FCC Part 15 Subpart C §15.247 Test Report

Equipment Uner Test	Wireless communication device
Model Name	ACRO-SM900
Applicant	INSOPACK. CO., LTD.
FCC ID	RGN-ACRO-SM900
Manufacturer	INSOPACK. CO., LTD.
Date of Test(s)	2014. 05. 30 ~ 2014. 06. 12
Date of Issue	2014. 06. 13

In the configuration tested, the EUT complied with the standards specified above.

Issue to	Issue by
INSOPACK. CO., LTD. 101/508, Digital Empire Building, Sin-dong, Yeongtong-gu, Suwon, Kyeonggi-do, Korea. 443-734	MOVON CORPORATION 498-2, Geumeo-ro, Pogok-eup, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 449-812
Tel.: +82-31-695-8400 Fax: +82-31-695-8406	Tel.: +82-31-338-8837 Fax: +82-31-338-8847

Revision history

Revision	Date of issue	Description	Revised by
	June 13, 2014	Initial	

Table of contents

1. GENERAL INFORMATION	4
2. EUT DESCRIPTION	5
3. MEASUREMENT EQUIPMENT	6
4. TRANSMITTER RADIATED SPURIOUS EMISSIONS AND CONDUCE EMISSIONS	
5. AC CONDUCTED POWER LINE TEST	20
6. 6 dB BANDWIDTH	23
7. MAXIMUM PEAK OUTPUT POWER MEASUREMENT	26
7.3.TEST PROCEDURE	26
8. POWER SPECTRAL DENSITY MEASUREMENT	29
9. ANTENNA REQUIREMENT	32
10. RF EXPOSURE EVALUATION	33
11. TEST SETUP PHOTO OF EUT	34

1. General information

1.1. Details of applicant

Applicant

: INSOPACK. CO., LTD

Address

101/508, Digital Empire Building, Sin-dong, Yeongtong-gu, Suwon,

Kyeonggi-do, KOREA. 443-734

Contact Person : Jeong Hyun, Cho

Telephone

Fax

: +82-31-695-8400 : +82-31-695-8406

1.2. Summary of test results

The EUT has been tested according to the following specifications:

Section in FCC part 15	Description	Result
§15.205 §15.209 §15.247(d)	Transmitter radiated spurious emissions, Conducted spurious emission	С
§15.247(a)(2)	6 dB Bandwidth	С
§15.247(b)(e)	Maximum Peak Output Power	С
§15.247(e)	Transmitter Power Spectral Density	С
§1.1307(b)(1)	RF exposure evaluation	С

The sample was tested according to the following specification:

ANSI C63.4-2003

FCC Public Notice KDB 558074 D01 v03r01

TEST SITE REGISTRATION NUMBER:

FCC(670686)

X Abbreviation

C Complied

N/A Not applicable

Fail

Approval Signatories

Test and Report Completed by :	Report Approval by :
bin	Hun
Jungmoo Her Test Engineer MOVON CORPORATION	Issac Jin Technical Manager MOVON CORPORATION

2. EUT Description

Kind of product Wireless communication device		
Model Name ACRO-SM900		
Serial Number N/A		
Power supply DC 3.7 V		
Frequency range	902.975 Mb ~ 927.025 Mb	
Modulation technique	GFSK	
Number of channels	38	
Antenna gain	3.29 dB i (Max.)	
Test Site Registration Number	FCC (670686)	

