

A Test Lab Techno Corp.

Changan Lab: No. 140-1, Changan Street, Bade City, Taoyuan County, Taiwan R.O.C.

Tel: 886-3-271-0188 / Fax: 886-3-271-0190

SAR EVALUATION REPORT

Test Report No. : 0804FS17

Applicant : Globalsat Technology Corporation

FCC ID : RID-TR151A

Trade Name : G-STA

Model Number : TR-151A

Product Type : Tracker

Dates of Test : Apr. 21 ~ Apr. 22, 2008

Test Environment : Ambient Temperature : 22 ± 2 ° C

Relative Humidity: 40 - 70 %

Test Specification : Standard C95.1-1999

2.1093;FCC/OET Bulletin 65 Supplement C [July 2001]

IEEE Std. 1528-2003

Max. SAR : 0.699 W/kg Body SAR

Test Lab : Chang-an Lab

- 1. The test operations have to be performed with cautious behavior, the test results are as attached.
- The test results are under chamber environment of A Test Lab Techno Corp. A Test Lab Techno Corp. does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples.
- 3. The measurement report has to be written approval of A Test Lab Techno Corp. It may only be reproduced or published in full.

Country Huang

20080502

Measurement Center Manager

Sam Chuang Testing Engineer 20080502

Contents

1. D	escription of Equipment Under Test (EUT)	3
2. O	ther Accessories	5
3. In	ntroduction	8
4. S	AR Definition	9
5. S	AR Measurement Setup	10
6. S	ystem Components	12
6.1	DASY5 E-Field Probe System	12
6.2	Data Acquisition Electronic (DAE) System	15
6.3	Robot	15
6.4	Measurement Server	15
6.5	Device Holder for Transmitters	16
6.6	Phantom - SAM v4.0	17
6.7	Data Storage and Evaluation	17
7. Te	est Equipment List	20
8. Ti	issue Simulating Liquids	21
8.1	Liquid Confirmation	22
9. M	leasurement Process	24
9.1	Device and Test Conditions	24
9.2	System Performance Check	25
9.3	Dosimetric Assessment Setup	28
9.4	Spatial Peak SAR Evaluation	30
10. M	leasurement Uncertainty	31
11. S	AR Test Results Summary	33
11.1	EUT Top to phantom _ 15mm space	33
11.2	EUT Bottom to phantom with Belt Clip	37
11.3	B EUT Tip (Ant. Side) to phantom _ 15mm space	41
11.4	Setup Photo	45
11.5	Std. C95.1-1999 RF Exposure Limit	47
12. C	onclusion	48
13 R	eferences	49

Appendix

Appendix A - System Performance Check

Appendix B - SAR Measurement Data

Appendix C - Calibration

1. <u>Description of Equipment Under Test (EUT)</u>

Applicant:

Globalsat Technology Corporation

2-1F,No.16,Chien 8 Road Far East Century Park,Chung Ho City, Taipei Hsien, Taiwan

Manufacturer : Globalsat Technology Corporation

Manufacturer Address : 10F., No. 16, Jian Ba Road, Chung Ho City,

Taipei Hsien, Taiwan

Product Type : Tracker

Trade Name : G-STA

Model Number : TR-151A

FCC ID : RID-TR151A

Test Device : Production Unit

Tx Frequency : 824.2 - 848.8 MHz (GSM/GPRS 850)

1850.2 - 1909.8 MHz (PCS/GPRS 1900)

Max. RF Conducted Power : 1.862 W (32.70 dBm) GSM/GPRS 850

0.891 W (29.50 dBm) PCS/GPRS1900

Max. SAR Measurement:0.699 W/kg Body SARHW Version:GS-EC-TR151-01-V1.1SW Version:F-0TR-0Q-0804111

Antenna Type : Internal Type

Antenna Gain : -6.51 dBi GSM 850

-4.91 dBi PCS 1900

Device Category : Portable

RF Exposure Environment : General Population / Uncontrolled

Battery Option : Standard Application Type : Certification

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment / general population exposure limits specified in Standard C95.1-1999 and had been tested in accordance with the measurement procedures specified in IEEE Std. 1528-2003.

2. Other Accessories

Figure 2. Belt Clip

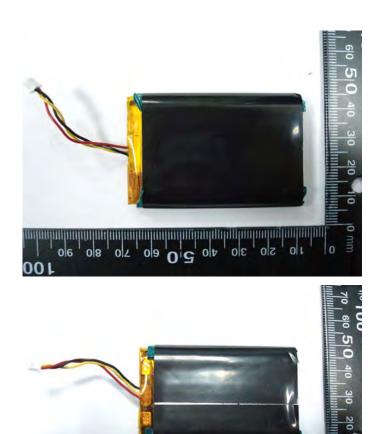


Figure 3. Li-ion Battery (2100mAh)

Figure 4. AC Adapter

Figure 5. Car Charger

3. Introduction

The A Test Lab Technology Corporation Trade Name: G-STA Model(s): TR-151A. The test procedures, as described in American National Standards, Institute C95.1 - 1999[1], FCC/OET Bulletin 65 Supplement C [July 2001] were employed and they specify the maximum exposure limit of 1.6mW/g as averaged over any 1 gram of tissue for portable devices being used within 20cm between user and EUT in the uncontrolled environment. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the equipment used are included within this test report.

4. SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dw) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Figure 2).

SAR =
$$\frac{d}{dt} \left(\frac{dw}{dm} \right) = \frac{d}{dt} \left(\frac{dw}{\rho dv} \right)$$

Figure 2. SAR Mathematical Equation

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma E^2}{\rho}$$

Where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = RMS electric field strength (V/m)

*Note:

The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane [2]

5. SAR Measurement Setup

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m) which positions the probes with a positional repeatability of better than $\pm 0.02mm$. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length = 300mm) to the data acquisition unit.

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Measurement Server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with either the DAE4 (or DAE3) electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY5 I/O-board, which is directly connected to the PC/104 bus of the CPU board. The PC consists of the Intel Core(TM)2 CPU @1.86GHz computer with Windows XP system and SAR Measurement Software DASY5, Post Processor SEMCAD, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection...etc. is connected to the Electro-optical converter (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the Measurement Server.

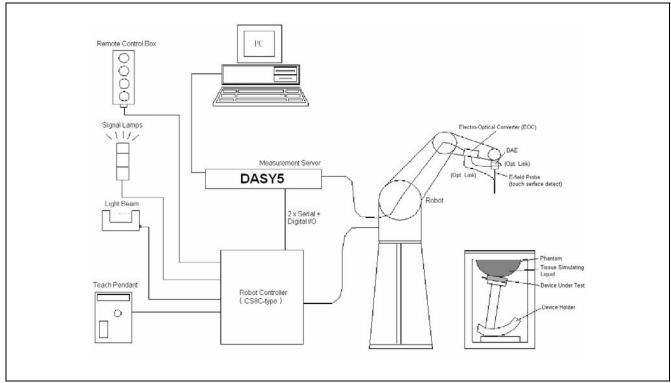


Figure 5. SAR Lab Test Measurement Setup

The DAE4 (or DAE3) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in [3].

6. System Components

6.1 DASY5 E-Field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 or ET3DV6 (manufactured by SPEAG), designed in the classical triangular configuration [3] and optimized for dosimetric evaluation. The probes is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped when reaching the maximum.

6.1.1 E-Field Probe Specification

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection

System

Built-in shielding against static charges

PEEK enclosure material

(resistant to organic solvents, e.q., glycol)

Calibration In air from 10 MHz to 6 GHz

In brain and muscle simulating tissue at

frequencies of 900MHz, 1800MHz, 1950MHz, 2000MHz

and 2450MHz (accuracy ±8%)

Calibration for other liquids and frequencies upon request

Frequency 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB

(30 MHz to 3 GHz)

Directivity ± 0.3 dB in brain tissue (rotation around probe axis)

±0.5 dB in brain tissue (rotation normal probe axis)

Dynamic Range 10 μ W/g to > 100mW/g; Linearity: \pm 0.2dB

Surface Detection ±0.2 mm repeatability in air and clear liquids

over diffuse reflecting surface(EX3DV3 only)

Dimensions Overall length: 330mm

Tip length: 20mm

Body diameter: 12mm

Tip diameter: 2.5mm

Distance from probe tip to dipole centers: 1.0mm

Application General dosimetry up to 6GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

Figure 3. E-field Probe

Figure 4.
Probe setup on robot

6.1.2 E-Field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure described in $\{4\}$ with accuracy better than $\pm 10\%$. The spherical isotropy was evaluated with the procedure described in $\{5\}$ and found to be better than ± 0.25 dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1GHz, and in a wave guide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (head or body),

 ΔT = Temperature increase due to RF exposure.

Or
$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

6.2 Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Intel Core(TM)2 CPU

Clock Speed: @ 1.86GHz

Operating System: Windows XP Professional

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic Software: DASY5 v5.0 (Build 91) & SEMCAD X Version 12.4 Build 52

Connecting Lines: Optical downlink for data and status info

Optical uplink for commands and clock

6.3 Robot

Positioner: Stäubli Unimation Corp. Robot Model: TX90XL

Repeatability: ±0.02 mm

No. of Axis: 6

6.4 Measurement Server

Processor: PC/104 with a 400MHz intel ULV Celeron

I/O-board: Link to DAE4(or DAE3)

16-bit A/D converter for surface detection system

Digital I/O interface Serial link to robot

Direct emergency stop output for robot

6.5 Device Holder for Transmitters

In combination with the SAM Twin Phantom V4.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeat ably positioned according to the IEEE SCC34-SC2 and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, and flat phantom).

*Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations [6]. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Larger DUT cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values. Therefore those devices are normally only tested at the flat part of the SAM.

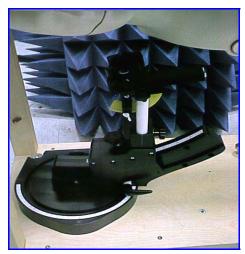


Figure 5. Device Holder

6.6 Phantom - SAM v4.0

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-2003, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Figure 6. SAM Twin Phantom

Shell Thickness	2 ±0.2 mm					
Filling Volume	Approx. 25 liters					
Dimensions	810×1000×500 mm (H×L×W)					

Table 1. Specification of SAM v4.0

6.7 Data Storage and Evaluation

6.7.1 Data Storage

The DASY5 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA5. The postprocessing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

6.7.2 Data Evaluation

The DASY5 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

- Conversion factor ConvFi

- Diode compression point dcpi

Device parameters: - Frequency f

- Crest factor cf

Media parameters : - Conductivity σ

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

 dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes :
$$E_{i} = \sqrt{\frac{V_{i}}{Norm_{i} \cdot ConvF}}$$

H-field probes :
$$H_{i} = \sqrt{V_{i}} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^{2}}{f}$$

with V_i = compensated signal of channel i (i = x, y, z)

 $Norm_i$ = sensor sensitivity of channel i (i = x, y, z)

 $\mu \text{ V/(V/m)}^2$ for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

*Note: that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = \frac{H_{tot}^2}{37.7}$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

7. <u>Test Equipment List</u>

Manufacturer	Name of Equipment	Type/Model	Serial Number	Calib	ration
Manufacturer	Name of Equipment	турелиоцеі	Serial Number	Last Cal.	Due Date
SPEAG	Dosimetric E-Filed Probe	ES3DV3	3150	Jan. 09, 2008	Jan. 09, 2009
SPEAG	900MHz System Validation Kit	D900V2	SN:073	Mar. 17, 2008	Mar. 17, 2009
SPEAG	1800MHz System Validation Kit	D1950V2	1117	Dec. 20, 2007	Dec. 20, 2008
SPEAG	Data Acquisition Electronics	DAE4	779	Nov. 30, 2007	Nov. 30,, 2008
SPEAG	Device Holder	N/A	N/A	NCR	NCR
SPEAG	Phantom	SAM V4.0	TP-1150	NCR	NCR
SPEAG	Robot	Staubli TX90XL	F07/564ZA1/C/01	NCR	NCR
SPEAG	Software	DASY5 V5.0 Build 91	N/A	NCR	NCR
SPEAG	Software	SEMCAD X V12.4 Build 52	N/A	NCR	NCR
SPEAG	Measurement Server	SE UMS 011 AA	1025	NCR	NCR
Agilent	Wireless Communication Test Set	CMU200	112387	Oct. 24, 2007	Oct. 24, 2008
Agilent	ENA Series Network Analyzer	E5071B	MY42402996	Oct. 23, 2007	Oct. 23, 2008
Agilent	Dielectric Probe Kit	85070C	US99360094	NCR	NCR
Agilent	Power Meter	E4418B	GB40206143	May. 23, 2007	May. 23, 2008
Agilent	Power Sensor	8481H	3318A20779	May. 28, 2007	May. 28, 2008
Agilent	Signal Generator	8648C	3847A05201	Jul. 03, 2007	Jul. 03, 2008
Agilent	Dual Directional Coupler	778D	50334	NCR	NCR
Mini-Circuits	Power Amplifier	ZHL-42W-SMA	D111103#5	NCR	NCR
Mini-Circuits	Power Amplifier	ZVE-8G-SMA	D042005 671800514	NCR	NCR

Table 2. Test Equipment List

8. <u>Tissue Simulating Liquids</u>

The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue.

