

Type of assessment:

RADIO TEST REPORT – 449306-3R1TRFWL

Final product testing	
Applicant: Keyence Corporation	Product: Handheld Terminal
Model: DX-W600	
FCC ID: RF41539A	IC Registration number: 5798A-1539A
 Specifications: FCC 47 CFR Part 15 Subpart E, §15.407 RSS-247, Issue 2, Feb 2017, Section 6 	
Date of issue: April 7, 2022	
Tarek Elkholy, Wireless/EMC Specialist	Tarsk Clkholy
Tested by	Signature
David Duchesne, EMC/RF Lab Manager Reviewed by	Signature

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada. The tests included in this report are within the scope of this accreditation. The SCC Accreditation Symbol is an official symbol of the Standards Council of Canada, used under licence.

Lab locations			

Company name	Nemko Canada I	nc.			
Facilities	Ottawa site:	Montré	al site:	Cambridge site:	Almonte site:
	303 River Road	292 Lab	rosse Avenue	1-130 Saltsman Drive	1500 Peter Robinson Road
	Ottawa, Ontario	Pointe-0	Claire, Québec	Cambridge, Ontario	West Carleton, Ontario
	Canada	Canada		Canada	Canada
	K1V 1H2	H9R 5L8	3	N3E 0B2	KOA 1LO
	Tel: +1 613 737 9	9680 Tel: +1 !	514 694 2684	Tel: +1 519 650 4811	Tel: +1 613 256-9117
	Fax: +1 613 737	9691 Fax: +1	514 694 3528		
Test site identifier	Organization	Ottawa/Almonte	Montreal	Cambridge	
	FCC:	CA2040	CA2041	CA0101	
	ISED:	2040A-4	2040G-5	24676	
Website	www.nemko.cor	<u>n</u>			

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Report reference ID: 449306-3R1TRFWL Page 2 of 44

Table of Contents

Table of	f Contents	
Section	n 1 Report summary	4
1.1	Test specifications	4
1.2	Test methods	4
1.3	Exclusions	4
1.4	Statement of compliance	4
1.5	Test report revision history	4
Section	n 2 Engineering considerations	5
2.1	Modifications incorporated in the EUT for compliance	5
2.2	Technical judgment	5
2.3	Deviations from laboratory tests procedures	5
Section	n 3 Test conditions	6
3.1	Atmospheric conditions	6
3.2	Power supply range	6
Section	n 4 Measurement uncertainty	7
4.1	Uncertainty of measurement	7
Section	n 5 Information provided by the applicant	8
5.1	Disclaimer	8
5.2	Applicant/Manufacture	8
5.3	EUT information	
5.4	Radio technical information	8
5.5	EUT setup details	9
Section	1 6 Summary of test results	10
6.1	Testing location	10
6.2	Testing period	
6.3	Sample information	10
6.4	FCC Part 15 Subpart A and C, general requirements test results	10
6.5	FCC Part §15.407 test results	
6.6	ISED RSS-Gen, Issue 5, test results	11
6.7	ISED RSS-247, Issue 2, test results	12
Section	n 7 Test equipment	13
7.1	Test equipment list	13
Section	·	
8.1	Variation of power source	
8.2	Number of frequencies	
8.3	Antenna requirement	
8.4	AC power line conducted emissions limits	
8.5	Emission bandwidth	
8.6	Occupied bandwidth	
8.7	Transmitter output power and e.i.r.p. requirements for 5250–5350 MHz band	
8.8	Spurious unwanted (undesirable) emissions	
8.9	Frequency stability	43

Section 1 Report summary

1.1 Test specifications

FCC 47 CFR Part 15, Subpart E, Clause 15.407	Unlicensed National Information Infrastructure Devises operating in the 5.15–5.35 GHz, 5.47–5.725 GHz, 5.725–5.85 GHz, and 5.925–7.125 GHz bands.
RSS-247, Issue 2, Feb 2017, Section 6	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.
	Technical requirements for licence-exempt local area network devices and digital transmission systems operating in the 5 GHz band

1.2 Test methods

789033 D02 General U-NII Test Procedures	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part
New Rules v02r01 (December 14, 2017)	15, Subpart E
ANSI C63.10 v2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.3 Exclusions

As per requested by the customer the DFS test was excluded from the test plan.

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.3 above. Results obtained indicate that the product under test complies In full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision	# Date of issue	Details of changes made to test report
TRF	December 17, 2021	Original report issued
R1TRF	April 7, 2022	Section 5.4 radio technical information and section 5.5 radio exercise details are updated

Report reference ID: 449306-3R1TRFWL

Section 2 Engineering considerations

2.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment. \\

2.2 Technical judgment

The EUT is a battery powered but the conducted emissions was performed.

2.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 3 Test conditions

3.1 Atmospheric conditions

Temperature	15 °C – 35 °C
Relative humidity	20 % – 75 %
Air pressure	86 kPa (860 mbar) – 106 kPa (1060 mbar)

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

3.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Report reference ID: 449306-3R1TRFWL

Section 4 Measurement uncertainty

4.1 Uncertainty of measurement

UKAS Lab 34 and TIA-603-B have been used as guidance for measurement uncertainty reasonable estimations with regards to previous experience and validation of data. Nemko Canada, Inc. follows these test methods in order to satisfy ISO/IEC 17025 requirements for estimation of uncertainty of measurement for wireless products.

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Table 4.1-1: Measurement uncertainty calculations

Test name	Measurement uncertainty, ±dB
All antenna port measurements	0.55
Occupied bandwidth	4.45
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

Report reference ID: 449306-3R1TRFWL

Section 5 Information provided by the applicant

5.1 Disclaimer

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

5.2 Applicant/Manufacture

Applicant name	Keyence Corporation
Applicant address	1-3-14, Higashinakajima Higashiyodogawa-ku, Osaka 533-8555, Japan.
Manufacture name	Keyence Corporation
Manufacture address	1-3-14, Higashinakajima Higashiyodogawa-ku, Osaka 533-8555, Japan.

5.3 EUT information

Product	Handheld Terminal
Model	DX-W600
Serial number	74AM000344 (radiated sample), 74AM000496 (conducted sample)
Power supply requirements	Battery: 3.8 V(DC)
Product description and theory	Model: DX-W600 is Handheld Terminal. This product is battery powered.
of operation	It is equipped with an optical scanner and can read labels such as QR codes.