2.1. Declarations by the manufacturer

None

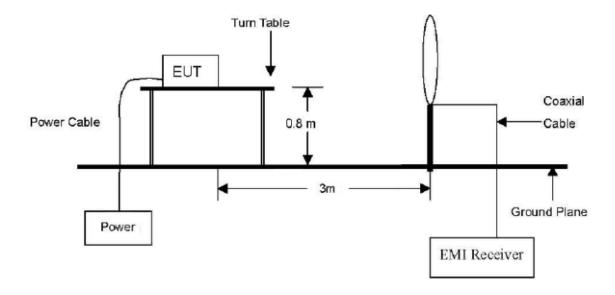
2.2. Details of modification

None

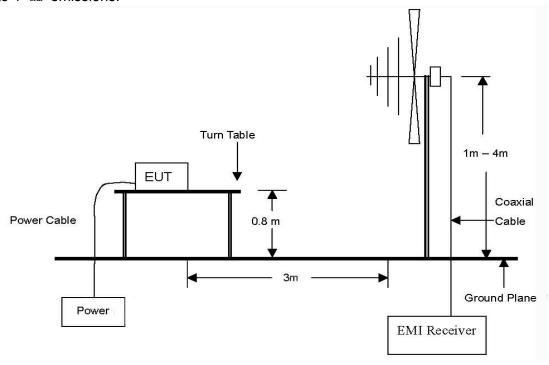
3. Measurement equipment

Equipment	Manufacturer Manufacturer	Model	Serial number	Calibration Interval	Calibration due.
EMI Test Receiver	R&S	ESIB26	100196/026	1 year	2014-12-14
Signal Generator	R&S	SMR27	100089	1 year	2014-12-13
Spectrum Analyzer	R&S	FSV-40	100832	1 year	2014-10-04
Power Meter	Agilent	E4416A	GB41290645	1 year	2014-10-04
Power Sensor	Agilent	9327A	US40441490	1 year	2014-10-04
Double Ridge Horn Antenna	R&S	HF906	100236	2 year	2015-02-28
HORN ANTENNA	A.H.SYSTEMS	SAS-572	269	2 year	2015.09.06
HORN ANTENNA	A.H.SYSTEMS	SAS-572	270	2 year	2015.09.06
Ultra Broadband Antenna	R&S	HL562	100170	1 year	2014-12-13
Power Amplifier	MITEQ	AM-1431	1497315	1 year	2014-10-04
Power Amplifier	MITEQ	AFS43-01002600	1374382	1 year	2014-10-04
High Pass Filter	Wainwright	WHK3.0/18G-10SS	508	1 year	2014-10-04
DC Power Supply	HP	6674A	3637A01351	1 year	2014-10-04
Controller	INNCO	CO2000	co200/064/6961003/L	N/A	N/A
Antenna Master	INNCO	MA4000	MA4000/038/6961003/L	N/A	N/A
Loop Antenna	ETS LINDGREN	6502	00118166	2 year	2015-09-27

Remark; Support equipment

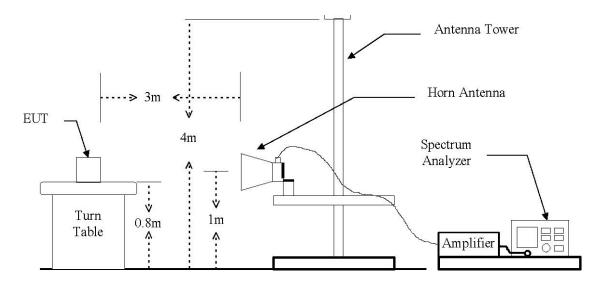

Description	Manufacturer	Model	Serial number	
-	-	-	-	

4. Transmitter radiated spurious emissions and conducted spurious emissions


4.1. Test setup

4.1.1. Transmitter radiated spurious emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 9kHz to 30MHz Emissions.



The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

Page: (7) of (36)

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 \oplus to 40 \oplus emissions.

4.2. Limit

According to \$15.247(d), in any 100 klb bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 klb bandwidth within the band that contains the highest level of the desired power, based in either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section \$15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section \$15.209(a), must also comply the radiated emission limits specified in section \$15.209(a) (see section \$15.205(c))

According to §15.209(a), Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (艇)	Distance (Meters)	Radiated at 3M (dBµV/m)	Radiated (μ̄V/m)
0.009-0.490	300		2400/F(kHz)
0.490-1.705	30	See the remark	24000/F(kllz)
1.705–30.0	30		30
30 - 88	3	40.0	100
88 – 216	3	43.5	150
216 – 960	3	46.0	200
Above 960	3	54.0	500

Page: (8) of (36)

According to §15.205(a), Except as provided elsewhere in this Subpart, the emissions from Restricted bands of operation shall not exceed the field strength levels specified in the following table:

MHz	lz MHz MHz		GHz
0.090 – 0.110	16.42 – 16.423	399.9 – 410	4.5 – 5.15
0.495 - 0.505	16.694 75 – 16.695 25	608 – 614	5.35 – 5.46
2.173 5 – 2.190 5	16.804 25 -16.804 75	960 – 1240	7.25 – 7.75
4.125 – 4.128	25.5 – 25.67	1300 – 1427	8.025 – 8.5
4.177 25 – 4.177 75	37.5 – 38.25	1435 – 1626.5	9.0 – 9.2
4.207 25 – 4.207 75	73 – 74.6	1645.5 – 1646.5	9.3 – 9.5
6.215 – 6.218	74.8 – 75.2	1660 – 1710	10.6 – 12.7
6.267 75 – 6.268 25	108 – 121.94	1718.8 – 1722.2	13.25 – 13.4
6.311 75 – 6.312 25	123 – 138	2200 – 2300	14.47 – 14.5
8.291 – 8.294	.291 – 8.294 149.9 – 150.05 2310 – 2390		15.35 – 16.2
9.362 – 8.366	156.524 75 – 156.525 25	2483.5 – 2500	17.7 – 21.4
8.376 25 – 8.386 75	156.7 – 156.9	2655 – 2900	22.01 – 23.12
8.414 25 – 8.414 75	162.012 5 – 167.17	3260 – 3267	23.6 – 24.0
12.29 – 12.293	167.72 – 173.2	3332 - 3339	31.2 – 31.8
12.519 75 – 12.520 25	240 – 285	3345.8 – 3358	36.43 – 36.5
12.576 75 – 12.577 25	322 -335.4	3600 – 4400	
13.36 – 13.41			

*Remark

- 1. Emission level in $dB uV/m = 20 \log (uV/m)$
- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. Distance extrapolation factor = 40log(Specific distance/ test distance) (dB) Limit line=Specific limits(dB uV) + distance extrapolation factor.

4.3. Test procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2003

4.3.1. Test procedures for radiated spurious emissions

- 1. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

***** Remark:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 10 klb for Peak detection (PK) at frequency below 30 Mb
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 klb for Peak detection (PK) or Quasi-peak detection (QP) at frequency below 1 Gb.
- 3. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mb for Peak detection and frequency above 1 GHz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1 Mb z and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1 Gb.

4.3.2. Test procedures for conducted spurious emissions

All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

Per the guidance of KDB 558074, section 5.4.1.1, the reference level for out of band emissions is established from the plots of this section since the band edge emissions are measured with a RBW of 100 kHz. This reference level is then used as the limit in subsequent plots for out of band spurious emissions shown in section 4.4.4. The limit for out of band spurious emission at the band edge is 30 dB below the fundmental emission level measured in a 100 kHz bandwidth.

4.4. Test result

Ambient temperature: 23 °C Relative humidity: 52 % R.H.

4.4.1. Spurious radiated emission

The frequency spectrum from 9 km to 30 km was investigated. Emission levels are not reported much lower than the limits by over 20 dB. All reading values are peak values.

To get a maximum emission levels from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes.

Operation mode: Transmit mode

A. Low channel (902.975 账)

Radia	Radiated emissions		Ant.	Correction factors		Total	Lir	nit
Frequency (Mb)	Reading (dBµN)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)

No other emissions were detected at a level greater than 20dB below limit.

B. Middle channel (915.325 Nb)

Radiated emissions		Ant.	Correction	n factors	Total	Lir	nit	
Frequency (Mb)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dΒμΝ/m)	Limit (dBµN/m)	Margin (dB)

No other emissions were detected at a level greater than 20dB below limit.

C. High channel (927.025 Mb)

Radiated emissions		Ant.	Correctio	n factors	Total	Lir	nit	
Frequency (Mb)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)

No other emissions were detected at a level greater than 20dB below limit.

***** Remark

- 1. Actual = Reading + Ant. factor + CL (Cable loss)
- 2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 4. 15.31 Measurement standards.

4.4.2. Spurious radiated emission

The frequency spectrum from 30 Mb to 1 000 Mb was investigated. Emission levels are not reported much lower than the limits by over 20 dB. All reading values are peak values.

To get a maximum emission levels from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes.

Operation mode: Transmit mode A. Low channel (902.975 №)

Radi	Radiated emissions			Correction	n factors	Total	Lir	nit
Frequency (Mb)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
45.52	7.17	Peak	V	10.24	0.59	18.00	40.00	22.00
103.88	7.21	Peak	V	12.38	0.79	20.38	43.50	23.12
152.48	3.25	Peak	V	18.16	0.94	22.35	43.50	21.15
175.64	6.32	Peak	V	14.00	1.00	21.32	43.50	22.18
772.72	-1.49	Peak	Н	22.01	1.94	22.46	46.00	23.54
834.76	-0.51	Peak	Н	22.60	2.01	24.10	46.00	21.90
Above 900	Not detected							

***** Remark

- 1. Actual = Reading + Ant. factor + CL (Cable loss)
- 2. 15.31 Measurement standards.