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an 85070C Dielectric Probe Kit and an 8720ES Network Analyzer.

IEEE SCC-34/SC-2 in 1528 recommended Tissue Dielectric Parameters

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in human head. Other head and body tissue parameters that have not been specified in 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equation and extrapolated according to the head parameter specified in 1528.

Target Frequency	He	ad	Во	dy
(MHz)	ε _r	σ (S/m)	٤r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 - 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00
($\mathbf{\epsilon}_{r}$ = relative pe	ermittivity, $\sigma = c$	onductivity and	$\rho = 1000 \text{ kg/m}$	³)

Table 3. Tissue dielectric parameters for head and body phantoms

8.1 Liquid Confirmation

8.1.1 Parameters

Liquid \	/erify											
Ambient Temperature: 22 ± 2 °C; Relative Humidity: 40 -70%												
Liquid Type Frequency Temp		Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)	Measured Date				
900MHz	900MHz	22.0	εr	55.0	55.1	0.18	± 5	Apr. 21, 2008				
Body	900IVITZ		σ	1.05	1.04	-0.95	± 5	Apr. 21, 2006				
1950MHz	1950MHz	4050MI I-	10E0MU- 22	22.0	εr	53.3	52.6	-1.31	± 5	Apr 22 2009		
Body		Hz 22.0	σ	1.52	1.55	1.97	± 5	Apr. 22, 2008				

Table 4. Measured Tissue dielectric parameters for head and body phantoms

8.1.2 Liquid Depth

The liquid level was during measurement 15cm ± 0.5 cm.

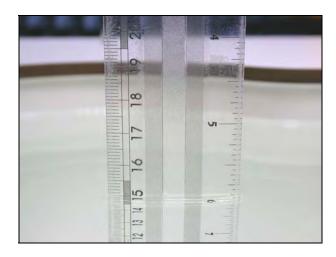


Figure 7. Head-Tissue-Simulating-Liquid

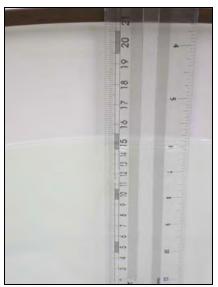


Figure 8. Body-Tissue-Simulating-Liquid

9. Measurement Process

9.1 Device and Test Conditions

The Test Device was provided by **Globalsat Technology Corporation** for this evaluation. The spatial peak SAR values were assessed for the lowest, middle and highest channels defined by **GSM/GPRS 850** (#128=824.2MHz, #190=836.6MHz, #251=848.8MHz), **PCS/GPRS 1900** (#512=1850.2MHz, #661=1880.0MHz, #810=1909.8MHz) systems systems. The antenna(s), battery and accessories shall be those specified by the manufacturer. The battery shall be fully charged before each measurement and there shall be no external connections.

Usage		Operat	es with a	Normal mode	by client					
Simulating h	uman Head/Body	Body	Body							
EUT Battery		Fully-cl	Fully-charged with Li-ion batteries.							
	Chanr	nel		Frequency (MHz)	Before SAR Test (dBm)	After SAR Test (dBm)	Note			
	GSM 850	Lowest	- 128	824.2	32.40	32.38	-			
		Middle Highest	- 190 - 251	836.6 848.8	32.70 32.70	32.69 32.68	-			
Conducted	GPRS 850	Lowest	- 128	824.2	32.70	32.38	3Down2Up			
power		Middle	- 190	836.6	32.70	32.69	3Down2Up			
'		Highest	- 251	848.8	32.70	32.68	3Down2Up			
		Lowest	- 512	1850.2	29.00	28.99	-			
	PCS 1900	Middle	- 661	1880.0	29.20	29.18	-			
		Highest	- 810	1909.8	29.50	29.49	-			
	0000 4000	Lowest	- 512	1850.2	28.90	28.99	3Down2Up			
	GPRS 1900	Middle	- 661	1880.0	29.20	29.18	3Down2Up			
		Highest	- 810	1909.8	29.50	29.49	3Down2Up			

Note: The EUT take Li-ion batteries as its power source. Each test was preceded under the condition of fully-charged EUT.

9.2 System Performance Check

9.2.1 Symmetric Dipoles for System Validation

Construction Symmetrical dipole with I/4 balun enables measurement

of feed point impedance with NWA matched for use near flat phantoms filled with head simulating solutions Includes distance holder and tripod adaptor Calibration Calibrated SAR value for specified position and input

power at the flat phantom in head simulating solutions.

Frequency 450, 900, 1800, 1950, 2000 and 2450MHz

Return Loss > 20 dB at specified validation position **Power Capability** > 100 W (f < 1GHz); > 40 W (f > 1GHz)

Options Dipoles for other frequencies or solutions and other

calibration conditions are available upon request

Dimensions D450V2: dipole length 270 mm; overall height 330 mm

D900V2 : dipole length 149 mm; overall height 330 mm

D1800V2: dipole length 72 mm; overall height 300 mm

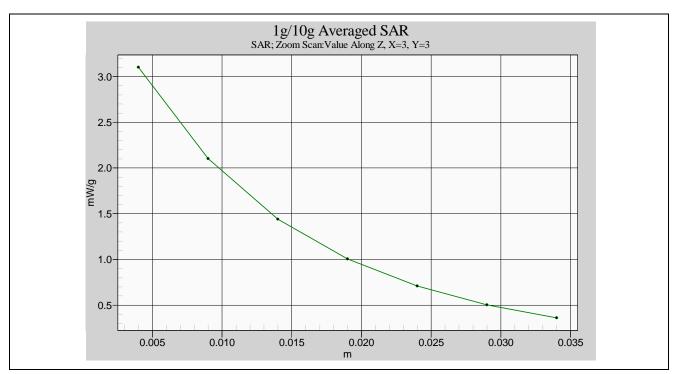
D1950V2: dipole length 62 mm; overall height 300 mm

D2000V2: dipole length 65 mm; overall height 300 mm

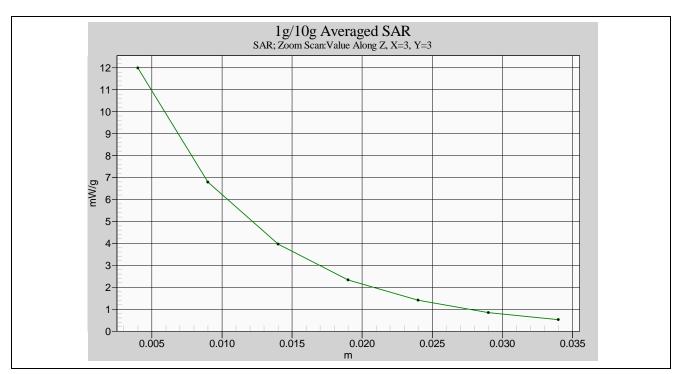
D2450V2: dipole length 51.5 mm; overall height 300 mm

Figure 9. Validation Kit

9.2.2 Validation


Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of \pm 7%. The validation was performed at 900MHz and 1950MHz.

Valida	tion kit	Mixture Type		SAR _{1g} [mW/g]		SAR _{10g} [mW/g]					
D900V2-SN1	00V2-SN172		11.28		11.28		/ 11.28 7.28		7.28		Mar. 17, 2008
D1950V2-SN	D1950V2-SN1117		41.2		Body 41.2		21.76		Dec. 20, 2007		
Frequency (MHz)	Power	SAR _{1g} (mW/g)	SAR _{10g} Drift (mW/g) (dB)		Difference percentage		Date				
	250mW	2.86	1.86		1g	10g					
900 (Body)	Normalize to 1 Watt	11.44	7.44	0.012	1.4	2.2	Apr. 21, 2008				
1950	250mW	10.6	5.43				_				
(Body)	Normalize to 1 Watt	42.4	21.72	-0.056	2.9	-0.2	Apr. 22, 2008				


Detail results see Appendix A.

Z-axis Plot of System Performance Check

Head-Tissue-Simulating-Liquid 900MHz

Body-Tissue-Simulating-Liquid 1950MHz

9.3 Dosimetric Assessment Setup

9.3.1 Headset Test Position - Body Worn

Body-Worn Configuration

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a handset output should be tested with a handset connected to the device.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances.

For this test:

- The EUT is placed into the holster/belt clip and the holster is positioned against the surface of the phantom in a normal operating position.
- Since this EUT doesn't supply any body-worn accessory to the end user, for EUT Top / EUT Tip (Ant. Side) to phantom mode the distance of 15 mm was tested to confirm the necessary "minimum SAR separation distance".

(*Note: This distance includes the 2 mm phantom shell thickness.)

9.3.2 Measurement Procedures

The evaluation was performed with the following procedures:

Surface Check:

A surface checks job gathers data used with optical surface detection. It determines the distance from the phantom surface where the reflection from the optical detector has its peak. Any following measurement jobs using optical surface detection will then rely on this value. The surface check performs its search a specified number of times, so that the repeatability can be verified. The probe tip distance is 1.3mm to phantom inner surface during scans.

Reference:

The reference job measures the field at a specified reference position, at 4 mm from the selected section's grid reference point.

Area Scan:

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines can find the maximum locations even in relatively coarse grids. When an area scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. Any following zoom scan within the same procedure will then perform fine scans around these maxima. The area covered the entire dimension of the EUT and the horizontal grid spacing was $15 \text{ mm} \times 15 \text{ mm}$.

Zoom Scan:

Zoom scans are used to assess the highest averaged SAR for cubic averaging volumes with 1 g and 10 g of simulated tissue. The zoom scan measures 5 x 5 x 7 points in a 32 x 32 x 30 mm cube whose base faces are centered around the maxima returned from a preceding area scan within the same procedure.

Drift:

The drift job measures the field at the same location as the most recent reference job within the same procedure, with the same settings. The drift measurement gives the field difference in dB from the last reference measurement. Several drift measurements are possible for each reference measurement. This allows monitoring of the power drift of the device in the batch process. If the value changed by more than 5%, the evaluation was repeated.

9.4 Spatial Peak SAR Evaluation

The DASY5 software includes all numerical procedures necessary to evaluate the spatial peak SAR values. Based on the Draft: SCC-34, SC-2, WG-2 - Computational Dosimetry, IEEE P1529/D0.0 (Draft Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) Associated with the Use of Wireless Handsets - Computational Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement in a volume of $(32\times32\times30)$ mm³ $(5\times5\times7$ points). The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. If the 10g cube or both cubes are not entirely inside the measured volumes, the system issues a warning regarding the evaluated spatial peak values within the Postprocessing engine (SEMCAD). This means that if the measured volume is shifted, higher values might be possible. To get the correct values you can use a finer measurement grid for the area scan. In complicated field distributions, a large grid spacing for the area scan might miss some details and give an incorrectly interpolated peak location.