5.4 Radio technical information

Device type	☐ Outdoor access point	
	☐ Indoor access point	
	☐ Fixed point-to-point access point	
	□ Device installed in vehicles	
Frequency band	5250–5350 MHz (U-NII-2a)	
Frequency Min (MHz)	5260 (20 MHz BW), 5270 (40 MHz BW), 5290 (80 MHz BW)	
Frequency Max (MHz)	5320 (20 MHz BW), 5310 (40 MHz BW), 5290 (80 MHz BW)	
Channel numbers	4 channels (20 MHz BW), 2 channels (40 MHz BW), 1 channel (80 MHz BW)	
RF power Max (W), Conducted	0.0122 W and (10.88 dBm)	
Measured BW (kHz), 99% OBW	17.44 MHz (20 MHz BW), 35.97 MHz (40 MHz BW), 74.61 MHz (80 MHz BW)	
Type of modulation	802.11a/n/ac: OFDM (QPSK, BPSK, 16-QAM, 64-QAM)	
Emission classification	W7D	
Transmitter spurious, dBμV/m @ 3 m	54.9 dBµV/m, Peak at 5445 MHz	
Antenna information	Model: FPA2514-5A	
	Peak gain: -0.1 dBi	

Report reference ID: 449306-3R1TRFWL Page 8 of 44

5.5 **EUT** setup details

5.5.1 Radio exercise details

Operating conditions	This WiFi / BT module is a module with 802.11ac / a / b / g / n WiFi and Bluetooth communication function. It is programmed to recognize the country code issued by the AP and communicate with the output according
	to the wireless specifications allowed in each country.
	Output power level was set according to the table below
	Software: Qualcomm Atheros Radio Control Toolkit
	• Version: V3.0-00191
Transmitter state	Transmitter set into maximum typical duty cycle mode.

The below Frequencies, modulations and power levels were used during this assessment.

Modulation	Channel number	Frequency (MHz)	Power level (dBm)	Measured Duty Cycle (%)	Calculated DCCF (dB)
	52	5260	15		
802.11a	60	5300	13.5	91.9	0.4
	64	5320	13.5		
	52	5260	14		
802.11ac VHT20	60	5300	13.5	94	0.3
	64	5320	13.5		
002 11 - 2 // UT40	54	5270	13		
802.11ac VHT40	62	5310	10.5	86.5	0.6
802.11ac VHT80	58	5290	9.5	76.6	1.2

DCCF= 10 Log₁₀ (1/duty cycle), ex. For DC 91.9 %, DCCF = 10 Log₁₀ (1/0.919) = 0.4 dB Note:

Table 5.5-1: EUT interface ports

Description	Qty.
Charging DC power input / micro-USB	1

EUT

Figure 5.5-1: Radiated testing block diagram

Section 6 Summary of test results

6.1 Testing location

Test location (s) Cambridge

6.2 Testing period

Test start date	September 16, 2021	Test end date	December 14, 2021

6.3 Sample information

Receipt date	September 9, 2021	Nemko sample ID number(s)	2 and 3

6.4 FCC Part 15 Subpart A and C, general requirements test results

Table 6.4-1: FCC general requirements results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31I	Variation of power source	Pass
§15.31(m)	Number of tested frequencies	Pass
§15.203	Antenna requirement	Pass

Notes: EUT is a battery operated device, the testing was performed using fresh batteries.

FCC Part §15.407 test results 6.5

Table 6.5-1: FCC §15.407 requirements results

Part	Test description	Verdict
§15.403	Emission bandwidth	Pass
§15.407(a)(1)	Power and density limits within 5.15–5.25 GHz band	Not applicable
§15.407(a)(2)	Power and density limits within 5.25–5.35 GHz and 5.47–5.725 GHz bands	Pass
§15.407(a)(3)	Power and density limits within 5.725–5.85 GHz band	Not applicable
§15.407(a)(4)	Power and density limits within 5.925–6.425 GHz and 6.525–6.875 GHz band	Not applicable
§15.407(a)(5)	Power and density limits within 5.925–7.125 GHz band	Not applicable
§15.407(a)(6)	Power and density limits within 5.925–7.125 GHz band	Not applicable
§15.407(a)(7)	Power and density limits within 5.925–6.425 GHz and 6.525–6.875 GHz band	Not applicable
§15.407(a)(8)	Power and density limits within 5.925–7.125 GHz band	Not applicable
§15.407(b)(1)	Undesirable emission limits for 5.15–5.25 GHz band	Not applicable
§15.407(b)(2)	Undesirable emission limits for 5.25–5.35 GHz band	Pass
§15.407(b)(3)	Undesirable emission limits for 5.47–5.725 GHz bands	Not applicable
§15.407(b)(4)	Undesirable emission limits for 5.725–5.85 GHz band	Not applicable
§15.407(b)(5)	Undesirable emission limits for 5.925–7.125 GHz band	Not applicable
§15.407(b)(5)	Undesirable emission limits for 5.925–7.125 GHz band	Not applicable
§15.407(b)(6)	Mask for 5.925–7.125 GHz band	Not applicable
§15.407(b)(8)	AC power line conducted limits	Pass
§15.407(e)	Minimum 6 dB bandwidth of U-NII devices within the 5.725–5.85 GHz band	Not applicable
§15.407(g)	Frequency stability	Pass
§15.407(h)(1) ¹	Transmit power control (TPC)	Not applicable
§15.407(h)(2) ¹	Dynamic Frequency Selection (DFS)	Not tested
§15.407(k)	Automated frequency coordination (AFC) system	Not applicable

Notes As per requested by the customer the DFS test was excluded from the test plan.

ISED RSS-Gen, Issue 5, test results 6.6

Table 6.6-1: RSS-Gen requirements results

Clause	Test description	Verdict
7.3	Receiver radiated emission limits	Not applicable
7.4	Receiver conducted emission limits	Not applicable
6.9	Operating bands and selection of test frequencies	Pass
8.8	AC power-line conducted emissions limits	Pass
tes:	¹According to sections 5.2 and 5.3 of RSS-Gen, Issue 5 the EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receive	

1According to sections 5.2 and 5.3 of RSS-Gen, Issue 5 the EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receiver

EUT is a battery operated device, the testing was performed using fresh batteries.