B. Middle channel (915.325 账)

Radi	Radiated emissions			Correctio	n factors	Total	Lir	nit
Frequency (Mb)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµN/m)	Margin (dB)
45.52	7.02	Peak	V	10.24	0.59	17.85	40.00	22.15
103.88	7.06	Peak	V	12.38	0.79	20.23	43.50	23.27
152.48	3.44	Peak	V	18.16	0.94	22.54	43.50	20.96
175.64	7.26	Peak	V	14.00	1.00	22.26	43.50	21.24
772.72	-0.62	Peak	Н	22.01	1.94	23.33	46.00	22.67
834.76	-0.09	Peak	Н	22.60	2.01	24.52	46.00	21.48
Above 900	Not detected							

***** Remark

- 1. Actual = Reading + Ant. factor + CL (Cable loss)
- 2. 15.31 Measurement standards.

C. High channel (927.025 Mb)

Radi	ated emission	ons	Ant.	Correction	n factors	Total	Lir	nit
Frequency (Mb)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dΒμΝ/m)	Limit (dBµN/m)	Margin (dB)
45.52	7.66	Peak	V	10.24	0.59	18.49	40.00	21.51
103.88	7.82	Peak	V	12.38	0.79	20.99	43.50	22.51
152.48	4.05	Peak	V	18.16	0.94	23.15	43.50	20.35
175.64	6.22	Peak	V	14.00	1.00	21.22	43.50	22.28
772.72	-1.06	Peak	Н	22.01	1.94	22.89	46.00	23.11
834.76	-0.98	Peak	Н	22.60	2.01	23.63	46.00	22.37
Above 900	Not detected							

*** Remark**

- 1. Actual = Reading + Ant. factor + CL (Cable loss)
- 2. 15.31 Measurement standards.

4.4.3. Spurious radiated emission

The frequency spectrum above 1 000 $\,^{\text{Mb}}$ was investigated. Emission levels are not reported much lower than the limits by over 20 $\,^{\text{dB}}$.

To get a maximum emission levels from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes.

Operation mode: Transmit mode

A. Low channel (902.975 Mb)

Radia	Radiated emissions		Ant.	Correction factors		Total	Lim	nit
Frequency (M址)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dΒμΝ/m)	Limit (dBµN/m)	Margin (dB)
1.807.00	36.38	Peak	Н	24.57	1.10	59.85	74.00	14.15
-	-	-	-	-	-	-	-	-

B. Middle channel (915.325 Mb)

Radia	ted emissi	ons	Ant. Correction factors		Ant. Correction factors		Lim	nit
Frequency (Mb)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1.830.00	30.66	Peak	Н	24.57	1.10	54.13	74.00	19.87
-	-	-	-	-	-	-	-	-

C. High channel (927.025 Mb)

Radia	Radiated emissions		Ant.	Correction factors		Total	Lin	nit
Frequency (M地)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dΒμV/m)	Limit (dBµN/m)	Margin (dB)
1.853.00	32.27	Peak	Н	24.57	1.10	55.74	74.00	18.26
-	-	-	-	-	-	-	-	-

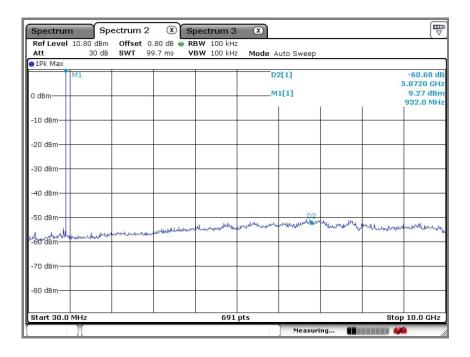
*** Remark**

- 2. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Actual = Reading + Ant. factor + CL (Cable loss)
- 5. 15.31 Measurement standards.