The entire evaluation of the spatial peak values is performed within the Postprocessing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into three stages:

Interpolation and Extrapolation

The probe is calibrated at the center of the dipole sensors which is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated.

In DASY5, the choice of the coordinate system defining the location of the measurement points has no influence on the uncertainty of the interpolation, Maxima Search and SAR extrapolation routines. The interpolation, Maxima Search and extrapolation routines are all based on the modified Quadratic Shepard's method [7].

10. Measurement Uncertainty

Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environmental. However, we estimate the measurement uncertainties in SAR to be less than $\pm 21.9\%$ [8].

According to Std. C95.3 $\{9\}$, the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of ± 1 to 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least ± 2 dB can be expected.

According to CENELEC (10) , typical worst-case uncertainty of field measurements is \pm 5 dB. For well-defined modulation characteristics the uncertainty can be reduced to \pm 3 dB.

Error Description	Uncertainty value	Prob. Dist.	Div.	(<i>ci</i>) 1g	(<i>ci</i>) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(vi) veff
Measurement System								
Probe Calibration	± 5.9 %	N	1	1	1	± 5.9 %	± 5.9 %	
Axial Isotropy	± 4.7 %	R		0.7	0.7	± 1.9 %	± 1.9 %	∞
Hemispherical Isotropy	± 9.6 %	R	$\sqrt{3}$	0.7	0.7	± 3.9 %	± 3.9 %	∞
Boundary Effects	± 1.0 %	R	$\sqrt{3}$	1	1	± 0.6 %	± 0.6 %	∞
Linearity	± 4.7 %	R	$\sqrt{3}$	1	1	± 2.7 %	± 2.7 %	∞
System Detection Limits	± 1.0 %	R	$\sqrt{3}$	1	1	± 0.6 %	± 0.6 %	∞
Readout Electronics	± 0.3 %	N	1	1	1	± 0.3 %	± 0.3 %	∞
Response Time	± 0.8 %	R	$\sqrt{3}$	1	1	± 0.5 %	± 0.5 %	∞
Integration Time	± 2.6 %	R	$\sqrt{3}$	1	1	± 1.5 %	± 1.5 %	∞
RF Ambient Noise	± 3.0 %	R	$\sqrt{3}$	1	1	± 1.7 %	± 1.7 %	∞
RF Ambient Reflections	± 3.0 %	R	$\sqrt{3}$	1	1	± 1.7 %	± 1.7 %	∞
Probe Positioner	± 0.4 %	R	$\sqrt{3}$	1	1	± 0.2 %	± 0.2 %	∞
Probe Positioning	± 2.9 %	R	$\sqrt{3}$	1	1	± 1.7 %	± 1.7 %	∞
Max. SAR Eval.	± 1.0 %	R	$\sqrt{3}$	1	1	± 0.6 %	± 0.6 %	∞
Test Sample Related								
Device Positioning	± 2.9 %	N	1	1	1	± 2.9 %	± 2.9 %	145
Device Holder	± 3.6 %	N	1	1	1	± 3.6 %	± 3.6 %	5
Power Drift	± 5.0 %	R	$\sqrt{3}$	1	1	± 2.9 %	± 2.9 %	∞
Phantom and Setup								
Phantom Uncertainty	± 4.0 %	R	$\sqrt{3}$	1	1	± 2.3 %	2.3 %	∞
Liquid Conductivity (target)	± 5.0 %	R	$\sqrt{3}$	0.64	0.43	± 1.8 %	1.2 %	∞
Liquid Conductivity (meas.)	± 2.5 %	N	1	0.64	0.43	± 1.6 %	1.1 %	∞
Liquid Permittivity (target)	± 5.0 %	R	$\sqrt{3}$	0.6	0.49	± 1.7 %	1.4 %	∞
Liquid Permittivity (meas.)	± 2.5 %	N	1	0.6	0.49	± 1.5 %	1.2 %	∞
Combined Std. Uncertainty					± 10.9 %	± 10.7 %	387	
Expanded STD Uncertainty					± 21.9 %	± 21.4 %		

Table 5. Uncertainty Budget of DASY

SAR Test Results Summary

11.1 EUT Top to phantom _ 15mm space

11.1.1 GSM 850 Results

Ambient: **22** ± **2** Relative HUMIDITY (%): 40-70 Temperature ($^{\circ}$): Liquid: Mixture Type: Liquid Temperature (°C) : MSL900 22.0 Depth of liquid (cm): 15 Measurement: Crest Factor: Probe S/N: 3150 8.3

Freque	ency	Band	Power	Phantom	Antenna	Accessory	SAR _{1g}	Power Drift	Remark	
MHz	СН	Dana	(dBm)	Position	Position Position		[mW/g]	(dB)	Romark	
824.2	128	GSM 850	32.40	Flat	Internal	Belt Clip	0.099	0.038	-	
836.6	190	GSM 850	32.70	Flat	Internal	Belt Clip	0.187	0.017	-	
848.8	251	GSM 850	32.70	Flat	Internal	Belt Clip	0.414	0.038	-	
Unco	848.8 251 GSM 850 32.70 Flat Std. C95.1-1999 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population					1.6 W/kg (mW/g) Averaged over 1 gram				

Detail results see Appendix B.

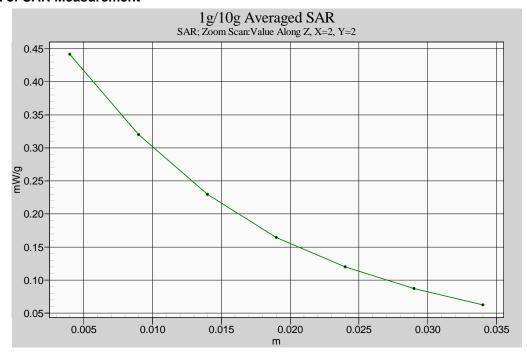


Figure 10. Z-axis Plot of Flat GSM850 CH251

11.1.2 GPRS 850 (3Down2Up) Results

Ambient: Relative HUMIDITY (%): Temperature ($^{\circ}$): 40-70 **22** ± **2** Liquid: Mixture Type: MSL900 Liquid Temperature (°C): 22.0 Depth of liquid (cm): 15 Measurement: Crest Factor: 4.2 Probe S/N: 3150

Freque	ency	Band	Power	Phantom	Antenna	Accessorv	SAR _{1g}	Power Drift	Remark	
MHz	СН	Dana	(dBm)	Position	Position	Accessory	[mW/g]	(dB)	Kemark	
824.2	128	GPRS 850	32.40	Flat	Internal	Belt Clip	0.162	-0.048	-	
836.6	190	GPRS 850	32.70	Flat	Internal	Belt Clip	0.314	0.032	-	
848.8	251	GPRS 850	32.70	Flat	Internal	Belt Clip	0.699	-0.061	-	
Unco	848.8 251 GPRS 850 32.70 Flat Std. C95.1-1999 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population					1.6 W/kg (mW/g) Averaged over 1 gram				

Detail results see Appendix B.

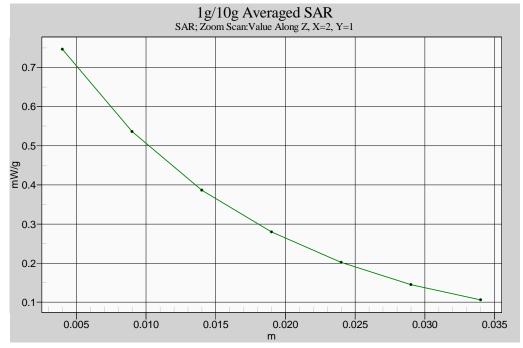


Figure 11. Z-axis Plot of Flat GPRS 850 CH251

11.1.3 PCS 1900 Results

Ambient:

Temperature (°C): 22 ± 2 Relative HUMIDITY (%): 40-70

Liquid:

Mixture Type : MSL1950 Liquid Temperature ($^{\circ}$ C) : 22.0 Depth of liquid (cm) : 15

Measurement:

Crest Factor: 8.3 Probe S/N: 3150

Freque	ency	Band	Power	Phantom Position	Antenna	Accessory	SAR _{1g}	Power Drift	Remark		
MHz	СН	Dana	(dBm)		Position	7.0000001 y	[mW/g]	(dB)	rtomark		
1850.2	512	PCS 1900	29.00	Flat	Internal	Belt Clip	0.216	0.055	-		
1880.0	661	PCS 1900	29.20	Flat	Internal	Belt Clip	0.244	-0.039	-		
1909.8	810	PCS 1900	29.50	Flat	Internal	Belt Clip	0.247	-0.059	-		
Unco	Std. C95.1-1999 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population					1.6 W/kg (mW/g) Averaged over 1 gram					

Detail results see Appendix B.

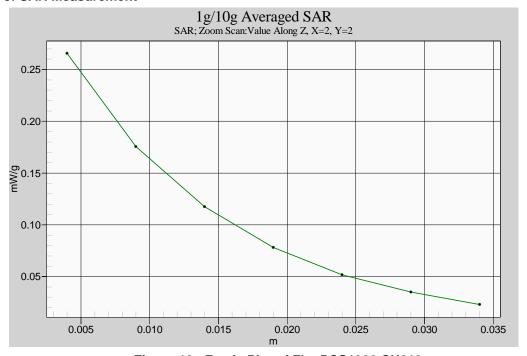


Figure 12. Z-axis Plot of Flat PCS1900 CH810

11.1.4 GPRS 1900 (3Down2Up) Results

Ambient: **22** ± **2** Relative HUMIDITY (%): Temperature ($^{\circ}$): 40-70 Liquid: Liquid Temperature (°C): Mixture Type: MSL1950 22.0 Depth of liquid (cm): Measurement: Crest Factor: 4.2 Probe S/N: 3150

Freque	ency	Band	Power	Phantom	Antenna	Accessory	SAR _{1g}	Power Drift	Remark		
MHz	СН	Dana	(dBm) Position		Position	Accessory	[mW/g]	(dB)	Remark		
1850.2	512	GPRS 1900	29.00	Flat	Internal	Belt Clip	0.318	-0.121	-		
1880.0	661	GPRS 1900	29.20	Flat	Internal	Belt Clip	0.372	0.077	-		
1909.8	810	GPRS 1900	29.50	Flat	Internal	Belt Clip	0.249	-0.047	-		
Unco	Std. C95.1-1999 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population					1.6 W/kg (mW/g) Averaged over 1 gram					

Detail results see Appendix B.

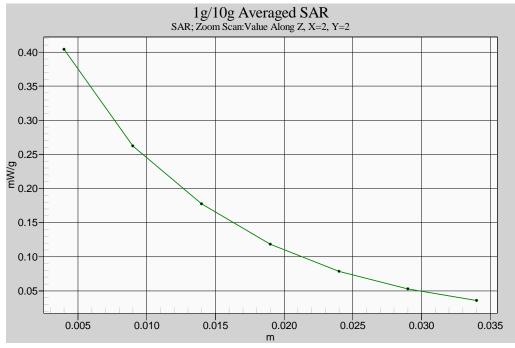


Figure 13. Z-axis Plot of Flat GPRS1900 CH661

11.2 EUT Bottom to phantom with Belt Clip

11.2.1 GSM 850 Results

Ambient:

Temperature ($^{\circ}$): 22 \pm 2 Relative HUMIDITY ($^{\circ}$): 40-70

Liquid:

Mixture Type: MSL900 Liquid Temperature (°C): 22.0

Depth of liquid (cm): 15

Measurement:

Crest Factor: 8.3 Probe S/N: 3150

Freque	ency	Band		Antenna	Accessory	SAR _{1g}	Power Drift	Remark	
MHz	СН	Dana	(dBm)	Position	Position	Accessory	[mW/g]	(dB)	Kemark
824.2	128	GSM 850	32.40	Flat	Internal	Belt Clip	0.039	-0.007	-
836.6	190	GSM 850	32.70	Flat	Internal	Belt Clip	0.070	0.036	-
848.8	251	GSM 850	32.70	Flat	Internal	Belt Clip	0.158	-0.041	-
Unco		C95.1-1999 - Spatial F d Exposure	Peak				6 W/kg (mW aged over 1		

Detail results see Appendix B.

