

**SAR Evaluation Report
for
IEEE Std1528-2003 and 47CFR § 2.1093**

Report No.:1308102

Client	:	HK TIANRUIXIANG COMMUNICATION EQUIPMENT LIMITED
Product	:	Smart Phone
Model	:	A9,A13,A9B
FCC ID	:	RFOA9
Manufacturer/supplier	:	HK TIANRUIXIANG COMMUNICATION EQUIPMENT LIMITED
Date test campaign completed	:	Aug 26,2013
Date of issue	:	Aug 28, 2013
Test Result	:	<input checked="" type="checkbox"/> Compliance <input type="checkbox"/> Not Compliance

Statement of Compliance:

The SAR values measured for the test sample are below the maximum recommended level of 1.6 W/kg averaged over any 1g tissue according to IEEE Std.1528-2003.

The test result only corresponds to the tested sample. It is not permitted to copy this report, in part or in full, without the permission of the test laboratory.

Total number of pages of this test report: 159 pages

Test Engineer:		Approved by:
 _____ Leo Chen		 _____ Miro Chueh

The testing described in this report has been carried out to the best of our knowledge and ability, and our responsibility is limited to the exercise of reasonable care. This certification is not intended to relieve the sellers from their legal and/or contractual obligations.

Applicant Information

Client	: HK TIANRUIXIANG COMMUNICATION EQUIPMENT LIMITED
Address	: RM. 5C Shuisong Building, Tairan Eight Road, Chegongmiao, Futian District, Shenzhen, China
Manufacturer	: HK TIANRUIXIANG COMMUNICATION EQUIPMENT LIMITED
Address	: RM. 5C Shuisong Building, Tairan Eight Road, Chegongmiao, Futian District, Shenzhen, China
EUT	: Smart Phone
Model No.	: A9,A13,A9B
Standard Applied	: IEEE Std1528-2003 and 47CFR § 2.1093
Laboratory	: CERPASS TECHNOLOGY CORP. No.66,Tangzhuang Road, Suzhou Industrial Park, Jiangsu 215006, China.
Test Result	: Maximum SAR Measurement GSM 850: 1.474W/kg(1g) PCS1900: 1.407W/kg(1g) WCDMA Band II: 0.605W/kg(1g) WLAN: 0.070W/kg(1g)

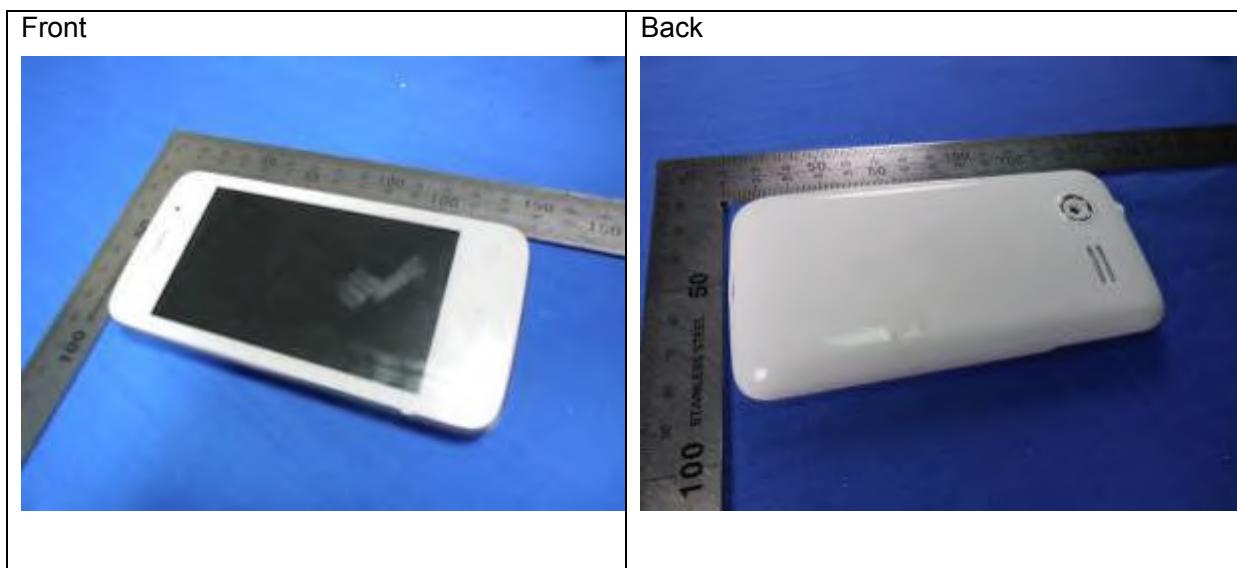
Contents

1. General Information	6
1.1. Description of Equipment under Test.....	6
1.2. Photograph of EUT	7
1.3. EUT Antenna Locations	7
1.4. Simultaneous Transmission Configurations.....	8
1.5. SAR Test Exclusions Applied	9
1.6. Power Reduction for SAR.....	9
1.7. Environment Condition.....	9
1.8. Test Standards	10
1.9. RF Exposure Limits.....	10
2. The SAR Measurement Procedure	11
2.1. General Requirements.....	11
3. Description of the Test Equipment.....	16
2.2. Test Equipment List.....	17
2.3. DASY5 Measurement System	18
2.4. DASY5 E-Field Probe	19
2.5. Data Acquisition Electronics (DAE)	19
2.6. Robot.....	20
2.7. Light Beam Unit	20
2.8. Measurement Server	20
2.9. SAM Phantom	21
2.10. Device Holder	21
2.11. SAR Measurement Procedures in DASY5	22
2.12. System Performance Check	23
3. Results	30
3.1. Summary of Test Results	30
3.2. Description for EUT test position	30
3.3. Conducted power (Average).....	30
3.4. SAR Test Results Summary.....	35
3.5. Measurement Position	43
4. The Description of Test Procedure	45
4.1. Test Methods.....	45
Scan Procedure	45
SAR Averaging Methods	45
Data Storage	45
4.2. Test position and configuration	45
4.3. Body SAR with Headset.....	45
4.4. Hotspot Operation Mode.....	46
4.5. Simultaneous Transmission Procedures	46
4.6. Simultaneous Transmission Analysis.....	46
4.7. Simultaneous Transmission Conclusion	47
5. Measurement Uncertainty	48
6. APPENDIX A PHOTOGRAPHS of EUT and EUT Accessory.....	49

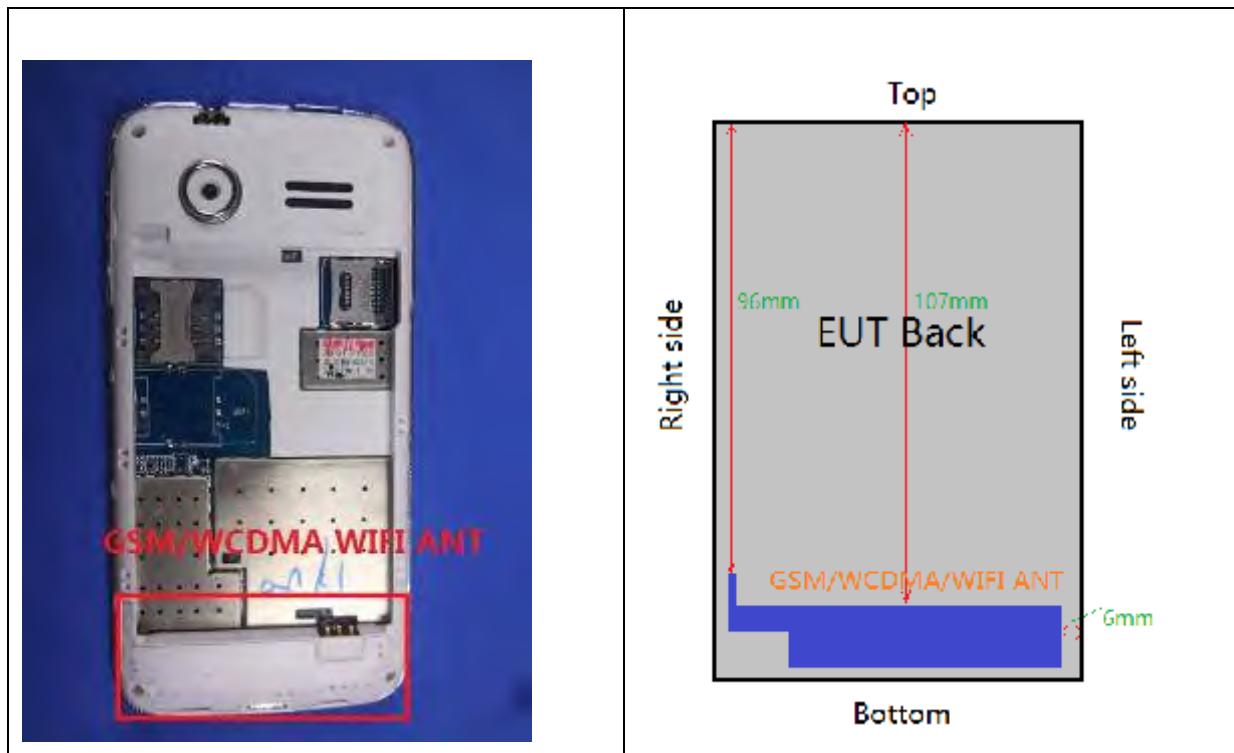
7. APPENDIX B. SAR System Validation Data.....	50
8. APPENDIX C. SAR measurement Data	56
9. APPENDIX D. Probe Calibration Data	105
10. Appendix E. Dipole Calibration Data.....	116
11. Appendix F. DAE Calibration Data.....	155

Executive Summary

The EUT is a Smart Phone with operations in 850MHz, 1900MHz and 2450MHz frequency ranges. This device contains GSM WCDMA WLAN and Bluetooth functions. The measurement was conducted by CERPASS and carried out with the dosimetric assessment system under DASY5. And it conducts according to the IEEE Std1528-2003 and 47CFR § 2.1093 for evaluating compliance.


1. General Information

1.1. Description of Equipment under Test


EUT Type	Smart Phone
Model Name	A9,A13,A9B
IMEI1	359518041614106
IMEI2	359518041614106
Hardware Version	X235-MB-V6.1
Software Version	X235_36D_ENTEL_EN_SA_BT_FM_TV_JAVA_WIFI_SP0A18_TP_FLASH12864_LCD240X400_V01_20121208_1105
Release Version	GSM850/PCS1900: R99
Tx Frequency	GSM 850: 824~849MHz PCS 1900: 1850~1910MHz WCDMA Band II: 1850~1910MHz Wi-Fi :2412MHz to 2462MHz Bluetooth: 2402~2480MHz
Rx Frequency	GSM 850: 869~894MHz PCS 1900: 1930~1990MHz WCDMA Band II: 1930~1990MHz Wi-Fi :2412MHz to 2462MHz Bluetooth: 2402~2480MHz
Type of Modulation	GMSK for GPRS; 8PSK for EDGE WCDMA Band II: QPSK, 16QAM for Downlink, QPSK for Uplink Wi-Fi: 802.11b: DSSS; 802.11g/n: OFDM Bluetooth:V3.0+HS: GFSK, Pi/4 DQPSK, 8DPSK
Antenna Type	Internal
Antenna Gain	GSM 850: -2 dBi DCS1900: -2dBi WCDMA Band II: -2 dBi Wi-Fi: -2dBi Bluetooth: -2 dBi
Device Category	Portable
RF Exposure Environment	General Population/ Uncontrolled

1.2. Photograph of EUT

1.3. EUT Antenna Locations

Mobile Hotspot Sides for SAR Testing

Mode	Back	Front	Top	Bottom	Right	Left
GPRS850	Yes	Yes	No	Yes	Yes	Yes
GPRS1900	Yes	Yes	No	Yes	Yes	Yes
WCDMA Band II	Yes	Yes	No	Yes	Yes	Yes
2.4GHz WLAN	Yes	Yes	No	Yes	Yes	Yes

Note: Particular DUT edges were not required to be evaluated for Wireless Router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v01 guidance, page 2. The antenna photo shows the distances between the transmit antennas and the edges of the device.

1.4. Simultaneous Transmission Configurations

Simultaneous Transmission Scenarios

Ref.	Simultaneous Transmit Configurations	Head	Body-Worn Accessory	Hotspot	Note
		IEEE1528	FCC KDB447498 V05	FCC KDB941225 D06	
1	GSM850 Voice + BT	Yes	Yes	No	
2	GPRS850 Data + BT	Yes	Yes	No	
3	PCS1900 Voice + BT	Yes	Yes	No	
4	GPRS1900 Data + BT	Yes	Yes	No	
5	WCDMA Band II Voice + BT	Yes	Yes	No	
6	WCDMA Band II Data + BT	Yes	Yes	No	
7	GSM850 Voice + 2.4GHz Wi-Fi	Yes	Yes	No	
8	PCS1900 Voice + 2.4GHz Wi-Fi	Yes	Yes	No	
9	GPRS850 Data + 2.4GHz Wi-Fi	No	No	Yes	GPRS + Wi-Fi Hotspot
10	GPRS1900 Data + 2.4GHz Wi-Fi	No	No	Yes	GPRS + Wi-Fi Hotspot
11	WCDMA Band II Voice + 2.4GHz Wi-Fi	Yes	Yes	No	
12	WCDMA Band II Data + 2.4GHz Wi-Fi	No	No	Yes	WCDMA + Wi-Fi Hotspot

Note: Bluetooth and Wi-Fi share the same antenna and cannot transmit simultaneously.

Note: According to FCC KDB Publication 447498 D05v01, transmitter are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneously transmission analysis according to FCC KDB Publication 447498 D01v05 3) procedures.

1.5. SAR Test Exclusions Applied

- Wi-Fi/Bluetooth

Per FCC KDB 447498 D01v05, the SAR exclusion threshold for distances < 50mm is defined by the following equation:

$$\frac{\text{Max Power of Channel (mW)}}{\text{Test Separation Dist (mm)}} * \sqrt{\text{Frequency(GHz)}} \leq 3.0$$

Based on the maximum conducted power of Bluetooth and the antenna to use separation distance, Bluetooth SAR was not required;

$[(1.28\text{mW}/5) * \sqrt{2.441}] = 0.40 < 3.0$ for Head; $[(1.28\text{mW}/10) * \sqrt{2.441}] = 0.20 < 3.0$ for Body.

IEEE 802.11g/n were not evaluated for SAR since the average output power was not more than 0.25 dB higher than the average output power of IEEE 802.11b.

- Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v02.

When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.

1.6. Power Reduction for SAR

There is no power reduction used for any band mode implemented in this device for SAR purposes.

1.7. Environment Condition

Item	Target	Measured
Ambient Temperature(°C)	18~25	21.5±2
Temperature of Simulant(°C)	20~22	21±2
Relative Humidity(%RH)	30~70	52

1.8. Test Standards

- IEEE Std.1528-2003(Basic standard for human head)
- FCC KDB Publication 941225 D01-D06 (2G, 3G and Hotspot)
- FCC KDB Publication 447498 D01 v05r01(General RF Exposure Guidance)
- FCC KDB Publication 865664 D01 v01r01(SAR measurement 100 MHz to 6 GHz)
- FCC KDB Publication 248227 D01 v01r02 (SAR Considerations for 802.11 Devices)

1.9. RF Exposure Limits

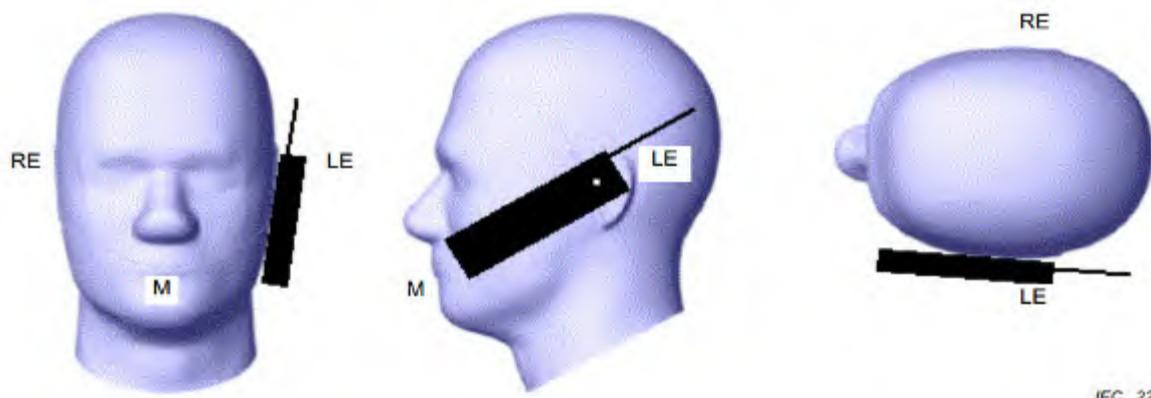
Human Exposure	Basic restrictions for electric, magnetic and electromagnetic fields. (Unit in mW/ or W/kg)
Spatial Peak SAR ¹ (Head and Body)	1.60
Spatial Average SAR ² (Whole Body)	0.08
Spatial Peak SAR ³ (Arms and Legs)	4.00

Notes:

1. The Spatial Peak value of the SAR averaged over any 1gram of tissue(defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
2. The Spatial Average value of the SAR averaged over the whole body.
3. The Spatial Peak value of the SAR averaged over any 1 grams of tissue (defined as a tissue volume in the shape of a cube) and over appropriate averaging time.

2. The SAR Measurement Procedure

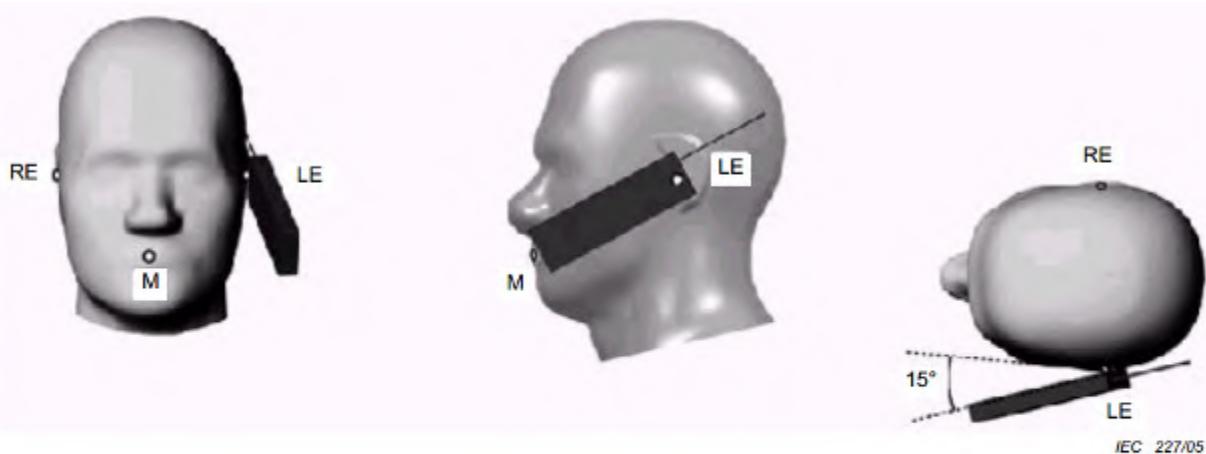
2.1. General Requirements


The test should be performed in a laboratory without influence on SAR measurements by ambient RF sources and any reflection from the environment inside. The equivalent liquid temperature should be kept in the range of 20°C to 22°C according to IEEE Std. 1528-2003 with a maximum variation within $\pm 2^\circ\text{C}$ during the test; and the ambient temperature should be kept in the range of 18°C to 25°C.

2.1.1 Phantom Requirements

SAR system here in Cerpass technology corp. is DASY5 with SAM twin phantom and ELI4 phantom. The phantoms used in test are simplified representations of the human head and body as a specific shaped container for the head or body simulating liquids. The physical characteristics of the phantom models should resemble the head and the body of a mobile user since the shape is a dominant parameter for exposure. The shell of the phantom should be made of low loss and low permittivity material and the thickness tolerance should be less than 0.2 mm. In addition, the phantoms should provide simulations of both right and left hand operations.

2.1.2 Test Positions


For cell phone, it has at least 6 different positions should be tested. They are left cheek, left tilted, right cheek, right tilted, body worn back, body worn front as illustrated below:

Key

- M Mouth reference point
- LE Left ear reference point (ERP)
- RE Right ear reference point (ERP)

Figure 1-1 Cheek position of the wireless device on left side of SAM

Note1: Cheek position of the wireless device on Right side of SAM also is similar to the left side represented above.

Key

M Mouth reference point
LE Left ear reference point (ERP)
RE Right ear reference point (ERP)

Figure 1-2 Tilt position of the wireless device on left side of SAM

Note2: Tilt position of the wireless device on Right side of SAM also is similar to the left side represented above.

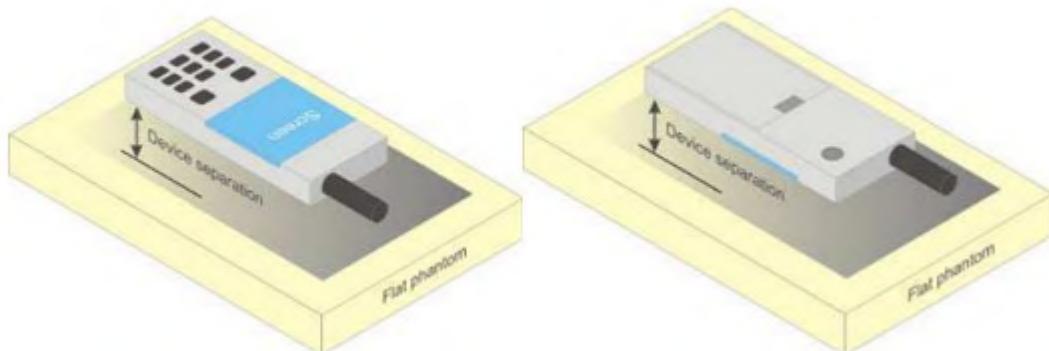


Figure1-3 Test position for body-worn devices

Note3: A separation distance 15mm is commonly used for body-worn Smart Phones, to represent a spacing provided by intended accessories, refer to OET65. For devices with hotspot function, the separation distance is 10mm Per FCC KDB941225 D06.

2.1.3 Test Procedures

First, engineer should record the conducted power before the test. Then make the EUT connect with the CMU200 basic communication tester or make it transmit by itself. Place the EUT to the specific test location. After the testing, must export SAR test data by SEMCAD. Then writing down the conducted power of the EUT into the report, also the SAR values tested.

2.1.4 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474 D04_v01, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01_v05 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is $> 1.2 \text{ W/kg}$, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

2.1.5 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of Wi-Fi simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v01 where SAR test considerations for handsets ($L \times W \geq 9 \text{ cm} \times 5 \text{ cm}$) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the

body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the Wi-Fi transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the Wi-Fi transmitter according to FCC KDB Publication 447498 D01v05 publication procedures. The “Portable Hotspot” feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

2.1.6 SAR Measurement Conditions for UMTS

- **Output Power Verification**

Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all “1s”.

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC (transmit power control) set to all “1s” or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

- **Head SAR Measurements for Handsets**

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all “1s”. SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

- **Body SAR Measurements**

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all “1s”.

• SAR Measurements for Handsets with Rel 5 HSDPA

Body SAR for HSDPA is not required for handsets with HSDPA capabilities when the maximum average output power of each RF channel with HSDPA active is less than 0.25 dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is $\leq 75\%$ of the SAR limit. Otherwise, SAR is measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration measured in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that resulted in the highest SAR in 12.2 kbps RMC mode for that RF channel.

The H-set used in FRC for HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HSPDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the applicable H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the FRC for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 2 ms to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors of $\beta_c=9$ and $\beta_d=15$, and power offset parameters of $\Delta ACK = \Delta NACK = 5$ and $\Delta CQI = 2$ is used. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the FRC.

• SAR Measurements for Handsets with Rel 6 HSUPA

Body SAR for HSUPA is not required when the maximum average output of each RF channel with HSUPA/HSDPA active is less than 0.25 dB higher than as measured without HSUPA/HSDPA using 12.2 kbps RMC and maximum SAR for 12.2 kbps RMC is $\leq 75\%$ of the SAR limit. Otherwise SAR is measured on the maximum output channel for the body exposure configuration produced highest SAR in 12.2 kbps RMC for that RF channel, using the additional procedures under "Release 6 HSPA data devices"

Head SAR for VOIP operations under HSPA is not required when maximum average output of each RF channel with HSPA is less than 0.25 dB higher than as measured using 12.2 kbps RMC. Otherwise SAR is measured using same HSPA configuration as used for body SAR.

Sub-test	β_c	β_d	β_d (SF)	β_c/β_d	$\beta_m^{(1)}$	β_{rc}	β_{rd}	β_{rd} (SF)	β_{rd} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$\beta_{rd} = 47/15$ $\beta_{rc} = 47/15$	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: $\Delta ACK = \Delta NACK = 8 \Rightarrow A_{rd} = \beta_{rd}/\beta_c = 30/15 \Rightarrow \beta_{rd} = 30/15 * \beta_c$

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{rd}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

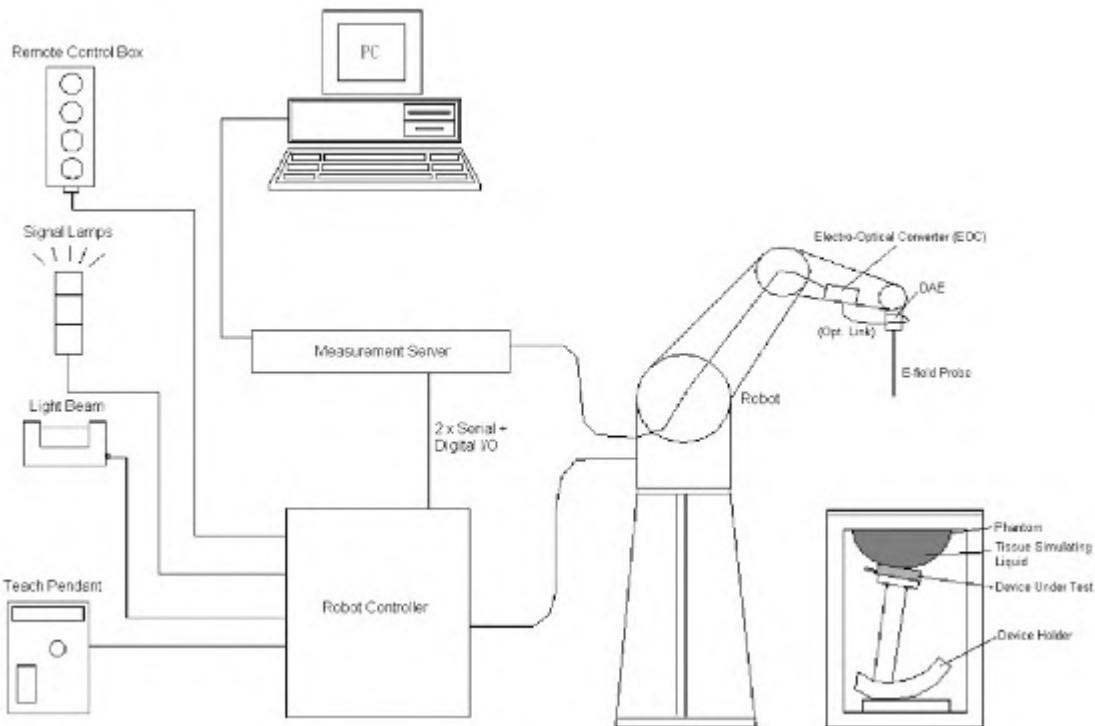
Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: β_{rd} can not be set directly; it is set by Absolute Grant Value.

3. Description of the Test Equipment

DASY5 is fully compliant with the technical and scientific requirements of IEEE 1528, IEC 62209, CENELEC, ARIB, ACA, and the Federal Communications Commission. The system comprises of a six axes articulated robot which utilizes a dedicated controller. DASY5 uses the latest methodologies to provide a platform which is repeatable with minimum uncertainty. Applications: Predefined measurement procedures compliant with the guidelines of CENELEC, IEEE, IEC, FCC, etc are utilized during the assessment for the device. Automatic detection for all SAR maxima are embedded within the core architecture for the system, ensuring that peak locations used for centering the zoom scan are within a 1mm resolution and a 0.05mm repeatable position. System operation range currently is available up to 6 GHz in simulated tissue.