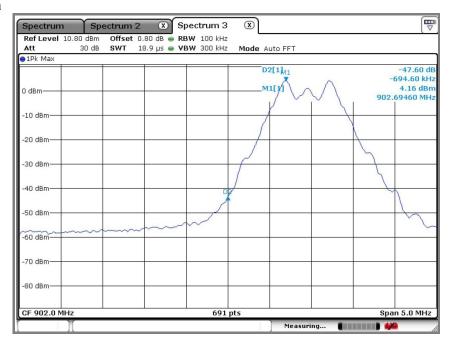
The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

Page: (15) of (36)

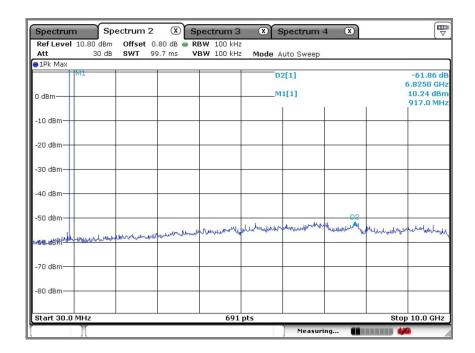
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without the written approval of MOVON CORPORATION.

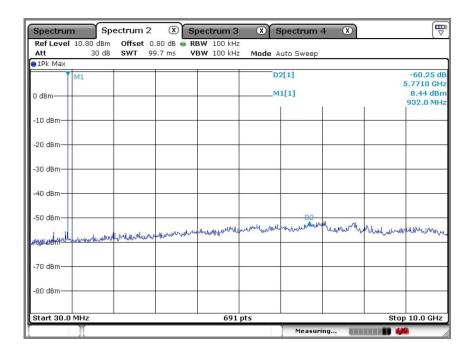

4.4.4. Band Edge

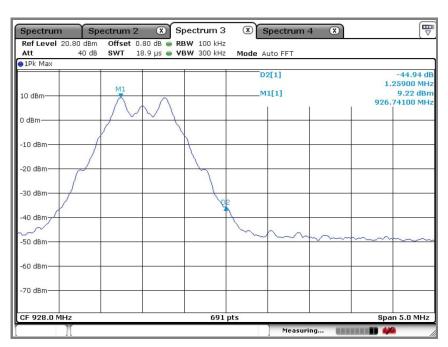
Operation mode: Transmit mode A. 960 – 1 240 № measurement


Radiated emissions			Ant.	Correction factors		Total	Lin	nit
Frequency (M地)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 206.00	30.88	Peak	Н	22.84	0.92	52.80	74.00	21.20
1 206.00	25.19	Average	Н	22.84	0.92	47.11	54.00	6.89
1 206.00	28.43	Peak	V	22.84	0.92	50.35	74.00	23.65
1 206.00	24.27	Average	V	22.84	0.92	46.19	54.00	7.81

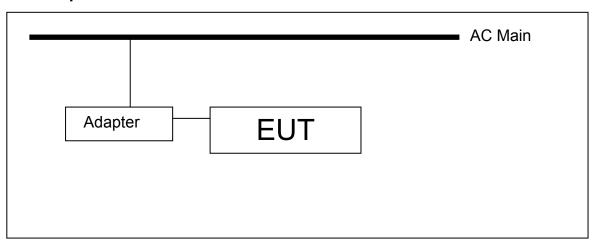
4.4.5. Spurious RF conducted emissions: Plot of spurious RF conducted emission Operation mode: Basic mode


A. Low channel (902.975 Nb)


Band-edge data


B. Middle channel (915.325 Nb)

C. High channel (927.025 Mb)



Band-edge data

5. AC Conducted power line test

5.1. Test setup

5.2. Limit

According to §15.107(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 klb to 30 klb, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

Fraguency of Emission (Mix)	Conducted limit (dBμV/m)					
Frequency of Emission (咃)	Quasi-peak	Average				
0.15 – 0.50	66 - 56*	56 - 46*				
0.50 - 5.00	56	46				
5.00 – 30.0	60	50				

*** Remark**

Decreases with the logarithm of the frequency.

5.3. Test procedures

The test procedure is performed in a 6.5 m \times 3.6 m \times 3.6 m (L \times W \times H) shielded room. The EUT along with its peripherals were placed on a 1.0 m(W) \times 1.5 m(L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.