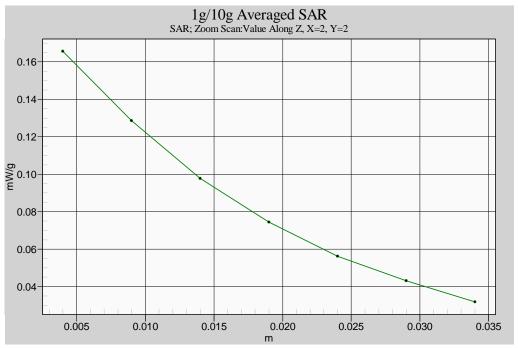


Figure 14. Z-axis Plot of Flat GSM850 CH251

11.2.2 GPRS 850 (3Down2Up) Results

Ambient: Relative HUMIDITY (%): Temperature ($^{\circ}$): 40-70 **22** ± **2** Liquid: Mixture Type: MSL900 Liquid Temperature ($^{\circ}$): 22.0 Depth of liquid (cm): 15 Measurement: Crest Factor: 4.2 Probe S/N: 3150

Freque	ency	Band	Power	Phantom	Antenna	Accessory	SAR _{1g}	Power Drift	Remark
MHz	СН	Ballu	(dBm) Position Position	[mW/g]	(dB)	Remark			
824.2	128	GPRS 850	32.40	Flat	Internal	Belt Clip	0.083	0.080	-
836.6	190	GPRS 850	32.70	Flat	Internal	Belt Clip	0.155	-0.042	-
848.8	251	GPRS 850	32.70	Flat	Internal	Belt Clip	0.358	0.003	-
Std. C95.1-1999 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population							6 W/kg (mW aged over 1		

Detail results see Appendix B.

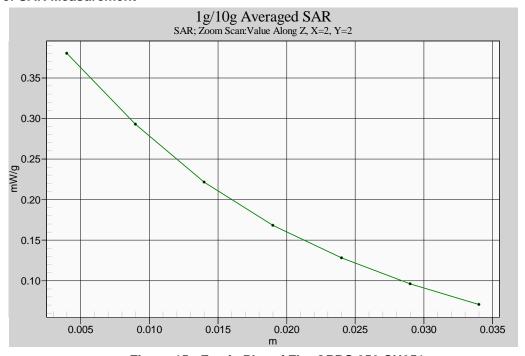


Figure 15. Z-axis Plot of Flat GPRS 850 CH251

11.2.3 PCS 1900 Results

Ambient:

Relative HUMIDITY (%): Temperature ($^{\circ}$): **22** ± **2** 40-70

Liquid:

Mixture Type: MSL1950 Liquid Temperature (°C): 22.0 15

Depth of liquid (cm):

Measurement:

Crest Factor: 8.3 Probe S/N: 3150

Freque	ency	Band	Power	Phantom	Antenna	Accessorv	SAR _{1g}	Power Drift	Remark
MHz	СН	Dana	(dBm)	Position	Position	Accessory	[mW/g]	(dB)	Remark
1850.2	512	PCS 1900	29.00	Flat	Internal	Belt Clip	0.093	-0.060	-
1880.0	661	PCS 1900	29.20	Flat	Internal	Belt Clip	0.050	0.079	-
1909.8	810	PCS 1900	29.50	Flat	Internal	Belt Clip	0.048	0.101	-
Unco		C95.1-1999 - Spatial F d Exposure/	Peak				6 W/kg (mW aged over 1		

Detail results see Appendix B.

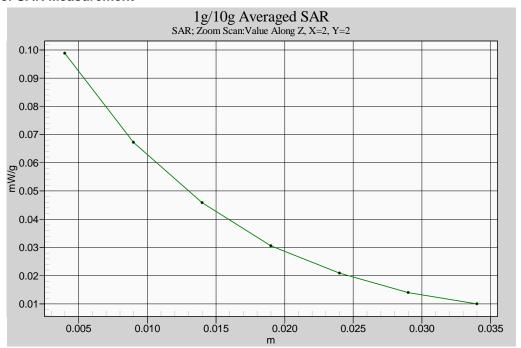


Figure 16. Z-axis Plot of Flat PCS1900 CH512

11.2.4 GPRS 1900 (3Down2Up) Results

Ambient: Relative HUMIDITY (%): Temperature ($^{\circ}$): 40-70 **22** ± **2** Liquid: Liquid Temperature (°C) : Mixture Type: MSL1950 22.0 Depth of liquid (cm): Measurement: Crest Factor: 4.2 Probe S/N: 3150

Freque	ency	Band	Power	Phantom	Antenna	Accessory	SAR _{1g}	Power Drift	Remark
MHz	СН	Bana	(dBm)	Position	Position	Accessory	[mW/g]	(dB)	Remark
1850.2	512	GPRS 1900	29.00	Flat	Internal	Belt Clip	0.207	-0.017	-
1880.0	661	GPRS 1900	29.20	Flat	Internal	Belt Clip	0.103	0.151	-
1909.8	810	GPRS 1900	29.50	Flat	Internal	Belt Clip	0.089	0.014	-
Unco		C95.1-1999 - Spatial F d Exposure/	Peak				6 W/kg (mW aged over 1		

Detail results see Appendix B.

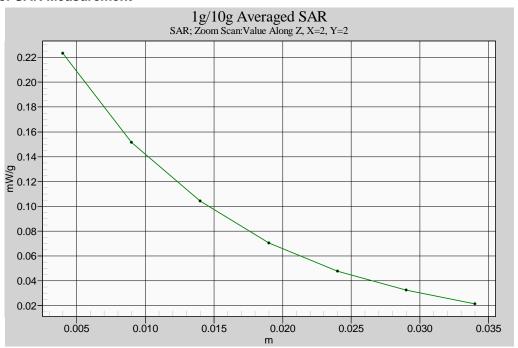


Figure 17. Z-axis Plot of Flat GPRS1900 CH512

11.3 EUT Tip (Ant. Side) to phantom _ 15mm space

11.3.1 GSM 850 Results

Ambient:

Temperature ($^{\circ}$): 22 \pm 2 Relative HUMIDITY ($^{\circ}$): 40-70

Liquid:

Mixture Type : MSL900 Liquid Temperature ($^{\circ}$) : 22.0

Depth of liquid (cm): 15

Measurement:

Crest Factor: 8.3 Probe S/N: 3150

Freque	ency	Band	Power		Antenna	Accessory	SAR _{1g}	Power Drift	Remark
MHz	СН	Dana	(dBm)	Position	Position	Accessory	[mW/g]	(dB)	Kemark
824.2	128	GSM 850	32.40	Flat	Internal	Belt Clip	0.035	-0.034	-
836.6	190	GSM 850	32.70	Flat	Internal	Belt Clip	0.061	0.031	-
848.8	251	GSM 850	32.70	Flat	Internal	Belt Clip	0.111	0.005	-
Unco	Std. C95.1-1999 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population						6 W/kg (mW aged over 1		

Detail results see Appendix B.

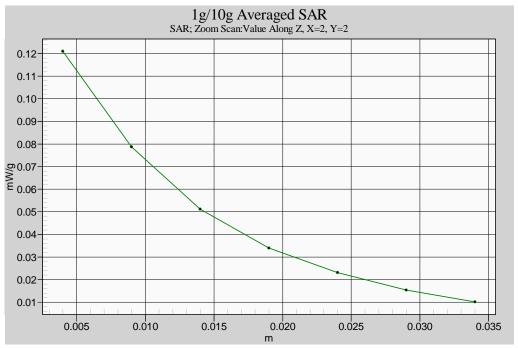


Figure 18. Z-axis Plot of Flat GSM850 CH251

11.3.2 GPRS 850 (3Down2Up) Results

Ambient: Relative HUMIDITY (%): Temperature ($^{\circ}$ C): 40-70 **22** ± **2** Liquid: Liquid Temperature (°C) : Mixture Type: MSL900 22.0 Depth of liquid (cm): Measurement: Crest Factor: 4.2 Probe S/N: 3150

Freque	ency	Band	Power (dBm) Phantom Antenna Position Accessory			Accessory	SAR _{1g}	Power Drift	Remark
MHz	СН	Danu		[mW/g]	(dB)	1101114111			
824.2	128	GPRS 850	32.40	Flat	Internal	Belt Clip	0.069	0.050	-
836.6	190	GPRS 850	32.70	Flat	Internal	Belt Clip	0.124	0.025	-
848.8	251	GPRS 850	32.70	Flat	Internal	Belt Clip	0.222	-0.034	-
Unco		C95.1-1999 - Spatial F d Exposure	Peak				6 W/kg (mW aged over 1		

Detail results see Appendix B.

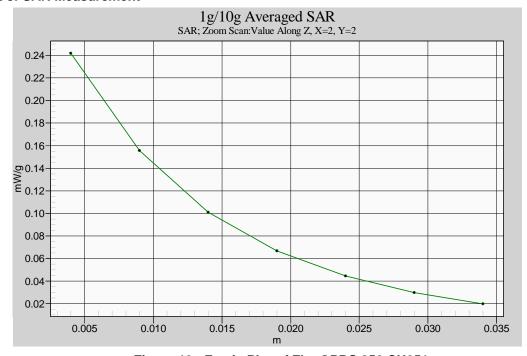


Figure 19. Z-axis Plot of Flat GPRS 850 CH251

11.3.3 PCS 1900 Results

Ambient:

Temperature ($^{\circ}$): 22 \pm 2 Relative HUMIDITY ($^{\circ}$): 40-70

Liquid:

Mixture Type : MSL1950 Liquid Temperature ($^{\circ}$) : 22.0

Depth of liquid (cm): 15

Measurement:

Crest Factor: 8.3 Probe S/N: 3150

Freque	ency	Band	Power		Antenna	Accessorv	SAR _{1g}	Power Drift	Remark
MHz	СН	Dana	(dBm)	Position	Position	Accessory	[mW/g]	(dB)	Remark
1850.2	512	PCS 1900	29.00	Flat	Internal	Belt Clip	0.048	0.084	-
1880.0	661	PCS 1900	29.20	Flat	Internal	Belt Clip	0.052	0.079	-
1909.8	810	PCS 1900	29.50	Flat	Internal	Belt Clip	0.050	0.120	-
Std. C95.1-1999 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population							6 W/kg (mW aged over 1		

Detail results see Appendix B.

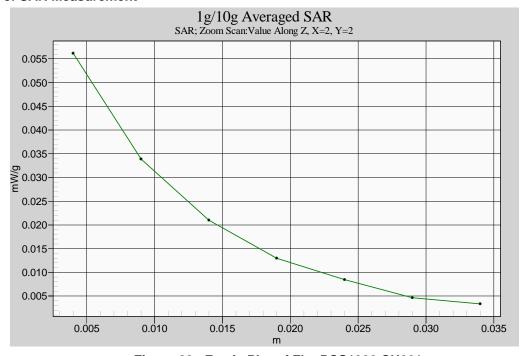


Figure 20. Z-axis Plot of Flat PCS1900 CH661

11.3.4 GPRS 1900 (3Down2Up) Results

Ambient: Relative HUMIDITY (%): Temperature ($^{\circ}$ C): 40-70 **22** ± **2** Liquid: Liquid Temperature (°C): Mixture Type: MSL1950 22.0 Depth of liquid (cm): 15 Measurement: Crest Factor: 4.2 Probe S/N: 3150

Freque	ency	Band	Power		Antenna	Accessory	SAR _{1g}	Power Drift	Remark
MHz	СН	Dana	(dBm)	Position	Position	Accessory	[mW/g]	(dB)	Remark
1850.2	512	GPRS 1900	29.00	Flat	Internal	Belt Clip	0.097	0.034	-
1880.0	661	GPRS 1900	29.20	Flat	Internal	Belt Clip	0.104	0.072	-
1909.8	810	GPRS 1900	29.50	Flat	Internal	Belt Clip	0.099	0.036	-
Unco	Std. C95.1-1999 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population						6 W/kg (mW aged over 1		

Detail results see Appendix B.