6.7 ISED RSS-247, Issue 2, test results

Table 6.7-1: ISED RSS-247 requirements results

Section	Test description	Verdict
6.1 ¹	Types of Modulation	Pass
6.2.1.1	Power limits for 5150–5250 MHz band	Not applicable
6.2.2.1	Power limits for 5250–5350 MHz band	Pass
6.2.2.1(b)	TPC requirements for 5250–5350 MHz band	Not applicable
6.2.3.1	Power limits for 5470–5600 MHz and 5650–5725 MHz bands	Not applicable
6.2.3.1(b)	TPC requirements for 5470–5600 MHz and 5650–5725 MHz bands	Not applicable
6.2.4.1	Power limits for 5725–5850 MHz band	Not applicable
6.2.4.1	Minimum 6 dB bandwidth for 5725–5850 MHz band	Not applicable
6.2.1.2	Unwanted emission limits for 5150–5250 MHz band	Not applicable
6.2.2.2	Unwanted emission limits for 5250–5350 MHz band	Pass
6.2.2.3	Additional requirements for 5250–5350 MHz band	Not applicable
6.2.3.	Unwanted emission limits for 5470–5600 MHz and 5650–5725 MHz bands	Not applicable
6.2.4.2	Unwanted emission limits for 5725–5850 MHz band	Not applicable
6.3	Dynamic Frequency Selection (DFS) for devices operating in the bands 5250–5350 MHz, 5470–5600 MHz and 5650–5725 MHz	Not tested

Notes: ¹ The EUT employs digital modulations, such as: 802.11a, 802.11n HT20 and 802.11n HT40

As per requested by the customer the DFS test was excluded from the test plan $\,$

Section 7 Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA003012	1 year	April 12, 2022
Flush mount turntable	SUNAR	FM2022	FA003006	_	NCR
Controller	SUNAR	SC110V	FA002976	_	NCR
Antenna mast	SUNAR	TLT2	FA003007	_	NCR
AC Power source	Chroma	0	FA003020	_	NCR
Vector signal generator	Rohde & Schwarz	SMW200A	FA002970	1 Year	November 30, 2022
Spectrum analyzer	Rohde & Schwarz	FSW43	FA002971	1 year	November 30, 2022
Receiver/spectrum analyzer	Rohde & Schwarz	ESR26	FA002969	1 year	November 30, 2022
Horn antenna (1–18 GHz)	ETS Lindgren	3117	FA002911	1 year	April 21, 2022
Preamp (1–18 GHz)	ETS Lindgren	124334	FA002956	1 year	April 5, 2022
Horn antenna (18–40 GHz)	EMCO	3116B	FA002948	1 year	January 22, 2022
Preamp 18-40 GHz	None	None	FA003323	1 year	April 5, 2022
Bilog antenna (30–2000 MHz)	SUNAR	JB1	FA003010	1 year	April 28, 2022
50 Ω coax cable	Huber + Suhner	None	FA003047	1 year	December 17, 2022
50 Ω coax cable	Huber + Suhner	None	FA003043	1 year	Nov 9, 2022

Notes:

NCR - no calibration required

Testing data Variation of power source FCC Part 15 Subpart A

Section 8 Testing data

8.1	Variation of power s	source				
8.1.1	References, definition	ns and limits				
the	intentional radiators, measu emission, as appropriate, sh	urements of the variation of the input power or the nall be performed with the supply voltage varied be ne equipment tests shall be performed using a new	tween 85% and 115%			
8.1.2	Test summary					
Verdict		Pass				
Tested b	У	Tarek Elkholy	Test date		Septem	ber 20, 2021
8.1.3	Observations, setting	gs and special notes				
a) b) c) d)	provided with the device used. For devices, where opera test to minimum and may For devices with wide ran voltage. For devices obtaining power of the provided	NSI C63.10 Section 5.13. Inded to be powered from an external power adaptivate the time of sale. If the device is not marketed on thing at a supply voltage deviating ±15% from the niximum allowable voltage per manufacturer's specification of rated supply voltage, test at 15% below the lower from an input/output (I/O) port (USB, firewire, pply, while maintaining the functionalities of the deel equipment tests shall be performed using a varial	ominal rated value mails and document owest and 15% above etc.), a test jig is necessitie.	adapter, the ay cause da t in the rep e the highe	m a typical mages or l ort. st declared	power adapter shall be oss of intended function, nominal rated supply
0.2						
UT Powe	r requirements:			\square AC	\square DC	☑ Battery
	·	vered, was the noticeable output power variation o	bserved?	☐ YES	□ NO	⊠ N/A
		was the testing performed using fresh batteries? ery operated, was the testing performed using fully	charged batteries?	YES YES ✓	□ NO	□ N/A □ N/A

Report reference ID: 449306-3R1TRFWL Page 14 of 44

Testing data
Number of frequencies

FCC Part 15 Subpart A and RSS-Gen, Issue 5

8.2 Number of frequencies

8.2.1 References, definitions and limits

FCC §15.31:

(m) Measurements on intentional radiators or receivers shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table.

RSS-Gen, Clause 6.9:

Except where otherwise specified, measurements shall be performed for each frequency band of operation for which the radio apparatus is to be certified, with the device operating at the frequencies in each band of operation shown in table below. The frequencies selected for measurements shall be reported in the test report.

Table 8.2-1: Frequency Range of Operation

Frequency range over which the device	_	Location of measurement frequency inside the
operates (in each band)	Number of test frequencies required	operating frequency range
1 MHz or less	1	Center (middle of the band)
1–10 MHz	2	1 near high end, 1 near low end
Greater than 10 MHz	3	1 near high end, 1 near center and 1 near low end

Notes: "near" means as close as possible to or at the centre / low end / high end of the frequency range over which the device operates.

8.2.2 Test summary

Verdict	Pass		
Tested by	Tarek Elkholy	Test date	September 16, 2021

8.2.3 Observations, settings and special notes

ANSI C63.10, Clause 5.6.2.1:

The number of channels tested can be reduced by measuring the center channel bandwidth first and then applying the following relaxations as appropriate:

- a) For each operating mode, if the measured channel bandwidth on the middle channel is at least 150% of the minimum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.
- b) For multiple-input multiple-output (MIMO) systems, if the measured channel bandwidth on testing the middle channel exceeds the minimum permitted bandwidth by more than 50% on one transmit chain, then it is not necessary to repeat testing on the other chains.
- c) If the measured channel bandwidth on the middle channel is less than 50% of the maximum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.

ANSI C63.10, Clause 5.6.2.2:

For devices with multiple operating modes, measurements on the middle channel can be used to determine the worst-case mode(s). The worst-case modes are as follows:

- a) Band edge requirements—Measurements on the mode with the widest bandwidth can be used to cover the same channel (center frequency) on modes with narrower bandwidth that have the same or lower output power for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- b) Spurious emissions—Measure the mode with the highest output power and the mode with the highest output power spectral density for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- c) In-band PSD—Measurements on the mode with the narrowest bandwidth can be used to cover all modes within the same modulation family of an equal or lower output power provided the result is less than 50% of the limit.