The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

Page: (20) of (36)

5.4. Test results

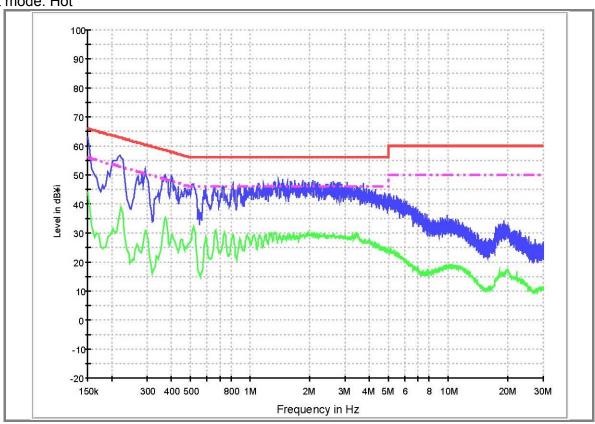
Ambient temperature: $\underline{23 \ ^{\circ}C}$ Relative humidity: $\underline{40 \ \% \ R.H.}$

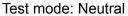
Frequency range: 0.15 Mb ~ 30 Mb

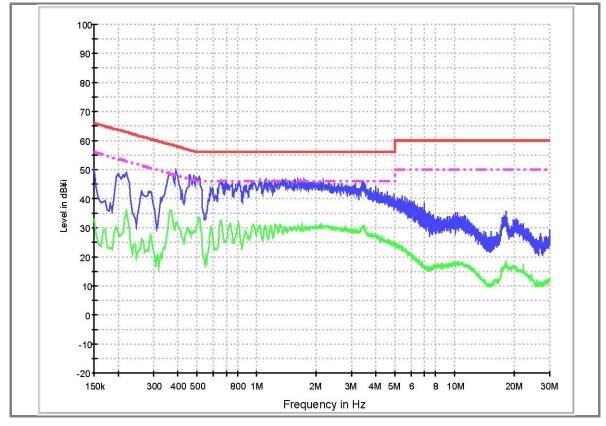
Measured bandwidth: 9 kHz

Eros (Mh)	Line		Q-Peak					
Freq. (Mb)		Level(dBμV/m)	Limit(dBμV/m)	Margin(dB)				
0.15	Н	53.96	66.00	12.04				
0.21	N	48.15	63.21	15.06				
0.29	N	42.53	60.52	17.99				
0.51	Н	39.98	56.00	16.02				
1.45	N	40.35	56.00	15.65				
1.84	Н	39.10	56.00	16.90				

Freq. (Mb)	Line	Average					
Freq. (MIZ)	Lille	Level(dBμV/m)	Limit(dBμV/m)	Margin(dB)			

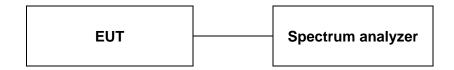

No other emissions were detected at a level greater than 20 dB below limit.


***** Remark


Line(H): Hot Line(N): Neutral

Plot of conducted power line

Test mode: Hot



Page: (22) of (36)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without the written approval of MOVON CORPORATION.

6. 6 dB bandwidth

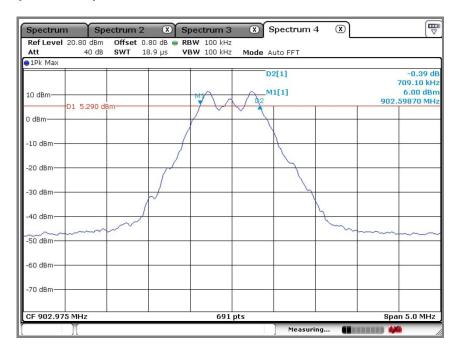
6.1. Test setup

6.2. Limit

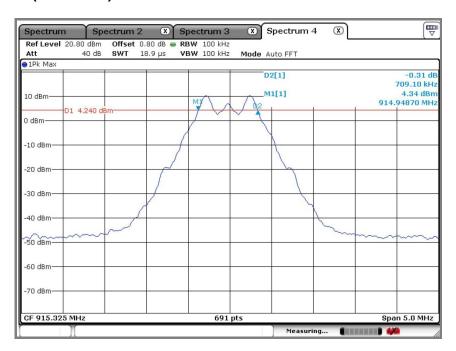
According to \$15.247(a)(2), systems using digital modulation techniques may operate in the 902~928 Mb, 2 400~2 483.5 Mb, and 5 725~5 825 Mb bands. The minimum of 6 dB Bandwidth shall be at least 500 kHz

