

MRT Technology (Suzhou) Co., Ltd

Phone: +86-512-66308358 Fax: +86-512-66308368 www.mrt-cert.com

Report No.: 1409RSU02401 Report Version: V01 Issue Date: 09-28-2014

MEASUREMENT REPORT

FCC PART 15.249

FCC ID: RJYMD2300

APPLICANT: Chuango Security Technology Corporation

Certification **Application Type:**

Product: PIR Motion Detector

Model No.: MD2300

FCC Classification: Low Power Communication Device Transmitter (DXX)

FCC Rule Part(s): Part 15.249

Test Procedure(s): ANSI C63.10-2009

Test Date: Sep. 16 ~ 24, 2014

Reviewed By : Robin Wu)

Approved By : Marlinchen

(Marlin Chen)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2009. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

FCC ID: RJYMD2300 Page Number: 1 of 25

Revision History

Report No.	Version	ion Description	
1409RSU02401	Rev. 01	Initial report	09-28-2014

FCC ID: RJYMD2300 Page Number: 2 of 25

CONTENTS

De	scriptio	on	Page
1.	INTR	ODUCTION	5
	1.1.	Scope	5
	1.2.	MRT Test Location	5
2.	PROI	DUCT INFORMATION	6
	2.1.	Equipment Description	6
	2.2.	Mode of Operation	6
	2.3.	Test Configuration	6
	2.4.	EMI Suppression Device(s)/Modifications	6
	2.5.	Labeling Requirements	6
	2.6.	Test Software	7
3.	DESC	CRIPTION OF TEST	8
	3.1.	Evaluation Procedure	8
	3.2.	AC Line Conducted Emissions	8
	3.3.	Radiated Emissions	9
4.	ANTE	ENNA REQUIREMENTS	10
5.	TEST	EQUIPMENT CALIBRATION DATE	11
6.	MEAS	SUREMENT UNCERTAINTY	12
7.	TEST	RESULT	13
	7.1.	Summary	13
	7.2.	Conducted Emission	14
	7.2.1.	Test Limit	14
	7.2.2.	Test Setup	14
	7.2.3.	Test Result	14
	7.3.	Radiated Emission	15
	7.3.1.	Test Limit	15
	7.3.2.	Test Setup	16
	7.3.3.	Test Result	18
	7.4.	Radiated Restricted Band Edge Measurement	21
	7.4.1.	Test Result	21
Q	CON	CLUSION	25

§2.1033 General Information

Applicant:	Chuango Security Technology Corporation
Applicant Address:	Room 6-17, Overseas Students Pioneer Park, No.108, Jiangbin East
	Road, Economic & Technological Development Zone, Fuzhou, China
Manufacturer:	Chuango Security Technology Corporation
Manufacturer Address:	Room 6-17, Overseas Students Pioneer Park, No.108, Jiangbin East
	Road, Economic & Technological Development Zone, Fuzhou, China
Test Site:	MRT Technology (Suzhou) Co., Ltd
Test Site Address:	D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong
	Economic Development Zone, Suzhou, China
MRT Registration No.:	809388
FCC Rule Part(s):	Part 15.249
Model No.:	MD2300
FCC ID:	RJYMD2300
Test Device Serial No.:	N/A Production Pre-Production Engineering
FCC Classification:	Low Power Communication Device Transmitter (DXX)
Date(s) of Test:	Sep. 16 ~ 24, 2014
Test Report S/N:	1409RSU02401

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory
 Accreditation (A2LA) under the American Association for Laboratory Accreditation
 Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications and Radio testing for FCC,
 Industry Canada, EU and TELEC Rules.
- MRT facility is a FCC registered (MRT Reg. No. 809388) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (11384A-1).
- MRT facility is an IC registered (11384A-1) test laboratory with the site description on file at Industry Canada.

FCC ID: RJYMD2300 Page Number: 4 of 25

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on September 30, 2013.