2.2. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Cali. Due Date
Stäubli Robot TX60L	Stäubli	TX60L	5P6VA1/A/01	only once
Robot Controller	Stäubli	CS8C	5P6VA1/C/01	only once
Dipole Validation Kits	Speag	D850V2	1008	2015.06.12
Dipole Validation Kits	Speag	D1750V2	1097	2015.06.10
Dipole Validation Kits	Speag	D1900V2	5d174	2015.06.09
Dipole Validation Kits	Speag	D2450V2	914	2015.06.06
SAM Twin Phantom	Speag	SAM	1767	N/A
SAM ELI Phantom	Speag	SAM	1211	N/A
Device Holder	Speag	SD 000 H01 KA	N/A	N/A
Laptop Holder	Speag	SM LH1 001CD	N/A	N/A
Data Acquisition Electronic	Speag	DAE4	1379	2014.06.13
E-Field Probe	Speag	EX3DV4	3927	2014.06.23
SAR Software	Speag	DASY5	V5.2 Build 162	N/A
Power Amplifier	Mini-Circuit	ZVA-183W-S+	MN136701248	N/A
Directional Coupler	Agilent	772D	MY52180104	N/A
Universal Radio Communication Tester	R&S	CMU 200	108823	2014.01.08
Vector Network	Agilent	E5071C	MY4631693	2014.01.15
Signal Generator	R&S	SML	103287	2014.03.09
Power Meter	BONN	BLWA0830-160/100/40D	76659	2013.11.10
AUG Power Sensor	R&S	NRP-Z91	100384	2014.03.09

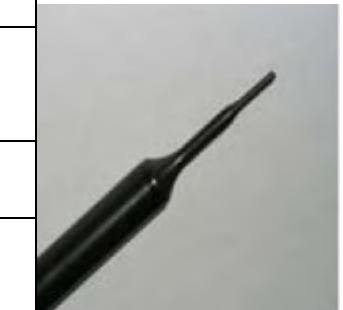
2.3. DASY5 Measurement System

DASY5 Measurement System

Figure 2.1 SPEAG DASY5 System Configurations

The DASY5 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic(DAE)attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter(ECO)performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows 7
- DASY5 software
- Remove control with teach pendant additional circuitry for robot safety such as warming lamps,etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system



2.4. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

Model	EX3DV4
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μ W/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

2.5. Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

2.6. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

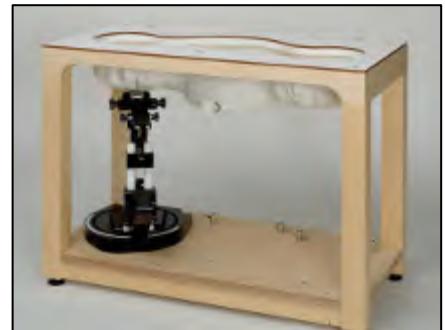
2.7. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

2.8. Measurement Server

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.



2.9. SAM Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- Flat phantom

The ELI4 Phantom also is a fiberglass shell phantom with 2mm shell thickness. It has 30 liters filling volume, and with a dimension of 600mm for major ellipse axis , 400mm for minor axis. It is intended for compliance testing of handheld and body-mounted wireless devices in frequency range of 30 MHz to 6GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

2.10. Device Holder

- The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).Thus the device needs no repositioning when changing the angles.The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon_r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

- The laptop extension is lightweight and made of POM, acrylic glass and foam. It fits easily on upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

2.11. SAR Measurement Procedures in DASY5

Step 1 Setup a Call Connection

Establish a call in handset at the maximum power level with a base station simulator via air interface, or make the EUT estimate by itself in testing band.

Step 2 Power Reference Measurements

To measure the local E-field value at a fixed location which value will be taken as a reference value for calculating a possible power drift.

Step 3 Area Scan

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

Step 4 Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

Step 5 Power Drift Measurements

Repetition of the E-field measurement at the fixed location mentioned in Step 1 to make sure the two results differ by less than ± 0.2 dB.

Reference

- Federal Communications Commission, "Report and order: Guidelines for evaluating the environmental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.
- CENELEC, "Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz - 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
- ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.

2.12. System Performance Check

2.12.1 Purpose

1. To verify the simulating liquids are valid for testing.
2. To verify the performance of testing system is valid for testing.

2.12.2 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency (MHz)	Head		Body	
	ϵ_r	σ (S/m)	ϵ_r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
850	41.5	0.92	55.2	0.99
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and $\rho = 1000 \text{ kg/m}^3$)

2.12.3 Tissue Calibration Result

- The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

Head Tissue Simulant Measurement				
Frequency [MHz]	Description	Dielectric Parameters		Tissue Temp. [°C]
		ϵ_r	σ [s/m]	
850 MHz	Reference result ± 5% window	41.50 39.43 to 43.58	0.92 0.87 to 0.97	N/A
	26-08-2013	41.13	0.91	21.0
1900 MHz	Reference result ± 5% window	40.0 38.00 to 42.00	1.40 1.33 to 1.47	N/A
	26-08-2013	39.71	1.45	21.0
2450MHz	Reference result ± 5% window	39.20 37.24to 41.16	1.80 1.71 to 1.89	N/A
	26-08-2013	38.80	1.88	21.0

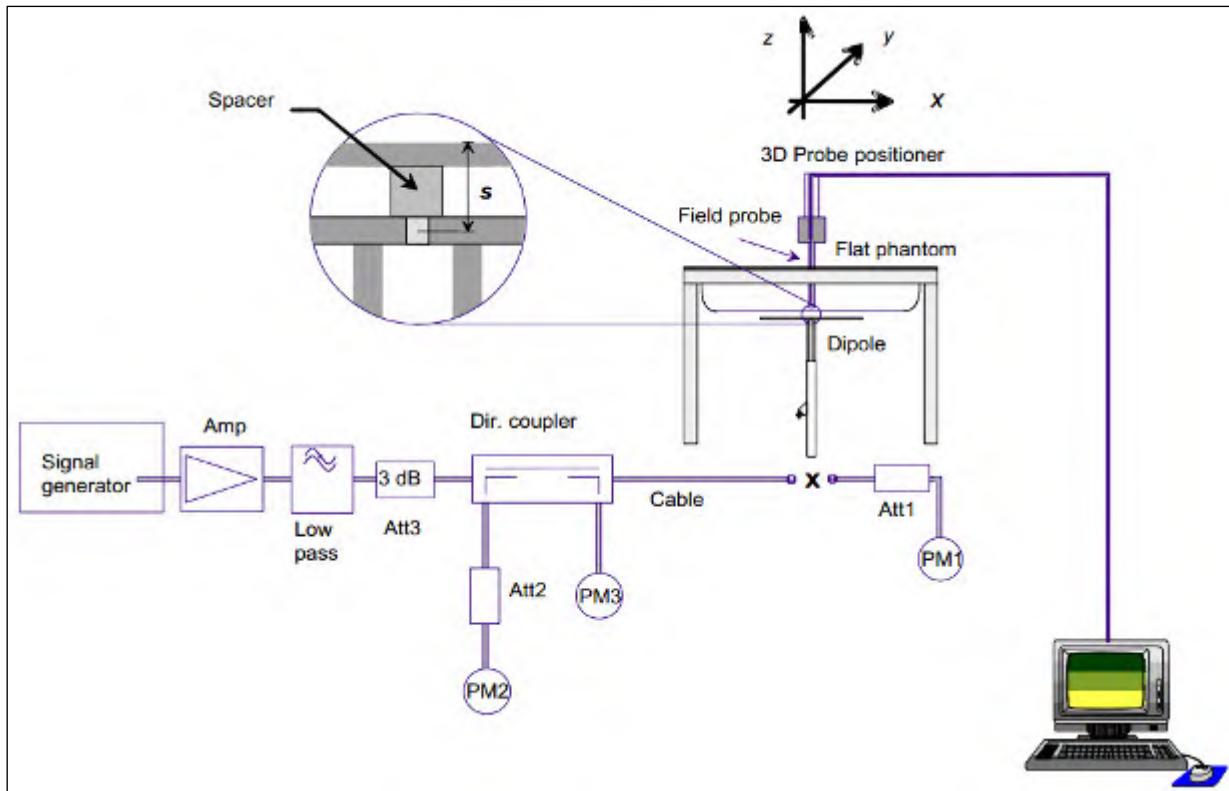
Body Tissue Simulant Measurement				
Frequency [MHz]	Description	Dielectric Parameters		Tissue Temp. [°C]
		ϵ_r	σ [s/m]	
850 MHz	Reference result ± 5% window	55.2 52.44 to 57.96	0.99 0.94 to 1.04	N/A
	26-08-2013	54.97	1.00	21.0
1900 MHz	Reference result ± 5% window	53.3 50.64 to 55.97	1.52 1.44 to 1.60	N/A
	26-08-2013	51.04	1.58	21.0
2450MHz	Reference result ± 5% window	52.7 50.07 to 55.34	1.95 1.85 to 2.05	N/A
	26-08-2013	52.42	2.03	21.0

- Refer to IEEE Std.1528-2003 and FCC OET65 Supplement C June 2001, the liquid in phantom head or body should be at least 15cm deep.

2.12.4 System Performance Check Procedure

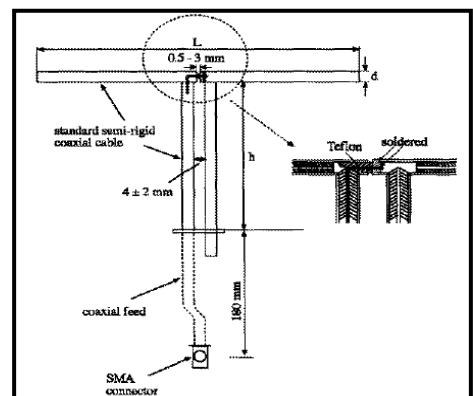
The DASY5 installation includes predefined files with recommended procedures for measurements and the system performance check. They are read-only document files and destined as fully defined but unmeasured masks, so the finished system performance check must be saved under a different name. The system performance check document requires the SAM Twin Phantom or ELI4 Phantom, so the phantom must be properly installed in your system. (User defined measurement procedures can be created by opening a new document or editing an existing document file). Before you start the system performance check, you need only to tell the system with which components (probe, medium, and device) you are performing the system performance check; the system will take care of all parameters.

- **The Power Reference Measurement and Power Drift Measurement**


jobs are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the Dipole output power. If it is too high (above ± 0.2 dB), the system performance check should be repeated;

- **The Surface Check** job tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). In that case it is better to abort the system performance check and stir the liquid.

- **The Area Scan** job measures the SAR above the dipole on a plane parallel to the surface. It is used to locate the approximate location of the peak SAR. The proposed scan uses large grid spacing for faster measurement; due to the symmetric field, the peak detection is reliable.


- **The Zoom Scan** job measures the field in a volume around the peak SAR value assessed in the previous Area Scan job (for more information see the application note on SAR evaluation). If the system performance check gives reasonable results. The dipole input power(forward power) was 250mW ,1 g and 10 g spatial average SAR values normalized to 1W dipole input power give reference data for comparisons and it's equal to 10x(dipole forward power). The next sections analyze the expected uncertainties of these values, as well as additional checks for further information or troubleshooting.

2.12.5 System Performance Check Setup

2.12.6 Validation Dipoles

The dipoles used is based on the IEEE Std.1528-2003 and FCC OET65 Supplement C June 2001standard, and is complied with mechanical and electrical specifications in line with the requirements of both EN62209-1 and EN62209-2. The table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
850MHz	158	88	3.6
1750MHz	75.2	42.5	3.6
1900MHz	68.0	39.5	3.6
2450MHz	53.5	30.4	3.6

2.12.7 Result of System Performance Check: Valid Result**System Performance Check at 850MHz, 1750MHz, 1900MHz, 2450MHz for Head.****Validation Kit: D850V2-SN: 1008**

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
850 MHz	Reference result ± 10% window	9.83 8.85 to 10.81	6.37 5.73 to 7.01	N/A
	26-08-2013	8.88	5.8	21.0

Validation Kit: D1900V2-SN: 5d174

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
1900 MHz	Reference result ± 10% window	39.9 35.91 to 43.89	20.9 18.81 to 22.99	N/A
	26-08-2013	43.20	21.80	21.0

Validation Dipole: D2450V2-SN 914

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
2450 MHz	Reference result ± 10% window	53.4 48.06 to 58.74	24.8 22.32 to 27.28	N/A
	26-08-2013	52.80	23.44	21.0

Note: All SAR values are normalized to 1W forward power.

System Performance Check at 850MHz, 1750MHz, 1900MHz, 2450MHz for Body.**Validation Kit: D850V2-SN: 1008**

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
850 MHz	Reference result ± 10% window	9.62 8.66 to 10.58	6.27 5.64 to 6.90	N/A
	26-08-2013	9.68	6.32	21.0

Validation Kit: D1900V2-SN: 5d174

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
1900 MHz	Reference result ± 10% window	40.4 36.36 to 44.44	21.5 19.35 to 23.65	N/A
	26-08-2013	40.4	20.72	21.0

Validation Dipole: D2450V2-SN 914

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
2450 MHz	Reference result ± 10% window	51.5 46.35 to 56.65	23.9 21.51 to 26.29	N/A
	26-08-2013	48.0	21.8	21.0

Note: All SAR values are normalized to 1W forward power.

3. Results

3.1. Summary of Test Results

No deviations form the technical specification(s) were ascertained in the course of the tests performed	<input checked="" type="checkbox"/>
The deviations as specified in this chapter were ascertained in the course of the tests Performed.	<input type="checkbox"/>

3.2. Description for EUT test position

The following procedure had been used to prepare the EUT for the SAR test.

- The client supplied a special driver to program the EUT, allowing it to continually transmit the specified maximum power and change the channel frequency.
- The output power(dBm) we measured before SAR test in different channel
- Performing the highest output power channel first
- SAR test Tip edge and Bottom Flat mode.

3.3. Conducted power (Average)

Mode	Frequency (MHz)	Avg. Burst Power (dBm)	Duty Cycle Factor (dB)	Frame Power (dBm)	Max. Power (dBm)	Scaling Factor
GSM850	824.2	31.96	-9	22.96	33	1.271
	836.6	32.15	-9	23.15	33	1.216
	848.8	32.37	-9	23.37	33	1.156
GPRS850(1 Slot)	824.2	31.94	-9	22.94	33	1.276
	836.6	32.14	-9	23.14	33	1.219
	848.8	32.24	-9	23.24	33	1.191
GPRS850(2 Slot)	824.2	31.01	-6	25.01	32	1.256
	836.6	31.09	-6	25.09	32	1.233
	848.8	31.11	-6	25.11	32	1.227
GPRS850(3 Slot)	824.2	29.22	-4.25	24.97	30	1.197
	836.6	29.32	-4.25	25.07	30	1.169
	848.8	29.34	-4.25	25.09	30	1.164
GPRS850(4 Slot)	824.2	28.02	-3	25.02	28.5	1.117
	836.6	28.12	-3	25.12	28.5	1.091
	848.8	28.15	-3	25.15	28.5	1.084
EDGE850(1 Slot)	824.2	31.90	-9	22.90	33	1.288
	836.6	32.10	-9	23.10	33	1.230
	848.8	32.14	-9	23.14	33	1.219

EDGE850(2 Slot)	824.2	31.03	-6	25.03	32	1.250
	836.6	31.08	-6	25.08	32	1.236
	848.8	31.10	-6	25.10	32	1.230
EDGE850(3 Slot)	824.2	29.12	-4.25	24.87	30	1.225
	836.6	29.28	-4.25	25.03	30	1.180
	848.8	29.30	-4.25	25.05	30	1.175
EDGE850(4 Slot)	824.2	28.02	-3	25.02	28.5	1.117
	836.6	28.09	-3	25.09	28.5	1.099
	848.8	28.14	-3	25.14	28.5	1.086
PCS1900	1850.2	28.95	-9	19.95	30	1.274
	1880.0	29.10	-9	20.1	30	1.230
	1909.8	29.47	-9	20.47	30	1.130
GPRS1900(1Slot)	1850.2	28.93	-9	19.93	30	1.279
	1880.0	29.09	-9	20.09	30	1.233
	1909.8	29.45	-9	20.45	30	1.135
GPRS1900(2Slot)	1850.2	28.06	-6	22.06	29	1.242
	1880.0	28.04	-6	22.04	29	1.247
	1909.8	28.10	-6	22.10	29	1.230
GPRS1900(3Slot)	1850.2	26.19	-4.25	21.94	27	1.205
	1880.0	26.27	-4.25	22.02	27	1.183
	1909.8	26.33	-4.25	22.08	27	1.167
GPRS1900(4Slot)	1850.2	25.09	-3	22.09	25.5	1.099
	1880.0	25.12	-3	22.12	25.5	1.091
	1909.8	25.15	-3	22.15	25.5	1.084
EDGE1900(1Slot)	1850.2	28.87	-9	19.87	30	1.297
	1880.0	29.05	-9	20.05	30	1.245
	1909.8	29.45	-9	20.51	30	1.135
EDGE1900(2Slot)	1850.2	28.01	-6	22.01	29	1.256
	1880.0	28.03	-6	22.03	29	1.250
	1909.8	28.40	-6	22.40	29	1.148
EDGE1900(3Slot)	1850.2	26.14	-4.25	21.89	27	1.219
	1880.0	26.19	-4.25	21.94	27	1.205
	1909.8	26.23	-4.25	21.98	27	1.194
EDGE1900(4Slot)	1850.2	25.06	-3	22.06	25.5	1.107
	1880.0	25.11	-3	22.11	25.5	1.094
	1909.8	25.12	-3	22.12	25.5	1.091

Note: 1. Scaling Factor = Max. Power (mW) / Avg. Burst Power (mW)

2. This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05.

3. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged powers were calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.

4. The bolded GPRS modes were selected for SAR testing according to the highest frame-averaged output power table per KDB 941225 D03v01.

5. GPRS/EDGE(GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 - CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.

6. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power.

• **WCDMA/HSDPA/HSUPA/HSPA+**

Mode	3GPP Subtest	Band II (1900MHz) Channel			MPR	
		Conducted Power (dBm)				
		9262	9400	9538		
WCDMA R99	1	24.13	24.35	23.26	N/A	
Rel5 HSDPA	1	24.11	24.34	23.24	0	
	2	24.1	24.33	23.23	0	
	3	24.08	24.30	23.21	0.5	
	4	24.07	24.38	23.19	0.5	
Rel6 HSUPA	1	24.12	24.34	23.25	0.0	
	2	24.09	24.32	23.23	2.0	
	3	24.07	24.32	23.22	1.0	
	4	24.06	24.37	23.19	2.0	
	5	24.05	24.32	23.18	0.0	

Note: UMTS SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v02. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

Mode	Band II (1900MHz) Channel	Normal Power (dBm)	Max. Power (dBm)	Scaling Factor
WCDMA R99	9262	24.13	25	1.222
	9400	24.35	25	1.161
	9538	23.26	25	1.493

Note: UMTS SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225

D01v02. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

- WIFI

Test Mode	Channel No.	Frequency (MHz)	Average Power (dBm)	Max. Power (dBm)	Scaling Factor
802.11b	01	2412	12.76	15.5	1.879
	06	2437	13.82	15.5	1.472
	11	2462	14.60	15.5	1.230
802.11g	01	2412	5.38	8.5	2.051
	06	2437	7.29	8.5	1.321
	11	2462	7.55	8.5	1.245
802.11n (20MHz)	01	2412	5.04	8.5	2.218
	06	2437	7.41	8.5	1.285
	11	2462	6.22	8.5	1.690
802.11n (40MHz)	03	2422	2.48	6	2.249
	06	2437	4.74	6	1.337
	09	2452	3.91	6	1.618

Note 1: Justification for reduced test configurations for Wi-Fi channels per KDB Publication 248227 D01v01r02 and KDB 447498 D01v05.

2: For 2.4 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11g were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11b/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11g mode.

3: When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.

4: The bolded channel above was tested for SAR.

- Bluetooth

Mode	Frequency	Maximum Allowed Power	Separation Distance (Head)	Estimated SAR (Held-to-Ear)	Separation Distance (Body)	Estimated SAR (Body)
Bluetooth	[MHz]	[dBm]	[mm]	[W/kg]	[mm]	[W/kg]
Bluetooth	2441	-1.07	5	0.0533	10	0.0267

Note: When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05 4.3.2, the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

$$\text{Estimated SAR} = \frac{\sqrt{f(\text{GHz})}}{7.5} * \frac{(\text{Max Power of channel, mW})}{\text{Min. Separation Distance, mm}}$$

3.4. SAR Test Results Summary

SAR MEASUREMENT													
Ambient Temperature (°C) : 21.5 ± 2				Relative Humidity (%): 52									
Liquid Temperature (°C) : 21.0 ± 2				Depth of Liquid (cm):>15									
Product: Smart Phone													
Test Mode: GSM850													
Test Position Head	Antenna Position	Frequency		Frame Power (dBm)	Power Drift ($<\pm 0.2$)	SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)	Limit (W/kg)				
		Channel	MHz										
Left-Cheek	Fixed	128	824.2	22.96	--	--	1.271	--	1.6				
Left-Cheek	Fixed	189	836.6	23.15	-0.11	0.230	1.216	0.280	1.6				
Left-Cheek	Fixed	251	848.8	23.37	--	--	1.156	--	1.6				
Left-Tilted	Fixed	189	836.6	23.15	0.03	0.127	1.216	0.154	1.6				
Right-Cheek	Fixed	128	824.2	22.96	--	--	1.271	--	1.6				
Right-Cheek	Fixed	189	836.6	23.15	0.14	0.219	1.216	0.266	1.6				
Right-Cheek	Fixed	251	848.8	23.37	--	--	1.156	--	1.6				
Right-Tilted	Fixed	189	836.6	23.15	-0.05	0.112	1.216	0.136	1.6				
Note: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498.													

SAR MEASUREMENT												
Ambient Temperature (°C) : 21.5 ± 2					Relative Humidity (%): 52							
Liquid Temperature (°C) : 21.0 ± 2					Depth of Liquid (cm):>15							
Product: Smart Phone												
Body-worn Accessory SAR Configurations												
Test Mode: GSM850												
Test Position Body (10mm gap)	Antenna Position	Frequency		Frame Power (dBm)	Power Drift ($<\pm 0.2$)	SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)				
		Channel	MHz									
Body-worn	Fixed	128	824.2	22.96	--	--	1.271	--				
Body-worn	Fixed	189	836.6	23.15	-0.12	0.344	1.216	0.418				
Body-worn	Fixed	251	848.8	23.37	--	--	1.156	--				
Hotspot SAR Configurations												
Test Mode: GPRS850-4slot												
Body-worn	Fixed	128	824.2	25.02	0.07	1.32	1.117	1.474				
Body-worn	Fixed	189	836.6	25.12	-0.07	1.34	1.091	1.462				
Body-worn*	Fixed	189	836.6	25.12	-0.02	1.35	1.091	1.473				
Body-worn	Fixed	251	848.8	25.15	0.20	1.23	1.084	1.333				
Body-front	Fixed	189	836.6	25.12	0.02	0.802	1.091	0.875				
Body-left side	Fixed	189	836.6	25.12	0.11	0.550	1.091	0.600				
Body-Right side	Fixed	128	824.2	25.02	0.10	0.781	1.117	0.872				
Body-Right side	Fixed	189	836.6	25.12	0.17	0.853	1.091	0.931				
Body-Right side	Fixed	251	848.8	25.15	0.17	0.883	1.084	0.957				
Body-bottom	Fixed	189	836.6	25.12	0.08	0.315	1.091	0.344				

Note 1: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498.

2: * - repeated at the highest SAR measurement according to the FCC KDB 865664

SAR MEASUREMENT													
Ambient Temperature (°C) : 21.5 ± 2				Relative Humidity (%): 52									
Liquid Temperature (°C) : 21.0 ± 2				Depth of Liquid (cm):>15									
Product: Smart Phone													
Test Mode: PCS1900													
Test Position Head	Antenna Position	Frequency		Frame Power (dBm)	Power Drift (<±0.2)	SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)					
		Channel	MHz										
Left-Cheek	Fixed	512	1850.2	19.95	--	--	1.274	--					
Left-Cheek	Fixed	661	1880	20.1	-0.14	0.176	1.230	0.216					
Left-Cheek	Fixed	810	1909.8	20.47	--	--	1.130	--					
Left-Tilted	Fixed	661	1880.0	20.1	-0.02	0.111	1.230	0.137					
Right-Cheek	Fixed	512	1850.2	19.95	--	--	1.274	--					
Right-Cheek	Fixed	661	1880	20.1	-0.08	0.291	1.230	0.358					
Right-Cheek	Fixed	810	1909.8	20.47	--	--	1.130	--					
Right-Tilted	Fixed	661	1880.0	20.1	0.09	0.108	1.230	0.133					

Note: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498.

SAR MEASUREMENT														
Ambient Temperature (°C) : 21.5 ± 2					Relative Humidity (%): 52									
Liquid Temperature (°C) : 21.0 ± 2					Depth of Liquid (cm):>15									
Product: Smart Phone														
Body-worn Accessory SAR Configurations														
Test Mode: PCS1900														
Test Position Body (10mm gap)	Antenna Position	Frequency		Frame Power (dBm)	Power Drift (<±0.2)	SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)	Limit (W/kg)					
		Channe l	MHz											
Body-worn	Fixed	512	1850.2	19.95	--	--	1.274	--	1.6					
Body-worn	Fixed	661	1880	20.1	0.08	0.459	1.230	0.565	1.6					
Body-worn	Fixed	810	1909.8	20.47	--	--	1.130	--	1.6					
Hotspot SAR Configurations														
Test Mode: GPRS1900-4slot														
Body-worn	Fixed	512	1850.2	22.09	0.08	1.28	1.099	1.407	1.6					
Body-worn*	Fixed	512	1850.2	22.09	0.11	1.27	1.099	1.396	1.6					
Body-worn	Fixed	661	1880	22.12	-0.11	1.20	1.091	1.309	1.6					
Body-worn	Fixed	810	1909.8	22.15	0.03	1.08	1.084	1.171	1.6					
Body-front	Fixed	661	1880	22.12	-0.09	0.400	1.091	0.436	1.6					
Body-left side	Fixed	661	1880	22.12	0.07	0.114	1.091	0.124	1.6					
Body-right side	Fixed	661	1880	22.12	0.09	0.400	1.091	0.436	1.6					
Body-bottom	Fixed	661	1880	22.12	-0.03	0.369	1.091	0.403	1.6					
Note 1: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498.														
2: * - repeated at the highest SAR measurement according to the FCC KDB 865664														

SAR MEASUREMENT														
Ambient Temperature (°C) : 21.5 ± 2					Relative Humidity (%): 52									
Liquid Temperature (°C) : 21.0 ± 2					Depth of Liquid (cm):>15									
Product: Smart Phone														
Test Mode: WCDMA Band II														
Test Position Head	Antenna Position	Frequency		Conducted Power (dBm)	Power Drift (<±0.2)	SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)	Limit (W/kg)					
		Channel	MHz											
Left-Cheek	Fixed	9262	1852.4	24.13	--	--	1.222	--	1.6					
Left-Cheek	Fixed	9400	1880.0	24.35	0.11	0.139	1.161	0.161	1.6					
Left-Cheek	Fixed	9538	1907.6	23.26	--	--	1.493	--	1.6					
Left-Tilt	Fixed	9400	1880.0	24.35	0.08	0.092	1.161	0.107	1.6					
Right-Cheek	Fixed	9262	1852.4	24.13	--	--	1.222	--	1.6					
Right-Cheek	Fixed	9400	1880.0	24.35	0.12	0.289	1.161	0.336	1.6					
Right-Cheek	Fixed	9538	1907.6	23.26	--	--	1.493	--	1.6					
Right-Tilt	Fixed	9400	1880.0	24.35	0.07	0.093	1.161	0.108	1.6					
Note: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498.														