6.3. Test procedure

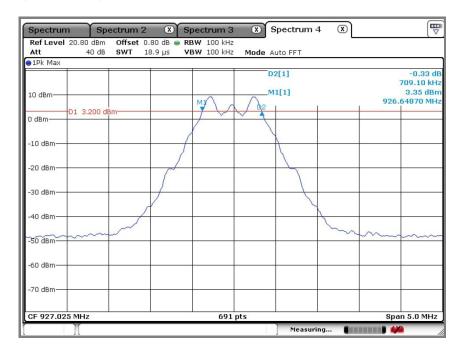
- 1. The 6 dB band width was measured with a spectrum analyzer connected to RF antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer. Display Line and Marker Delta functions, the 6 dB band width of the emission was determined.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 100 kHz, Span = 5 MHz.


6.4. Test results

Ambient temperature: 22 °C Relative humidity: 52 % R.H.


Frequency(酏)	6 dB bandwidth(Mb)
902.975	0.709
915.325	0.709
927.025	0.709

Operation mode: Transmit mode


A. Low channel (902.975 Mb)

B. Middle channel (915.325 Nb)



C. High channel (927.025 11/b)

7. Maximum Peak Output Power Measurement

7.1. Test setup.

7.2. Limit

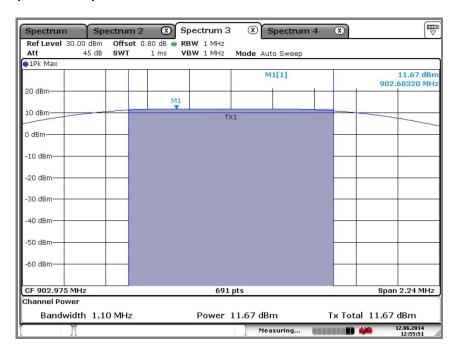
The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. §15.247(a)(2) Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
- 2. §15.247(b)(3) For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

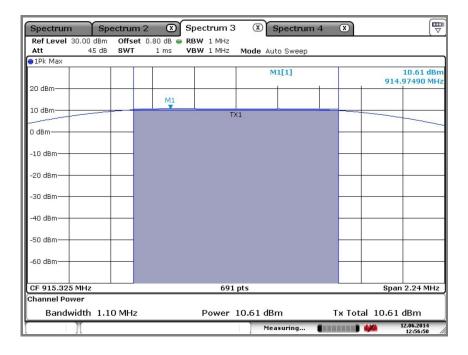
7.3. Test procedure

- 1. The RF power output was measured with a Spectrum analyzer connected to the RF Antenna connector(conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using; Span = auto

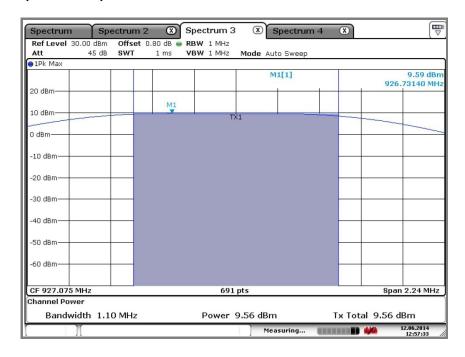
RBW = 1 Mb, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold


7.4. Test results

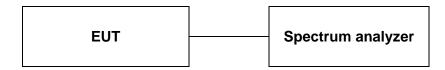
Ambient temperature: $\underline{22~\%}$ Relative humidity: $\underline{52~\%}$ R.H.


Frequency (Mb)	Peak Output power (dBm)	Limit (dBm)
902.975	11.67	
915.325	10.61	30
927.025	9.56	