FCC ID: RJYMD2300 Page Number: 5 of 25

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	PIR Motion Detector
Model No.	MD2300
Working Voltage	DC 3.0V
Working Frequency	915 MHz
Type of Modulation	ASK
Antenna Type	PCB Antenna
Antenna Gain	2dBi

2.2. Mode of Operation

All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Test Mode	
Mode 1: Transmit	

2.3. Test Configuration

The **PIR Motion Detector FCC ID: RJYMD2300** was tested as described in this report is in compliance with the requirements limits of FCC Rules Part 15.207,15.209, 15.215 and 15.249. ANSI C63.10-2009 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.4. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.5. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase.

However, when the device is so small wherein placement of the label with specified statement is not practical, only the trade name and FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

FCC ID: RJYMD2300 Page Number: 6 of 25

2.6. Test Software

The test unit set it by pressing the button on the EUT.

FCC ID: RJYMD2300 Page Number: 7 of 25

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2009 at Clause 4.3.

Line conducted emissions test results are shown in Section 7.2.

FCC ID: RJYMD2300 Page Number: 8 of 25

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 0.8 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB BeamWidth of horn antenna, the horn antenna should be always directed to the EUT when rising height.

FCC ID: RJYMD2300 Page Number: 9 of 25

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the PIR Motion Detector is permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The PIR Motion Detector FCC ID: RJYMD2300 unit complies with the requirement of §15.203.

FCC ID: RJYMD2300 Page Number: 10 of 25

5. TEST EQUIPMENT CALIBRATION DATE

Radiated Emission

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Agilent	N9010A	MY5144016A	1 year	2015/01/04
Preamplifier	MRT	AP01G18	1310002	1 year	2014/12/14
Loop Antenna	Schwarzbeck	FMZB1519	1519-041	1 year	2014/11/24
TRILOG Antenna	Schwarzbeck	VULB9162	9162-047	1 year	2014/11/24
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1167	1 year	2014/11/24
Broadband Horn Antenna	Schwarzbeck	BBHA9170	9170-549	1 year	2014/12/11
Temperature/Humidity Meter	Anymetre	TH101B	AC1-01	1 year	2014/11/15

FCC ID: RJYMD2300 Page Number: 11 of 25

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Radiated Emission Measurement

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

9kHz ~ 1GHz: ± 4.18dB 1GHz ~ 18GHz: ± 4.76dB

FCC ID: RJYMD2300 Page Number: 12 of 25

7. TEST RESULT

7.1. Summary

Company Name: <u>Chuango Security Technology Corporation</u>

FCC ID: RJYMD2300

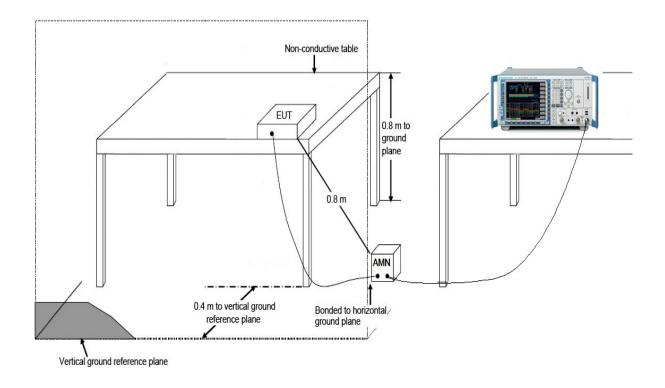
FCC Part Section(s)	Lest Description Lest Limit		Test Condition	Test Result	Reference
15.207	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	N/A	Section 7.2
15.209 15.249	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	Pass	Section 7.3 & 7.4

Notes:

- All modes of operation and data rates were investigated. For radiated emission test, every axis
 (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.