Report reference ID: 449306-3R1TRFWL Page 15 of 44

Testing data
Number of frequencies

FCC Part 15 Subpart A and RSS-Gen, Issue 5

8.2.4 Test data

Table 8.2-2: Test channels selection (20 MHz)

Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	Low channel, MHz	Mid channel, MHz	High channel, MHz
5250	5350	100	5260	5300	5320

Table 8.2-3: Test channels selection (40 MHz)

Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	Low channel, MHz	High channel, MHz
5250	5350	100	5270	5310

Table 8.2-4: Test channels selection (80 MHz)

	Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	one channel, MHz
I	5250	5350	100	5290

Report reference ID: 449306-3R1TRFWL

Testing data Antenna requirement

FCC Part 15 Subpart C and RSS-Gen, Issue 5

8.3 Antenna requirement

8.3.1 References, definitions and limits

FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

RSS-Gen, Clause 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report.

8.3.2 Test summary

FPA2514-5A

Verdict Pass					
Tested by Tarek Elkho	oly		Test date	9	September 16, 2021
8.3.3 Observations, settings and speci	al notes				
None					
8.3.4 Test data					
Must the EUT be professionally installed?		YES	⊠ NO		
vidat tile LOT be professionally illatalled:		. L_O			
•		YES	⊠ NO		
Does the EUT have detachable antenna(s)? If detachable, is the antenna connector				⊠ N/A	
Does the EUT have detachable antenna(s)?		YES YES	⊠ NO □ NO	⊠ N/A	

-0.1 dBi

WFL

Report reference ID: 449306-3R1TRFWL Page 17 of 44

Testing data

AC power line conducted emissions limits FCC Part 15 Subpart C and RSS-Gen, Issue 5

8.4 AC power line conducted emissions limits

8.4.1 References, definitions and limits

FCC §15.407(b):

(8) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207.

FCC §15.207:

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μH/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

ANSI C63.10, Clause 6.2:

If the EUT normally receives power from another device that in turn connects to the public utility ac power lines, measurements shall be made on that device with the EUT in operation to demonstrate that the device continues to comply with the appropriate limits while providing the EUT with power. If the EUT is operated only from internal or dedicated batteries, with no provisions for connection to the public utility ac power lines (600 VAC or less) to operate the EUT (such as an adapter), then ac power-line conducted measurements are not required.

For direct current (dc) powered devices where the ac power adapter is not supplied with the device, an "off-the-shelf" unmodified ac power adapter shall be used. If the device is supposed to be installed in a host (e.g., the device is a module or PC card), then it is tested in a typical compliant host.

RSS-Gen, Clause 8.8:

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in table below.

Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in table below. The more stringent limit applies at the frequency range boundaries.

Table 8.4-1: Conducted emissions limit

	Conducted emissions limit, dBμV		
Frequency of emission, MHz	Quasi-peak	Average**	
0.15–0.5	66 to 56*	56 to 46*	
0.5–5	56	46	
5–30	60	50	

Notes:

- * The level decreases linearly with the logarithm of the frequency.
- ** A linear average detector is required.

8.4.2 Test summary

Verdict	Pass		
Tested by	Tarek Elkholy	Test date	December 14, 2021

Report reference ID: 449306-3R1TRFWL

Testing data

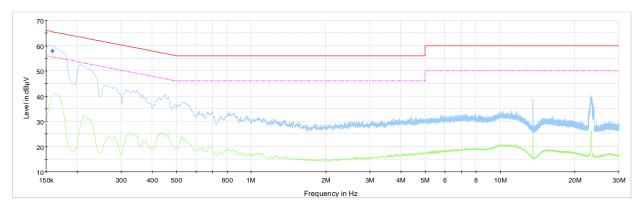
AC power line conducted emissions limits FCC Part 15 Subpart C and RSS-Gen, Issue 5

8.4.3 Observations, settings and special notes

Port under test – Coupling device	AC power input – Artificial Mains Network (AMN)
EUT power input during test	120 V _{AC} , 60 Hz
EUT setup configuration	Table top
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 10 dB or above the limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.
Additional notes:	 The EUT was set up as tabletop configuration per ANSI C63.10-2013 measurement procedure. The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance. Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB) Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded. Where tabular data has not been provided, no emissions were observed within 10 dB of the specified limit when measured with the appropriate detector. Additionally, where less than 6 measurements per detector have been provided, fewer than 6 emissions were observed within 10 dB of the specified limit when measured with the appropriate detector.

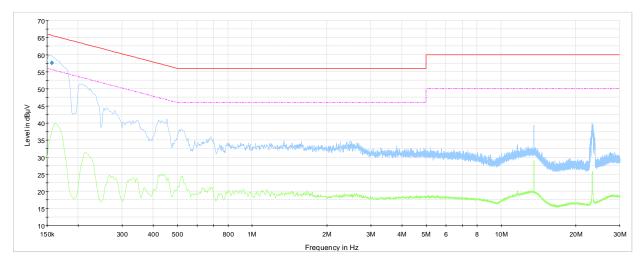
Conducted AC line emissions test was performed as per ANSI C63.10, Clause 6.2. Spectrum analyser settings:

Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	Peak and Average (Preview), Quasi-peak and CAverage (Final)
Trace mode	Max Hold
Measurement time	100 ms (Preview), 160 ms (Final)


Report reference ID: 449306-3R1TRFWL Page 19 of 44

Testing data

AC power line conducted emissions limits FCC Part 15 Subpart C and RSS-Gen, Issue 5


8.4.4 Test data

NEX-449306 CE 0.15-30 MHz - Phase - 802.11a ch. 60

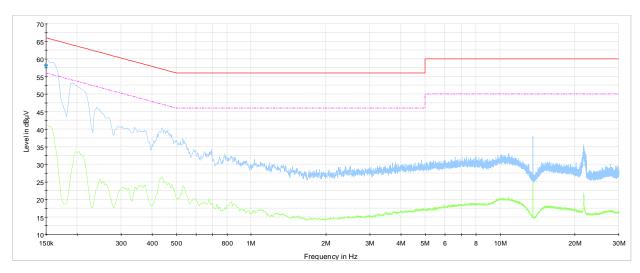
- Preview Result 2-AVG
- rreview Result 2-AVG Preview Result 1-PK+ CISPR 32 Limit Class B, Mains (Quasi-Peak) CISPR 32 Limit Class B, Mains (Average) Final_Result CPK Final_Result CAV