SAR MEASUREMENTAmbient Temperature (°C): 21.5 ± 2

Relative Humidity (%): 52

Liquid Temperature (°C): 21.0 ± 2

Depth of Liquid (cm): >15

Product: Smart Phone

Body-worn Accessory SAR Configurations

Test Mode: WCDMA Band II

Test Position Body (10mm gap)	Antenna Position	Frequency		Conducted Power (dBm)	Power Drift ($<\pm 0.2$)	SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)	Limit (W/kg)
		Channel	MHz						
Body-worn	Fixed	9262	1852.4	24.13	--	--	1.222	--	1.6
Body-worn	Fixed	9400	1880.0	24.35	0.06	0.521	1.161	0.605	1.6
Body-worn	Fixed	9538	1907.6	23.26	--	--	1.493	--	1.6

Hotspot SAR Configurations

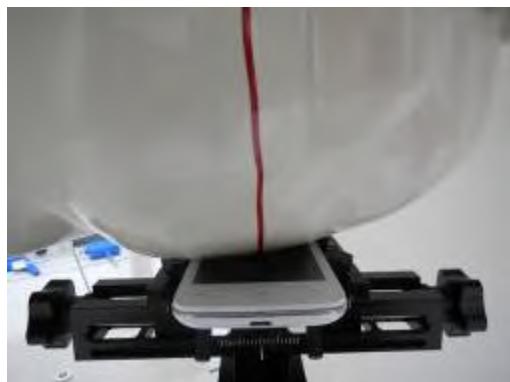
Test Mode: WCDMA Band II

Body-worn	Fixed	9400	1880.0	24.35	0.06	0.521	1.161	0.605	1.6
Body-front	Fixed	9400	1880.0	24.35	0.06	0.202	1.161	0.235	1.6
Body-right side	Fixed	9400	1880.0	24.35	-0.15	0.125	1.161	0.145	1.6
Body-left side	Fixed	9400	1880.0	24.35	-0.06	0.043	1.161	0.050	1.6
Body-bottom	Fixed	9400	1880.0	24.35	0.12	0.229	1.161	0.266	1.6

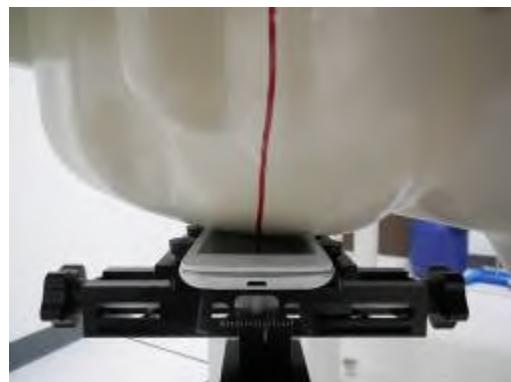
Note: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498.

SAR MEASUREMENT												
Ambient Temperature (°C) : 21.5 ± 2					Relative Humidity (%): 52							
Liquid Temperature (°C) : 21.0 ± 2					Depth of Liquid (cm):>15							
Product: Smart Phone												
Test Mode: 802.11b												
Test Position Head	Antenna Position	Frequency		Average Power (dBm)	Power Drift (<±0.2)	SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)				
		Channe l	MHz									
Left-Cheek	Fixed	1	2412	12.76	--	--	1.879	--				
Left-Cheek	Fixed	6	2437	13.82	--	--	1.472	--				
Left-Cheek	Fixed	11	2462	14.60	-0.18	0.057	1.230	0.070				
Left-Tilt	Fixed	11	2462	14.60	0.13	0.023	1.230	0.028				
Right-Cheek	Fixed	1	2412	12.76	--	--	1.879	--				
Right-Cheek	Fixed	6	2437	13.82	--	--	1.472	--				
Right-Cheek	Fixed	11	2462	14.60	0.15	0.031	1.230	0.038				
Right-Tilt	Fixed	11	2462	14.60	0.11	0.00981	1.230	0.012				

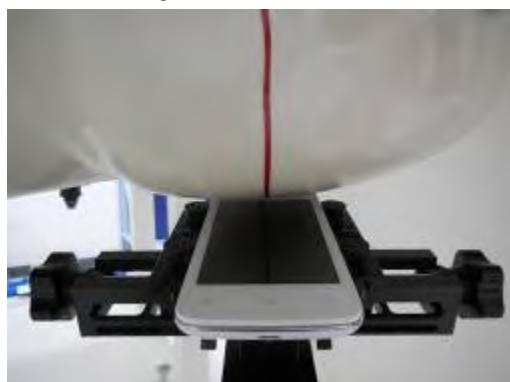
Note: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and mid channel is optional, refer to KDB 447498.

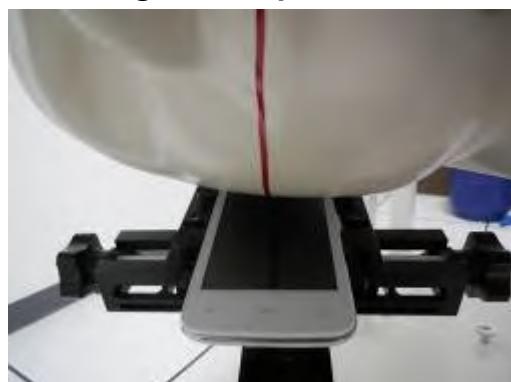


SAR MEASUREMENT														
Ambient Temperature (°C): 21.5 ± 2					Relative Humidity (%): 52									
Liquid Temperature (°C): 21.0 ± 2					Depth of Liquid (cm): >15									
Product: Smart Phone														
Body-worn Accessory SAR Configurations														
Test Mode: 802.11b														
Test Position Body (10mm gap)	Antenna Position	Frequency		Average Power (dBm)	Power Drift (± 0.2)	SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)	Limit (W/kg)					
		Channel	MHz											
Body-worn	Fixed	1	2412	12.76	--	--	1.879	--	1.6					
Body-worn	Fixed	6	2437	13.82	--	--	1.472	--	1.6					
Body-worn	Fixed	11	2462	14.60	0.11	0.039	1.230	0.048	1.6					
Hotspot SAR Configurations														
Test Mode: 802.11b														
Body-worn	Fixed	1	2412	12.76	--	--	1.879	--	1.6					
Body-worn	Fixed	6	2437	13.82	--	--	1.472	--	1.6					
Body-worn	Fixed	11	2462	14.60	0.11	0.039	1.230	0.048	1.6					
Body-front	Fixed	11	2462	14.60	0.10	0.014	1.230	0.017	1.6					
Body-left side	Fixed	11	2462	14.60	-0.12	0.0003 45	1.230	0.00042 4	1.6					
Body-right side	Fixed	11	2462	14.60	-0.02	0.0003 36	1.230	0.00041 3	1.6					
Body-Bottom	Fixed	11	2462	14.60	0.13	0.011	1.230	0.014	1.6					
Note: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and mid channel is optional, refer to KDB 447498.														



3.5. Measurement Position


Left cheek position


Right cheek position

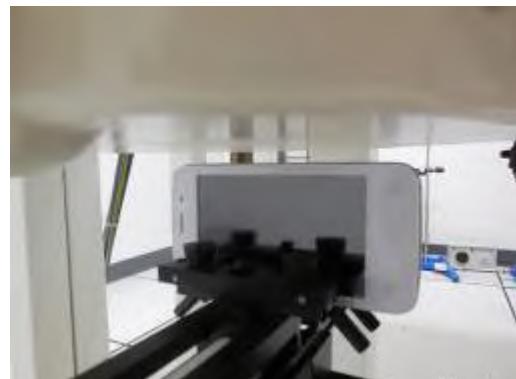
Left tilted position

Right tilted position

Body position Front with gap 10mm



Body position back with gap 10mm



Body position Left side with gap 10mm

Body position Right side with gap 10mm

Body position Bottom with gap 10mm

4. The Description of Test Procedure

4.1. Test Methods

Scan Procedure

First area scans were used for determination of the field distribution. Next a zoom scan points covering a volume of at least 30x30x30mm was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the coarse scan and again at the end of the cube scan.

SAR Averaging Methods

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics. In the cube scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

Data Storage

The DASY5 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with measurement server. The post processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings.

4.2. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE1528. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.

4.3. Body SAR with Headset

Per FCC KDB Publication 648474 D04v01, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

4.4. Hotspot Operation Mode

During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with Wi-Fi) was not activated.

4.5. Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05 IV.C.1.iii, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is $\leq 1.6\text{W/kg}$.

4.6. Simultaneous Transmission Analysis

Simultaneous Transmission Scenario with Wi-Fi

Configuration	Mode	Max. Scaled SAR (W/kg)	Wi-Fi SAR (W/kg)	Σ SAR (W/kg)
Head	GSM850	0.280	0.070	0.350
Head	PCS1900	0.358	0.070	0.428
Head	WCDMA Band II	0.336	0.070	0.406
Body-Worn	GSM850	1.474	0.048	1.522
Body-Worn	PCS1900	1.407	0.048	1.455
Body-Worn	WCDMA Band II	0.605	0.048	0.653

Note: Body worn at 10mm.

Simultaneous Transmission Scenario with Bluetooth

Configuration	Mode	Max. Scaled SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
Head	GSM850	0.280	0.0533	0.3333
Head	PCS1900	0.358	0.0533	0.4113
Head	WCDMA Band II	0.336	0.0533	0.3893
Body-Worn	GSM850	1.474	0.0267	1.5007
Body-Worn	PCS1900	1.407	0.0267	1.4337
Body-Worn	WCDMA Band II	0.605	0.0267	0.6317

Note 1: Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

2: Body worn at 10mm.

Simultaneous Transmission Scenario (Hotspot)

Simult Tx	Configuration	GPRS850 SAR (W/kg)	Wi-Fi SAR (W/kg)	Σ SAR (W/kg)
Body	Back	1.474	0.048	1.522
	Front	0.875	0.017	0.892
	Bottom	0.344	0.014	0.358
	Left	0.600	0.000424	0.600424
	Right	0.957	0.000413	0.957413
Simult Tx	Configuration	GPRS1900 SAR (W/kg)	Wi-Fi SAR (W/kg)	Σ SAR (W/kg)
Body	Back	1.407	0.048	1.455
	Front	0.436	0.017	0.453
	Bottom	0.403	0.014	0.417
	Left	0.124	0.000424	0.124424
	Right	0.436	0.000413	0.436413
Simult Tx	Configuration	WCDMA Band II SAR (W/kg)	Wi-Fi SAR (W/kg)	Σ SAR (W/kg)
Body	Back	0.605	0.048	0.653
	Front	0.235	0.017	0.252
	Bottom	0.266	0.014	0.280
	Left	0.050	0.000424	0.050424
	Right	0.145	0.000413	0.145413

4.7. Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v05.

5. Measurement Uncertainty

Exposure Assessment Measurement Uncertainty

DASY5 Uncertainty								
Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram / 10 gram.								
Measurement System	Uncert. value	Prob. Dist.	Div.	(c _i) 1g	(c _i) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(v _i) v _{eff}
Probe Calibration	±6.0%	N	1	1	1	±6.0%	±6.0%	∞
Axial Isotropy	±4.7%	R	✓3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	✓3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	✓3	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	✓3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	✓3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	✓3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	✓3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	✓3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	✓3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	✓3	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	✓3	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	✓3	1	1	±0.6%	±0.6%	∞
Test Sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	✓3	1	1	±2.9%	±2.9%	∞
Phantom and Setup								
Phantom Uncertainty	±4.0%	R	✓3	1	1	±2.3%	±2.3%	∞
Liquid Conductivity (target)	±5.0%	R	✓3	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity (meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
Liquid Permittivity (target)	±5.0%	R	✓3	0.6	0.49	±1.7%	±1.4%	∞
Liquid Permittivity (meas.)	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
Combined Std. Uncertainty							±11.0%	±10.8%
Expanded STD Uncertainty							±22.0%	±21.5%

6. APPENDIX A PHOTOGRAPHS of EUT and EUT Accessory

7. APPENDIX B. SAR System Validation Data

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

System Check Head 850MHz

DUT: Dipole 850 MHz D850V2; Type: D850V2

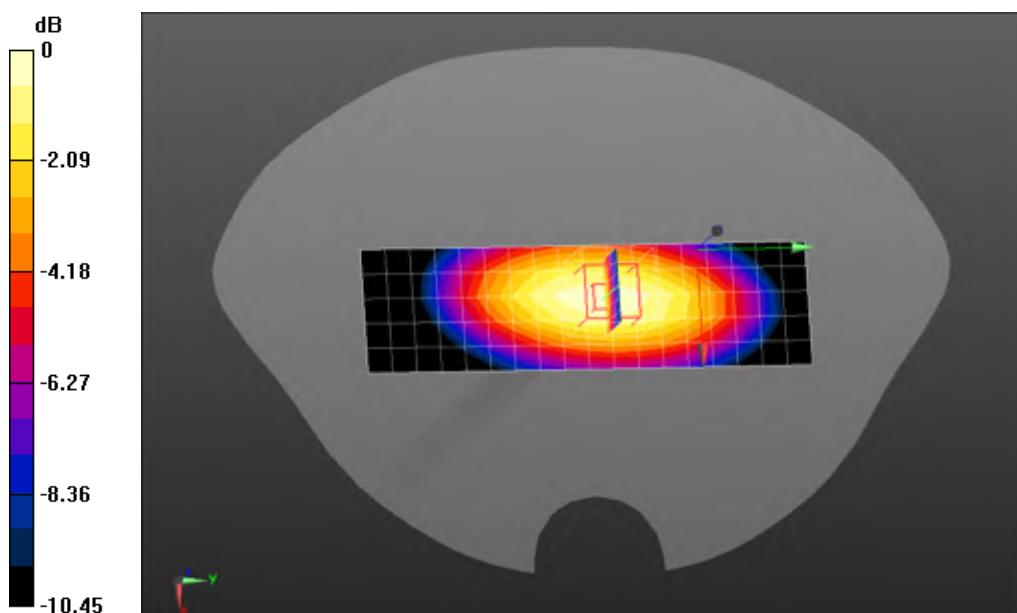
Communication System: CW; Communication System Band: D850 (850.0 MHz); Duty Cycle: 1:1;

Frequency: 850 MHz; Medium parameters used: $f = 850$ MHz; $\sigma = 0.91$ mho/m; $\epsilon_r = 41.13$; $\rho = 1000$ kg/m³ ;

Phantom section: Flat Section ; Input Power=250mW

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3927; ConvF(10.16, 10.16, 10.16); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/System Check Head 835MHz/Area Scan (6x19x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 2.36 mW/g

Configuration/System Check Head 835MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 51.151 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 3.358 mW/g

SAR(1 g) = 2.22 mW/g; SAR(10 g) = 1.45 mW/g Maximum value of SAR (measured) = 2.39 mW/g

0 dB = 2.39 mW/g = 7.57 dB mW/g

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

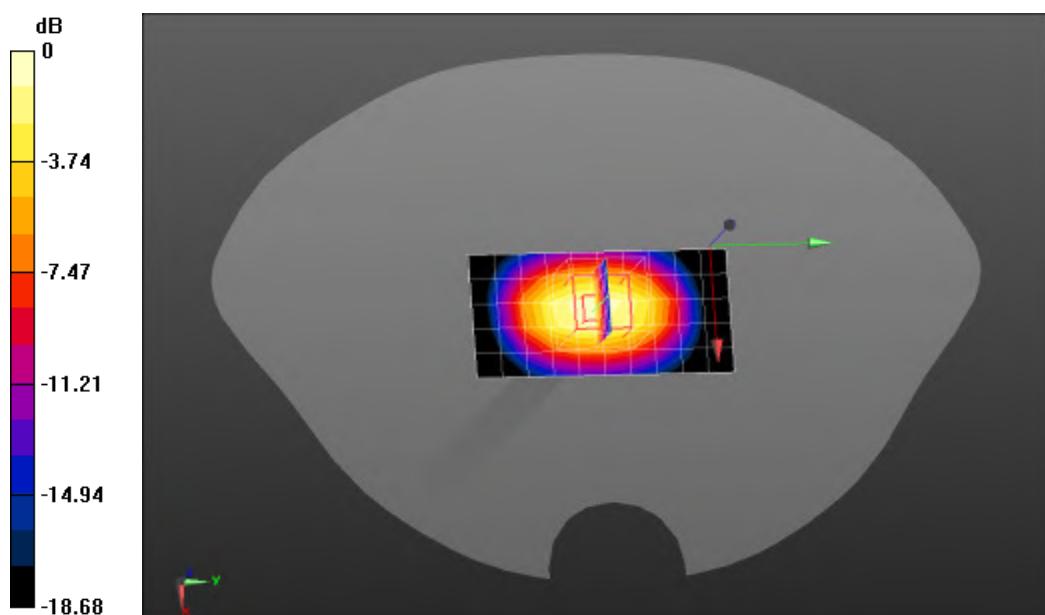
System Performance Check-D1900 Head

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2

Communication System: UID 0, CW (0); Frequency: 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.45$ S/m; $\epsilon_r = 39.71$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Input Power=250mW


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(8.39, 8.39, 8.39); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/System Check Head 1900MHz/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 10.9 mW/g**Configuration/System Check Head 1900MHz/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 90.210 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 20.912 mW/g

SAR(1 g) = 10.8 mW/g; SAR(10 g) = 5.45 mW/g Maximum value of SAR (measured) = 12.1 mW/g

Date/Time: 26/08/2013

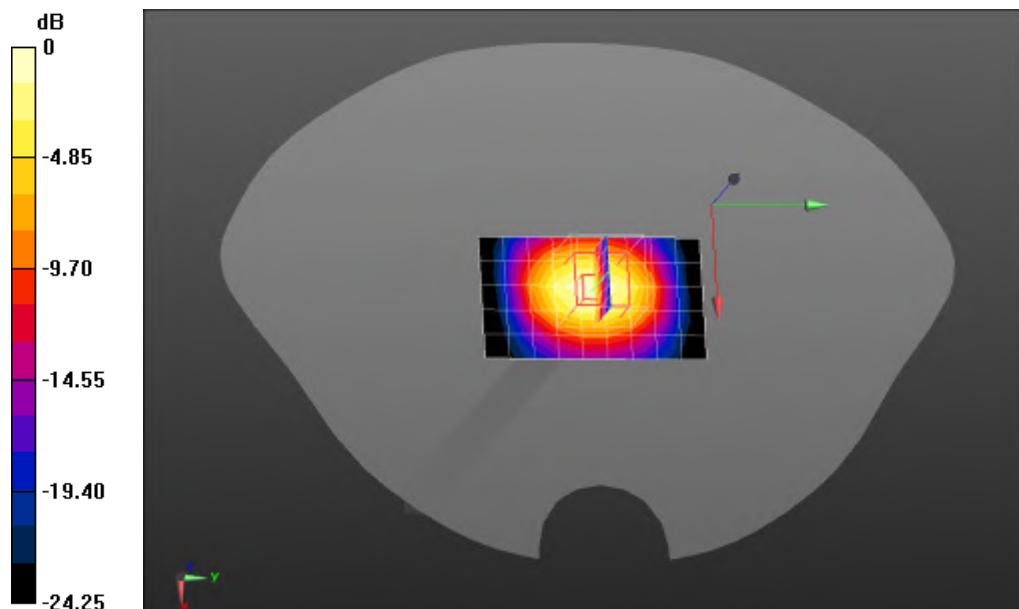
Test Laboratory: QuieTek Lab

System Performance Check-D2450 Head

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2

Communication System: CW; Communication System Band: D2450(2450MHz); Duty Cycle: 1:1;

Frequency: 2450 MHz; Medium parameters used: $f = 2450$ MHz; $\sigma = 1.88$ mho/m; $\epsilon_r = 38.80$; $\rho = 1000$ kg/m³; Phantom section: Flat Section; Input Power=250mW


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.38, 7.38, 7.38); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/System Check Head 2450MHz/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 13.7 mW/g**Configuration/System Check Head 2450MHz/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 86.605 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 29.780 mW/g

SAR(1 g) = 13.2 mW/g; SAR(10 g) = 5.86 mW/g Maximum value of SAR (measured) = 14.9 mW/g

0 dB = 14.9 mW/g = 23.46 dB mW/g

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

System Check Body 850MHz

DUT: Dipole 850 MHz D850V2; Type: D850V2

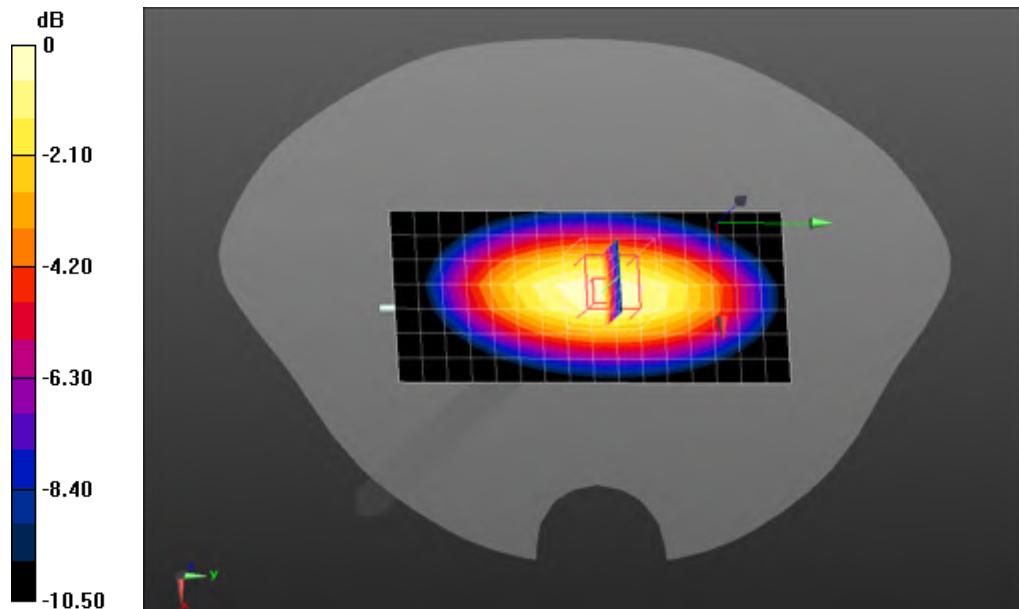
Communication System: CW; Communication System Band: D850 (850.0 MHz); Duty Cycle: 1:1;

Frequency: 850 MHz; Medium parameters used: $f = 850$ MHz; $\sigma = 1.00$ mho/m; $\epsilon_r = 54.97$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section ; Input Power=250mW

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:


- Probe: EX3DV4 - SN3927; ConvF(10.03, 10.03, 10.03); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/System Check Body 850MHz/Area Scan (8x17x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 2.51 mW/g

Configuration/System Check Body 850MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 51.529 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.654 mW/g

SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.58 mW/g Maximum value of SAR (measured) = 2.62 mW/g

0 dB = 2.62 mW/g = 8.37 dB mW/g

Date/Time: 26/08/2013

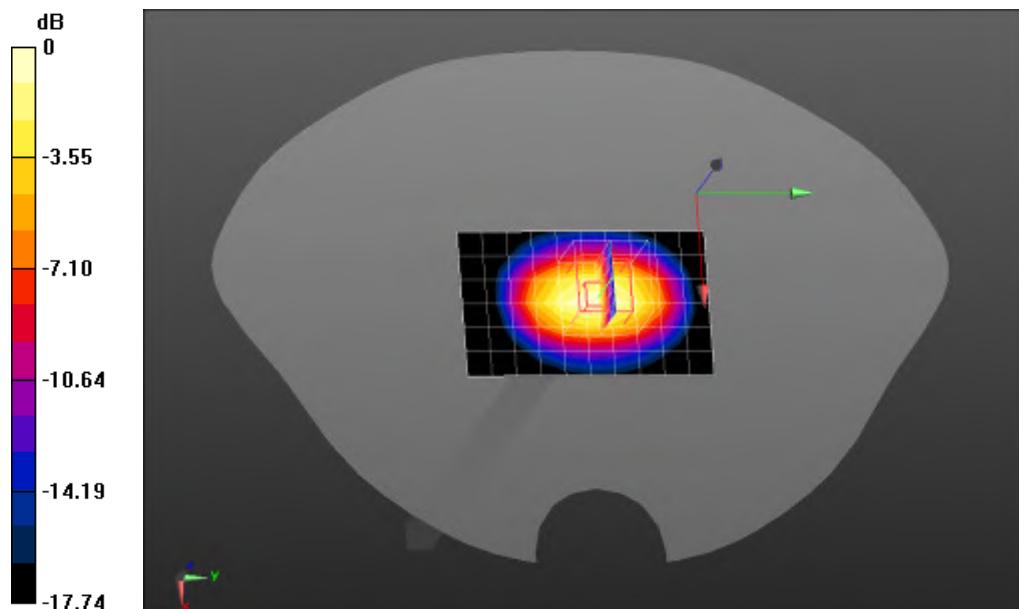
Test Laboratory: QuieTek Lab

System Check Body 1900MHz

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle: 1:1;

Frequency: 1900 MHz; Medium parameters used: $f = 1900$ MHz; $\sigma = 1.58$ mho/m; $\epsilon_r = 51.06$; $\rho = 1000$ kg/m³; Phantom section: Flat Section; Input Power=250mW


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/System Check Body 1900MHz/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 10.9 mW/g**Configuration/System Check Body 1900MHz/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 84.553 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 18.880 mW/g

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.18 mW/g Maximum value of SAR (measured) = 11.4 mW/g

0 dB = 11.4 mW/g = 21.14 dB mW/g

Date/Time: 26/08/2013

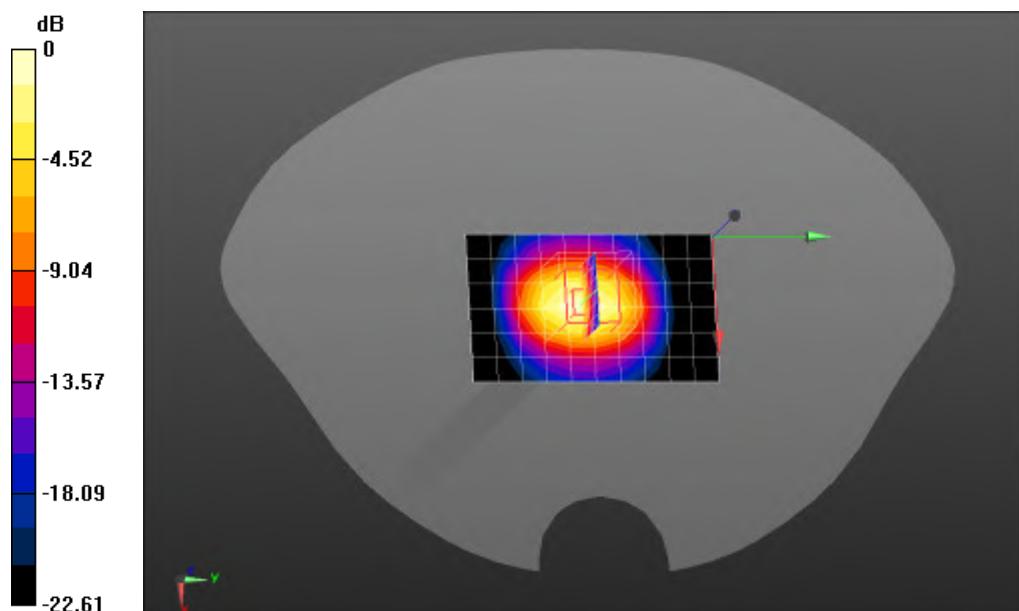
Test Laboratory: QuieTek Lab

System Check Body 2450MHz

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2

Communication System: CW; Communication System Band: D2450(2450MHz); Duty Cycle: 1:1;

Frequency: 2450 MHz; Medium parameters used: $f = 2450$ MHz; $\sigma = 2.03$ mho/m; $\epsilon_r = 52.42$; $\rho = 1000$ kg/m³; Phantom section: Flat Section; Input Power=250mW


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.30, 7.30, 7.30); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/System Check Body 2450MHz/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 12.9 mW/g**Configuration/System Check Body 2450MHz/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 80.669 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 25.360 mW/g

SAR(1 g) = 12 mW/g; SAR(10 g) = 5.45 mW/g Maximum value of SAR (measured) = 13.8 mW/g

0 dB = 13.8 mW/g = 22.80 dB mW/g

8. APPENDIX C. SAR measurement Data

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: GSM850 Mid Touch-Left

Communication System: UID 0, Generic GSM (0); Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.9$ S/m; $\epsilon_r = 40.1$; $\rho = 1000$ kg/m³

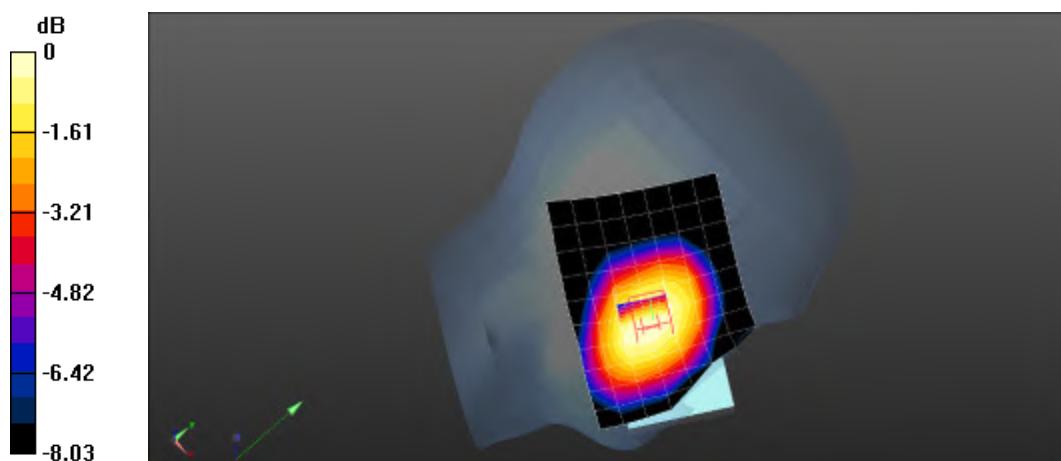
Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(10.16, 10.16, 10.16); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP: 1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/GSM850 Mid Touch-Left/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.234 W/kg

