
79	20	0.00000E+00	00	. ,
80	p30	0.00000E+00	00	single
81			00	
82			00	
83 84	-21	0.00000E+00	00	منسماء
	p31	0.00000E+00	00	single
85 86			00	
87			00	
88	p32	0.00000E+00	00	single
89	p32	0.00000E+00	00	Siligic
90			00	
91			00	
92	p33	0.00000E+00	00	single
93	pss	0.00000E+00	00	Siligic
94			00	
95			00	
96	free	255	FF	
97	free	255	FF	
98	free	255	FF	
99	free	255	FF	
100	free	255	FF	
101	free	255	FF	
102	free	255	FF	
103	free	255	FF	
104	free	255	FF	
105	free	255	FF	
106	free	255	FF	
107	free	255	FF	
108	free	255	FF	
109	free	255	FF	
110	free	255	FF	
111	free	255	FF	
112	free	255	FF	
113	free	255	FF	
114	free	255	FF	
115	free	255	FF	
116	free	255	FF	-
117	free	255	FF	
118	free	255	FF	1
119	free	255	FF	1
120	free	255	FF	
121	free	255	FF	
122	free	255	FF	
123 124	free	255	FF FF	
	free	255	FF	-
125	free	255 255	FF	
126 127	free	255 255	FF	
12/	free	L 233	rr	İ