Plot 8.4-1: Conducted emissions on phase line - 802.11a

NEX-449306 CE 0.15-30 MHz - Neutral - 802.11a ch. 60

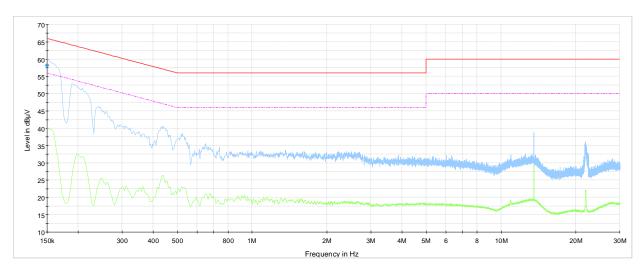
- Preview Result 2-AVG
- Preview Result 2-PAVG
 Preview Result 1-PK4
 CISPR 32 Limit Class B, Mains (Quasi-Peak)
 CISPR 32 Limit Class B, Mains (Average)
 Final_Result QPK
 Final_Result CAV

Plot 8.4-2: Conducted emissions on neutral line - 802.11a


449306-3R1TRFWL Report reference ID:

Testing data

AC power line conducted emissions limits FCC Part 15 Subpart C and RSS-Gen, Issue 5


Test data, continued

NEX-449306 CE 0.15-30 MHz - Phase - 802.11ac ch. 60

Preview Result 2-AVG
Preview Result 1-PK+
CISPR 32 Limit - Class B, Mains (Quasi-Peak)
CISPR 32 Limit - Class B, Mains (Average)
Final_Result CPK
Final_Result CAV

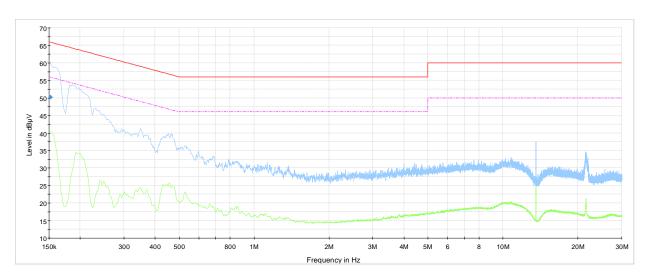
Plot 8.4-3: Conducted emissions on phase line – 802.11ac VHT20

NEX-449306 CE 0.15-30 MHz - Neutral - 802.11ac ch. 60

Preview Result 2-AVG

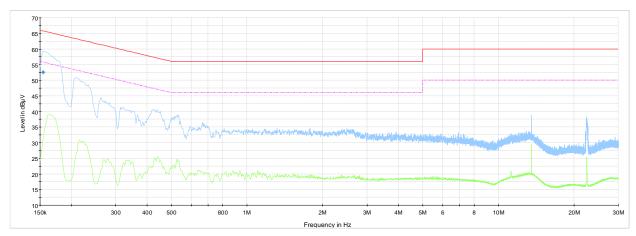
Preview Result 2-AVG
Preview Result 1-PK+
CISPR 32 Limit - Class B, Mains (Quasi-Peak)
CISPR 32 Limit - Class B, Mains (Average)
Final_Result CPK
Final_Result CAV

Plot 8.4-4: Conducted emissions on neutral line – 802.11ac VHT20


449306-3R1TRFWL Report reference ID:

Testing data

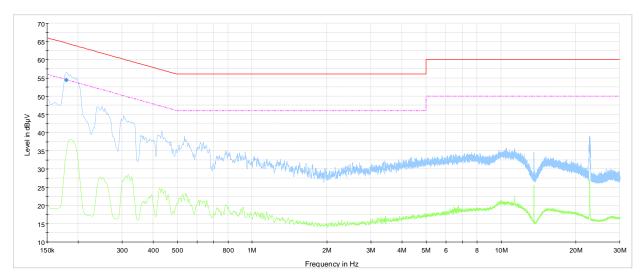
AC power line conducted emissions limits FCC Part 15 Subpart C and RSS-Gen, Issue 5


Test data, continued

NEX-449306 CE 0.15-30 MHz - Phase - 802.11ac VHT40 ch. 54

- Preview Result 2-AVG
- Preview Result 2-AVG
 Preview Result 1-PK+
 CISPR 32 Limit Class B, Mains (Quasi-Peak)
 CISPR 32 Limit Class B, Mains (Average)
 Final Result CPK
 Final_Result CAV

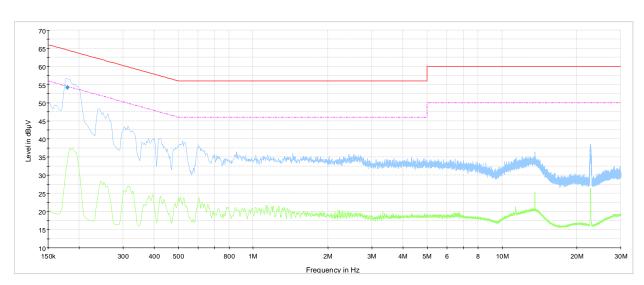
Plot 8.4-5: Conducted emissions on phase line – 802.11ac VHT40


NEX-449306 CE 0.15-30 MHz - Neutral - 802.11ac VHT40 ch. 54

- Devous C. U.15-30 MMz Neutral 802.11ac VI Preview Result-AVG Preview Result 1-PK+ CISPR 32 Limit Class B, Mains (Quasi-Peak) CISPR 32 Limit Class B, Mains (Average) Final_Result QPK Final_Result CAV

Plot 8.4-6: Conducted emissions on neutral line - 802.11ac VHT40

449306-3R1TRFWL Page 22 of 44 Report reference ID:


Test data, continued

NEX-449306 CE 0.15-30 MHz - Phase - 802.11ac VHT80 ch. 58

- Preview Result 2-AVG
 Preview Result 1-PK+
 CISPR 32 Limit Class B, Mains (Quasi-Peak)
 CISPR 32 Limit Class B, Mains (Average)
- Final_Result QPK Final_Result CAV

Plot 8.4-7: Conducted emissions on phase line - 802.11ac VHT80

NEX-449306 CE 0.15-30 MHz - Neutral - 802.11ac VHT80 ch. 58

- Preview Result 2-AVG
 Preview Result 1-PK+
 CISPR 32 Limit Class B, Mains (Quasi-Peak)
 CISPR 32 Limit Class B, Mains (Average)
 Final_Result QPK
 Final_Result CAV

Plot 8.4-8: Conducted emissions on neutral line - 802.11ac VHT80

Testing data Emission bandwidth FCC Part 15 Subpart E

8.5 Emission bandwidth

8.5.1 References, definitions and limits

FCC §15.403:

For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

8.5.2 Test summary

Verdict	Pass		
Tested by	Tarek Elkholy	Test date	September 21, 2021

8.5.3 Observations, settings and special notes

The emission bandwidth was tested per ANSI C63.10, Clause 12.4 and KDB 789033 D02, Clause II(C)(1). Spectrum analyser settings:

Resolution bandwidth	approximately 1% of the emission bandwidth
Video bandwidth	> RBW
Detector mode	Peak
Trace mode	Max Hold

8.5.4 Test data

Table 8.5-1: 26 dB bandwidth results

Modulation	Frequency, MHz	26 dB bandwidth, MHz
802.11a	5260	20.64
802.11a	5300	20.15
802.11a	5320	20.39

Table 8.5-2: 26 dB bandwidth results

Modulation	Frequency, MHz	26 dB bandwidth, MHz
802.11ac VHT20	5260	20.43
802.11ac VHT20	5300	20.18
802.11ac VHT20	5320	20.11

Table 8.5-3: 26 dB bandwidth results

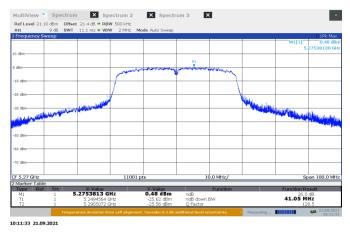
Modulation	Frequency, MHz	26 dB bandwidth, MHz
802.11ac VHT40	5270	41.05
802.11ac VHT40	5310	40.46

Table 8.5-4: 26 dB bandwidth results

Modulation	Frequency, MHz	26 dB bandwidth, MHz
802.11ac VHT80	5290	80.47

Report reference ID: 449306-3R1TRFWL Page 24 of 44

Testing data Emission bandwidth FCC Part 15 Subpart E


Test data, continued

X-Value 5.3025952 GHz Y-Value -0.07 dBm

Figure 8.5-1: 26 dB bandwidth on 802.11a, sample plot

Figure 8.5-2: 26 dB bandwidth on 802.11ac VHT20, sample plot

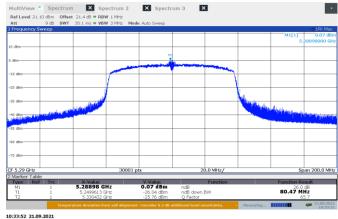


Figure 8.5-3: 26 dB bandwidth on 802.11ac VHT40, sample plot

Figure 8.5-4: 26 dB bandwidth on 802.11ac VHT80, sample plot

Page 25 of 44 Report reference ID: 449306-3R1TRFWL

Testing data
Occupied bandwidth

ANSI C63.10-2013 and RSS-Gen, Issue 5

8.6 Occupied bandwidth

8.6.1 References, definitions and limits

ANSI C63.10-2013, Clause 6.9.3:

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

RSS-Gen, Clause 6.7:

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

8.6.2 Test summary

Verdict	Pass		
Tested by	Tarek Elkholy	Test date	September 21, 2021

8.6.3 Observations, settings and special notes

The emission bandwidth was tested per ANSI C63.10, Clause 6.9.3 and KDB 789033 D02, Clause II(D). Spectrum analyser settings:

Resolution bandwidth:	≥ 1 % of span
Video bandwidth:	≥3 × RBW
Detector mode:	Peak
Trace mode:	Max Hold

8.6.4 Test data

Table 8.6-1: 99% bandwidth results

Modulation	Frequency, MHz 99% bandwidth, MHz	
802.11a	5260	17.42
802.11a	5300	17.38
802.11a	5320	17.40

Table 8.6-2: 99% bandwidth results

Modulation	Frequency, MHz	99% bandwidth, MHz	
802.11ac VHT20	5260	17.42	
802.11ac VHT20	5300	17.41	
802.11ac VHT20	5320	17.44	

Table 8.6-3: 99% bandwidth results

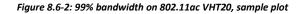
Modulation	Frequency, MHz 99% bandwidth, MHz	
802.11ac VHT40	5270	35.97
802.11ac VHT40	5310	35.93

Table 8.6-4: 99% bandwidth results

Modulation	Frequency, MHz	99% bandwidth, MHz
802.11ac VHT80	5290	74.61

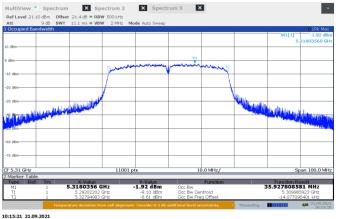
Report reference ID: 449306-3R1TRFWL Page 26 of 44

Testing data Occupied bandwidth


ANSI C63.10-2013 and RSS-Gen, Issue 5

Test data, continued

X-Value 5.3228861 GHz Y-Value -1.04 dBm Function Result 17.440034025 MHz


Figure 8.6-1: 99% bandwidth on 802.11a, sample plot

X Spectrum 3 X

X Spectrum 2

11001 pts

10:34:19 21.09.2021

Figure 8.6-3: 99% bandwidth on 802.11ac VHT40, sample plot

Figure 8.6-4: 99% bandwidth on 802.11ac VHT80, sample plot

20.0 MHz/

Span 200.0 MHz Function Result 74.607558916 MHz

Page 27 of 44 Report reference ID: 449306-3R1TRFWL

Section 8

8 Testing data

Test name

Transmitter output power and e.i.r.p. requirements for 5250–5350 MHz band

Specification FCC Part 15 Subpart E and RSS-247, Issue 2

8.7 Transmitter output power and e.i.r.p. requirements for 5250–5350 MHz band

8.7.1 References, definitions and limits

FCC §15.407:

- (a) Power limits:
- (2) For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (11) The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.
- (12) Power spectral density measurement. The maximum power spectral density is measured as either a conducted emission by direct connection of a calibrated test instrument to the equipment under test or a radiated measurement. Measurements in the 5.725–5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in all other bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth

RSS-247, Clause 6.2:

Power and unwanted emissions limits

The output power and e.i.r.p. of the equipment wanted emission shall be measured in terms of average value.

5.2.2 Frequency band 5250-5350 MHz

For devices installed in vehicles, only OEM devices installed by vehicle manufacturers are permitted.

6.2.2.1 Power limits

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less. Devices shall implement TPC in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

Devices, other than devices installed in vehicles, shall comply with the following:

- a. The maximum conducted output power shall not exceed 250 mW or 11 + 10 log₁₀B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band;
- b. The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log₁₀B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

6.2.2.3 Additional requirements

In addition to the above requirements, devices shall comply with the following, where applicable:

a. Outdoor fixed devices with a maximum e.i.r.p. greater than 200 mW shall comply with the following e.i.r.p. at different elevations, where θ is the angle above the local horizontal plane (of the Earth) as shown below:

i. −13 dBW/MHz for 0°≤ θ< 8° ii. −13 − 0.716 (θ − 8) dBW/MHz for 8°≤ θ< 40° iii. −35.9 − 1.22 (θ − 40) dBW/MHz for 40°≤ θ< 45° iv. −42 dBW/MHz for θ> 45°

- b. Devices, other than outdoor fixed devices, having an e.i.r.p. greater than 200 mW shall comply with either i) or ii) below:
- i. devices shall comply with the e.i.r.p. elevation mask in 6.2.2.3(a); or
- ii. devices shall implement a method to permanently reduce their e.i.r.p. via a firmware feature in the event that the Department requires it. The test report must demonstrate how the device's power table can be updated to meet this firmware requirement. The manufacturer shall provide this firmware to update all systems automatically in compliance with the directions received from the Department.