Configuration/GSM850 Mid Touch-Left/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm, Reference Value = 4.792 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.272 W/kg

SAR(1 g) = 0.230 W/kg; SAR(10 g) = 0.188 W/kg Maximum value of SAR (measured) = 0.239 W/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: GSM850 Mid Tilt-Left

Communication System: UID 0, Generic GSM (0); Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

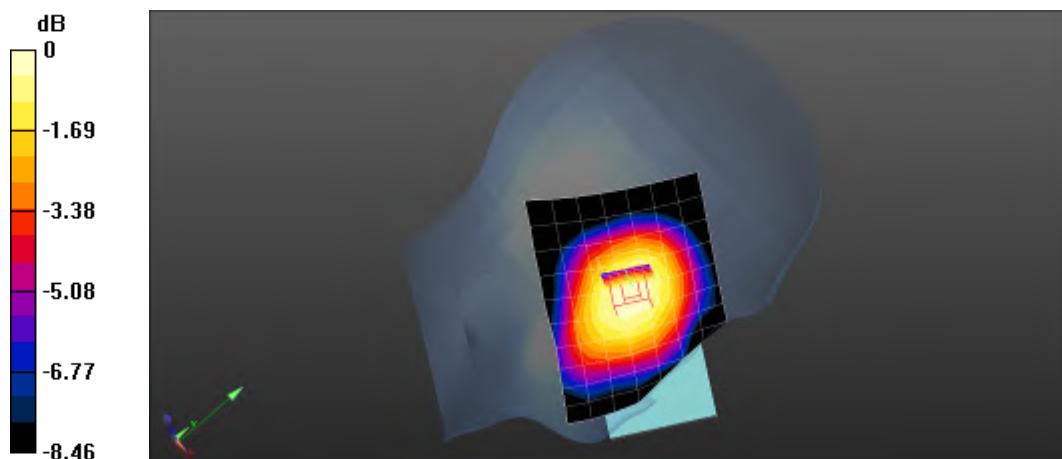
Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.9$ S/m; $\epsilon_r = 40.1$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(10.16, 10.16, 10.16); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP: 1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/GSM850 Mid Tilt-Left/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.128 W/kg

Configuration/GSM850 Mid Tilt-Left/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 6.232 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.158 W/kg

SAR(1 g) = 0.127 W/kg; SAR(10 g) = 0.101 W/kg Maximum value of SAR (measured) = 0.132 W/kg

0 dB = 0.132 W/kg = -8.79 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: GSM850 Mid Touch-Right

Communication System: UID 0, Generic GSM (0); Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

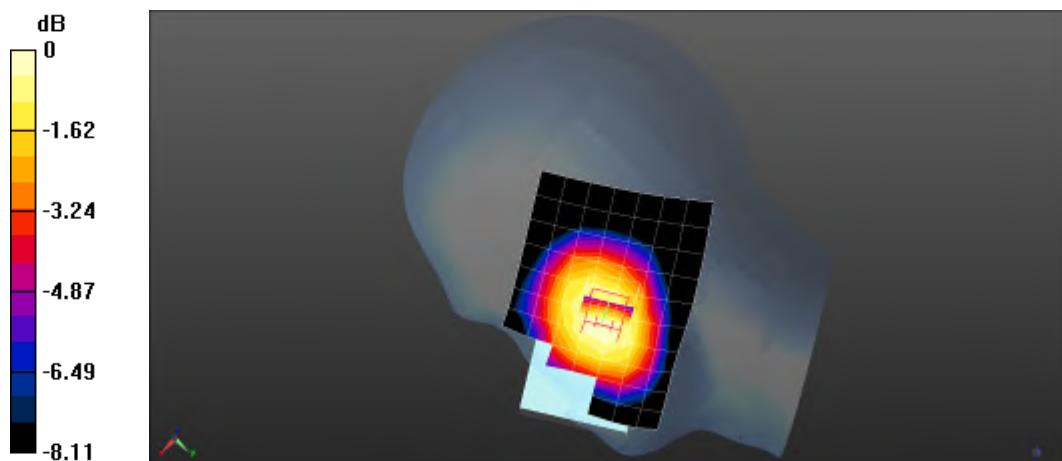
Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.9$ S/m; $\epsilon_r = 40.1$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(10.16, 10.16, 10.16); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP: 1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/GSM850 Mid Touch-Right/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.219 W/kg

Configuration/GSM850 Mid Touch-Right/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 6.059 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.257 W/kg

SAR(1 g) = 0.219 W/kg; SAR(10 g) = 0.179 W/kg Maximum value of SAR (measured) = 0.227 W/kg

0 dB = 0.227 W/kg = -6.44 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

GSM 850 Mid Tilt-Right

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: GSM850 Mid Tilt-Right

Communication System: UID 0, Generic GSM (0); Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

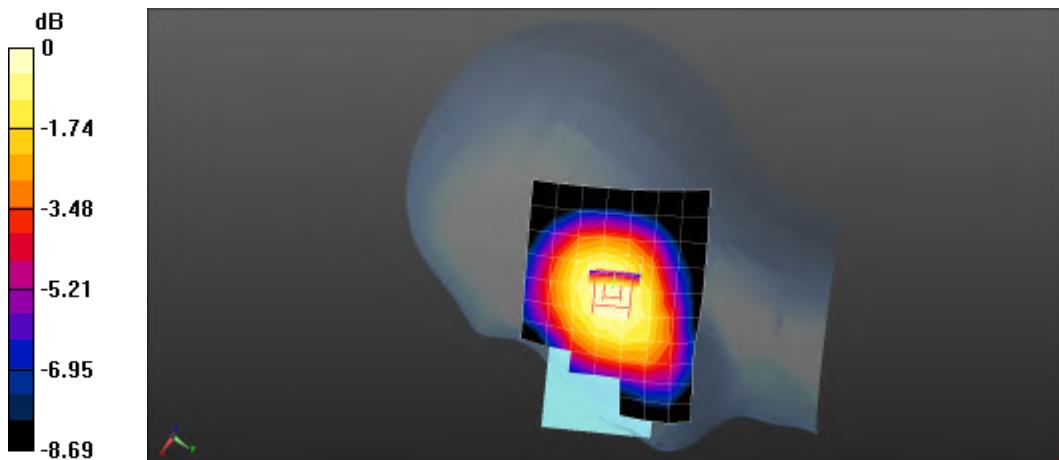
Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.9$ S/m; $\epsilon_r = 40.1$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(10.16, 10.16, 10.16); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP: 1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/GSM850 Mid Tilt-Right/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.114 W/kg

Configuration/GSM850 Mid Tilt-Right/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 6.708 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.140 W/kg

SAR(1 g) = 0.112 W/kg; SAR(10 g) = 0.089 W/kg Maximum value of SAR (measured) = 0.117 W/kg

0 dB = 0.117 W/kg = -9.32 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

GSM 850 Mid Body-Back

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: GSM850 Mid Body-Back

Communication System: UID 0, GPRS 850MHz (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

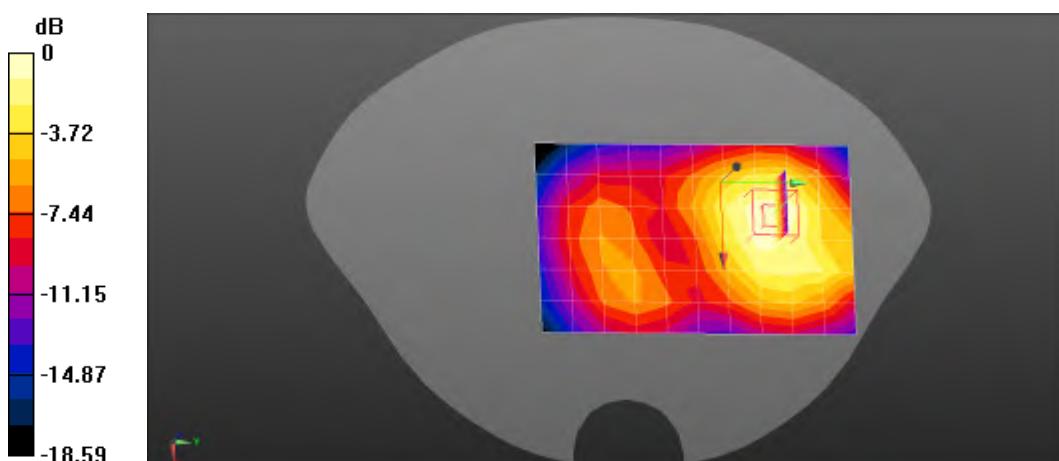
Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 55.02$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(10.03, 10.03, 10.03); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP: 1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/GSM850 Mid Body-Back/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.339 W/kg

Configuration/GSM850 Mid Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 9.625 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.528 W/kg

SAR(1 g) = 0.344 W/kg; SAR(10 g) = 0.212 W/kg Maximum value of SAR (measured) = 0.375 W/kg

0 dB = 0.375 W/kg = -4.26 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

GPRS 850 Low Body-Back(4up)

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: GPRS850 Low Body-Back(4up)

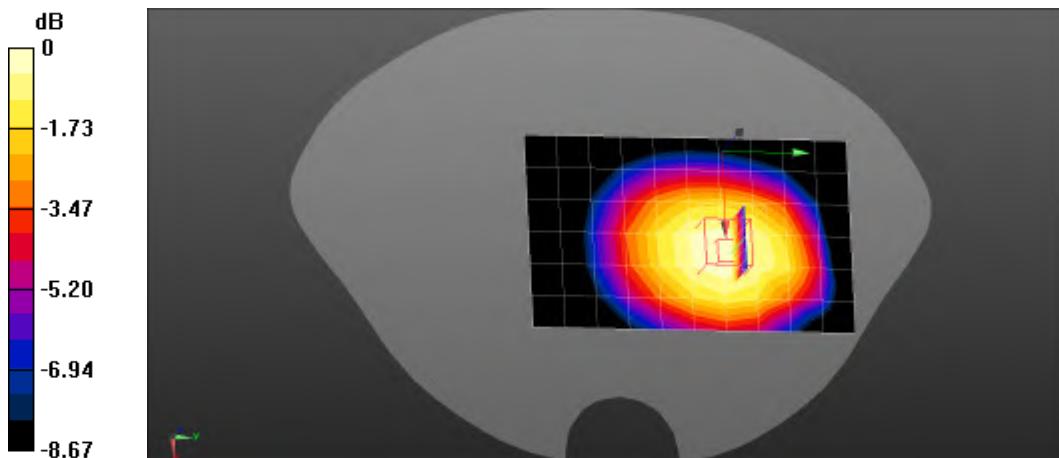
Communication System: UID 0, GPRS 850MHz (0); Frequency: 824.2 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 824.2$ MHz; $\sigma = 0.97$ S/m; $\epsilon_r = 55.17$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:


- Probe: EX3DV4 - SN3927; ConvF(10.03, 10.03, 10.03); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP: 1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/GPRS850 Low Body-Back/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.38 W/kg

Configuration/GPRS850 Low Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 22.829 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.67 W/kg

SAR(1 g) = 1.32 W/kg; SAR(10 g) = 1.02 W/kg Maximum value of SAR (measured) = 1.42 W/kg

0 dB = 1.42 W/kg = 1.52 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: GPRS850 Mid Body-Back(4up)

Communication System: UID 0, GPRS 850MHz (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

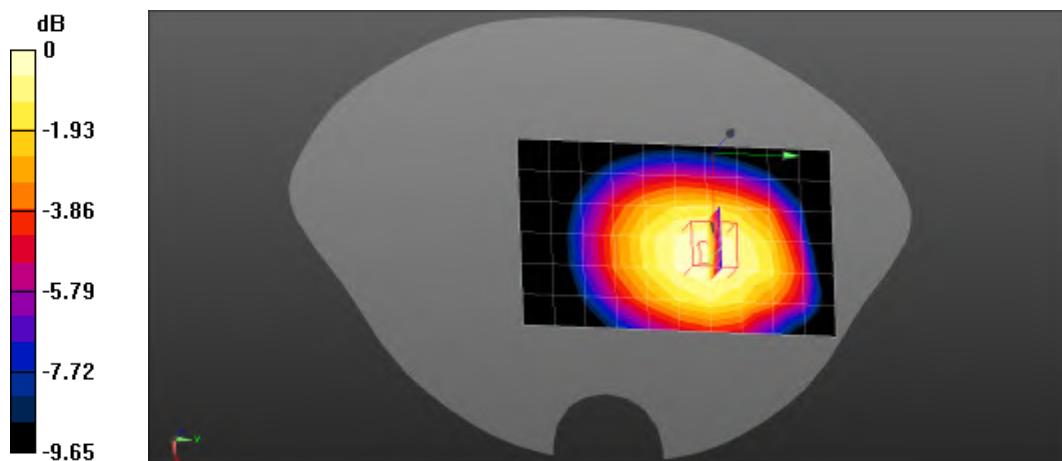
Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 55.02$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(10.03, 10.03, 10.03); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP: 1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/GPRS850 Mid Body-Back/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.35 W/kg

Configuration/GPRS850 Mid Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 24.175 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.68 W/kg

SAR(1 g) = 1.34 W/kg; SAR(10 g) = 1.02 W/kg Maximum value of SAR (measured) = 1.40 W/kg

0 dB = 1.40 W/kg = 1.46 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: GPRS850 Mid Body-Back(4up) *

Communication System: UID 0, GPRS 850MHz (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

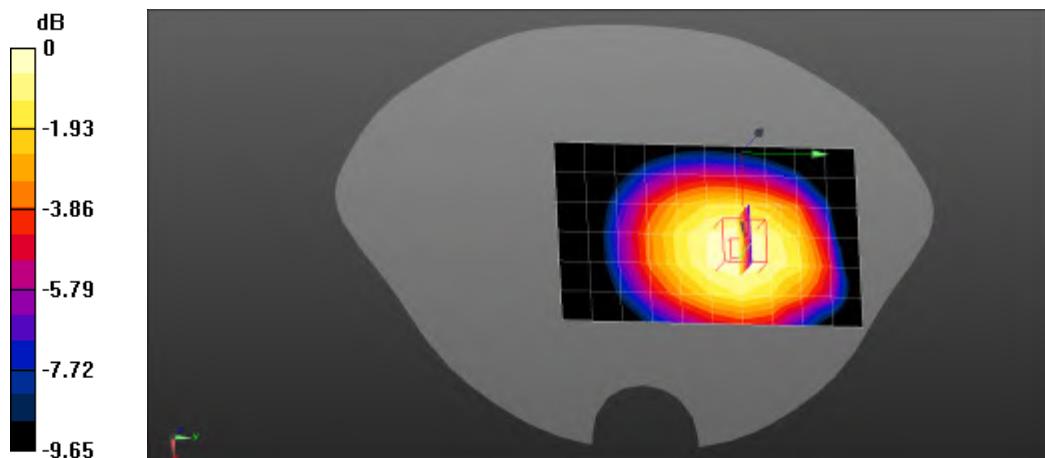
Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 55.02$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(10.03, 10.03, 10.03); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/GPRS850 Mid Body-Back(4up)/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.37 W/kg

Configuration/GPRS850 Mid Body-Back(4up)/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm, Reference Value = 24.175 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.70 W/kg

SAR(1 g) = 1.35 W/kg; SAR(10 g) = 1.03 W/kg Maximum value of SAR (measured) = 1.42 W/kg

0 dB = 1.42 W/kg = 1.52 dBW/kg

Z-Axis Plot

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: GPRS850 High Body-Back(4up)

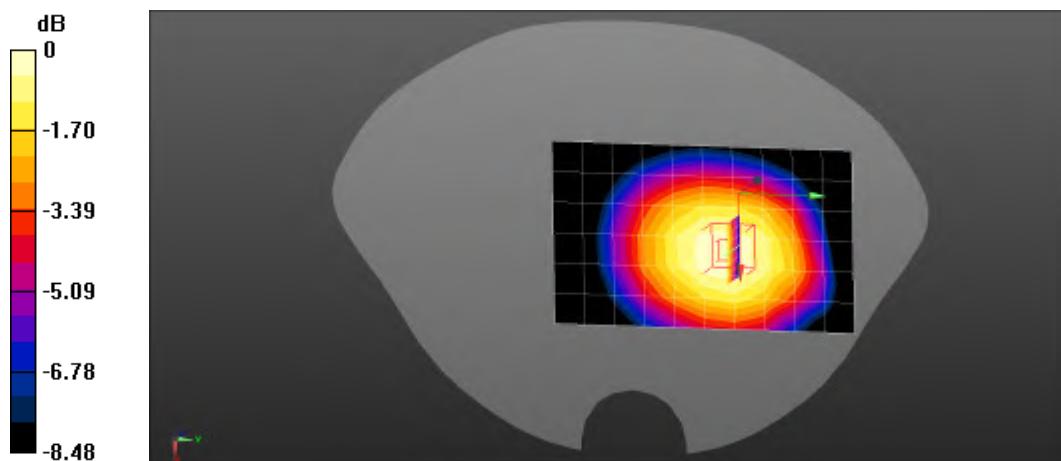
Communication System: UID 0, GPRS 850MHz (0); Frequency: 848.6 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 848.6$ MHz; $\sigma = 1$ S/m; $\epsilon_r = 54.91$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:


- Probe: EX3DV4 - SN3927; ConvF(10.03, 10.03, 10.03); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/GPRS850 High Body-Back/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.25 W/kg

Configuration/GPRS850 High Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 23.689 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 1.54 W/kg

SAR(1 g) = 1.23 W/kg; SAR(10 g) = 0.937 W/kg Maximum value of SAR (measured) = 1.28 W/kg

0 dB = 1.28 W/kg = 1.07 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

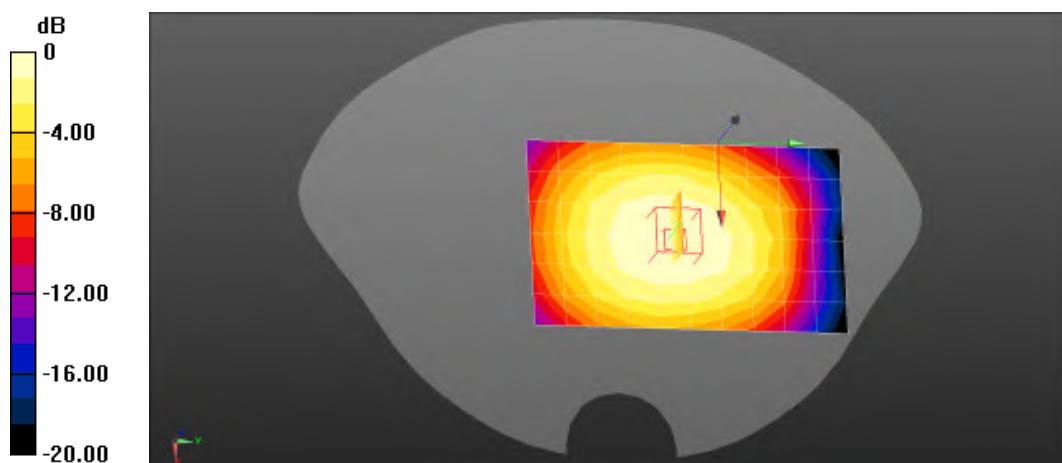
Procedure Name: GPRS850 Mid Body-Front(4up)

Communication System: UID 0, GPRS 850MHz (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 55.02$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(10.03, 10.03, 10.03); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/GPRS850 Mid Body-Front(4up)/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.821 W/kg

Configuration/GPRS850 Mid Body-Front(4up)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 25.851 V/m; Power Drift = 0.02 dB
Peak SAR (extrapolated) = 0.992 W/kg

SAR(1 g) = 0.802 W/kg; SAR(10 g) = 0.624 W/kg Maximum value of SAR (measured) = 0.838 W/kg

0 dB = 0.838 W/kg = -0.77 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

GPRS 850 Mid Body-Leftside(4up)

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: GPRS850 Mid Body-Leftside(4up)

Communication System: UID 0, GPRS 850MHz (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 55.02$; $\rho = 1000$ kg/m³

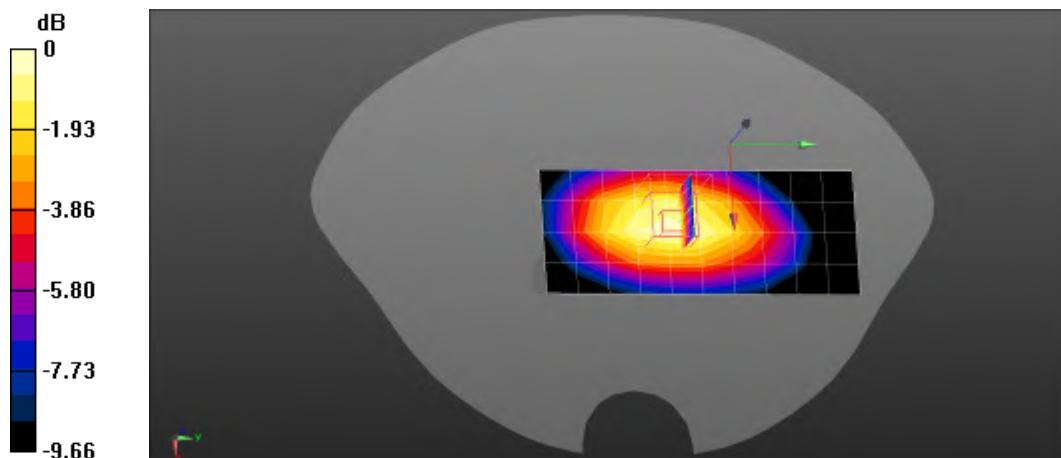
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(10.03, 10.03, 10.03); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/GPRS850 Mid Body-Leftside(4up)/Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.561 W/kg

Configuration/GPRS850 Mid Body-Leftside(4up)/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm, Reference Value = 21.727 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.801 W/kg

SAR(1 g) = 0.550 W/kg; SAR(10 g) = 0.371 W/kg Maximum value of SAR (measured) = 0.588 W/kg

0 dB = 0.588 W/kg = -2.31 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: GPRS850 Low Body-Rightside(4up)

Communication System: GPRS/EGPRS-4 Slot; Communication System Band: GSM 850; Duty Cycle: 1:2.1; Medium parameters used: $f = 824.2$ MHz; $\sigma = 0.97$ S/m; $\epsilon_r = 55.17$; $\rho = 1000$ kg/m³

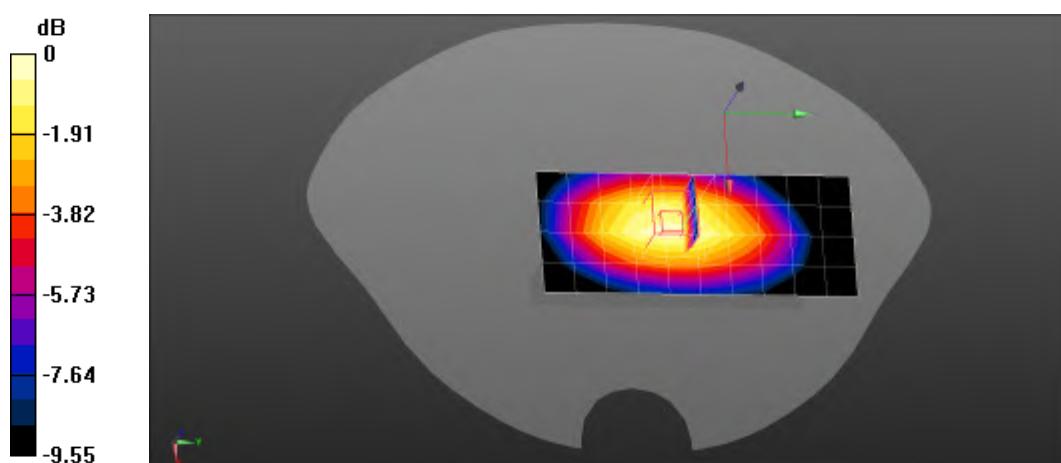
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(10.03, 10.03, 10.03); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/GPRS850 Low Body-Rightside(4up)/Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.806 W/kg

Configuration/GPRS850 Low Body-Rightside(4up)/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm, Reference Value = 26.064 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.781 W/kg; SAR(10 g) = 0.533 W/kg Maximum value of SAR (measured) = 0.842 W/kg

0 dB = 0.842 W/kg = -0.75 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: GPRS850 Mid Body-Rightside(4up)

Communication System: UID 0, GPRS 850MHz (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 55.02$; $\rho = 1000$ kg/m³

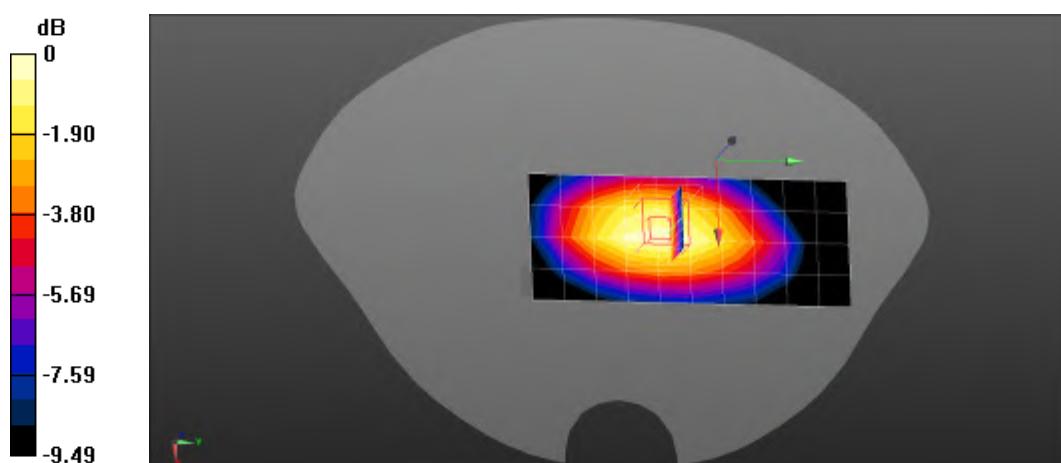
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(10.03, 10.03, 10.03); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/GPRS850 Mid Body-Rightside(4up)/Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.889 W/kg

Configuration/GPRS850 Mid Body-Rightside(4up)/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm, Reference Value = 27.470 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 1.20 W/kg

SAR(1 g) = 0.853 W/kg; SAR(10 g) = 0.581 W/kg Maximum value of SAR (measured) = 0.915 W/kg

0 dB = 0.915 W/kg = -0.39 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: GPRS850 High Body-Rightside

Communication System: UID 0, GPRS 850MHz (0); Frequency: 848.6 MHz; Duty Cycle: 1:1

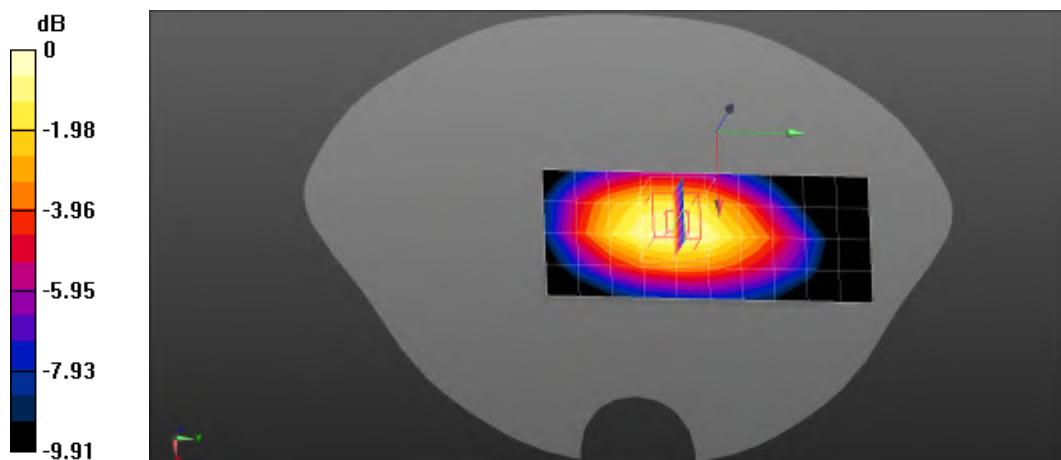
Medium parameters used: $f = 848.6$ MHz; $\sigma = 1$ S/m; $\epsilon_r = 54.91$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(10.03, 10.03, 10.03); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/GPRS850 High Body-Rightside(4up)/Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.897 W/kg

Configuration/GPRS850 High Body-Rightside(4up)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 28.127 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.35 W/kg

SAR(1 g) = 0.883 W/kg; SAR(10 g) = 0.593 W/kg Maximum value of SAR (measured) = 0.973 W/kg

0 dB = 0.973 W/kg = -0.12 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: GPRS850 Mid Body- Bottom (4up)