FCC ID: RJYMD2300 Page Number: 13 of 25

7.2. Conducted Emission


7.2.1. Test Limit

FCC Part 15 Subpart C Paragraph 15.207 Limits						
Frequency (MHz)	QP (dBuV)	AV (dBuV)				
0.15 - 0.50	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30	60	50				

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

7.2.2. Test Setup

7.2.3. Test Result

The EUT was battery-powered device, not applicable for this test item.

FCC ID: RJYMD2300 Page Number: 14 of 25

7.3. Radiated Emission

7.3.1. Test Limit

FCC Part 15 Subpart C Paragraph 15.209						
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (uV/m)				
0.009-0.490	2400/F(kHz)	300				
0.490-1.705	24000/F(kHz)	30				
1.705-30.0	30	30				
30-80	100**	3				
80-216	150**	3				
216-960	200**	3				
Above 960	500	3				

Note 1: The lower limit shall apply at the transition frequency.

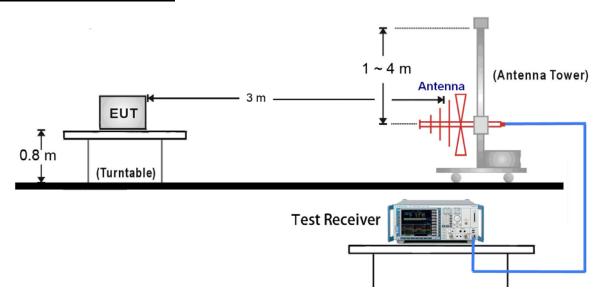
Note 2: Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

Note 3: E field strength (dBuV/m) = 20 log E field strength (uV/m).

FCC Part 15 Subpart C Paragraph 15.249						
Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)				
902-928(MHz)	50	500				
2400-2483.5(MHz)	50	500				
5725-5875(MHz)	50	500				
24.0-24.25(GHz)	250	2500				

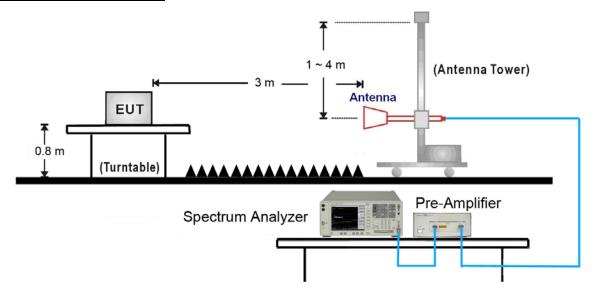
FCC Part 15.249 (d), Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general

FCC ID: RJYMD2300 Page Number: 15 of 25


radiated emission limits in §15.209, whichever is the lesser attenuation.

7.3.2. Test Setup

9kHz ~ 30MHz Test Setup:


30MHz ~ 1GHz Test Setup:

FCC ID: RJYMD2300 Page Number: 16 of 25

1GHz ~ 18GHz Test Setup:

FCC ID: RJYMD2300 Page Number: 17 of 25

7.3.3. Test Result

Test Mode:	Transmission	Test Site:	AC1	
Test Engineer:	Roy Cheng	Test Date:	2014.09.25	
Remark:	Fundamental Radiated Emission			

Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
	(dBµV)		(dBµV/m)				
915	68.16	23.43	91.59	114.0	-22.41	PK	Horizontal
	60.21	23.43	83.64	94.0	-10.36	AV	Horizontal
	65.05	23.43	88.48	114.0	-25.52	PK	Vertical
	56.86	23.43	80.29	94.0	-13.71	AV	Vertical

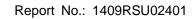
Note: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

FCC ID: RJYMD2300 Page Number: 18 of 25

Report No.: 1409RSU02401

Test Mode:	Transmission	Test Site:	AC1
Test Engineer:	Roy Cheng	Test Date:	2014.09.25
Remark:	Harmonic Radiated Emission		