Report reference ID: 449306-3R1TRFWL Page 28 of 44

Testing data

Transmitter output power and e.i.r.p. requirements for 5250–5350 MHz band FCC Part 15 Subpart E and RSS-247, Issue 2

8.7.2 Test summary

Verdict	Pass		
Tested by	Tarek Elkholy	Test date	September 21, 2021

8.7.3 Observations, settings and special notes

The maximum measured 26 dB emission bandwidth for 802.11a was 20.64 MHz, for 802.11ac VHT20 was 20.43 MHz and for 802.11ac VHT40 was 41.05 MHz and for 802.11ac VHT80 was 80.47 MHz.

FCC output power limit for 802.11a was calculated as follows: $11 \text{ dBm} + 10 \times \log 10 (20.64) = 24.2 \text{ dBm} > 24 \text{ dBm}$

FCC output power limit for 802.11ac VHT20 was calculated as follows: $11 \text{ dBm} + 10 \times \text{log}10 (20.43) = 24.1 \text{ dBm} > 24 \text{ dBm}$

FCC output power limit for 802.11ac VHT40 was calculated as follows: $11 dBm + 10 \times log10$ (41.05) = 27.1 dBm > 24 dBm

FCC output power limit for 802.11ac VHT80 was calculated as follows: $11 dBm + 10 \times log10$ (80.47) = 30.1 dBm > 24 dBm

Therefore, the limit is 250 mW (24 dBm)

The maximum measured 99 % occupied bandwidth for 802.11a was 17.42 MHz, for 802.11ac VHT20 was 17.44 MHz and for 802.11ac VHT40 was 35.97 MHz and for 802.11ac VHT80 was 74.61 MHz.

IC output power limit for 802.11a was calculated as follows: $11 + 10 \times \text{Log}_{10} (17.42) = 23.4 \text{ dBm} < 24 \text{ dBm}$

IC output power limit for 802.11ac VHT20 was calculated as follows: $11 + 10 \times Log_{10} (17.44) = 23.4 \text{ dBm} < 24 \text{ dBm}$

IC output power limit for 802.11ac VHT40 was calculated as follows: $11 + 10 \times Log_{10} (35.97) = 26.6 \, dBm > 24 \, dBm$, therefore the limit is 24 dBm

IC output power limit for 802.11ac VHT80 was calculated as follows: 11 + 10 × Log₁₀ (74.61) = 29.7 dBm > 24 dBm, therefore the limit is 24 dBm

IC EIRP limit for 802.11a was calculated as follows: $17 + 10 \times Log_{10}$ (17.42) = 29.4 dBm < 30 dBm

IC EIRP limit for 802.11ac VHT20 was calculated as follows: $17 + 10 \times Log_{10}$ (17.44) = 29.4 dBm < 30 dBm

IC EIRP limit for 802.11ac VHT40 was calculated as follows: 17 + 10 × Log₁₀ (35.97) = 32.6 dBm > 30 dBm, therefore the limit is 30 dBm

IC EIRP limit for 802.11ac VHT80 was calculated as follows: 17 + 10 × Log₁₀ (74.61) = 35.7 dBm > 30 dBm, therefore the limit is 30 dBm

Power spectral density was tested per ANSI C63.10, Clause 12.5 and 789033 D02, Clause II(F).

Conducted output power was tested per ANSI C63.10, Clause 12.3 and 789033 D02, Clause II(E) using method SA-2 or SA-2 Alternative (averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

Elevation angle emission was tested per ANSI C63.10, Clause 12.5 and 789033 D02, Clause II(H).

Spectrum analyser settings:

Resolution bandwidth	1 MHz
Video bandwidth	≥ 3 MHz
Frequency span	Enough to encompass the entire 26 dB EBW or 99% OBW of the signal
Detector mode	RMS
Trace mode	Max Hold
Power aggregation	Over 26 dB EBW or 99% OBW

Report reference ID: 449306-3R1TRFWL Page 29 of 44

Testing data

Transmitter output power and e.i.r.p. requirements for 5250–5350 MHz band FCC Part 15 Subpart E and RSS-247, Issue 2

8.7.4 Test data

Table 8.7-1: Output power measurements results for FCC

Modulation	Frequency, MHz	Conducted output power, dBm	Power limit, dBm	Margin, dB
802.11a	5260	11.3	24.0	12.7
	5300	9.9	24.0	14.1
	5320	9.9	24.0	14.1
802.11ac VHT20	5260	10.3	24.0	13.7
	5300	9.8	24.0	14.2
	5320	9.9	24.0	14.1
802.11ac VHT40	5270	9.7	24.0	14.3
	5310	7.2	24.0	16.8
802.11ac VHT80	5290	6.2	24.0	17.8

Note:

The conducted power levels are corrected to the relevant DCCF.

 Table 8.7-2: Output power measurements and EIRP calculations results for ISED

		Conducted output				
Modulation	Frequency, MHz	power, dBm	Antenna gain, dBi	EIRP, dBm	EIRP limit, dBm	Margin, dB
802.11a	5260	11.3	-0.1	11.2	29.4	18.2
	5300	9.9	-0.1	9.8	29.4	19.6
	5320	9.9	-0.1	9.8	29.4	19.6
802.11ac VHT20	5260	10.3	-0.1	10.2	29.4	19.2
	5300	9.8	-0.1	9.7	29.4	19.7
	5320	9.9	-0.1	9.8	29.4	19.6
802.11ac VHT40	5270	9.7	-0.1	9.6	30.0	20.4
	5310	7.2	-0.1	7.1	30.0	22.9
802.11ac VHT80	5290	6.2	-0.1	6.1	30.0	23.9

Note:

The conducted power levels are corrected to the relevant DCCF.

Table 8.7-3: PPSD measurements results

Modulation	Frequency, MHz	PPSD, dBm/MHz	PPSD limit, dBm/MHz	Margin, dB
802.11a	5260	-0.3	11.0	11.3
	5300	-1.9	11.0	12.9
	5320	-1.5	11.0	12.5
802.11ac VHT20	5260	-1.2	11.0	12.2
	5300	-1.4	11.0	12.4
	5320	-1.4	11.0	12.4
802.11ac VHT40	5270	-4.4	11.0	15.4
	5310	-7.3	11.0	18.3
802.11ac VHT80	5290	-11.1	11.0	22.1

Note:

The PPSD levels are corrected to the relevant DCCF.