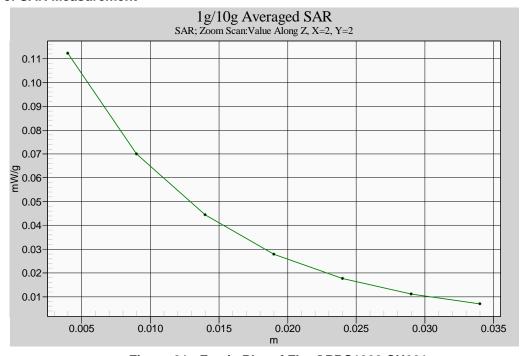


Figure 21. Z-axis Plot of Flat GPRS1900 CH661

11.4 Setup Photo

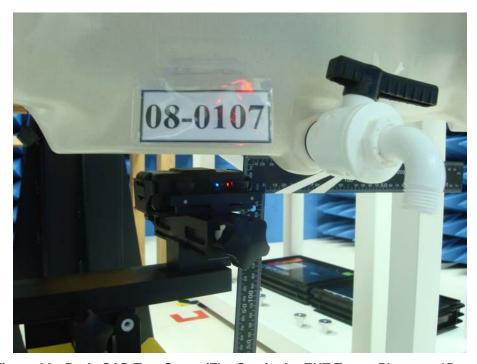


Figure 22. Body SAR Test Setup (Flat Section) _ EUT Top to Phantom 15mm space

Figure 23. Body SAR Test Setup (Flat Section) _ EUT Bottom with Belt Clip

Figure 24. Body SAR Test Setup (Flat Section) _ EUT Tip (Ant. Side) to Phantom 15mm space

11.5 Std. C95.1-1999 RF Exposure Limit

Human Exposure	Population Uncontrolled Exposure (W/kg) or (mW/g)	Occupational Controlled Exposure (W/kg) or (mW/g)		
Spatial Peak SAR* (head)	1.60	8.00		
Spatial Peak SAR** (Whole Body)	0.08	0.40		
Spatial Peak SAR*** (Partial-Body)	1.60	8.00		
Spatial Peak SAR**** (Hands / Feet / Ankle / Wrist)	4.00	20.00		

Table 6. Safety Limits for Partial Body Exposure

Notes:

- * The Spatial Peak value of the SAR averaged over any 1 gram of tissue.
 (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Average value of the SAR averaged over the partial body.
- **** The Spatial Peak value of the SAR averaged over any 10 grams of tissue.

 (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Population / Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational / Controlled Environments: are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

12. Conclusion

The SAR test values found for the portable mobile phone **Globalsat Technology Corporation Trade Name**: **G-STA Model(s)**: **TR-151A** are below the maximum recommended level of 1.6 W/kg (mW/g).

13. References

- [1] Std. C95.1-1999, "American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300KHz to 100GHz", New York.
- [2] NCRP, National Council on Radiation Protection and Measurements, "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields", NCRP report NO. 86, 1986.
- [3] T. Schmid, O. Egger, and N. Kuster, "Automatic E-field scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp, 105-113, Jan. 1996.
- [4] K. Poković, T. Schmid, and N. Kuster, "Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequency", in ICECOM'97, Dubrovnik, October 15-17, 1997, pp.120-124.
- [5] K. Poković, T. Schmid, and N. Kuster, "E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23-25 June, 1996, pp.172-175.
- [6] N. Kuster, and Q. Balzano, "Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz", IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [7] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148.
- [8] N. Kuster, R. Kastle, T. Schmid, *Dosimetric evaluation of mobile communications equipment with known precision*, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [9] Std. C95.3-1991, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, Aug. 1992.
- [10] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), *Human Exposure to Electromagnetic Fields High-frequency*: 10KHz-300GHz, Jan. 1995.

Appendix A - System Performance Check

See following Attached Pages for System Performance Check.

Date/Time: 4/21/2008 6:40:51 PM

System Performance Check at 900MHz_200804121_Body

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:073

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 900 MHz; $\sigma = 1.04 \text{ mho/m}$; $\varepsilon_r = 55.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(6, 6, 6); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

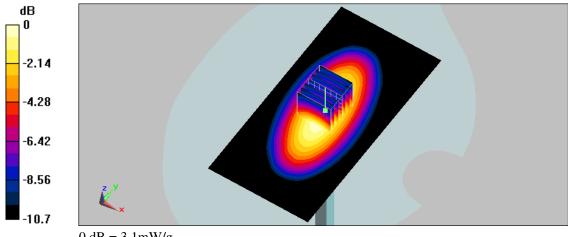
• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

System Performance Check at 900MHz/Area Scan (61x121x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 3.1 mW/g


System Performance Check at 900MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.7 V/m; Power Drift = 0.012 dB

Peak SAR (extrapolated) = 4.21 W/kg

SAR(1 g) = 2.86 mW/g; SAR(10 g) = 1.86 mW/gMaximum value of SAR (measured) = 3.1 mW/g

0 dB = 3.1 mW/g

Date/Time: 4/22/2008 2:14:41 AM

System Performance Check at 1950MHz_20080422_Body

DUT: Dipole 1950 MHz; Type: D1950V3; Serial: D1950V3 - SN:1117

Communication System: CW; Frequency: 1950 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1950 MHz; $\sigma = 1.55 \text{ mho/m}$; $\varepsilon_r = 52.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(4.55, 4.55, 4.55); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

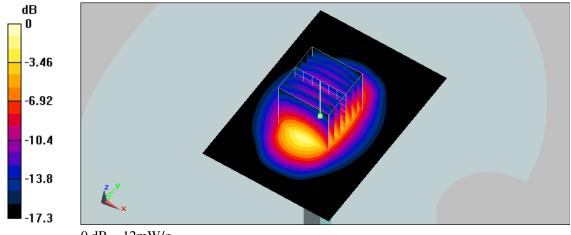
• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

System Performance Check at 1950MHz/Area Scan (51x71x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 13.5 mW/g


System Performance Check at 1950MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.2 V/m; Power Drift = -0.056 dB

Peak SAR (extrapolated) = 19.4 W/kg

SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.43 mW/gMaximum value of SAR (measured) = 12 mW/g

0 dB = 12 mW/g

Appendix B - SAR Measurement Data

See following Attached Pages for SAR Measurement Data.

Date/Time: 4/22/2008 1:12:43 AM

Flat_GSM 850 CH128_EUT Top_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: GSM850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.945 \text{ mho/m}$; $\varepsilon_r = 55.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(6, 6, 6); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

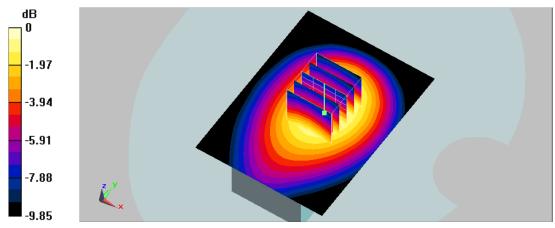
• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (61x81x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.104 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.94 V/m; Power Drift = 0.038 dB

Peak SAR (extrapolated) = 0.133 W/kg

SAR(1 g) = 0.099 mW/g; SAR(10 g) = 0.069 mW/g Maximum value of SAR (measured) = 0.105 mW/g

0 dB = 0.105 mW/g

Date/Time: 4/22/2008 1:25:18 AM

Flat_GSM 850 CH190_EUT Top_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 836.6 MHz; $\sigma = 0.968$ mho/m; $\varepsilon_r = 55.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(6, 6, 6); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

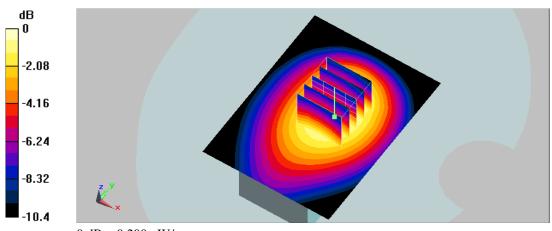
• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (61x81x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.199 mW/g


Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.6 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 0.252 W/kg

SAR(1 g) = 0.187 mW/g; SAR(10 g) = 0.130 mW/g

Maximum value of SAR (measured) = 0.200 mW/g

0 dB = 0.200 mW/g

Appendix B 2/36

Date/Time: 4/22/2008 1:39:02 AM

Flat_GSM 850 CH251_EUT Top_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 848.8 MHz; $\sigma = 0.991 \text{ mho/m}$; $\varepsilon_r = 55.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(6, 6, 6); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

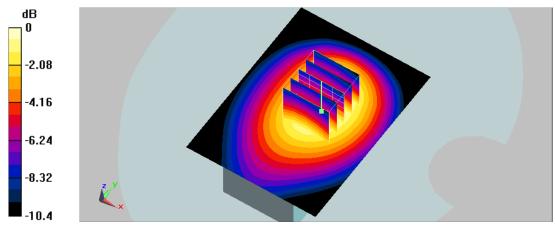
• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (61x81x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.433 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20 V/m; Power Drift = 0.038 dB

Peak SAR (extrapolated) = 0.563 W/kg

SAR(1 g) = 0.414 mW/g; SAR(10 g) = 0.288 mW/g Maximum value of SAR (measured) = 0.441 mW/g

0 dB = 0.441 mW/g

Appendix B 3/36

Date/Time: 4/21/2008 7:24:37 PM

Flat_GPRS GSM 850 CH128_3Down 2Up_EUT Top_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: GSM 850 GPRS(3Down, 2Up); Frequency: 824.2 MHz; Duty Cycle: 1:4.2 Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.945$ mho/m; $\varepsilon_r = 55.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(6, 6, 6); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

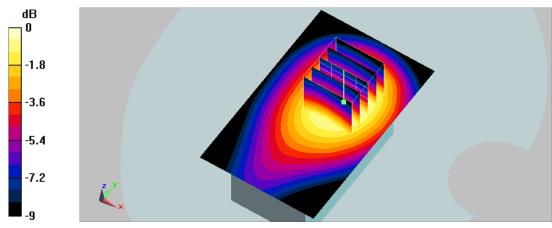
• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (51x81x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.172 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.3 V/m; Power Drift = -0.048 dB

Peak SAR (extrapolated) = 0.219 W/kg

SAR(1 g) = 0.162 mW/g; SAR(10 g) = 0.114 mW/g Maximum value of SAR (measured) = 0.171 mW/g

0 dB = 0.171 mW/g

Date/Time: 4/21/2008 7:41:37 PM

Flat_GPRS GSM 850 CH190_3Down 2Up_EUT Top_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: GSM 850 GPRS(3Down, 2Up); Frequency: 836.6 MHz;Duty Cycle: 1:4.2

Medium parameters used: f = 836.6 MHz; $\sigma = 0.968$ mho/m; $\varepsilon_r = 55.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(6, 6, 6); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

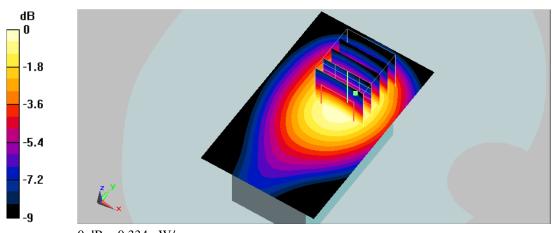
• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (51x81x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.332 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.3 V/m; Power Drift = 0.032 dB