Frequency	Reading	Factor	Measure	Limit	Margin (dB)	Detector	Polarization
(MHz)	Level	(dB)	Level (dBµV/m)				
	(dBµV)		(dBµV/m)				
1832.0	56.12	0.17	56.29	74.0	-17.71	PK	Horizontal
1832.0	43.26	0.17	43.43	54.0	-10.57	AV	Horizontal
1832.0	56.09	0.17	56.26	74.0	-17.74	PK	Vertical
1832.0	42.01	0.17	42.18	54.0	-11.82	AV	Vertical
*2742.0	52.35	3.26	55.61	71.6	-15.99	PK	Horizontal
*2742.0	41.02	3.26	44.28	51.6	-7.32	AV	Horizontal
*2742.0	47.41	3.26	50.67	71.6	-20.93	PK	Vertical
*2742.0	36.21	3.26	39.47	51.6	-12.13	AV	Vertical
*3658.5	49.00	3.98	52.98	71.6	-18.62	PK	Horizontal
*3658.5	37.46	3.98	41.44	51.6	-10.16	AV	Horizontal
*3658.5	44.88	3.98	48.86	71.6	-22.74	PK	Vertical
*3658.5	34.11	3.98	38.09	51.6	-13.51	AV	Vertical
*4575.0	38.98	5.84	44.82	71.6	-26.78	PK	Horizontal
*4575.0	27.73	5.84	33.57	51.6	-18.03	AV	Horizontal
*4575.0	42.01	5.84	47.85	71.6	-23.75	PK	Vertical
*4575.0	30.86	5.84	36.70	51.6	-14.90	AV	Vertical

Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (91.6dB μ V/m).

Note 2: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre Amplifier Gain (dB)

FCC ID: RJYMD2300 Page Number: 19 of 25

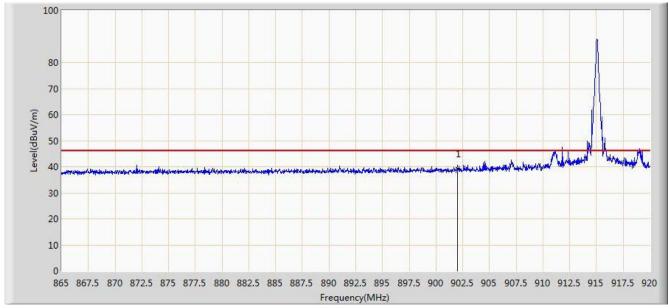
Test Mode:	Transmission	Test Site:	AC1				
Test Engineer:	Roy Cheng	Test Date: 2014.09.25					
Remark:	The worst case of General Radiated Emission						

Frequency	Reading	Factor	Measure	Limit	Margin (dB)	Detector	Polarization
(MHz)	Level	(dB)	Level	(dBµV/m)			
	(dBµV)		(dBµV/m)				
268.6	14.99	13.63	28.62	46.0	-17.38	QP	Horizontal
107.6	14.35	12.77	27.12	43.5	-16.38	QP	Vertical
585.8	15.72	19.22	34.94	46.0	-11.06	QP	Horizontal
534.9	15.67	18.24	33.91	46.0	-12.09	QP	Vertical
1221.0	38.79	-2.25	36.54	74.0	-37.46	PK	Horizontal
1338.0	39.27	-1.43	37.84	74.0	-36.16	PK	Vertical
3249.0	37.82	3.37	41.19	74.0	-32.81	PK	Horizontal
3210.0	37.88	3.51	41.39	74.0	-32.61	PK	Vertical

Note 1: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre Amplifier Gain (dB)

Note 2: The test trace is same as the ambient noise (the test frequency range: $9kHz \sim 30MHz$, $18GHz \sim 25GHz$), therefore no data appear in the report.