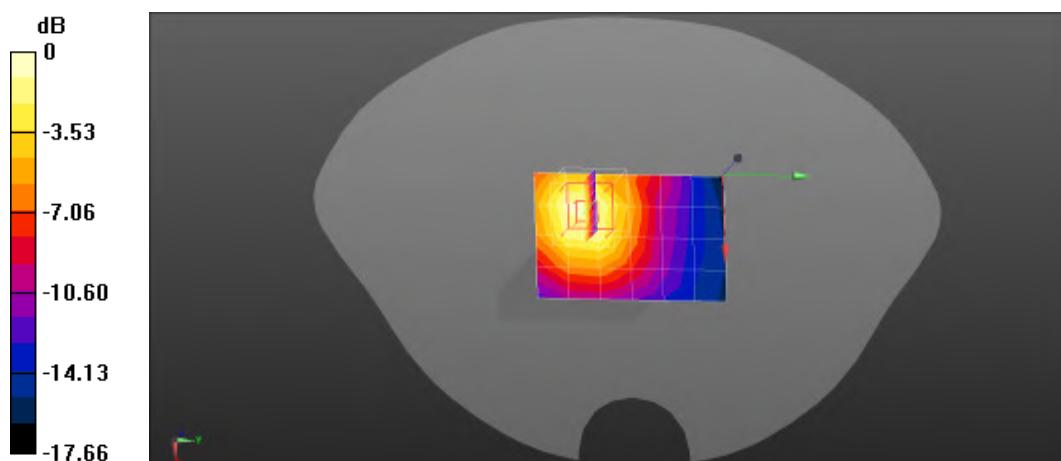
Communication System: GPRS/EGPRS-4 Slot; Communication System Band: GSM 850; Duty Cycle: 1:2.1; Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 55.02$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(10.03, 10.03, 10.03); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/GPRS850 Mid Body-Bottom(4up)/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.286 W/kg

Configuration/GPRS850 Mid Body-(4up)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 9.497 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.497 W/kg

SAR(1 g) = 0.315 W/kg; SAR(10 g) = 0.183 W/kg Maximum value of SAR (measured) = 0.350 W/kg

0 dB = 0.350 W/kg = -4.56 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: PCS1900 Mid Touch-Left

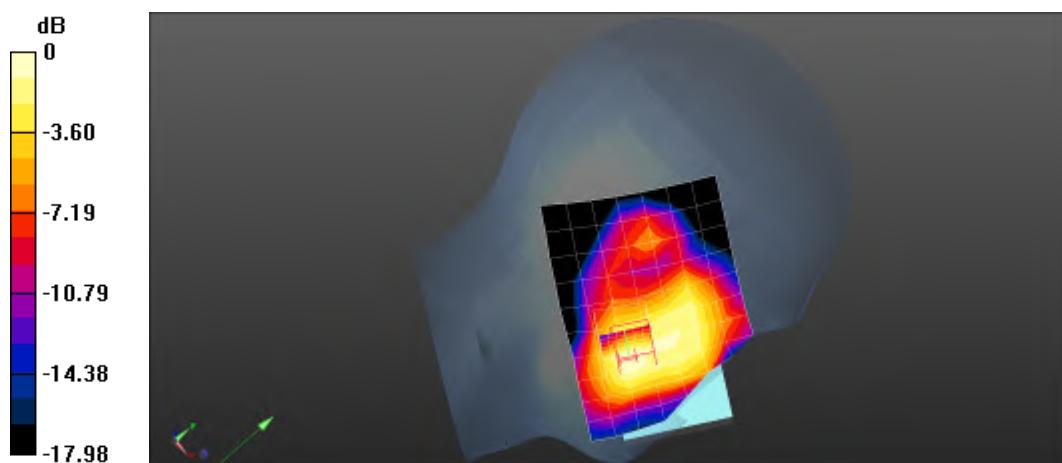
Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.45$ S/m; $\epsilon_r = 39.74$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:


- Probe: EX3DV4 - SN3927; ConvF(8.39, 8.39, 8.39); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/PCS1900 Mid Touch-Left/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.184 W/kg

Configuration/PCS1900 Mid Touch-Left/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 5.907 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.255 W/kg

SAR(1 g) = 0.176 W/kg; SAR(10 g) = 0.114 W/kg Maximum value of SAR (measured) = 0.192 W/kg

0 dB = 0.192 W/kg = -7.17 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: PCS1900 Mid Tilt-Left

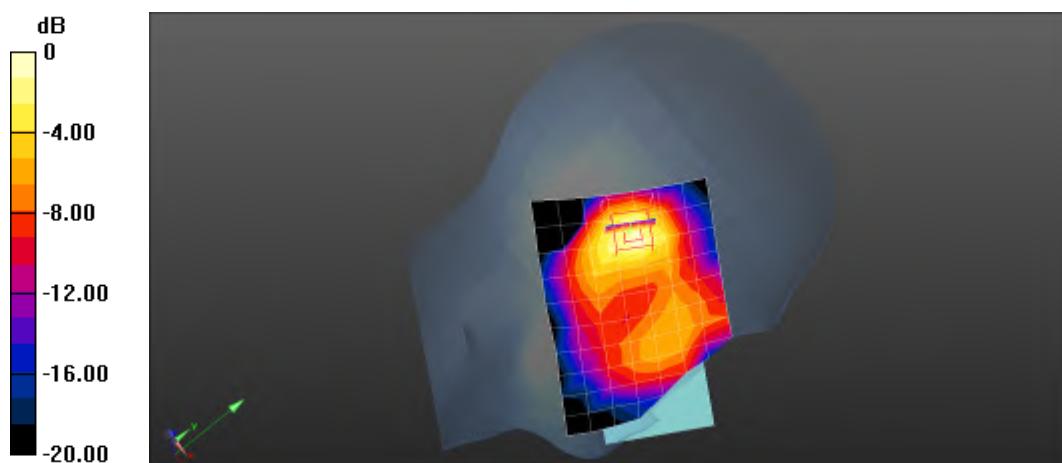
Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.45$ S/m; $\epsilon_r = 39.74$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:


- Probe: EX3DV4 - SN3927; ConvF(8.39, 8.39, 8.39); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/PCS1900 Mid Tilt-Left/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.110 W/kg

Configuration/PCS1900 Mid Tilt-Left/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 8.879 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.177 W/kg

SAR(1 g) = 0.111 W/kg; SAR(10 g) = 0.062 W/kg Maximum value of SAR (measured) = 0.122 W/kg

0 dB = 0.122 W/kg = -9.14 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: PCS1900 Mid Touch-Right

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30042

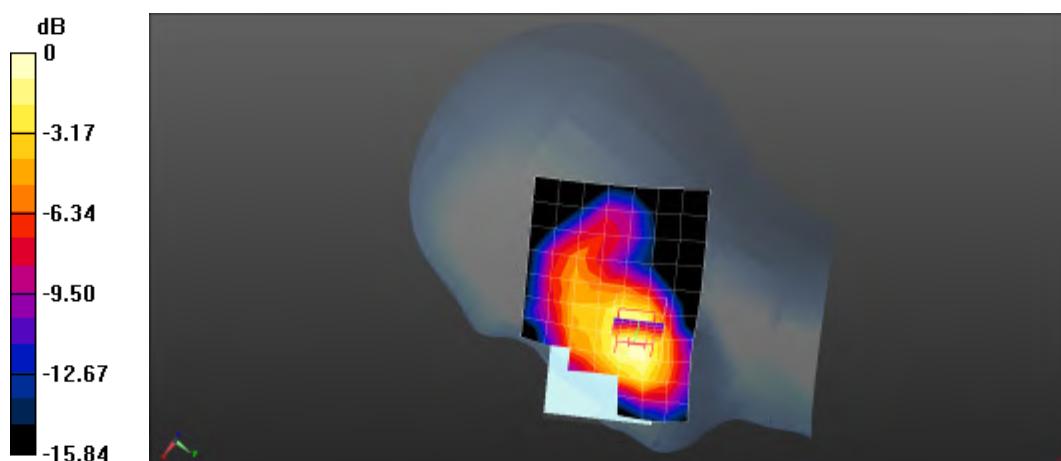
Medium parameters used: $f = 1880$ MHz; $\sigma = 1.45$ S/m; $\epsilon_r = 39.74$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(8.39, 8.39, 8.39); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/PCS1900 Mid Touch-Right/Area Scan (8x11x1): Measurement grid: $dx=15$ mm, $dy=15$ mm

Maximum value of SAR (measured) = 0.269 W/kg

Configuration/PCS1900 Mid Touch-Right/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm, Reference Value = 6.394 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.440 W/kg

SAR(1 g) = 0.291 W/kg; SAR(10 g) = 0.184 W/kg Maximum value of SAR (measured) = 0.317 W/kg

0 dB = 0.317 W/kg = -4.99 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

PCS1900 Mid Tilt-Right

DUT: Smart Phone; Type: A9,A13,A9B; Serial: Not Specified

Procedure Name: PCS1900 Mid Tilt-Right

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30042

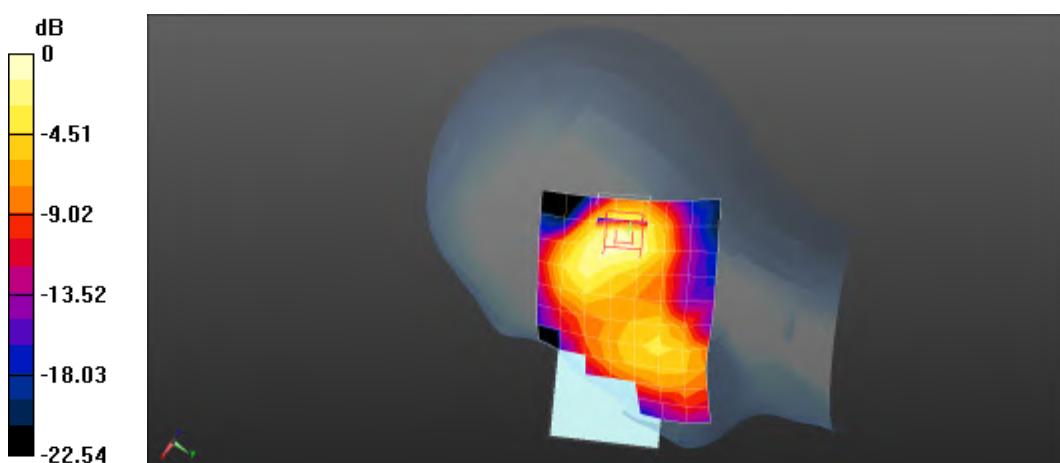
Medium parameters used: $f = 1880$ MHz; $\sigma = 1.45$ S/m; $\epsilon_r = 39.74$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(8.39, 8.39, 8.39); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/PCS1900 Mid Tilt-Right/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0991 W/kg

Configuration/PCS1900 Mid Tilt-Right/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 8.994 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.169 W/kg

SAR(1 g) = 0.108 W/kg; SAR(10 g) = 0.063 W/kg Maximum value of SAR (measured) = 0.117 W/kg

0 dB = 0.117 W/kg = -9.32 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: PCS1900 Mid Body-Back

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30042

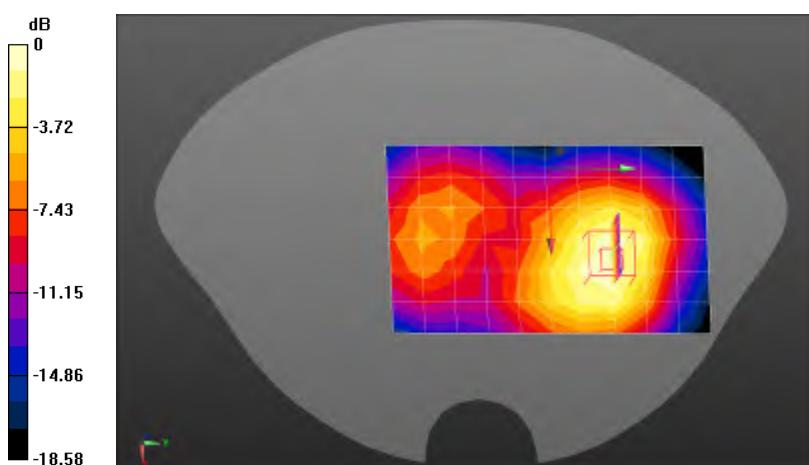
Medium parameters used: $f = 1880$ MHz; $\sigma = 1.57$ S/m; $\epsilon_r = 51.14$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/PCS1900 Mid Body-Back/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.487 W/kg

Configuration/PCS1900 Mid Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 7.015 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.739 W/kg

SAR(1 g) = 0.459 W/kg; SAR(10 g) = 0.282 W/kg Maximum value of SAR (measured) = 0.496 W/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: GPRS1900 Low Body-Back(4up)

Communication System: UID 0, GPRS 4up (0); Frequency: 1850.2 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.53$ S/m; $\epsilon_r = 51.24$; $\rho = 1000$ kg/m³

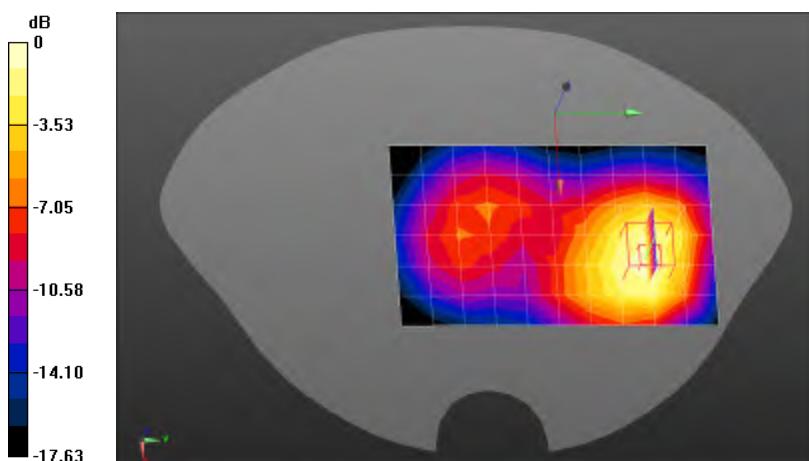
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/GPRS1900 Low Body-Back(4up)/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.38 W/kg

Configuration/ GPRS 1900 Low Body-Back(4up)/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm, Reference Value = 13.566 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 2.10 W/kg

SAR(1 g) = 1.28 W/kg; SAR(10 g) = 0.769 W/kg Maximum value of SAR (measured) = 1.37 W/kg

Z-Axis Plot

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: PCS1900 Low Body-Back *

Communication System: UID 0, GPRS 4up (0); Frequency: 1850.2 MHz; Duty Cycle: 1:1

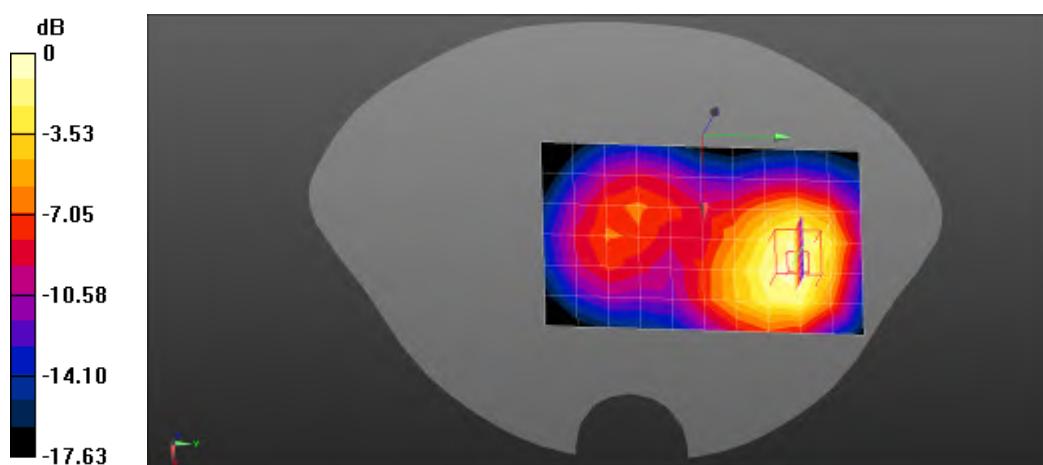
Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.53$ S/m; $\epsilon_r = 51.24$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/PCS1900 Low Body-Back/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.37 W/kg

Configuration/PCS1900 Low Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 13.566 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 2.09 W/kg

SAR(1 g) = 1.27 W/kg; SAR(10 g) = 0.764 W/kg Maximum value of SAR (measured) = 1.36 W/kg

0 dB = 1.36 W/kg = 1.34 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: GPRS1900 Mid Body-Back(4up)

Communication System: UID 0, GPRS 4up (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.57$ S/m; $\epsilon_r = 51.14$; $\rho = 1000$ kg/m³

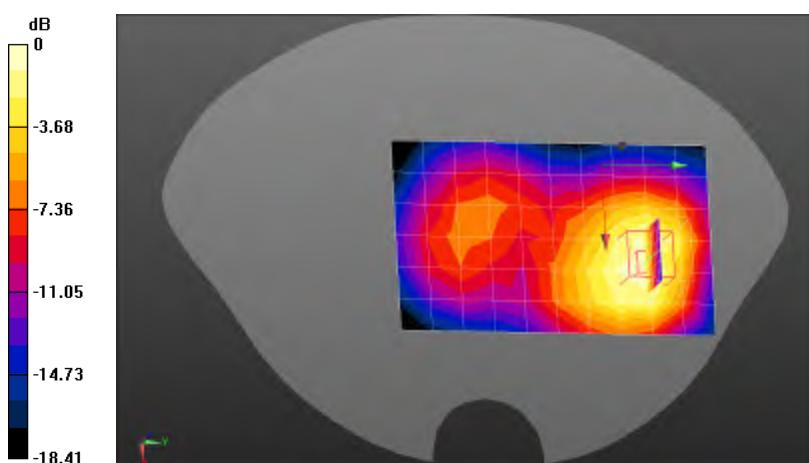
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/GPRS1900 Mid Body-Back(4up)/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.28 W/kg

Configuration/GPRS1900 Mid Body-Back(4up)/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm, Reference Value = 13.331 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 2.01 W/kg

SAR(1 g) = 1.2 W/kg; SAR(10 g) = 0.726 W/kg Maximum value of SAR (measured) = 1.30 W/kg

0 dB = 1.30 W/kg = 1.14 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: PCS1900 High Body-Back(4up)

Communication System: UID 0, GPRS 4up (0); Frequency: 1909.8 MHz; Duty Cycle: 1:1

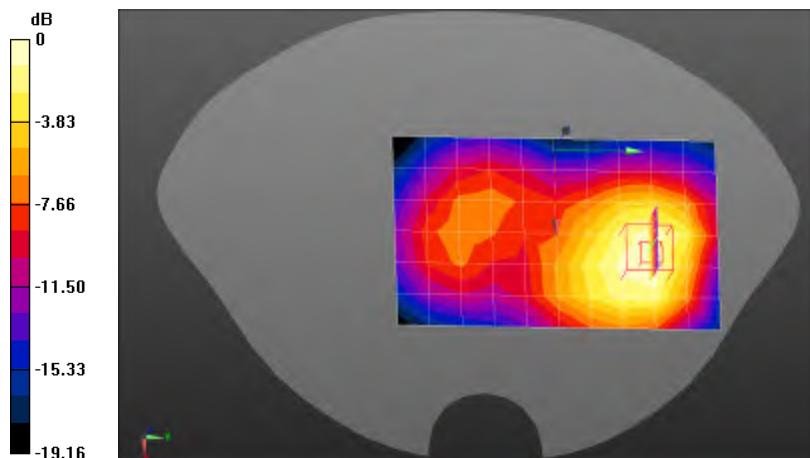
Medium parameters used: $f = 1909.8$ MHz; $\sigma = 1.6$ S/m; $\epsilon_r = 51.04$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/PCS1900 High Body-Back/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.13 W/kg

Configuration/PCS1900 High Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 12.199 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.82 W/kg

SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.660 W/kg Maximum value of SAR (measured) = 1.17 W/kg

0 dB = 1.17 W/kg = 0.68 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: GPRS1900 Mid Body-Front(4up)

Communication System: UID 0, GPRS 4up (0); Frequency: 1880 MHz; Duty Cycle: 1:1

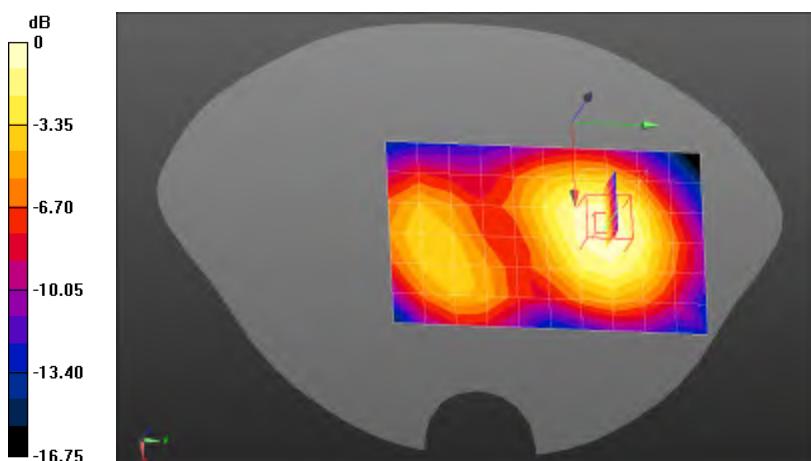
Medium parameters used: $f = 1880$ MHz; $\sigma = 1.57$ S/m; $\epsilon_r = 51.14$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/GPRS1900 Mid Body-Front(4up)/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.415 W/kg

Configuration/GPRS1900 Mid Body-Front(4up)/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm, Reference Value = 8.492 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.609 W/kg

SAR(1 g) = 0.400 W/kg; SAR(10 g) = 0.253 W/kg Maximum value of SAR (measured) = 0.430 W/kg

0 dB = 0.430 W/kg = -3.67 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: GPRS1900 Mid Body-Leftside(4up)

Communication System: UID 0, GPRS 4up (0); Frequency: 1880 MHz; Duty Cycle: 1:1

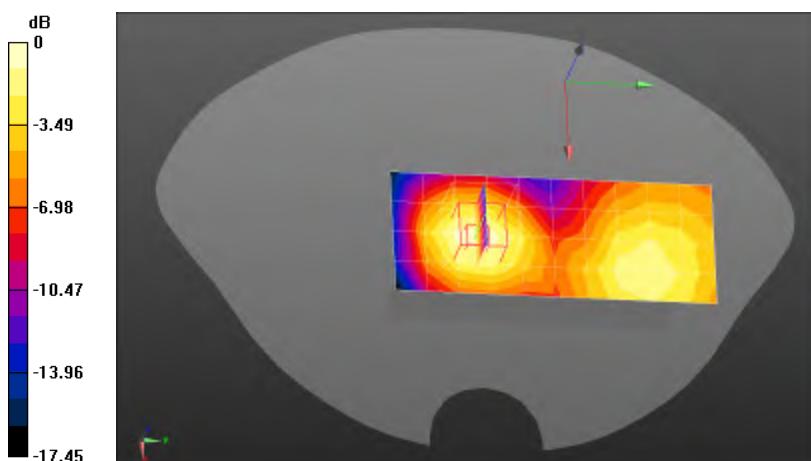
Medium parameters used: $f = 1880$ MHz; $\sigma = 1.57$ S/m; $\epsilon_r = 51.14$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/GPRS1900 Mid Body-Leftside(4up)/Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.115 W/kg

Configuration/GPRS1900 Mid Body-Leftside(4up)/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm, Reference Value = 8.745 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.185 W/kg

SAR(1 g) = 0.114 W/kg; SAR(10 g) = 0.067 W/kg Maximum value of SAR (measured) = 0.125 W/kg

0 dB = 0.125 W/kg = -9.03 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: GPRS1900 Mid Body-Rightside(4up)

Communication System: UID 0, GPRS 4up (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.57$ S/m; $\epsilon_r = 51.14$; $\rho = 1000$ kg/m³

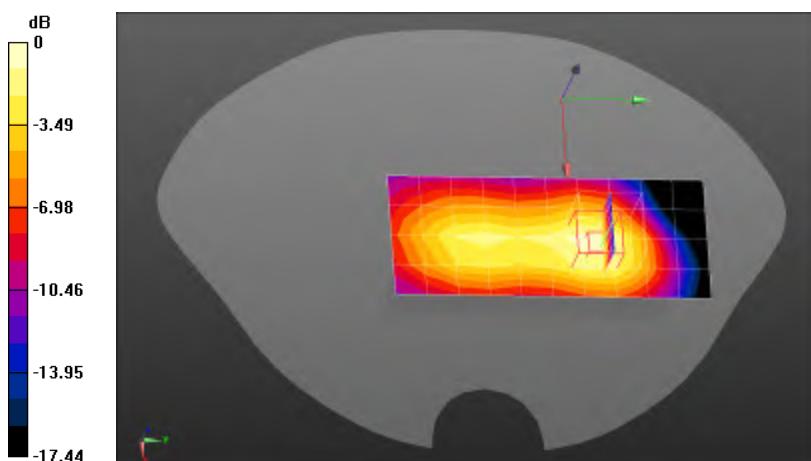
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/GPRS1900 Mid Body-Rightside(4up)/Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.386 W/kg

Configuration/GPRS1900 Mid Body-Rightside(4up)/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm, Reference Value = 13.562 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.651 W/kg

SAR(1 g) = 0.400 W/kg; SAR(10 g) = 0.232 W/kg Maximum value of SAR (measured) = 0.438 W/kg

0 dB = 0.438 W/kg = -3.59 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: GPRS1900 Mid Body- Bottom (4up)

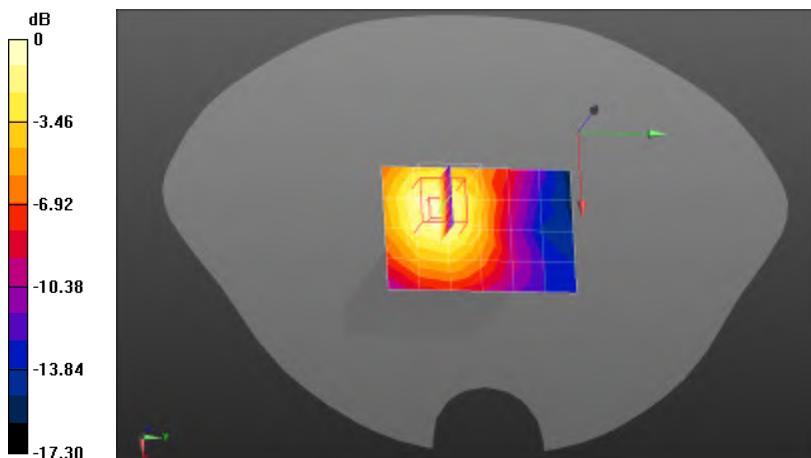
Communication System: UID 0, GPRS 4up (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.57$ S/m; $\epsilon_r = 51.14$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:


- Probe: EX3DV4 - SN3927; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/GPRS1900 Mid Body-Bottom(4up)/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.352 W/kg

Configuration/GPRS1900 Mid Body- Bottom (4up)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 10.067 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.579 W/kg

SAR(1 g) = 0.369 W/kg; SAR(10 g) = 0.220 W/kg Maximum value of SAR (measured) = 0.403 W/kg

0 dB = 0.403 W/kg = -3.95 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: WCDMA Band II Mid Touch-Left

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.45$ S/m; $\epsilon_r = 53.42$; $\rho = 1000$ kg/m³

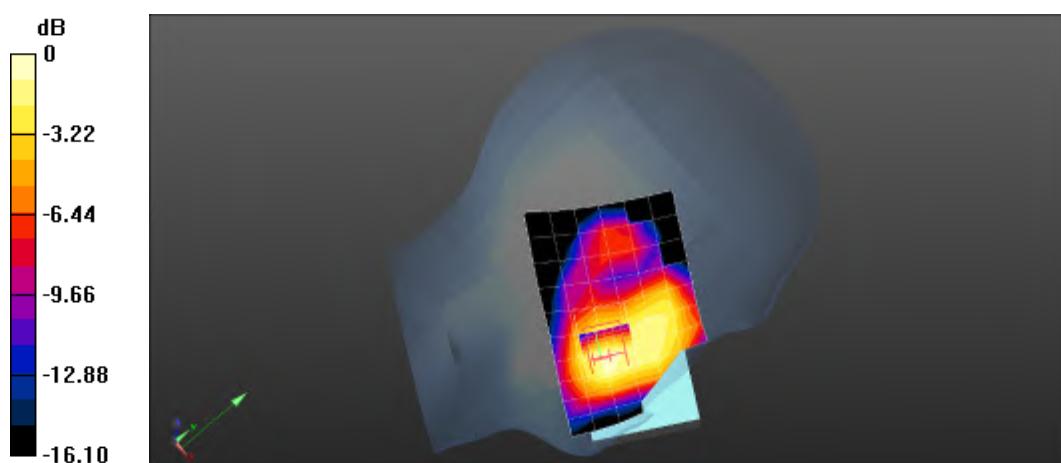
Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(8.39, 8.39, 8.39); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/WCDMA Band II Mid Touch-Left/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.145 W/kg