Peak SAR (extrapolated) = 0.426 W/kg

SAR(1 g) = 0.314 mW/g; SAR(10 g) = 0.219 mW/g

Maximum value of SAR (measured) = 0.334 mW/g

0 dB = 0.334 mW/g

Appendix B 5/36

Date/Time: 4/21/2008 8:07:55 PM

Flat_GPRS GSM 850 CH251_3Down 2Up_EUT Top_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: GSM 850 GPRS(3Down, 2Up); Frequency: 848.8 MHz; Duty Cycle: 1:4.2

Medium parameters used: f = 848.8 MHz; $\sigma = 0.991 \text{ mho/m}$; $\varepsilon_r = 55.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(6, 6, 6); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

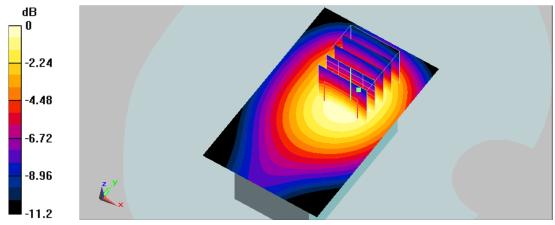
• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (51x81x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.756 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27 V/m; Power Drift = -0.061 dB

Peak SAR (extrapolated) = 0.955 W/kg

SAR(1 g) = 0.699 mW/g; SAR(10 g) = 0.485 mW/g Maximum value of SAR (measured) = 0.746 mW/g

6/36

0 dB = 0.746 mW/g

Appendix B

Date/Time: 4/22/2008 2:57:22 AM

Flat_PCS CH512_EUT Top_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.45 \text{ mho/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(4.95, 4.95, 4.95); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

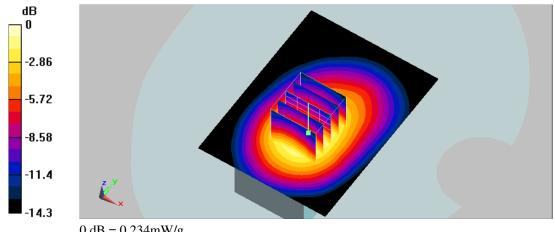
• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (61x81x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.234 mW/g


Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.84 V/m; Power Drift = 0.055 dB

Peak SAR (extrapolated) = 0.332 W/kg

SAR(1 g) = 0.216 mW/g; SAR(10 g) = 0.135 mW/g

Maximum value of SAR (measured) = 0.234 mW/g

0 dB = 0.234 mW/g

Appendix B 7/36

Date/Time: 4/22/2008 3:10:05 AM

Flat_PCS CH661_EUT Top_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 52.8; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(4.95, 4.95, 4.95); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

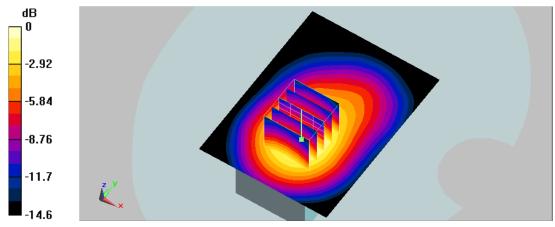
• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (61x81x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.263 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.06 V/m; Power Drift = -0.039 dB

Peak SAR (extrapolated) = 0.376 W/kg

SAR(1 g) = 0.244 mW/g; SAR(10 g) = 0.153 mW/gMaximum value of SAR (measured) = 0.261 mW/g

0 dB = 0.261 mW/g

Appendix B

Date/Time: 4/22/2008 3:23:17 AM

Flat_PCS CH810_EUT Top_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: PCS; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1909.8 MHz; $\sigma = 1.51 \text{ mho/m}$; $\epsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(4.95, 4.95, 4.95); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

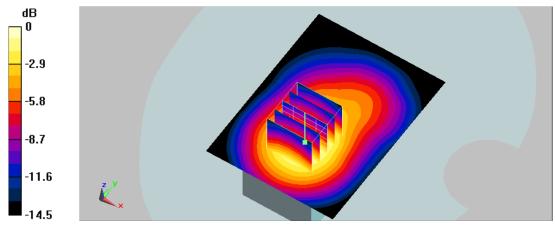
• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (61x81x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.272 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.37 V/m; Power Drift = -0.059 dB

Peak SAR (extrapolated) = 0.381 W/kg

SAR(1 g) = 0.247 mW/g; SAR(10 g) = 0.156 mW/gMaximum value of SAR (measured) = 0.266 mW/g

0 dB = 0.266 mW/g

Date/Time: 4/22/2008 9:45:10 AM

Flat_PCS CH512_3Down 2Up_EUT Top_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: PCS 1900 GPRS(3Down,2Up); Frequency: 1850.2 MHz;Duty Cycle: 1:4.2 Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(4.95, 4.95, 4.95); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

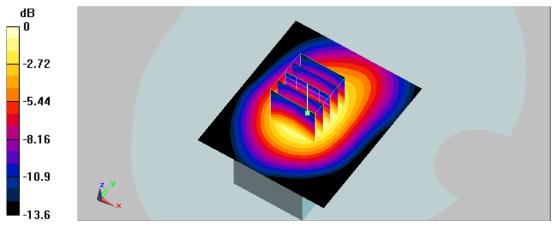
• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (61x71x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.378 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.3 V/m; Power Drift = -0.121 dB

Peak SAR (extrapolated) = 0.483 W/kg

SAR(1 g) = 0.318 mW/g; SAR(10 g) = 0.202 mW/g Maximum value of SAR (measured) = 0.344 mW/g

0 dB = 0.344 mW/g

Appendix B 10/36

Date/Time: 4/22/2008 10:44:06 AM

Flat_PCS CH661_3Down 2Up_EUT Top_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: PCS 1900 GPRS(3Down,2Up); Frequency: 1880 MHz; Duty Cycle: 1:4.2

Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 52.8; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(4.95, 4.95, 4.95); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

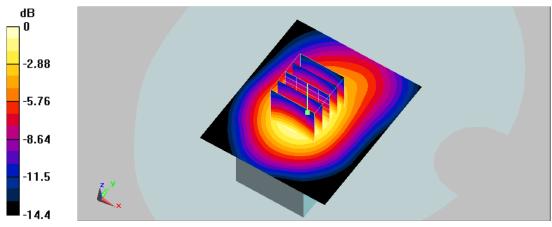
• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (61x71x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.434 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11 V/m; Power Drift = 0.077 dB

Peak SAR (extrapolated) = 0.574 W/kg

SAR(1 g) = 0.372 mW/g; SAR(10 g) = 0.235 mW/g Maximum value of SAR (measured) = 0.404 mW/g

0 dB = 0.404 mW/g

Appendix B 11/36

Date/Time: 4/22/2008 11:53:35 AM

Flat_PCS CH810_3Down 2Up_EUT Top_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: PCS 1900 GPRS(3Down,2Up); Frequency: 1909.8 MHz;Duty Cycle: 1:4.2

Medium parameters used: f = 1909.8 MHz; σ = 1.51 mho/m; ε_r = 52.9; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(4.95, 4.95, 4.95); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

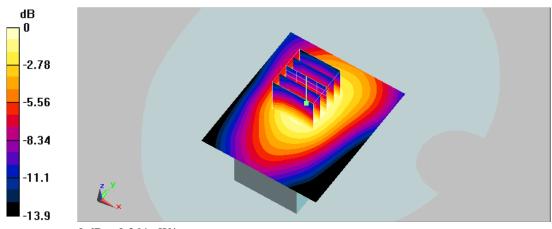
• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (61x71x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.271 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.9 V/m; Power Drift = -0.047 dB

Peak SAR (extrapolated) = 0.378 W/kg

SAR(1 g) = 0.249 mW/g; SAR(10 g) = 0.162 mW/g Maximum value of SAR (measured) = 0.264 mW/g

0 dB = 0.264 mW/g

Appendix B 12/36

Date/Time: 4/22/2008 12:57:36 AM

Flat_GSM 850 CH128_Belt Clip Close Body

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: GSM850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.945 \text{ mho/m}$; $\varepsilon_r = 55.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(6, 6, 6); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

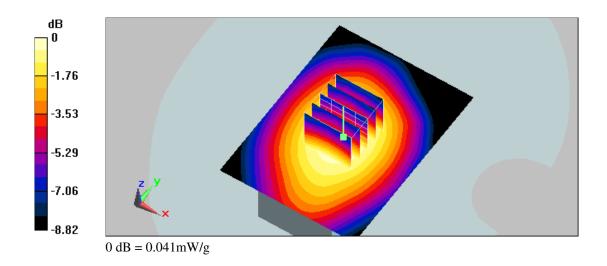
• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (61x81x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.041 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.98 V/m; Power Drift = -0.00731 dB

Peak SAR (extrapolated) = 0.050 W/kg

SAR(1 g) = 0.039 mW/g; SAR(10 g) = 0.029 mW/g

Maximum value of SAR (measured) = 0.041 mW/g

13/36

Appendix B

Date/Time: 4/22/2008 12:44:32 AM

Flat_GSM 850 CH190_Belt Clip Close Body

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 836.6 MHz; $\sigma = 0.968 \text{ mho/m}$; $\varepsilon_r = 55.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(6, 6, 6); Calibrated: 1/9/2008

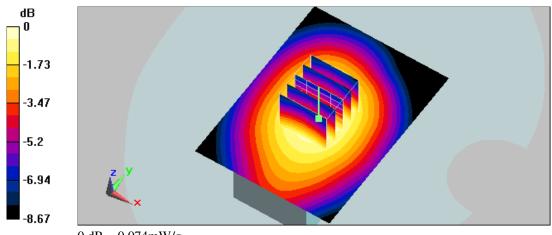
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (61x81x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.074 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.06 V/m; Power Drift = 0.036 dB

Peak SAR (extrapolated) = 0.090 W/kg

SAR(1 g) = 0.070 mW/g; SAR(10 g) = 0.052 mW/gMaximum value of SAR (measured) = 0.074 mW/g

0 dB = 0.074 mW/g

Appendix B

Date/Time: 4/22/2008 12:26:48 AM

Flat_GSM 850 CH251_Belt Clip Close Body

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 848.8 MHz; $\sigma = 0.991 \text{ mho/m}$; $\varepsilon_r = 55.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(6, 6, 6); Calibrated: 1/9/2008

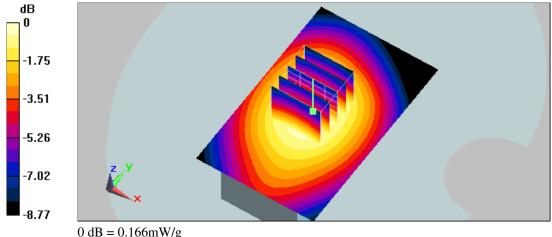
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (51x81x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.168 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.1 V/m; Power Drift = -0.041 dB

Peak SAR (extrapolated) = 0.200 W/kg

SAR(1 g) = 0.158 mW/g; SAR(10 g) = 0.117 mW/gMaximum value of SAR (measured) = 0.166 mW/g

0 dB = 0.166 mW/g

Date/Time: 4/21/2008 9:30:15 PM

Flat_GPRS GSM 850 CH128_3Down 2Up_Belt Clip Close Body

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: GSM 850 GPRS(3Down, 2Up); Frequency: 824.2 MHz; Duty Cycle: 1:4.2 Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.945$ mho/m; $\varepsilon_r = 55.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

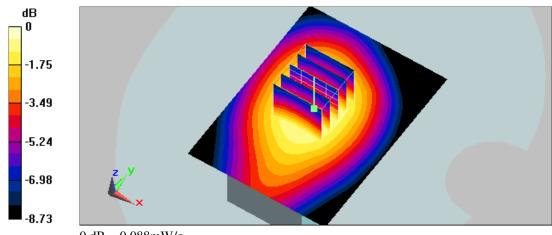
• Probe: ES3DV3 - SN3150; ConvF(6, 6, 6); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52