Operation mode: Transmit mode


A. Low channel (902.975 账)

B. Middle channel (915.325 싼)



C. High channel (927.025 Nb)

8. Power Spectral Density Measurement

8.1. Test setup

8.2. Limit

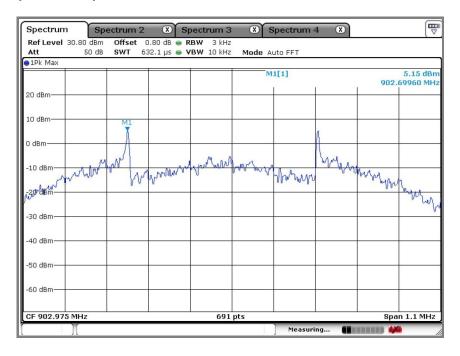
< 8dBm @ 3kHz BW

8.3. Test procedure (PKPSD)

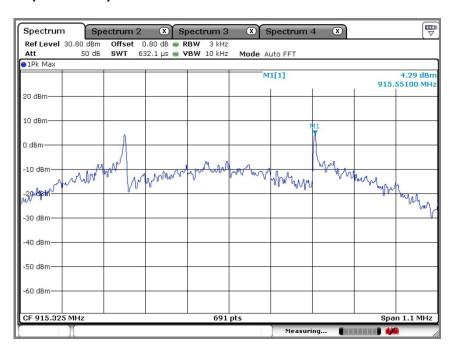
- 1. The RF power output was measured with a Spectrum analyzer connected to the RF Antenna connector(conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using; Span = 1.5 times the DTS bandwidth

 $RBW = 3kHz \leq RBW \leq 100kHz$

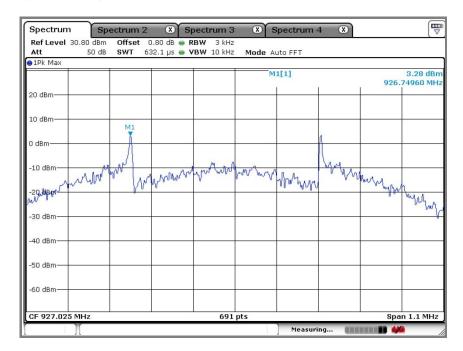
VBW \geq 3 x RBW, Sweep = Auto couple Detector function = peak, Trace = max hold


8.4. Test results

Ambient temperature: 22 °C Relative humidity: 52 % R.H.


Operation mode	Frequency (Mb)	Peak output power(dBm)	Limit (dBm)
Transmit	902.975	5.15	
	915.325	4.29	8
	927.025	3.28	

Operation mode: Transmit mode


A. Low channel (902.975 Mb)

B. Middle channel (915.325 Nb)

C. High channel (927.025 11/b)

9. Antenna requirement

9.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section §15.247 (b) if transmitting antennas of directional gain greater than 6 dBi are used.

9.2. Antenna Connected Construction

Antenna used in this product is unique integral type antenna (See photo.) Antenna gain is 3.29 $\rm dB{\,i}.$

10. RF exposure evaluation

FCC KDB447498 D01 General RF Exposure Guidance v05r02:

Standalone SAR test exclusion considerations

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f}(GHz)$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- -f(GHz) is the RF channel transmit frequency in GHz
- -Power and distance are rounded to the nearest mW and mm before calculation
- -The result is rounded to one decimal place for comparison

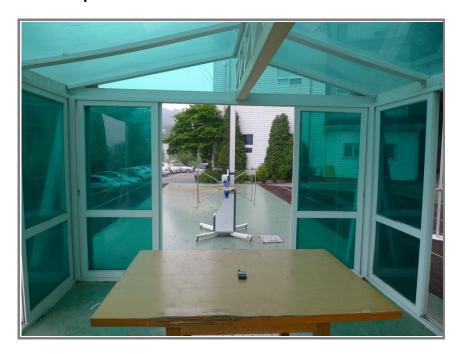
The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

- 2) At 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following, and as illustrated in Appendix B:
 - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
 - b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·10] mW at > 1500 MHz and \leq 6 GHz

10.1 Test result of RF exposure evaluation

(18.49 mW / 5mm) - $\sqrt{0.927}$ = **2.7352** \leq **3.0**

*max. power of channel = 14.69 mW (11.67 dBm) tune-up tolerance = 1 dBm min. test separation distance = 5 mm


f(GHz) = 0.927

11. Test setup photo of EUT

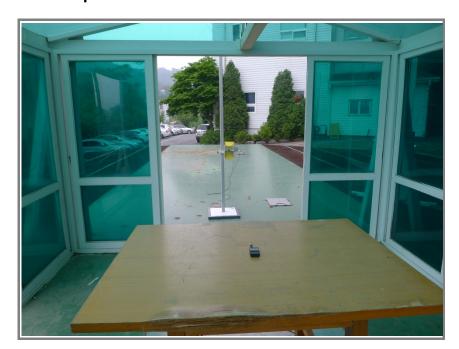

Photo of radiated spurious emission at below 30 №

Photo of radiated spurious emission at 30 № ~ 1 000 №

Photo of radiated spurious emission at above 1 000 №

Photo of Conducted emission at below 30 ₩