Configuration/WCDMA Band II Mid Touch-Left/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm, Reference Value = 5.262 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.203 W/kg

SAR(1 g) = 0.139 W/kg; SAR(10 g) = 0.091 W/kg Maximum value of SAR (measured) = 0.153 W/kg

0 dB = 0.153 W/kg = -8.15 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: WCDMA Band II Mid Tilt-Left

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1

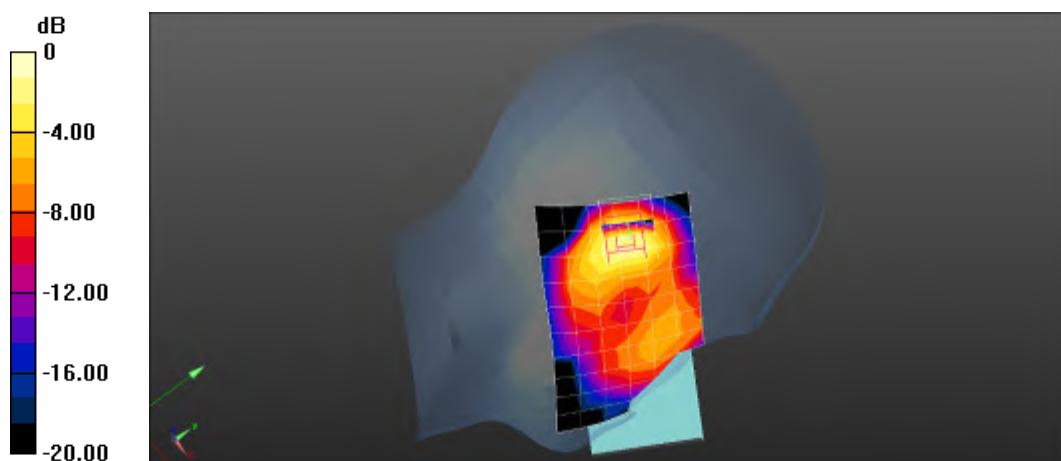
Medium parameters used: $f = 1880$ MHz; $\sigma = 1.45$ S/m; $\epsilon_r = 53.42$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(8.39, 8.39, 8.39); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/WCDMA Band II Mid Tilt-Left/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0795 W/kg

Configuration/WCDMA Band II Mid Tilt-Left/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 8.095 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.146 W/kg

SAR(1 g) = 0.092 W/kg; SAR(10 g) = 0.052 W/kg Maximum value of SAR (measured) = 0.102 W/kg

0 dB = 0.102 W/kg = -9.91 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: WCDMA Band II Mid Touch-Right

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.45$ S/m; $\epsilon_r = 53.42$; $\rho = 1000$ kg/m³

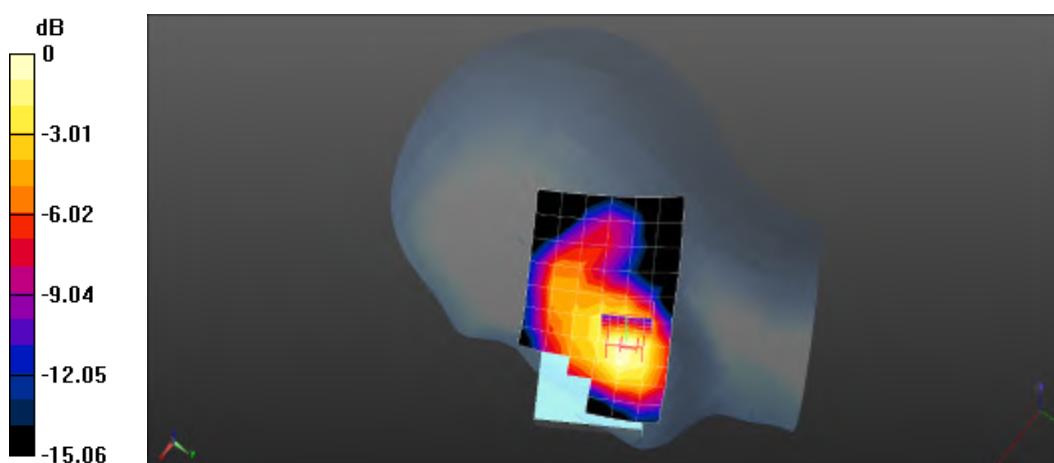
Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(8.39, 8.39, 8.39); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/WCDMA Band II Mid Touch-Right/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.297 W/kg

Configuration/WCDMA Band II Mid Touch-Right/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm, Reference Value = 6.423 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.428 W/kg

SAR(1 g) = 0.289 W/kg; SAR(10 g) = 0.185 W/kg Maximum value of SAR (measured) = 0.311 W/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: WCDMA Band II Mid Tilt-Right

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1

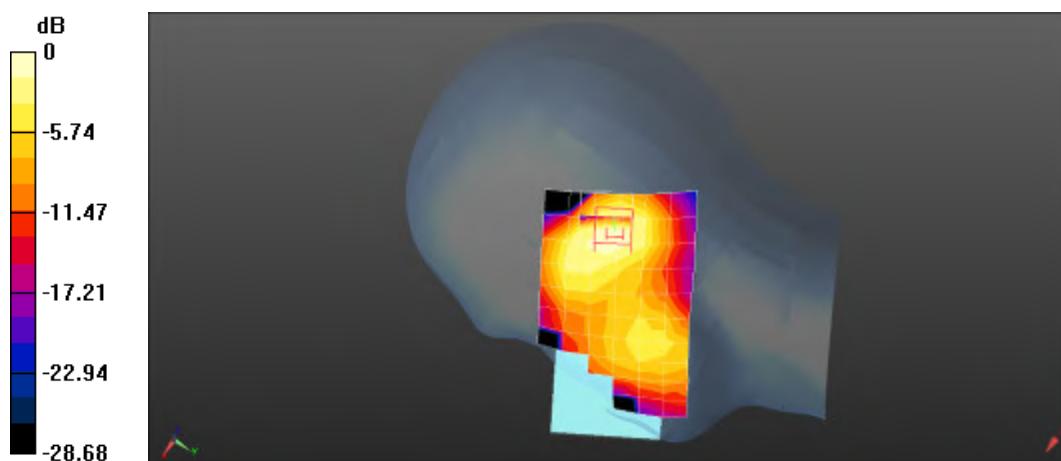
Medium parameters used: $f = 1880$ MHz; $\sigma = 1.44$ S/m; $\epsilon_r = 39.75$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(8.39, 8.39, 8.39); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/WCDMA Band II Mid Tilt-Right/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0849 W/kg

Configuration/WCDMA Band II Mid Tilt-Right/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 8.320 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.145 W/kg

SAR(1 g) = 0.093 W/kg; SAR(10 g) = 0.054 W/kg Maximum value of SAR (measured) = 0.102 W/kg

0 dB = 0.102 W/kg = -9.91 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: WCDMA Band II Mid Body-Back

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.45$ S/m; $\epsilon_r = 53.42$; $\rho = 1000$ kg/m³

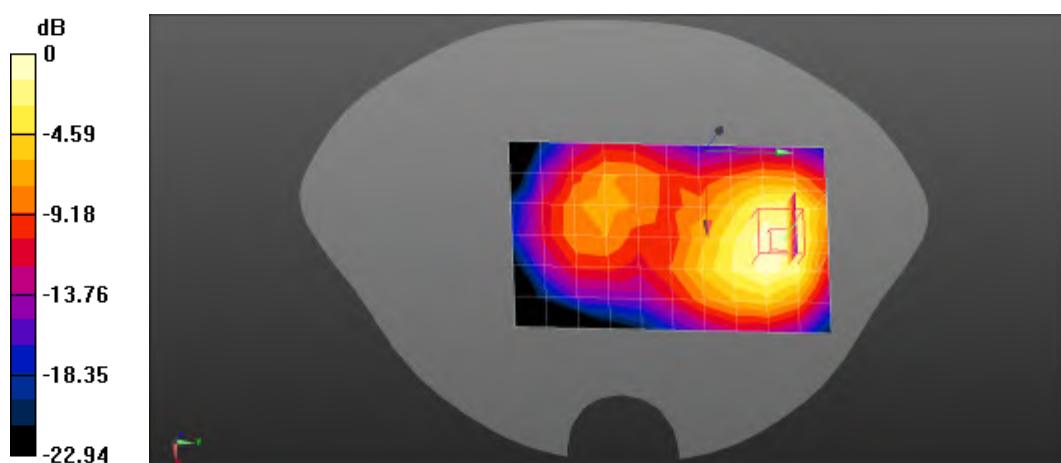
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/WCDMA Band II Mid Body-Back/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.503 W/kg

Configuration/WCDMA Band II Mid Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm, Reference Value = 7.682 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.883 W/kg

SAR(1 g) = 0.521 W/kg; SAR(10 g) = 0.308 W/kg Maximum value of SAR (measured) = 0.562 W/kg

0 dB = 0.562 W/kg = -2.50 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: WCDMA Band II Mid Body-Front

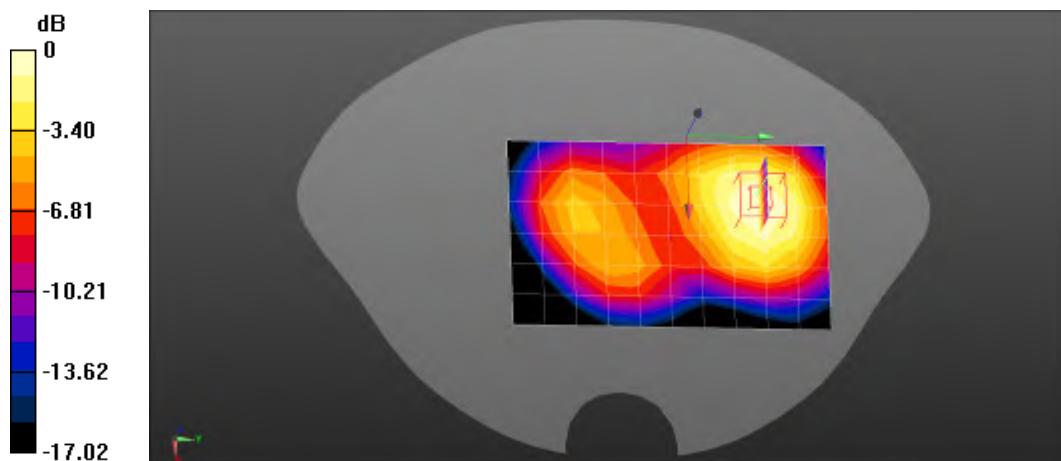
Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.58$ S/m; $\epsilon_r = 51.08$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:


- Probe: EX3DV4 - SN3927; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/WCDMA Band II Mid Body-Front/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.217 W/kg

Configuration/WCDMA Band II Mid Body-Front/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 6.942 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.315 W/kg

SAR(1 g) = 0.202 W/kg; SAR(10 g) = 0.127 W/kg Maximum value of SAR (measured) = 0.218 W/kg

0 dB = 0.218 W/kg = -6.62 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: WCDMA Band II Mid Body-Leftside

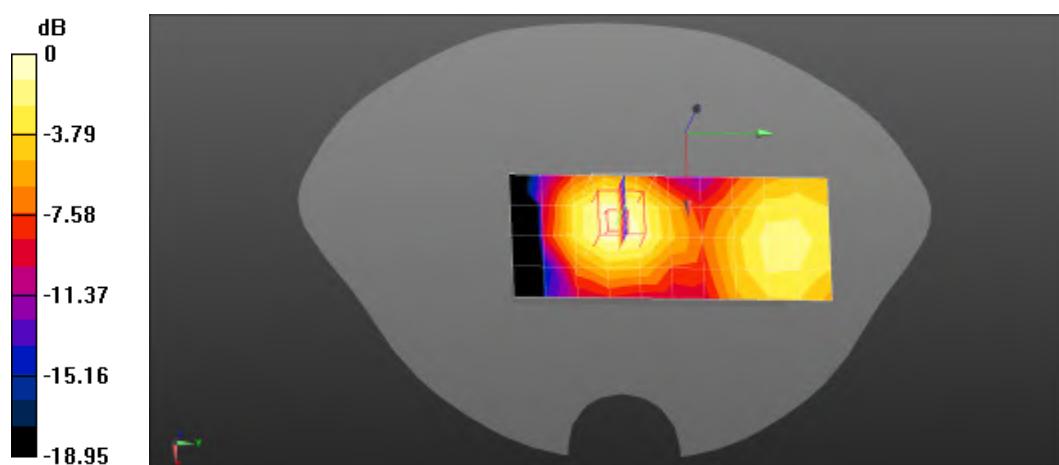
Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.58$ S/m; $\epsilon_r = 51.08$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:


- Probe: EX3DV4 - SN3927; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/WCDMA Band II Mid Body-Leftside/Area Scan (5x11x1): Measurement grid: $dx=15$ mm, $dy=15$ mm Maximum value of SAR (measured) = 0.0418 W/kg

Configuration/WCDMA Band II Mid Body-Leftside/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm, Reference Value = 5.475 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.0720 W/kg

SAR(1 g) = 0.043 W/kg; SAR(10 g) = 0.025 W/kg Maximum value of SAR (measured) = 0.0479 W/kg

$0 \text{ dB} = 0.0479 \text{ W/kg} = -13.20 \text{ dBW/kg}$

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: WCDMA Band II Mid Body-Rightside

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.58$ S/m; $\epsilon_r = 51.08$; $\rho = 1000$ kg/m³

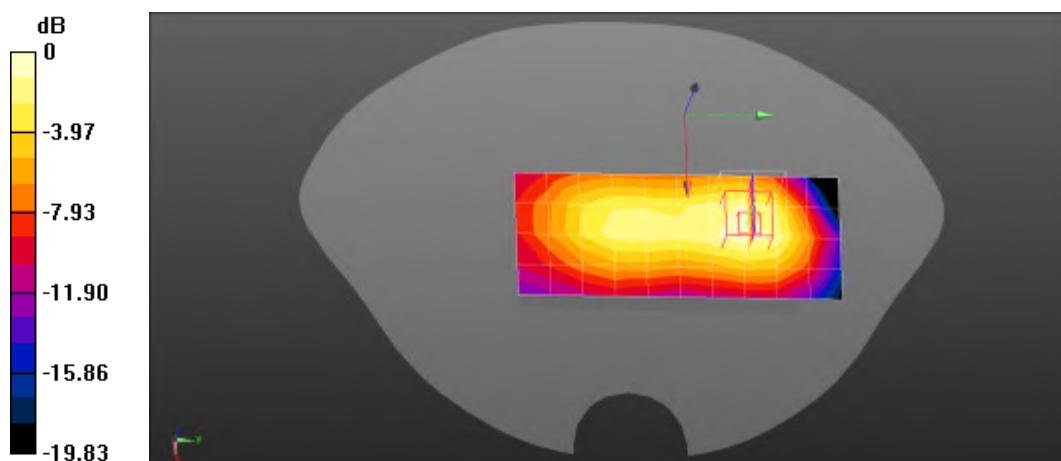
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/WCDMA Band II Mid Body-Rightside/Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.123 W/kg

Configuration/WCDMA Band II Mid Body-Rightside/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm, Reference Value = 7.981 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.207 W/kg

SAR(1 g) = 0.125 W/kg; SAR(10 g) = 0.072 W/kg Maximum value of SAR (measured) = 0.137 W/kg

0 dB = 0.137 W/kg = -8.63 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: WCDMA Band II Mid Body- Bottom

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1

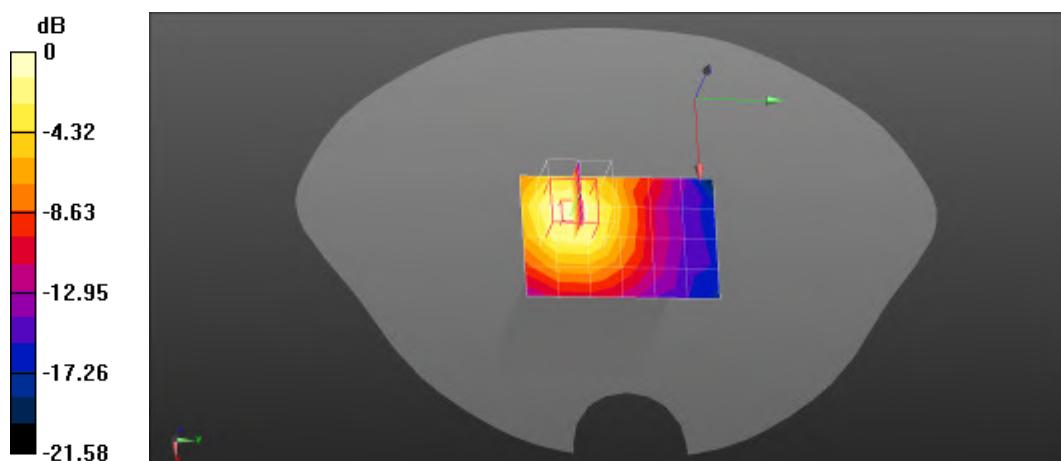
Medium parameters used: $f = 1880$ MHz; $\sigma = 1.58$ S/m; $\epsilon_r = 51.08$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/WCDMA Band II Mid Body-Bottom/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.209 W/kg

Configuration/WCDMA Band II Mid Body-Bottom/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm, Reference Value = 6.520 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.365 W/kg

SAR(1 g) = 0.229 W/kg; SAR(10 g) = 0.131 W/kg Maximum value of SAR (measured) = 0.253 W/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: 802.11b 2462MHz Touch-Left

Communication System: UID 0, Wi-Fi; Frequency: 2462 MHz; Duty Cycle: 1:1

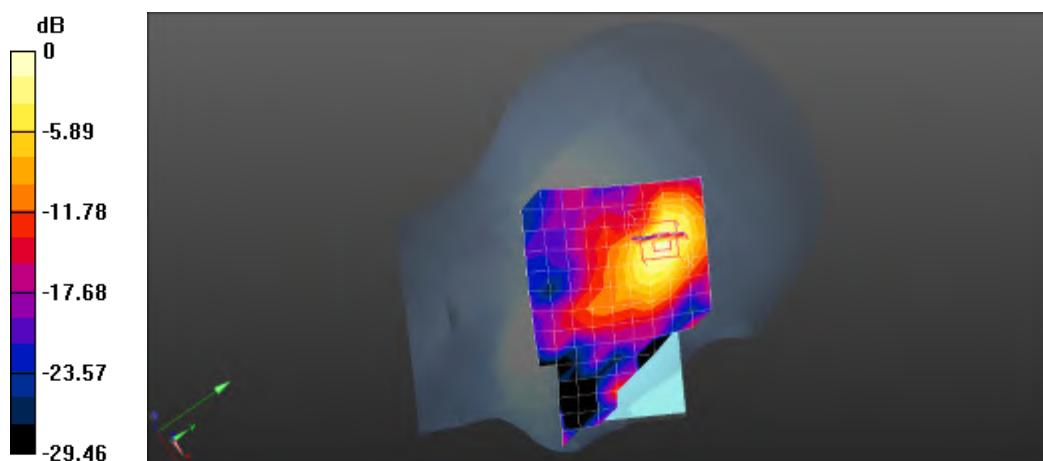
Medium parameters used: $f = 2462$ MHz; $\sigma = 1.89$ S/m; $\epsilon_r = 38.8$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.38, 7.38, 7.38); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/802.11b 2462MHz Touch-Left/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0633 W/kg

Configuration/802.11b 2462MHz Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.367 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.128 W/kg

SAR(1 g) = 0.057 W/kg; SAR(10 g) = 0.025 W/kg Maximum value of SAR (measured) = 0.0662 W/kg

0 dB = 0.0662 W/kg = -11.79 dBW/kg

Z-Axis Plot

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: 802.11b 2462MHz Tilt-Left

Communication System: UID 0, Wi-Fi; Frequency: 2462 MHz; Duty Cycle: 1:1

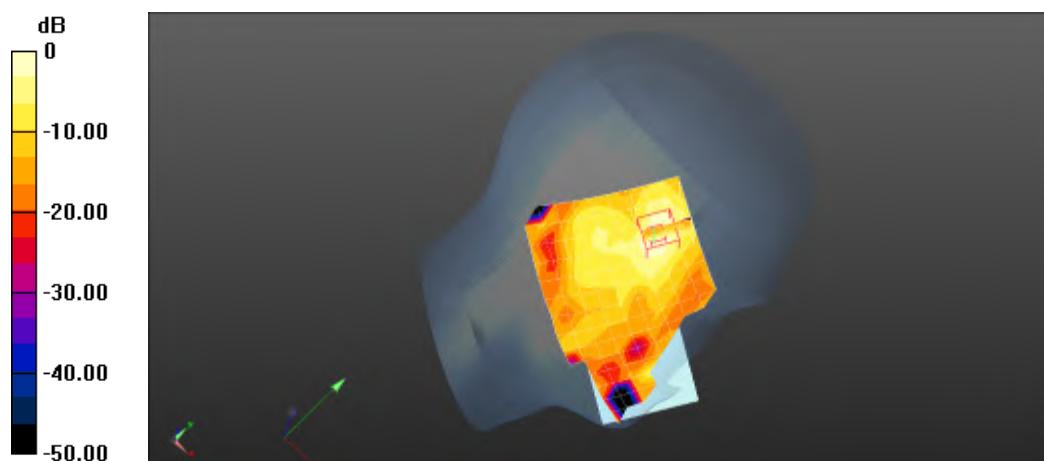
Medium parameters used: $f = 2462$ MHz; $\sigma = 1.89$ S/m; $\epsilon_r = 38.8$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.38, 7.38, 7.38); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/802.11b 2462MHz Tilt-Left/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0259 W/kg

Configuration/802.11b 2462MHz Tilt-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.812 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.0500 W/kg

SAR(1 g) = 0.023 W/kg; SAR(10 g) = 0.010 W/kg Maximum value of SAR (measured) = 0.0266 W/kg

0 dB = 0.0266 W/kg = -15.75 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: 802.11b 2462MHz Touch-Right

Communication System: UID 0, Wi-Fi; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2462$ MHz; $\sigma = 1.89$ S/m; $\epsilon_r = 38.8$; $\rho = 1000$ kg/m³

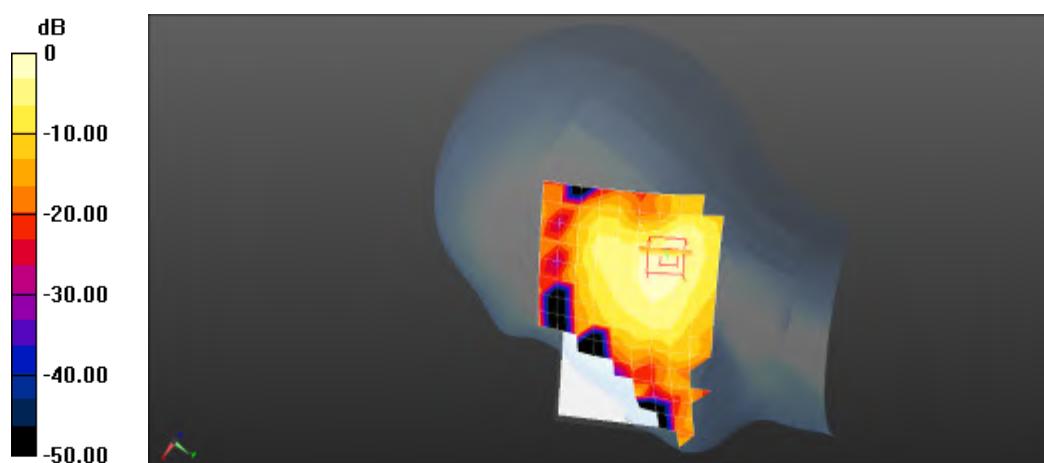
Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.38, 7.38, 7.38); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/802.11b 2462MHz Touch-Right/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm


Maximum value of SAR (measured) = 0.0291 W/kg

Configuration/802.11b 2462MHz Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.385 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.0630 W/kg

SAR(1 g) = 0.031 W/kg; SAR(10 g) = 0.015 W/kg Maximum value of SAR (measured) = 0.0351 W/kg

0 dB = 0.0351 W/kg = -14.55 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: 802.11b 2462MHz Tilt-Right

Communication System: UID 0, Wi-Fi; Frequency: 2462 MHz; Duty Cycle: 1:1

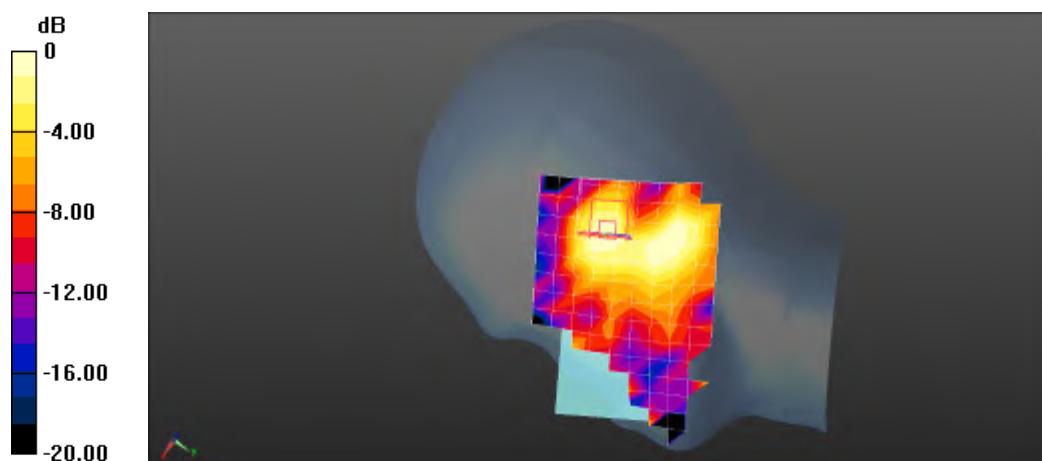
Medium parameters used: $f = 2462$ MHz; $\sigma = 1.89$ S/m; $\epsilon_r = 38.8$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.38, 7.38, 7.38); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/802.11b 2462MHz Tilt-Right/Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0114 W/kg

Configuration/802.11b 2462MHz Tilt-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.869 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.0150 W/kg

SAR(1 g) = 0.00981 W/kg; SAR(10 g) = 0.00477 W/kg Maximum value of SAR (measured) = 0.0109 W/kg

0 dB = 0.0109 W/kg = -19.63 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: 802.11b 2462MHz Body-Back

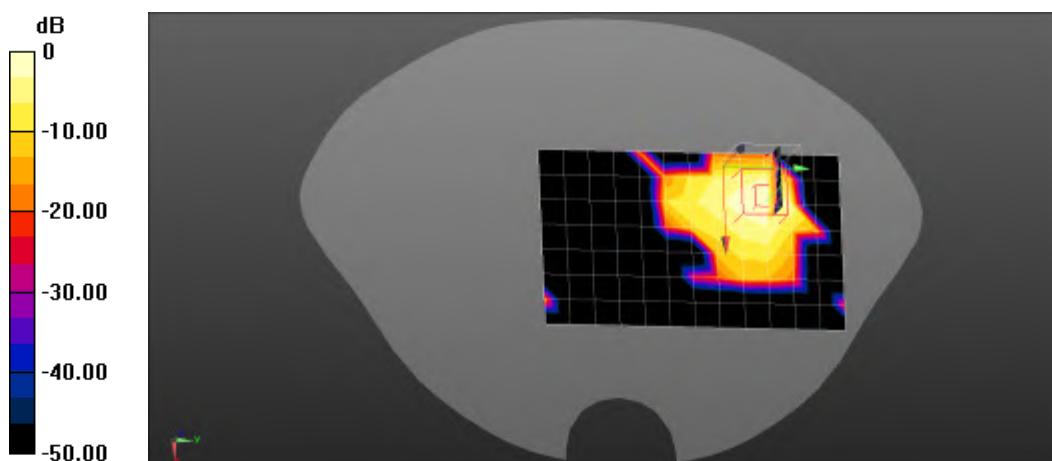
Communication System: UID 0, Wi-Fi; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2462$ MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 52.37$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:


- Probe: EX3DV4 - SN3927; ConvF(7.30, 7.30, 7.30); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/802.11b 2462MHz Body-Back/Area Scan (8x13x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0392 W/kg

Configuration/802.11b 2462MHz Body-Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 0 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.105 W/kg

SAR(1 g) = 0.039 W/kg; SAR(10 g) = 0.015 W/kg Maximum value of SAR (measured) = 0.0443 W/kg

0 dB = 0.0443 W/kg = -13.54 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: 802.11b 2462MHz Body-Front