Flat/Area Scan (61x81x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.086 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.08 V/m; Power Drift = 0.080 dB Peak SAR (extrapolated) = 0.104 W/kg

SAR(1 g) = 0.083 mW/g; SAR(10 g) = 0.061 mW/g Maximum value of SAR (measured) = 0.088 mW/g

0 dB = 0.088 mW/g

Date/Time: 4/21/2008 9:04:06 PM

Flat_GPRS GSM 850 CH190_3Down 2Up_Belt Clip Close Body

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: GSM 850 GPRS(3Down, 2Up); Frequency: 836.6 MHz;Duty Cycle: 1:4.2

Medium parameters used: f = 836.6 MHz; $\sigma = 0.968$ mho/m; $\epsilon_r = 55.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(6, 6, 6); Calibrated: 1/9/2008

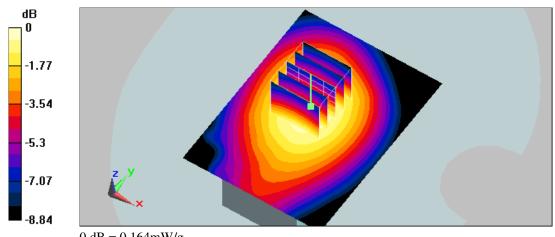
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (61x81x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.163 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.7 V/m; Power Drift = -0.042 dB

Peak SAR (extrapolated) = 0.196 W/kg

SAR(1 g) = 0.155 mW/g; SAR(10 g) = 0.115 mW/gMaximum value of SAR (measured) = 0.164 mW/g

0 dB = 0.164 mW/g

Appendix B

Date/Time: 4/21/2008 8:34:48 PM

Flat_GPRS GSM 850 CH251_3Down 2Up_Belt Clip Close Body

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: GSM 850 GPRS(3Down, 2Up); Frequency: 848.8 MHz;Duty Cycle: 1:4.2

Medium parameters used: f = 848.8 MHz; $\sigma = 0.991 \text{ mho/m}$; $\varepsilon_r = 55.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

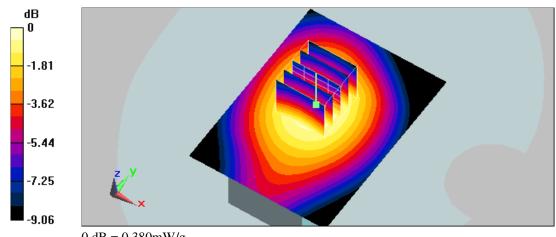
• Probe: ES3DV3 - SN3150; ConvF(6, 6, 6); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52


Flat/Area Scan (61x81x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.377 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 19 V/m; Power Drift = 0.00345 dBPeak SAR (extrapolated) = 0.457 W/kg

SAR(1 g) = 0.358 mW/g; SAR(10 g) = 0.262 mW/gMaximum value of SAR (measured) = 0.380 mW/g

0 dB = 0.380 mW/g

Appendix B

18/36

Date/Time: 4/22/2008 3:37:00 AM

Flat_PCS CH512_Belt Clip Close Body

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.45 \text{ mho/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(4.95, 4.95, 4.95); Calibrated: 1/9/2008

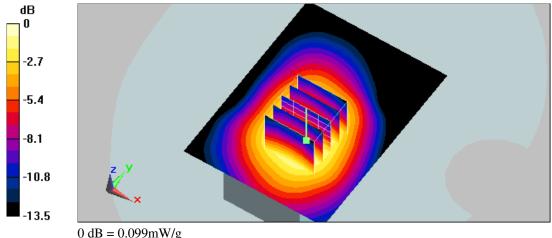
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (61x81x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.101 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.72 V/m; Power Drift = -0.060 dB

Peak SAR (extrapolated) = 0.140 W/kg

SAR(1 g) = 0.093 mW/g; SAR(10 g) = 0.061 mW/gMaximum value of SAR (measured) = 0.099 mW/g

0 dB = 0.099 mW/g

Appendix B

Date/Time: 4/22/2008 3:49:25 AM

Flat_PCS CH661_Belt Clip Close Body

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; $\sigma = 1.5 \text{ mho/m}$; $\varepsilon_r = 52.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(4.95, 4.95, 4.95); Calibrated: 1/9/2008

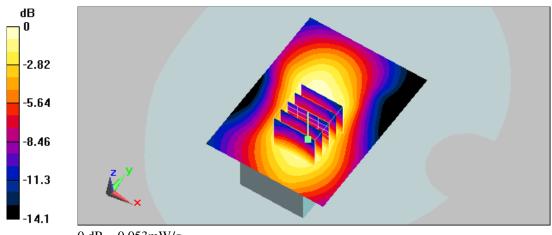
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (61x81x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.054 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.22 V/m; Power Drift = 0.079 dB

Peak SAR (extrapolated) = 0.077 W/kg

SAR(1 g) = 0.050 mW/g; SAR(10 g) = 0.033 mW/gMaximum value of SAR (measured) = 0.053 mW/g

0 dB = 0.053 mW/g

Appendix B 20/36

Date/Time: 4/22/2008 4:02:10 AM

Flat_PCS CH810_Belt Clip Close Body

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: PCS; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1909.8 MHz; σ = 1.51 mho/m; ϵ _r = 52.9; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

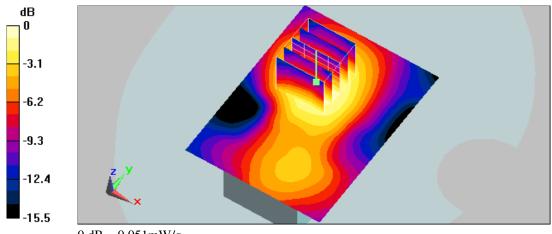
• Probe: ES3DV3 - SN3150; ConvF(4.95, 4.95, 4.95); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52


Flat/Area Scan (61x81x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.055 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.52 V/m; Power Drift = 0.101 dB Peak SAR (extrapolated) = 0.074 W/kg

SAR(1 g) = 0.048 mW/g; SAR(10 g) = 0.030 mW/gMaximum value of SAR (measured) = 0.051 mW/g

0 dB = 0.051 mW/g

Appendix B 21/36

Date/Time: 4/22/2008 7:17:10 AM

Flat_PCS CH512_3Down 2Up_Belt Clip Close Body

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: PCS 1900 GPRS(3Down,2Up); Frequency: 1850.2 MHz; Duty Cycle: 1:4.2 Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.45 \text{ mho/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

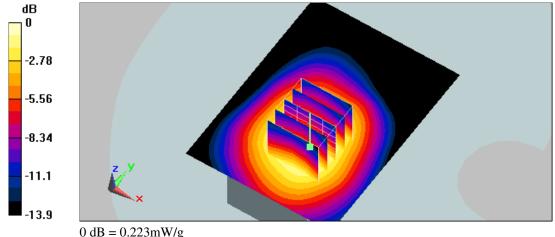
• Probe: ES3DV3 - SN3150; ConvF(4.95, 4.95, 4.95); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52


Flat/Area Scan (61x81x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.232 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.45 V/m; Power Drift = -0.017 dBPeak SAR (extrapolated) = 0.313 W/kg

SAR(1 g) = 0.207 mW/g; SAR(10 g) = 0.133 mW/gMaximum value of SAR (measured) = 0.223 mW/g

0 dB = 0.223 mW/g

Appendix B 22/36

Date/Time: 4/22/2008 7:43:21 AM

Flat_PCS CH661_3Down 2Up_Belt Clip Close Body

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: PCS 1900 GPRS(3Down,2Up); Frequency: 1880 MHz; Duty Cycle: 1:4.2

Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_r = 52.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

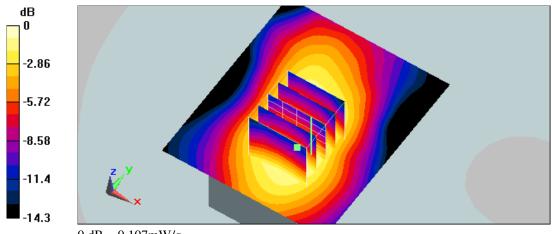
• Probe: ES3DV3 - SN3150; ConvF(4.95, 4.95, 4.95); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52


Flat/Area Scan (61x71x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.108 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.85 V/m; Power Drift = 0.151 dB Peak SAR (extrapolated) = 0.158 W/kg

SAR(1 g) = 0.103 mW/g; SAR(10 g) = 0.067 mW/g Maximum value of SAR (measured) = 0.107 mW/g

0 dB = 0.107 mW/g

Appendix B 23/36

Date/Time: 4/22/2008 8:26:01 AM

Flat_PCS CH810_3Down 2Up_Belt Clip Close Body

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: PCS 1900 GPRS(3Down,2Up); Frequency: 1909.8 MHz; Duty Cycle: 1:4.2

Medium parameters used: f = 1909.8 MHz; $\sigma = 1.51 \text{ mho/m}$; $\epsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

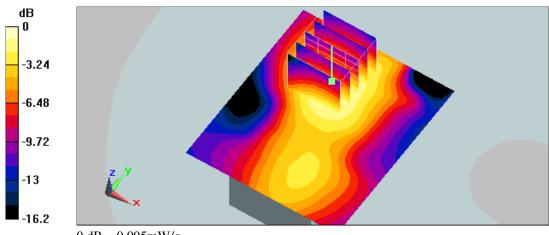
• Probe: ES3DV3 - SN3150; ConvF(4.95, 4.95, 4.95); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52


Flat/Area Scan (61x71x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.085 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.48 V/m; Power Drift = 0.014 dB Peak SAR (extrapolated) = 0.139 W/kg

SAR(1 g) = 0.089 mW/g; SAR(10 g) = 0.056 mW/g Maximum value of SAR (measured) = 0.095 mW/g

0 dB = 0.095 mW/g

Appendix B 24/36

Date/Time: 4/21/2008 11:35:24 PM

Flat_GSM 850 CH128_EUT Tip(Ant. Side)_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: GSM850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.945 \text{ mho/m}$; $\varepsilon_r = 55.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(6, 6, 6); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

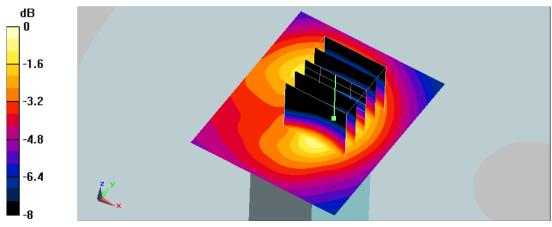
• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (51x61x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.038 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.99 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 0.054 W/kg

SAR(1 g) = 0.035 mW/g; SAR(10 g) = 0.022 mW/gMaximum value of SAR (measured) = 0.038 mW/g

0 dB = 0.038 mW/g

Appendix B 25/36

Date/Time: 4/21/2008 11:46:23 PM

Flat_GSM 850 CH190_EUT Tip(Ant. Side)_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 836.6 MHz; $\sigma = 0.968$ mho/m; $\varepsilon_r = 55.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(6, 6, 6); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

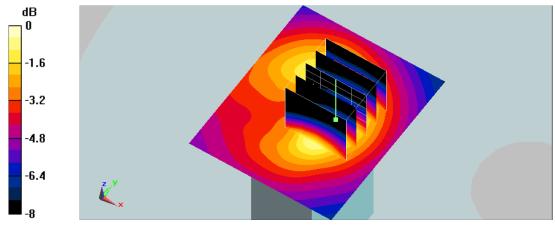
• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (51x61x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.068 mW/g


Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.92 V/m; Power Drift = 0.031 dB

Peak SAR (extrapolated) = 0.097 W/kg

SAR(1 g) = 0.061 mW/g; SAR(10 g) = 0.039 mW/g Maximum value of SAR (measured) = 0.067 mW/g