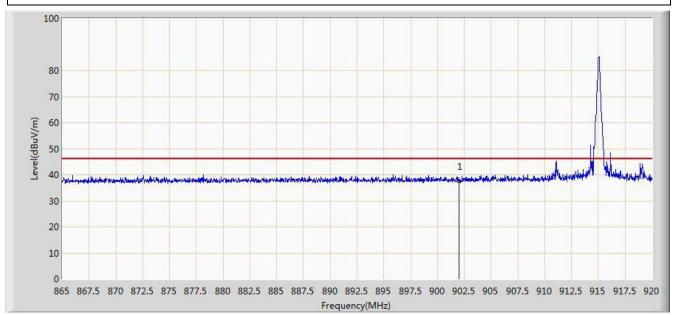

FCC ID: RJYMD2300 Page Number: 20 of 25

7.4. Radiated Restricted Band Edge Measurement

7.4.1. Test Result

Engineer: Roy Cheng					
Site: AC1	Time: 2014/09/23 - 16:54				
Limit: FCC_Part15.209_RE(3m)	Margin: 0				
Probe: VULB9162_0.03-8GHz	Polarity: Horizontal				
EUT: PIR Motion Detector	Power: By Battery				
Note: Mode 1					

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			902.000	39.030	15.695	-6.970	46.000	23.335	PK


Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

FCC ID: RJYMD2300 Page Number: 21 of 25

Engineer: Roy Cheng						
Site: AC1	Time: 2014/09/23 - 17:00					
Limit: FCC_Part15.209_RE(3m)	Margin: 0					
Probe: VULB9162_0.03-8GHz	Polarity: Vertical					
EUT: PIR Motion Detector	Power: By Battery					
Note: Mode 1						

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			902.000	37.459	14.124	-8.541	46.000	23.335	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

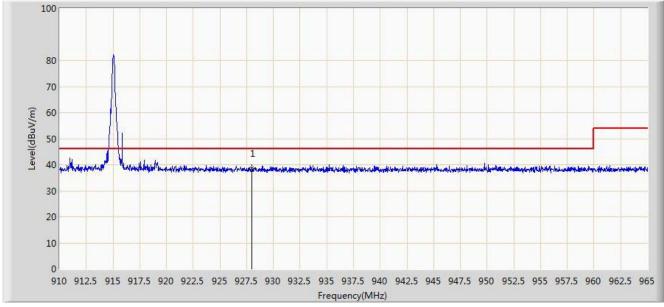
FCC ID: RJYMD2300 Page Number: 22 of 25

Engineer: Roy Cheng						
Engineer. Noy energy						
Site: AC1	Time: 2014/09/23 - 17:02					
Limit: FCC_Part15.209_RE(3m)	Margin: 0					
Probe: VULB9162_0.03-8GHz	Polarity: Horizontal					
EUT: PIR Motion Detector	Power: By Battery					
Note: Mode 1						

100 80 70 60 30 20 10 910 912.5 915 917.5 920 922.5 925 927.5 930 932.5 935 937.5 940 942.5 945 947.5 950 952.5 955 957.5 960 962.5 965 Frequency(MHz)

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			928.000	39.319	15.833	-6.681	46.000	23.486	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)


Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

FCC ID: RJYMD2300 Page Number: 23 of 25

Engineer: Roy Cheng						
Site: AC1	Time: 2014/09/23 - 17:03					
Limit: FCC_Part15.209_RE(3m)	Margin: 0					
Probe: VULB9162_0.03-8GHz	Polarity: Vertical					
EUT: PIR Motion Detector	Power: By Battery					
Note: Mode 1	•					

Note: Mode 1

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			928.000	38.585	15.099	-7.415	46.000	23.486	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

FCC ID: RJYMD2300 Page Number: 24 of 25

Report No.: 1409RSU02401

8. CONCLUSION

The data collected relate only the item(s) tested and show that the PIR Motion Detector FCC ID
RJYMD2300 is in compliance with Part 15C of the FCC Rules.

______ The End ______
FCC ID: RJYMD2300 Page Number: 25 of 25