Communication System: UID 0, Wi-Fi; Frequency: 2462 MHz; Duty Cycle: 1:1

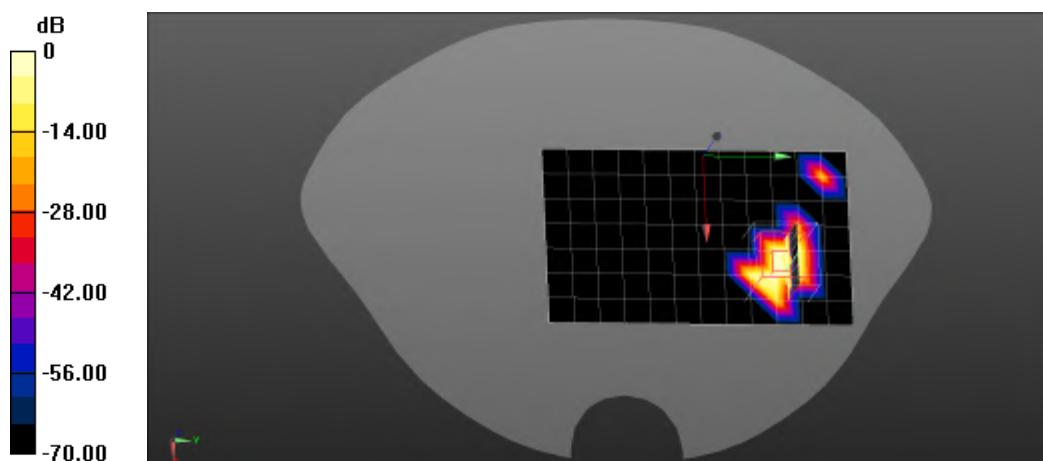
Medium parameters used: $f = 2462$ MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 52.37$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.30, 7.30, 7.30); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/802.11b 2462MHz Body-Front/Area Scan (8x13x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0127 W/kg

Configuration/802.11b 2462MHz Body-Front/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 0 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.0500 W/kg

SAR(1 g) = 0.014 W/kg; SAR(10 g) = 0.00364 W/kg Maximum value of SAR (measured) = 0.0161 W/kg

0 dB = 0.0161 W/kg = -17.93 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: 802.11b 2462MHz Body-Leftside

Communication System: UID 0, Wi-Fi; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2462$ MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 52.37$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

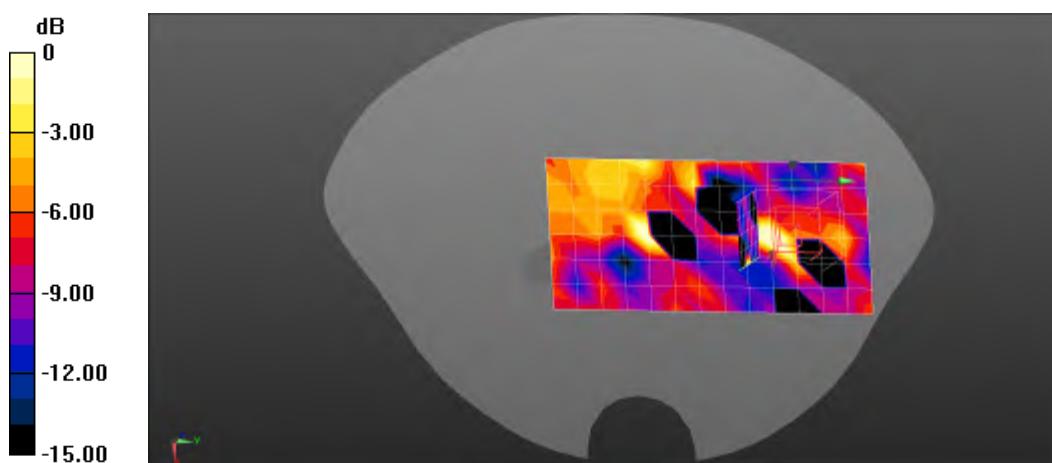
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.30, 7.30, 7.30); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/802.11b 2462MHz Body-Leftside/Area Scan (7x14x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0324 W/kg


Configuration/802.11b 2462MHz Body-Leftside/Zoom Scan (5x6x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.086 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.00182 W/kg

SAR(1 g) = 0.000345 W/kg; SAR(10 g) = 4.02e-005 W/kg Maximum value of SAR (measured) = 0.0139

W/kg

0 dB = 0.0139 W/kg = -18.57 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: 802.11b 2462MHz Body-Rightside

Communication System: UID 0, Wi-Fi; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2462$ MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 52.37$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

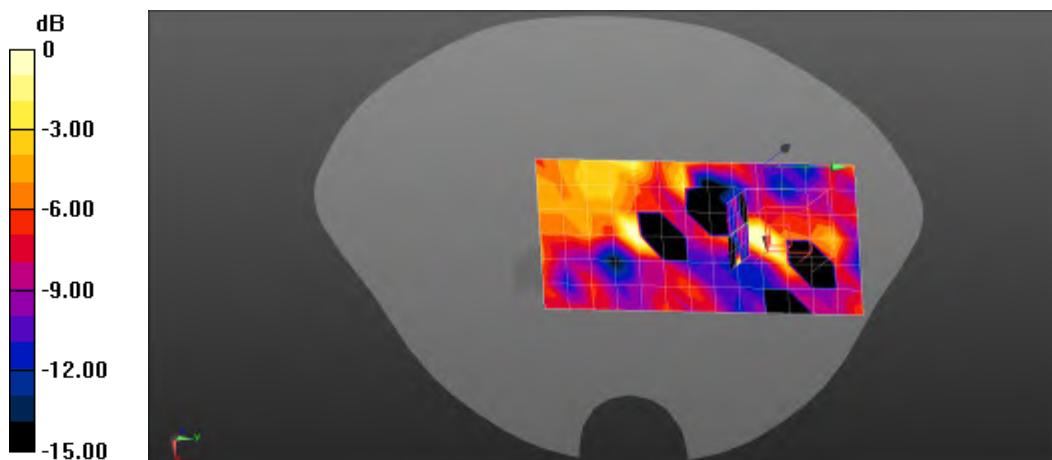
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.30, 7.30, 7.30); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/802.11b 2462MHz Body-Rightside/Area Scan (7x14x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0316 W/kg


Configuration/802.11b 2462MHz Body-Rightside/Zoom Scan (5x6x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.086 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.00177 W/kg

SAR(1 g) = 0.000336 W/kg; SAR(10 g) = 3.92e-005 W/kg Maximum value of SAR (measured) = 0.0136

W/kg

0 dB = 0.0136 W/kg = -18.66 dBW/kg

Date/Time: 26/08/2013

Test Laboratory: Cerpass Lab

DUT: Smart Phone; Type: A9,A13,A9B

Procedure Name: 802.11b 2462MHz Body-Bottom

Communication System: UID 0, Wi-Fi; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2462$ MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 52.37$; $\rho = 1000$ kg/m³

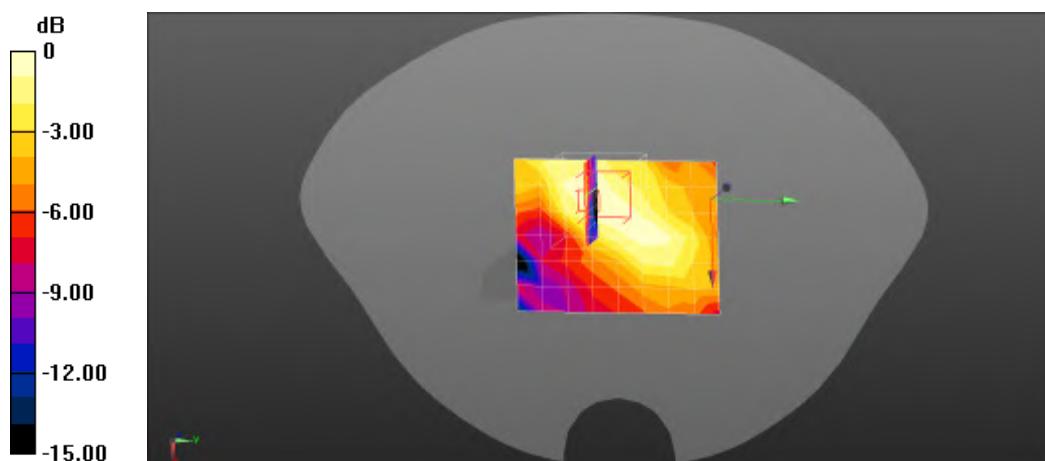
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3927; ConvF(7.30, 7.30, 7.30); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1767
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/802.11b 2462MHz Body-Bottom/Area Scan (7x9x1): Measurement grid: $dx=12$ mm, $dy=12$ mm


Maximum value of SAR (measured) = 0.0112 W/kg

Configuration/802.11b 2462MHz Body-Bottom/Zoom Scan (6x6x7)/Cube 0: Measurement grid:

$dx=8$ mm, $dy=8$ mm, $dz=5$ mm, Reference Value = 2.131 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.0350 W/kg

SAR(1 g) = 0.011 W/kg; SAR(10 g) = 0.00493 W/kg Maximum value of SAR (measured) = 0.0119 W/kg

0 dB = 0.0119 W/kg = -19.24 dBW/kg

9. APPENDIX D. Probe Calibration Data

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalementage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client: **Cerpass (Audent)**Certificate No: **EX3-3927_Jun13**

CALIBRATION CERTIFICATE

Object: **EX3DV4 - SN:3927**

Calibration procedure(s): **QA CAL-01.v8, QA CAL-12.v7, QA CAL-14.v3, QA CAL-23.v4,
 QA CAL-25.v4
 Calibration procedure for dosimetric E-field probes**

Calibration date: **June 24, 2013**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419G	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S6054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01736)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 680	31-Jan-13 (No. DAE4-680_Jan13)	Jan-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3842U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

	Name	Function	Signature
Calibrated by:	Jelena Kastarić	Laboratory Technician	
Approved by:	Kenja Poković	Technical Manager	

Issued: June 24, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}: Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM_{f,x,y,z} = NORM_{x,y,z} * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM_{x,y,z} * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from isotropy): In a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

EX3DV4 – SN:3927

June 24, 2013

Probe EX3DV4

SN:3927

Manufactured: March 8, 2013
Calibrated: June 24, 2013

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

EX3DV4- SN:3927

June 24, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3927**Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μ V/(V/m)) ^a	0.57	0.33	0.61	$\pm 10.1\%$
DCP (mV) ^b	101.1	89.9	97.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB $\sqrt{\mu}$ V	C	D dB	VR mV	Unc ^c (k=2)
0	CW	X	0.0	0.0	1.0	0.00	177.4	$\pm 2.5\%$
		Y	0.0	0.0	1.0		169.2	
		Z	0.0	0.0	1.0		176.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^a The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).^b Numerical linearization parameter: uncertainty not required.^c Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3927

June 24, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3927**Calibration Parameter Determined in Head Tissue Simulating Media**

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	11.02	11.02	11.02	0.14	1.46	± 13.4 %
850	41.5	0.92	10.16	10.16	10.16	0.41	0.82	± 12.0 %
1750	40.1	1.37	8.73	8.73	8.73	0.60	0.90	± 12.0 %
1900	40.0	1.40	8.39	8.39	8.39	0.64	0.88	± 12.0 %
2100	39.8	1.49	8.39	8.39	8.39	0.59	0.93	± 12.0 %
2450	39.2	1.80	7.38	7.38	7.38	0.47	1.03	± 12.0 %
5200	36.0	4.66	5.19	5.19	5.19	0.30	1.80	± 13.1 %
5500	35.6	4.96	5.05	5.05	5.05	0.30	1.80	± 13.1 %
5800	35.3	5.27	4.73	4.73	4.73	0.35	1.80	± 13.1 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

EX3DV4- SN:3927

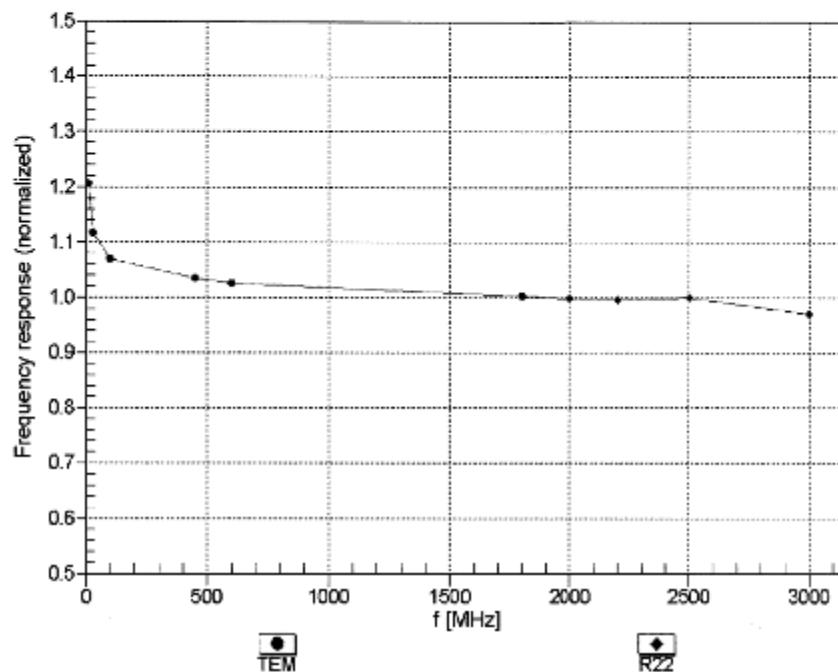
June 24, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3927**Calibration Parameter Determined in Body Tissue Simulating Media**

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	11.57	11.57	11.57	0.05	1.21	± 13.4 %
850	55.2	0.99	10.03	10.03	10.03	0.38	0.93	± 12.0 %
1750	53.4	1.49	8.33	8.33	8.33	0.35	0.85	± 12.0 %
1900	53.3	1.52	7.91	7.91	7.91	0.22	1.13	± 12.0 %
2100	53.2	1.62	8.06	8.06	8.06	0.40	0.80	± 12.0 %
2450	52.7	1.95	7.30	7.30	7.30	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.54	4.54	4.54	0.40	1.90	± 13.1 %
5500	48.6	5.65	4.09	4.09	4.09	0.40	1.90	± 13.1 %
5800	48.2	6.00	4.15	4.15	4.15	0.45	1.90	± 13.1 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.



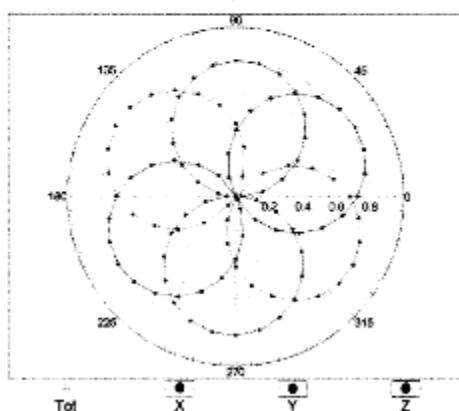
EX3DV4- SN:3927

June 24, 2013

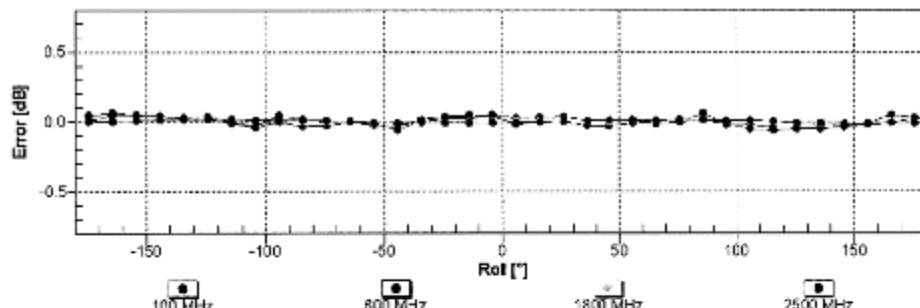
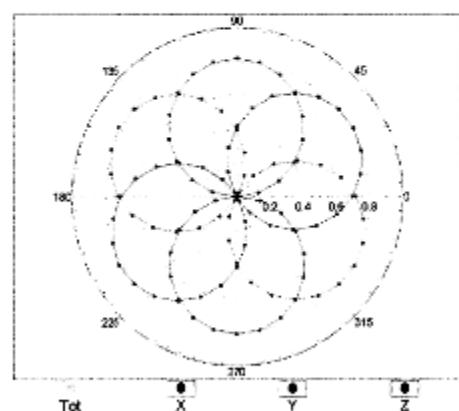
Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: $\pm 6.3\% (k=2)$



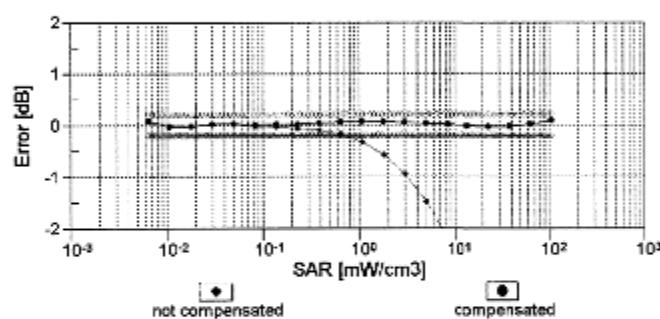
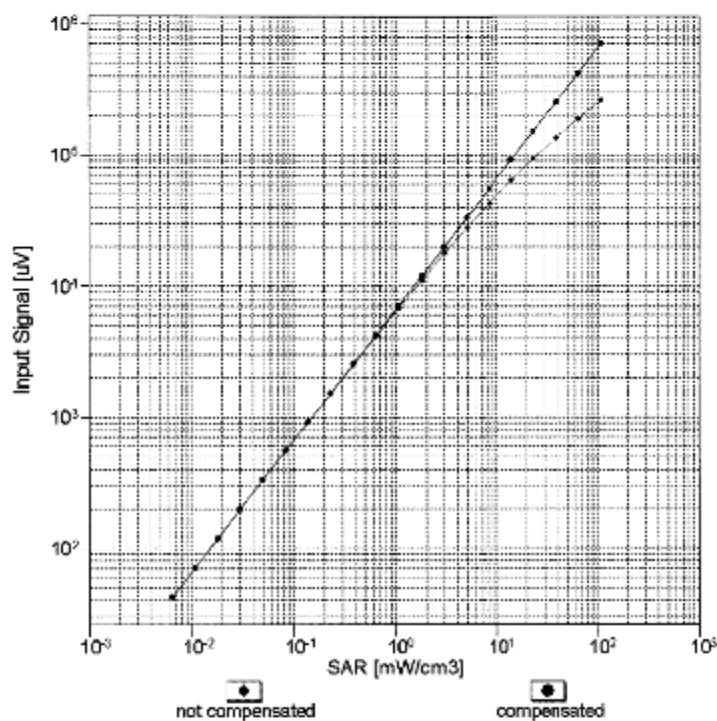
EX3DV4- SN:3927



June 24, 2013

Receiving Pattern (ϕ), $\theta = 0^\circ$

f=600 MHz, TEM

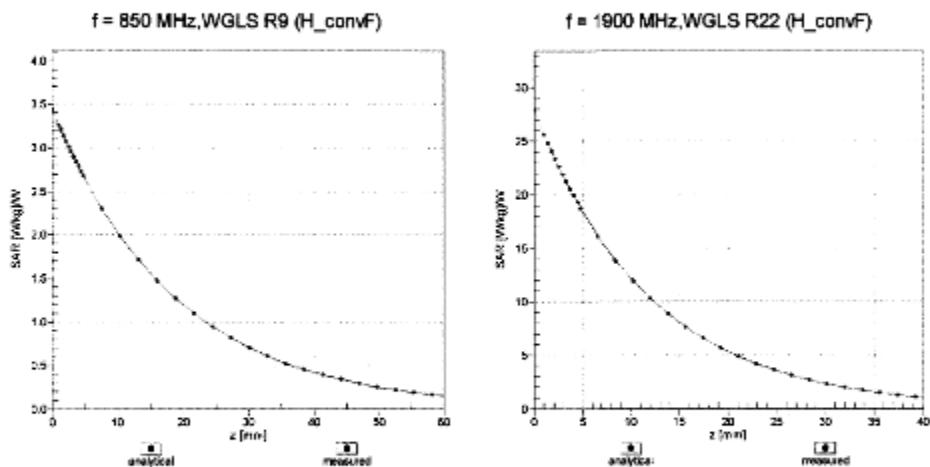
f=1800 MHz, R22

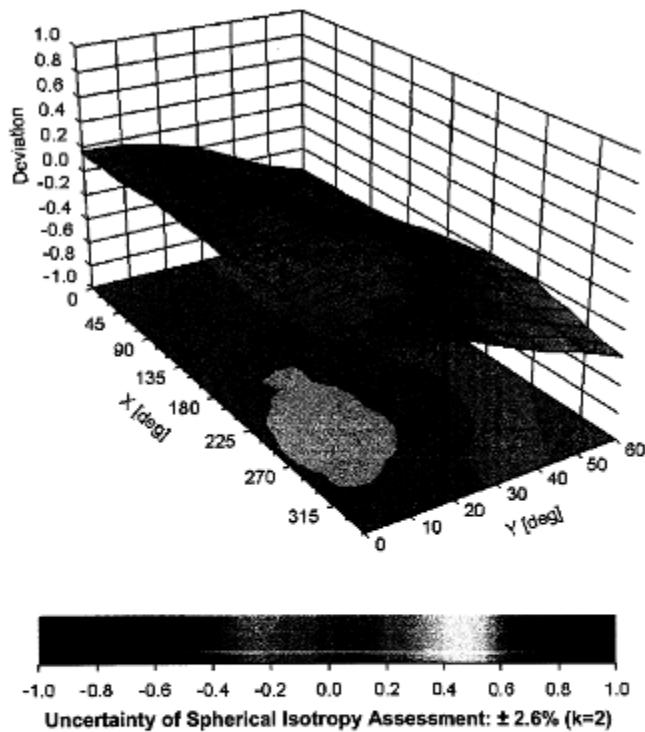


Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)

EX3DV4- SN:3927

June 24, 2013

Dynamic Range f(SAR_{head})
(TEM cell , f = 900 MHz)


Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)


EX3DV4- SN:3927

June 24, 2013

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ, θ), $f = 900 \text{ MHz}$

EX3DV4- SN:3927

June 24, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3927**Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	25.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

10. Appendix E. Dipole Calibration Data

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Cerpass (Auden)

Certificate No.: D450V3-1086_Jun13

CALIBRATION CERTIFICATE

Object D450V3 - SN: 1086

Calibration procedure(s) QA CAL-15.v7
 Calibration procedure for dipole validation kits below 700 MHz

Calibration date: June 14, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ET30V6	SN: 1507	28-Dec-12 (No. ET3-1507_Dec12)	Dec-13
DAE4	SN: 654	10-Apr-13 (No. DAE4-654_Apr13)	Apr-14

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:	Name	Function	Signature
	Jelton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: June 14, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	$dx, dy, dz = 5$ mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	44.2 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.21 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.73 W/kg ± 18.1 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	0.802 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.14 W/kg ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	57.1 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	4.61 W/kg ± 18.1 % (k=2)
SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	0.776 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	3.06 W/kg ± 17.6 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.1 Ω - 8.2 $j\Omega$
Return Loss	- 21.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	56.2 Ω - 6.2 $j\Omega$
Return Loss	- 21.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.349 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 10, 2012

DASY5 Validation Report for Head TSL

Date: 14.06.2013

Test Laboratory: The name of your organization

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1086

Communication System: UID 0 - CW ; Frequency: 450 MHz

Medium parameters used: $f = 450$ MHz; $\sigma = 0.9$ S/m; $\epsilon_r = 44.2$; $\rho = 1000$ kg/m³

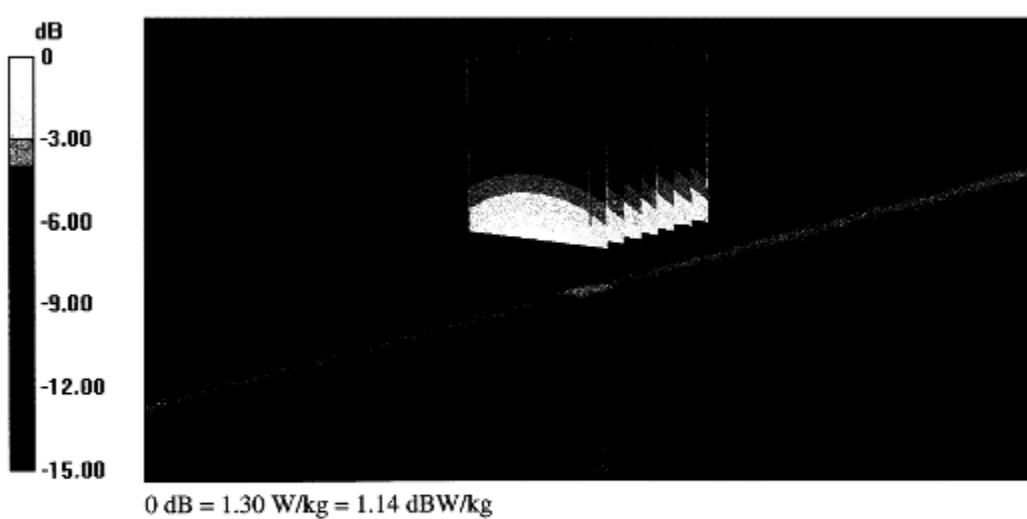
Phantom section: Flat Section

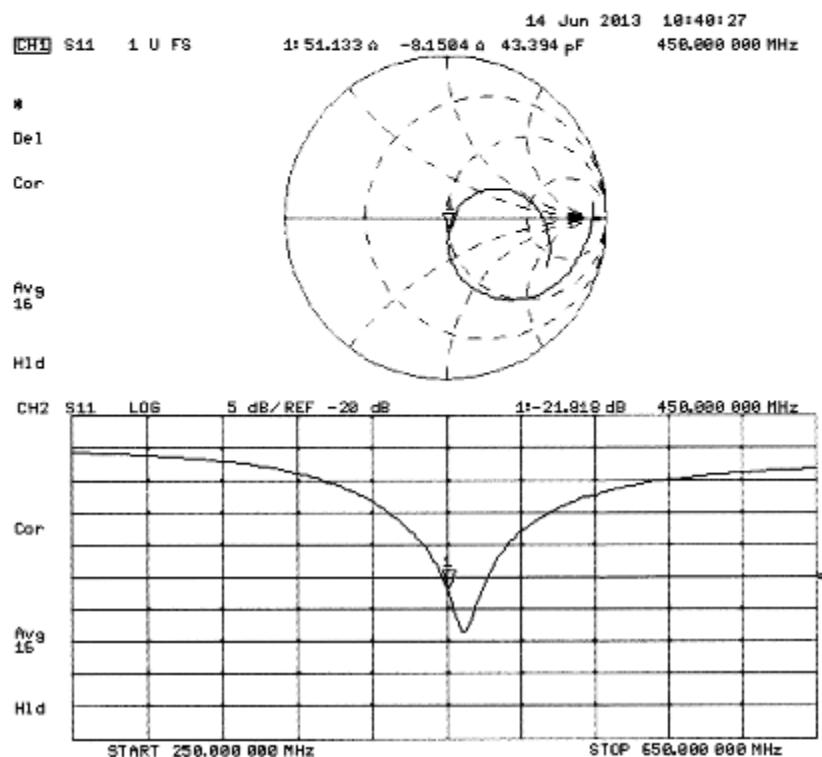
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(6.59, 6.59, 6.59); Calibrated: 28.12.2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 10.04.2013
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 39.197 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.85 W/kg

SAR(1 g) = 1.21 W/kg; SAR(10 g) = 0.802 W/kg

Maximum value of SAR (measured) = 1.30 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.06.2013

Test Laboratory: The name of your organization

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1086

Communication System: UID 0 - CW ; Frequency: 450 MHz

Medium parameters used: $f = 450 \text{ MHz}$; $\sigma = 0.96 \text{ S/m}$; $\epsilon_r = 57.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(7.03, 7.03, 7.03); Calibrated: 28.12.2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 10.04.2013
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$


Reference Value = 39.197 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.81 W/kg

SAR(1 g) = 1.17 W/kg; SAR(10 g) = 0.776 W/kg

Maximum value of SAR (measured) = 1.25 W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client **Cerpass (Auden)**Certificate No: **D850V2-1008_Jun13****CALIBRATION CERTIFICATE**

Object	D850V2 - SN: 1008
Calibration procedure(s)	QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz
Calibration date:	June 13, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:	Name	Function	Signature
	Leif Klynsner	Laboratory Technician	