0 dB = 0.067 mW/g

Appendix B 26/36

Date/Time: 4/21/2008 11:57:22 PM

Flat_GSM 850 CH251_EUT Tip(Ant. Side)_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 848.8 MHz; $\sigma = 0.991 \text{ mho/m}$; $\epsilon = 55.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(6, 6, 6); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

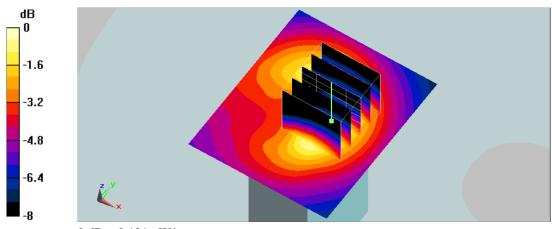
• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (51x61x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.123 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.5 V/m; Power Drift = 0.00514 dB

Peak SAR (extrapolated) = 0.175 W/kg

SAR(1 g) = 0.111 mW/g; SAR(10 g) = 0.070 mW/g

Maximum value of SAR (measured) = 0.121 mW/g

0 dB = 0.121 mW/g

Appendix B 27/36

Date/Time: 4/21/2008 10:20:50 PM

Flat_GPRS GSM 850 CH128_3Down 2Up_EUT Tip(Ant. Side)_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: GSM 850 GPRS(3Down, 2Up); Frequency: 824.2 MHz;Duty Cycle: 1:4.2 Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.945 \text{ mho/m}$; $\varepsilon_r = 55.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(6, 6, 6); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

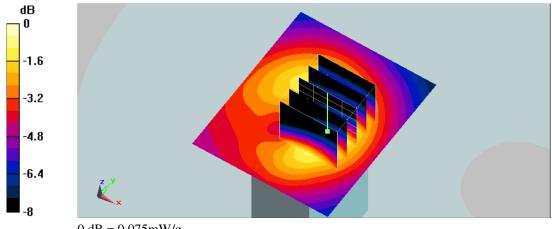
• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (51x61x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.073 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.94 V/m; Power Drift = 0.050 dB

Peak SAR (extrapolated) = 0.107 W/kg

SAR(1 g) = 0.069 mW/g; SAR(10 g) = 0.044 mW/gMaximum value of SAR (measured) = 0.075 mW/g

0 dB = 0.075 mW/g

Appendix B 28/36

Date/Time: 4/21/2008 10:44:38 PM

Flat_GPRS GSM 850 CH190_3Down 2Up_EUT Tip(Ant. Side)_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: GSM 850 GPRS(3Down, 2Up); Frequency: 836.6 MHz;Duty Cycle: 1:4.2

Medium parameters used: f = 836.6 MHz; $\sigma = 0.968$ mho/m; $\varepsilon_r = 55.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(6, 6, 6); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

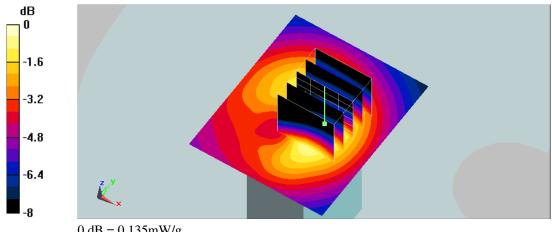
• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (51x61x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.132 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.5 V/m; Power Drift = 0.025 dB

Peak SAR (extrapolated) = 0.193 W/kg

SAR(1 g) = 0.124 mW/g; SAR(10 g) = 0.078 mW/g

Maximum value of SAR (measured) = 0.135 mW/g

0 dB = 0.135 mW/g

Appendix B 29/36

Date/Time: 4/21/2008 11:00:32 PM

Flat_GPRS GSM 850 CH251_3Down 2Up_EUT Tip(Ant. Side)_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: GSM 850 GPRS(3Down, 2Up); Frequency: 848.8 MHz; Duty Cycle: 1:4.2

Medium parameters used: f = 848.8 MHz; $\sigma = 0.991 \text{ mho/m}$; $\varepsilon_r = 55.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(6, 6, 6); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

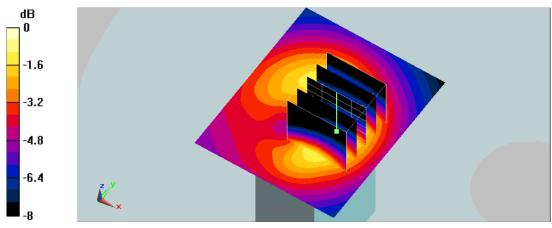
• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (51x61x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.236 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.8 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 0.350 W/kg

SAR(1 g) = 0.222 mW/g; SAR(10 g) = 0.140 mW/gMaximum value of SAR (measured) = 0.242 mW/g

0 dB = 0.242 mW/g

Appendix B 30/36

Date/Time: 4/22/2008 4:21:51 AM

Flat_PCS CH512_EUT Tip(Ant. Side)_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.45 \text{ mho/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(4.95, 4.95, 4.95); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

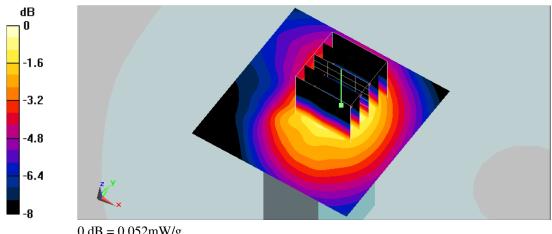
• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (61x61x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.051 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.58 V/m; Power Drift = 0.084 dB

Peak SAR (extrapolated) = 0.077 W/kg

SAR(1 g) = 0.048 mW/g; SAR(10 g) = 0.030 mW/g

Maximum value of SAR (measured) = 0.052 mW/g

0 dB = 0.052 mW/g

Appendix B 31/36

Date/Time: 4/22/2008 4:34:43 AM

Flat_PCS CH661_EUT Tip(Ant. Side)_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; $\sigma = 1.5 \text{ mho/m}$; $\varepsilon_r = 52.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(4.95, 4.95, 4.95); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

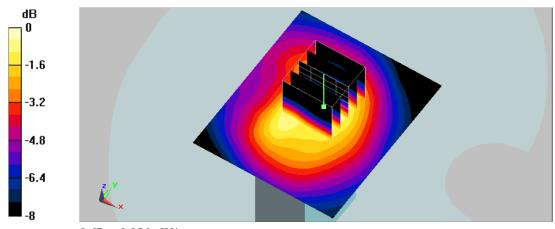
• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (61x71x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.056 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.79 V/m; Power Drift = 0.079 dB

Peak SAR (extrapolated) = 0.086 W/kg

SAR(1 g) = 0.052 mW/g; SAR(10 g) = 0.032 mW/gMaximum value of SAR (measured) = 0.056 mW/g

0 dB = 0.056 mW/g

Appendix B 32/36

Date/Time: 4/22/2008 4:46:17 AM

Flat_PCS CH810_EUT Tip(Ant. Side)_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: PCS; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1909.8 MHz; σ = 1.51 mho/m; ε_r = 52.9; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(4.95, 4.95, 4.95); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

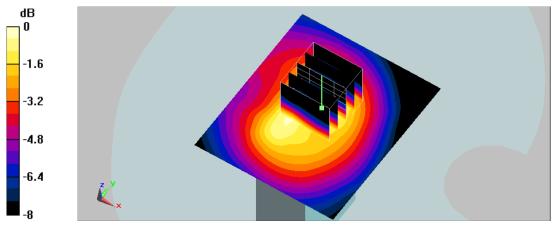
• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (61x71x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.051 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.52 V/m; Power Drift = 0.120 dB

Peak SAR (extrapolated) = 0.083 W/kg

SAR(1 g) = 0.050 mW/g; SAR(10 g) = 0.032 mW/gMaximum value of SAR (measured) = 0.055 mW/g

0 dB = 0.055 mW/g

Appendix B 33/36

Date/Time: 4/22/2008 5:19:51 AM

Flat_PCS CH512_3Down 2Up_EUT Tip(Ant. Side)_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: PCS 1900 GPRS(3Down,2Up); Frequency: 1850.2 MHz;Duty Cycle: 1:4.2 Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(4.95, 4.95, 4.95); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

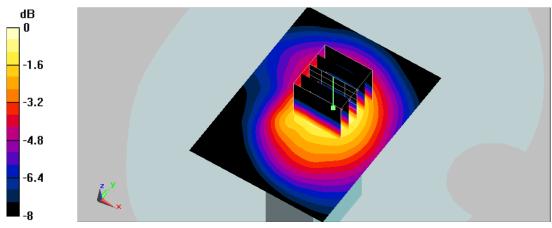
• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (61x81x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.105 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.02 V/m; Power Drift = 0.034 dB

Peak SAR (extrapolated) = 0.157 W/kg

SAR(1 g) = 0.097 mW/g; SAR(10 g) = 0.060 mW/gMaximum value of SAR (measured) = 0.105 mW/g

0 dB = 0.105 mW/g

Appendix B 34/36

Date/Time: 4/22/2008 6:04:19 AM

Flat_PCS CH661_3Down 2Up_EUT Tip(Ant. Side)_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: PCS 1900 GPRS(3Down,2Up); Frequency: 1880 MHz; Duty Cycle: 1:4.2

Medium parameters used: f = 1880 MHz; $\sigma = 1.5 \text{ mho/m}$; $\varepsilon_r = 52.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(4.95, 4.95, 4.95); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

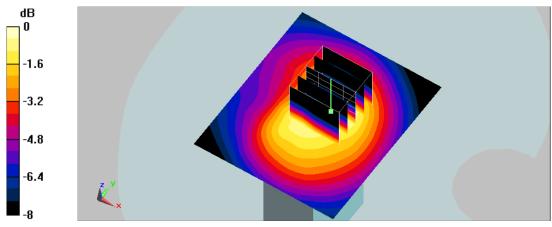
• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (61x71x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.113 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.26 V/m; Power Drift = 0.072 dB

Peak SAR (extrapolated) = 0.167 W/kg

SAR(1 g) = 0.104 mW/g; SAR(10 g) = 0.065 mW/gMaximum value of SAR (measured) = 0.112 mW/g

0 dB = 0.112 mW/g

Appendix B 35/36

Date/Time: 4/22/2008 6:25:44 AM

Flat_PCS CH810_3Down 2Up_EUT Tip(Ant. Side)_15mm

DUT: TR-151A; Type: Tracker; FCC ID: RID-TR151A

Communication System: PCS 1900 GPRS(3Down,2Up); Frequency: 1909.8 MHz;Duty Cycle: 1:4.2

Medium parameters used: f = 1909.8 MHz; σ = 1.51 mho/m; ϵ_r = 52.9; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: ES3DV3 - SN3150; ConvF(4.95, 4.95, 4.95); Calibrated: 1/9/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/30/2007

• Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher

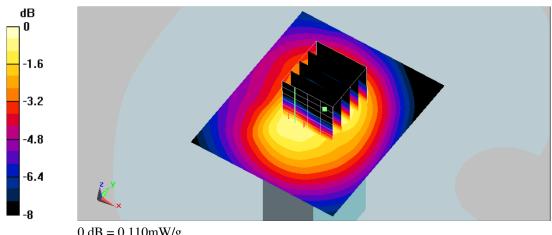
• Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Flat/Area Scan (61x71x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.105 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.99 V/m; Power Drift = 0.036 dB

Peak SAR (extrapolated) = 0.161 W/kg

SAR(1 g) = 0.099 mW/g; SAR(10 g) = 0.062 mW/g

Maximum value of SAR (measured) = 0.110 mW/g

0 dB = 0.110 mW/g

Appendix B 36/36

Appendix C - Calibration

All of the instruments Calibration information are listed below.

- Dipole _ D900V2 SN:073 Calibration No.D900V2-073_Mar08
- Dipole _ D1950V2 SN: 1117 Calibration No.D1950V1117_Dec07
- Probe _ ES3DV3 SN:3150 Calibration No.ES3-3150_Jan08
- DAE _ DAE4 SN:779 Calibration No.DAE4-779_Nov07