Approved by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Issued: June 13, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	850 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.92 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.5 ± 6 %	0.95 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.83 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.63 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.37 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.99 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.49 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.62 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.27 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.2 Ω - 3.1 $j\Omega$
Return Loss	- 28.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.5 Ω - 5.3 $j\Omega$
Return Loss	- 24.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.382 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 30, 2009

DASY5 Validation Report for Head TSL

Date: 13.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 850 MHz; Type: D850V2; Serial: D850V2 - SN: 1008

Communication System: UID 0 - CW ; Frequency: 850 MHz

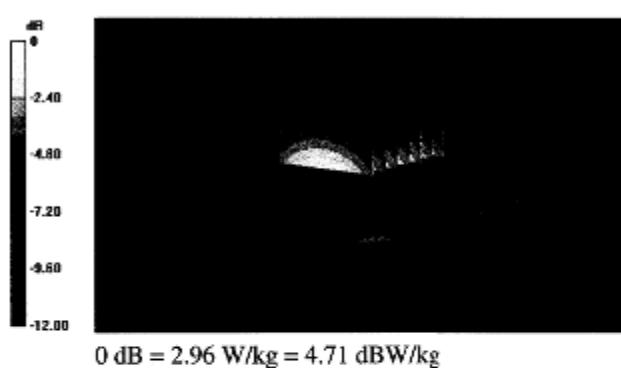
Medium parameters used: $f = 850$ MHz; $\sigma = 0.95$ S/m; $\epsilon_r = 40.5$; $\rho = 1000$ kg/m³

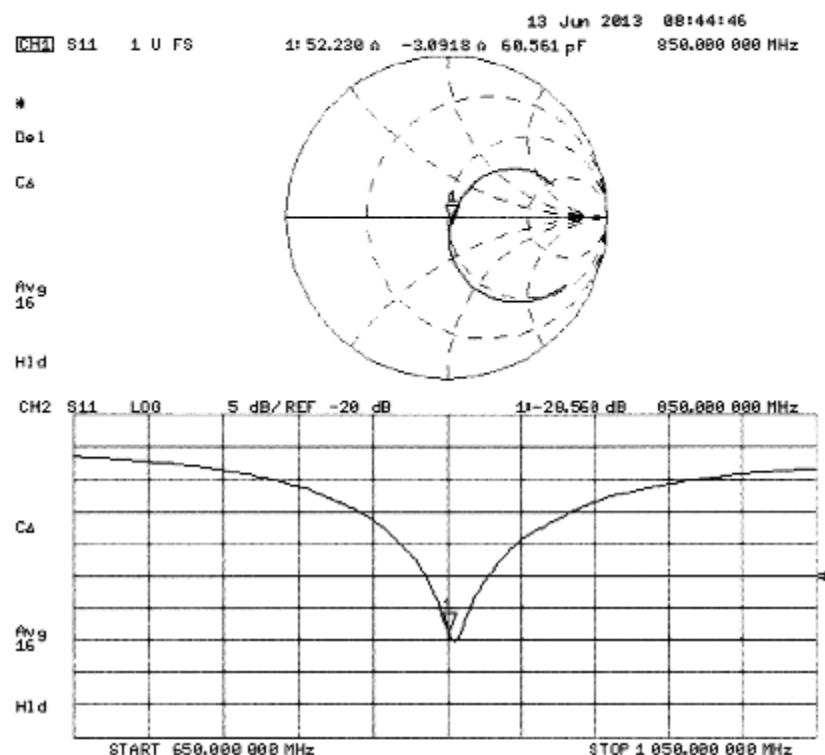
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAB4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)**(7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 57.472 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.82 W/kg

SAR(1 g) = 2.53 W/kg; SAR(10 g) = 1.63 W/kg

Maximum value of SAR (measured) = 2.96 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 12.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 850 MHz; Type: D850V2; Serial: D850V2 - SN: 1008

Communication System: UID 0 - CW ; Frequency: 850 MHz

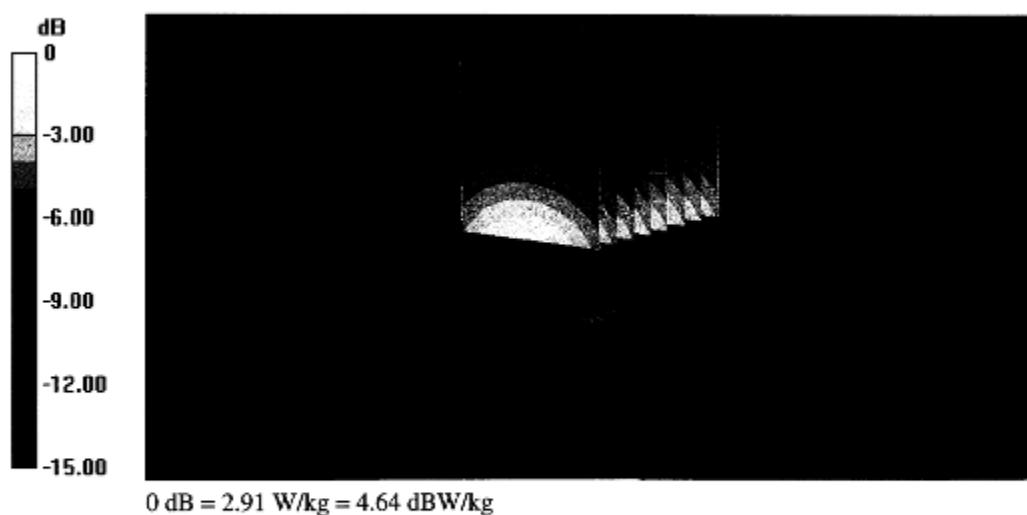
Medium parameters used: $f = 850$ MHz; $\sigma = 1.03$ S/m; $c_r = 53.9$; $\rho = 1000$ kg/m³

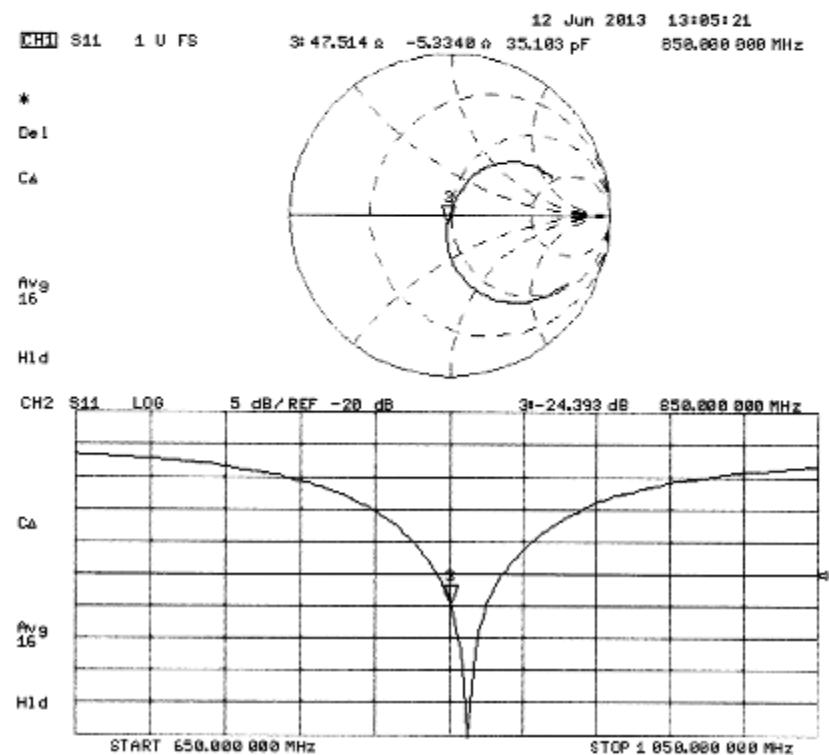
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.01, 6.01, 6.01); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)**(7x8x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 54.836 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.49 W/kg; SAR(10 g) = 1.61 W/kg

Maximum value of SAR (measured) = 2.91 W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Cerpass (Auden)

Certificate No: D1750V2-1097_Jun13

CALIBRATION CERTIFICATE

Object	D1750V2 - SN: 1097		
Calibration procedure(s)	QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz		
Calibration date:	June 11, 2013		
<p>This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.</p> <p>All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.</p> <p>Calibration Equipment used (M&TE critical for calibration)</p>			
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5068 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	
Issued: June 13, 2013			
<p>This calibration certificate shall not be reproduced except in full without written approval of the laboratory.</p>			

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.32 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.07 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.85 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.6 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.7 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.1 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.0 Ω + 0.5 $j\Omega$
Return Loss	- 38.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω + 0.2 $j\Omega$
Return Loss	- 29.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.218 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 16, 2013

DASY5 Validation Report for Head TSL

Date: 10.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1097

Communication System: UID 0 - CW ; Frequency: 1750 MHz

Medium parameters used: $f = 1750$ MHz; $\sigma = 1.32$ S/m; $\epsilon_r = 39.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

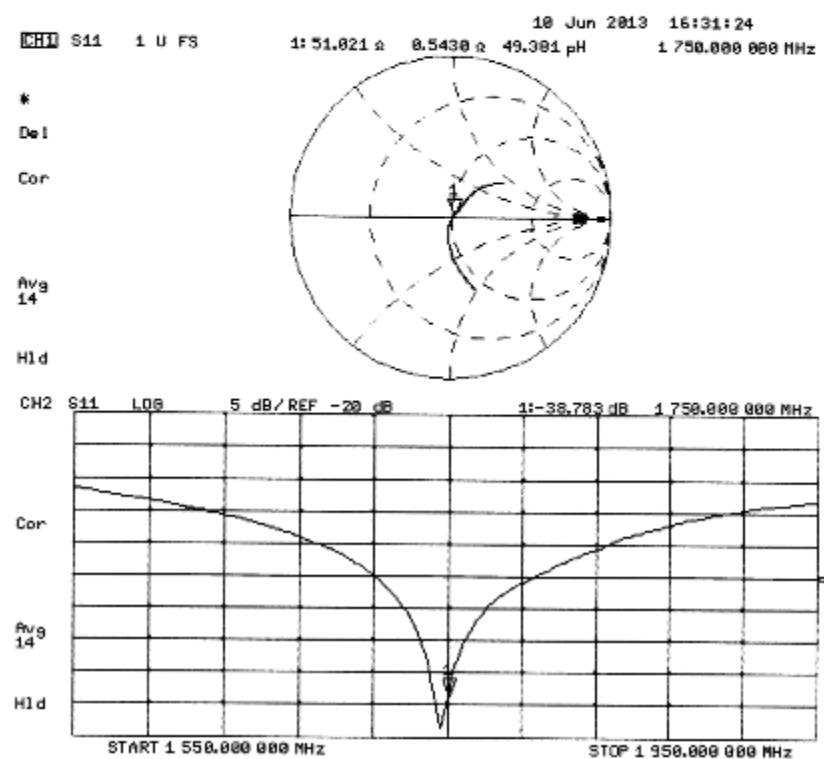
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5.18, 5.18, 5.18); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 95.679 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 16.2 W/kg

SAR(1 g) = 9.07 W/kg; SAR(10 g) = 4.85 W/kg

Maximum value of SAR (measured) = 11.4 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1097

Communication System: UID 0 - CW ; Frequency: 1750 MHz

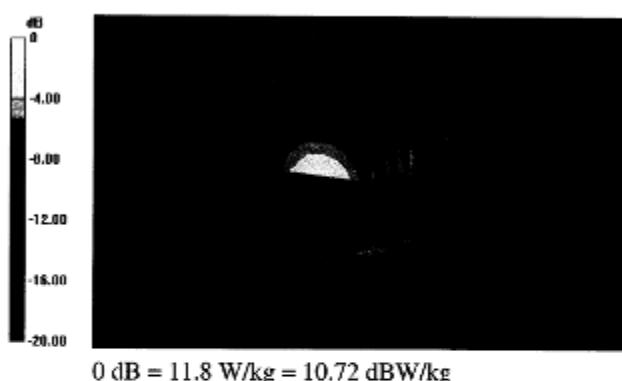
Medium parameters used: $f = 1750 \text{ MHz}$; $\sigma = 1.51 \text{ S/m}$; $\epsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$

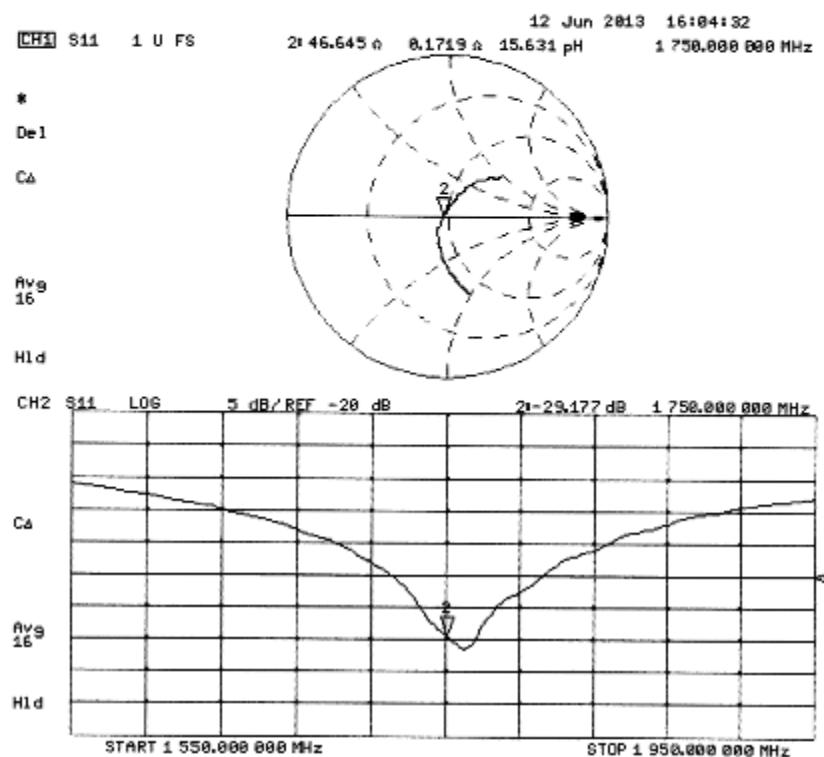
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.83, 4.83, 4.83); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$


Reference Value = 91.830 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 16.3 W/kg

SAR(1 g) = 9.46 W/kg; SAR(10 g) = 5.08 W/kg

Maximum value of SAR (measured) = 11.8 W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client **Cerpass (Auden)**Certificate No: **D1900V2-5d174_Jun13**

CALIBRATION CERTIFICATE

Object	D1900V2 - SN: 5d174		
Calibration procedure(s)	QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz		
Calibration date:	June 10, 2013		
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.			
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.			
Calibration Equipment used (M&TE critical for calibration)			
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01738)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID #	Check Date (In house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US87300585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	
Issued: June 11, 2013			
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrationsdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.34 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.9 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.7 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.00 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.34 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.2 \Omega + 3.9 j\Omega$
Return Loss	- 26.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$48.3 \Omega + 5.0 j\Omega$
Return Loss	- 25.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 08, 2012

DASY5 Validation Report for Head TSL

Date: 10.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d174

Communication System: UID 0 - CW ; Frequency: 1900 MHz

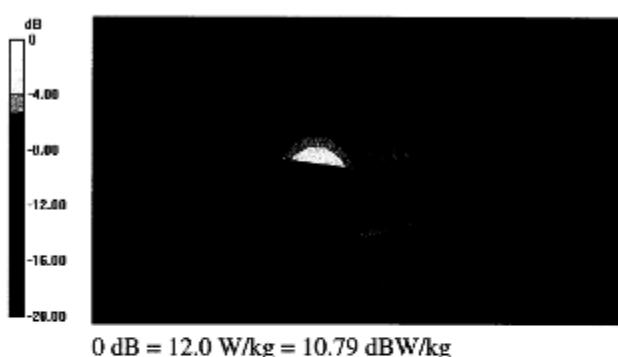
Medium parameters used: $f = 1900 \text{ MHz}$; $\sigma = 1.34 \text{ S/m}$; $\epsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 95.712 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 9.76 W/kg; SAR(10 g) = 5.15 W/kg

Maximum value of SAR (measured) = 12.0 W/kg

DASY5 Validation Report for Body TSL

Date: 10.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d174

Communication System: UID 0 - CW ; Frequency: 1900 MHz

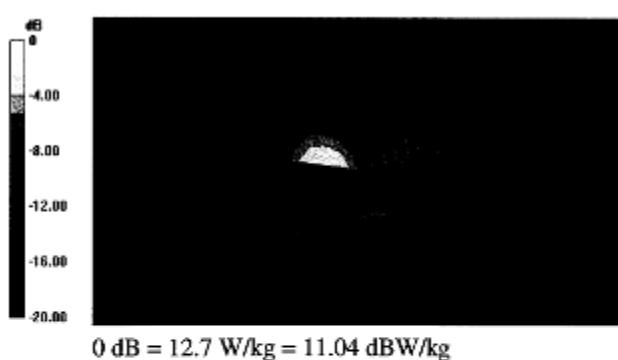
Medium parameters used: $f = 1900 \text{ MHz}$; $\sigma = 1.5 \text{ S/m}$; $\epsilon_r = 53.7$; $\rho = 1000 \text{ kg/m}^3$

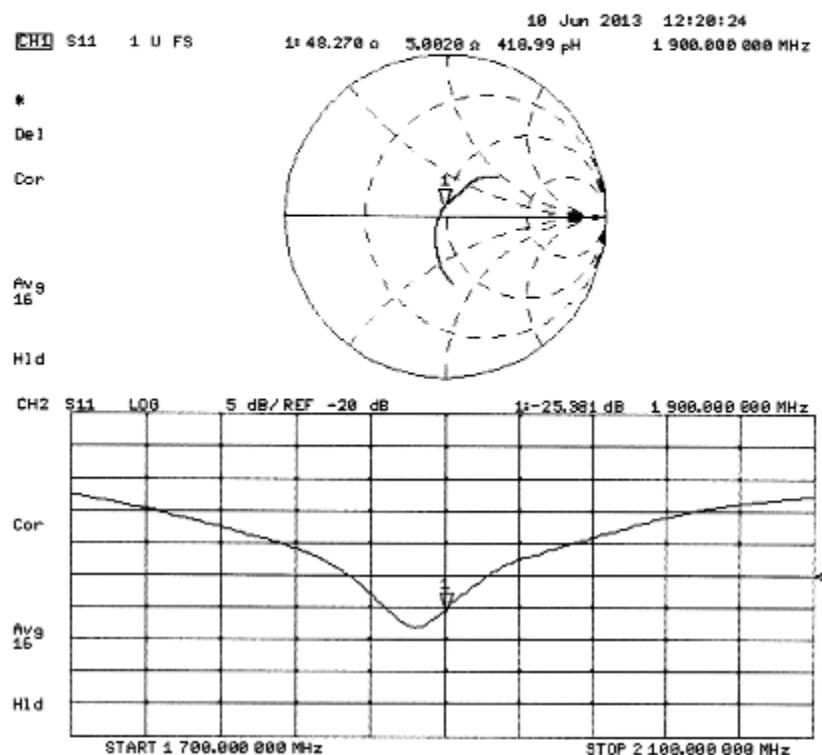
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$


Reference Value = 95.712 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 17.1 W/kg

SAR(1 g) = 10 W/kg; SAR(10 g) = 5.34 W/kg

Maximum value of SAR (measured) = 12.7 W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client **Cerpass (Auden)**Certificate No: **D2450V2-914_Jun13****CALIBRATION CERTIFICATE**

Object	D2450V2 - SN: 914
Calibration procedure(s)	QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz
Calibration date:	June 07, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US3/390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:	Name	Function	Signature
	Leif Klyner	Laboratory Technician	

Approved by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Issued: June 7, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughaeuserstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- **Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- **Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- **Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- **Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- **SAR measured:** SAR measured at the stated antenna input power.
- **SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- **SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.9 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.5 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.9 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.0 Ω + 1.9 $j\Omega$
Return Loss	- 23.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	52.1 Ω + 3.5 $j\Omega$
Return Loss	- 28.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.160 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 19, 2012

DASY5 Validation Report for Head TSL

Date: 07.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 914

Communication System: UID 0 - CW ; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.81$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

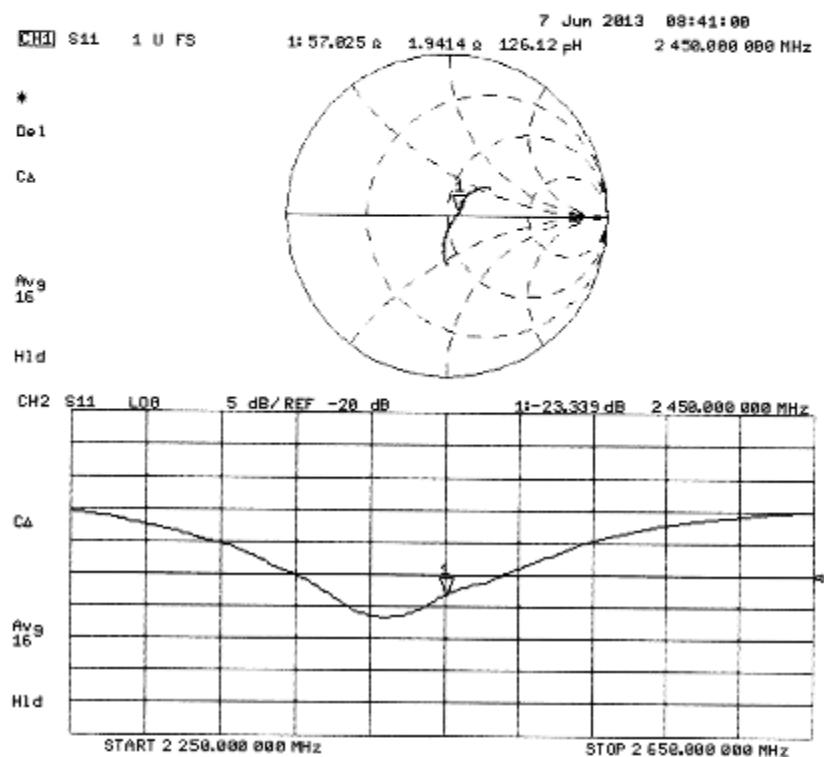
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 95.695 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.24 W/kg

Maximum value of SAR (measured) = 17.6 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 07.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 914

Communication System: UID 0 - CW ; Frequency: 2450 MHz

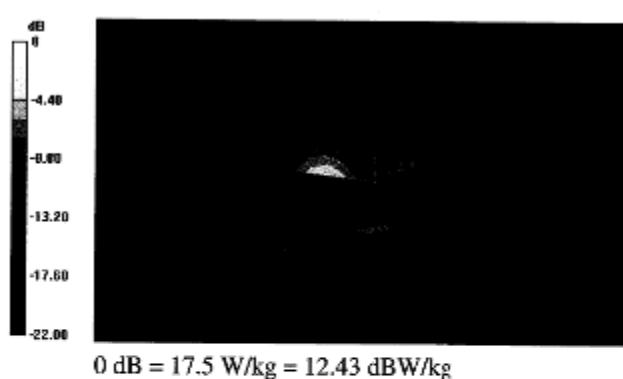
Medium parameters used: $f = 2450 \text{ MHz}$; $\sigma = 2.02 \text{ S/m}$; $\epsilon_r = 50.9$; $\rho = 1000 \text{ kg/m}^3$

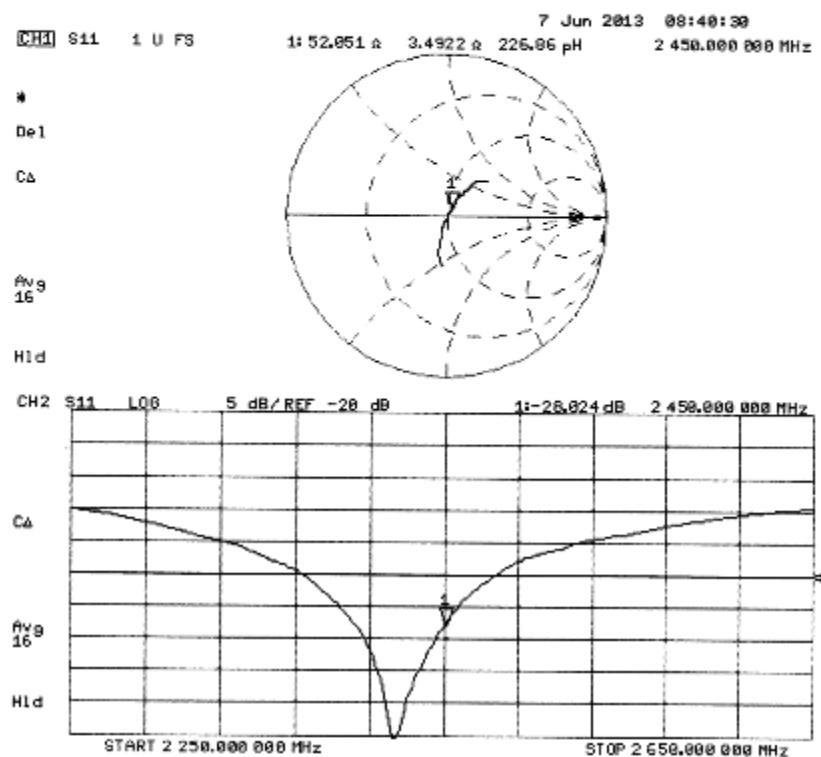
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$


Reference Value = 95.695 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 27.6 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.07 W/kg

Maximum value of SAR (measured) = 17.5 W/kg

Impedance Measurement Plot for Body TSL

11. Appendix F. DAE Calibration Data

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client

Cerpass (Auden)Certificate No. **DAE4-1379_Jun13**

CALIBRATION CERTIFICATE

Object **DAE4 SD 000 D04 BJ - SN 1379**
 Calibration procedure(s) **QA CAL-06.v26**
Calibration procedure for the data acquisition electronics (DAE)
Calibration date: **June 14, 2013**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	02-Oct-12 (No:12728)	Oct-13
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	07-Jan-13 (in house check)	In house check: Jan-14
Calibrator Box V2.1	SE UMS 006 AA 1002	07-Jan-13 (in house check)	In house check: Jan-14

 Calibrated by: Name **Eric Haefliger** Function **Technician** Signature

 Approved by: Name **Fin Bonner** Function **Deputy Technical Manager** Signature

Issued: June 14, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - *DC Voltage Measurement Linearity*: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity*: Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation*: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - *AD Converter Values with inputs shorted*: Values on the internal AD converter corresponding to zero input voltage
 - *Input Offset Measurement*: Output voltage and statistical results over a large number of zero voltage measurements.
 - *Input Offset Current*: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance*: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - *Low Battery Alarm Voltage*: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption*: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu V$, full range = $-100...+300\text{ mV}$ Low Range: 1LSB = 61nV , full range = $-1.....+3\text{mV}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$403.780 \pm 0.02\% \text{ (k=2)}$	$404.053 \pm 0.02\% \text{ (k=2)}$	$403.989 \pm 0.02\% \text{ (k=2)}$
Low Range	$3.99596 \pm 1.50\% \text{ (k=2)}$	$3.99156 \pm 1.50\% \text{ (k=2)}$	$3.99899 \pm 1.50\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$149.5^\circ \pm 1^\circ$
---	---------------------------

Appendix**1. DC Voltage Linearity**

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	199994.77	-0.79	-0.00
Channel X	+ Input	19998.34	-1.48	-0.01
Channel X	- Input	-19999.63	1.83	-0.01
Channel Y	+ Input	199996.50	0.61	0.00
Channel Y	+ Input	19995.46	-4.43	-0.02
Channel Y	- Input	-20002.71	-1.27	0.01
Channel Z	+ Input	199998.27	2.81	0.00
Channel Z	+ Input	19997.65	-2.19	-0.01
Channel Z	- Input	-20002.08	-0.49	0.00

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	2000.48	0.36	0.02
Channel X	+ Input	200.15	-0.33	-0.16
Channel X	- Input	-199.65	-0.28	0.14
Channel Y	+ Input	1999.47	-0.73	-0.04
Channel Y	+ Input	200.66	0.01	0.01
Channel Y	- Input	-199.30	0.05	-0.02
Channel Z	+ Input	2000.00	-0.12	-0.01
Channel Z	+ Input	199.74	-0.81	-0.41
Channel Z	- Input	-200.31	-0.98	0.49

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	-17.91	-19.73
	-200	20.20	18.29
Channel Y	200	-4.93	-4.72
	-200	3.59	3.43
Channel Z	200	-10.76	-10.75
	-200	8.61	8.62

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	-0.44	-5.25
Channel Y	200	7.04	-	0.32
Channel Z	200	9.23	5.34	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16053	15886
Channel Y	16274	14321
Channel Z	15829	15916

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	-3.67	-4.90	-2.52	0.44
Channel Y	-1.51	-2.97	-0.02	0.59
Channel Z	-0.53	-1.65	1.01	0.65

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9