Testing data

Transmitter output power and e.i.r.p. requirements for 5250–5350 MHz band FCC Part 15 Subpart E and RSS-247, Issue 2

Test data, continued

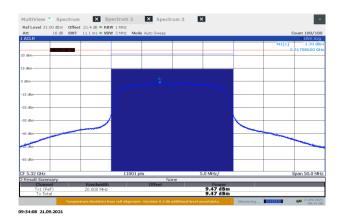


Figure 8.7-1: Sample plot for power on 802.11a

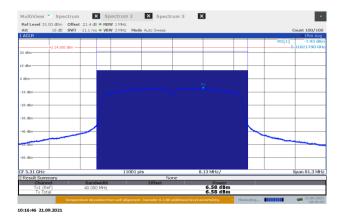


Figure 8.7-3: Sample plot for power on 802.11ac VHT40

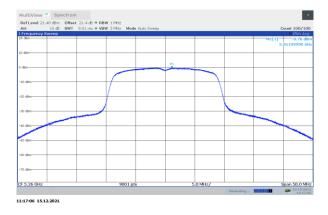


Figure 8.7-5: Sample plot for PSD on 802.11a

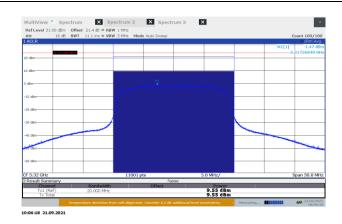


Figure 8.7-2: Sample plot for power on 802.11ac VHT20



Figure 8.7-4: Sample plot for power on 802.11ac VHT80

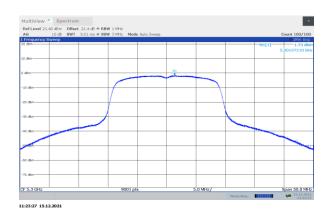


Figure 8.7-6: Sample plot for power on 802.11ac VHT20

Report reference ID: 449306-3R1TRFWL

Testing data

Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E and RSS-247, Issue 2

8.8 Spurious unwanted (undesirable) emissions

8.8.1 References, definitions and limits

FCC §15.407:

- (b) Undesirable emission limits.
 - Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
- (2) For transmitters operating in the 5.25–5.35 GHz band: All emissions outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p. of –27 dBm/MHz.
- (7) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (8) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207.
- (9) The provisions of § 15.205 apply to intentional radiators operating under this section.
- (10) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

RSS-247, Clause 6.2:

Power and unwanted emissions limits

The power and e.i.r.p. of the equipment unwanted emission shall be measured in peak value. However, the equipment is required to comply with the provisions in RSS-Gen with respect to emissions falling within restricted frequency bands which are listed in the same standard. If the transmission is in bursts, the provisions of RSS-Gen for pulsed operation shall apply.

The outermost carrier frequencies or channels shall be used when measuring unwanted emissions. Such carrier or channel centre frequencies are to be indicated in the test report.

6.2.2 Frequency band 5250-5350 MHz

For devices installed in vehicles, only OEM devices installed by vehicle manufacturers are permitted.

6.2.2.2 Unwanted emission limits

Devices shall comply with the following:

- a. All emissions outside the band 5250–5350 MHz shall not exceed -27 dBm/MHz e.i.r.p.; or
- b. All emissions outside the band 5150–5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. and its power shall comply with the spectral power density for operation within the band 5150–5250 MHz. The device, except devices installed in vehicles, shall be labelled or include in the user manual the following text "for indoor use only."

Table 8.8-1: FCC §15.209 and RSS-Gen – Radiated emission limits

-	Field strength of emissions				
Frequency, MHz	μV/m	dBμV/m	Measurement distance, m		
0.009-0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300		
0.490-1.705	24000/F	$87.6 - 20 \times log_{10}(F)$	30		
1.705–30.0	30	29.5	30		
30–88	100	40.0	3		
88–216	150	43.5	3		
216–960	200	46.0	3		
above 960	500	54.0	3		

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

Report reference ID: 449306-3R1TRFWL Page 32 of 44

Testing data

Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E and RSS-247, Issue 2

References, definitions and limits, continued

Table 8.8-2: ISED restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	12.57675–12.57725	399.9–410	7.25–7.75
0.495-0.505	13.36–13.41	608–614	8.025–8.5
2.1735-2.1905	16.42-16.423	960–1427	9.0–9.2
3.020-3.026	16.69475-16.69525	1435–1626.5	9.3–9.5
4.125–4.128	16.80425-16.80475	1645.5–1646.5	10.6–12.7
4.17725-4.17775	25.5–25.67	1660–1710	13.25–13.4
4.20725-4.20775	37.5–38.25	1718.8–1722.2	14.47–14.5
5.677–5.683	73–74.6	2200–2300	15.35–16.2
6.215–6.218	74.8–75.2	2310–2390	17.7–21.4
6.26775-6.26825	108–138	2483.5–2500	22.01–23.12
6.31175–6.31225	149.9–150.05	2655–2900	23.6–24.0
8.291-8.294	156.52475-156.52525	3260–3267	31.2–31.8
8.362-8.366	156.7–156.9	3332–3339	36.43–36.5
8.37625-8.38675	162.0125–167.17	3345.8–3358	
8.41425-8.41475	167.72–173.2	3500–4400	Above 38.6
12.29–12.293	240–285	4500–5150	Above 38.0
12.51975–12.52025	322–335.4	5350–5460	

Note: Certain frequency bands listed in Table 8.8-2 and above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

Table 8.8-3: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9–410	4.5–5.15
0.495-0.505	16.69475–16.69525	608–614	5.35-5.46
2.1735–2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108-121.94	1718.8–1722.2	13.25–13.4
6.31175-6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425-8.41475	162.0125-167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322–335.4	3600–4400	Above 38.6
13.36–13.41			

8.8.2 Test summary

Verdict	Pass		
Tested by	Tarek Elkholy	Test date	September 16, 2021

Testing data

Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E and RSS-247, Issue 2

8.8.3 Observations, settings and special notes

- As part of the current assessment, the test range of 9 kHz to 40 GHz has been fully considered and compared to the actual frequencies utilized within the EUT. Since the EUT contains a transmitter in the GHz range, the EUT has been deemed compliant without formal testing in the 9 kHz to 30 MHz test range, therefore formal test results (tabular data and/or plots) are not provided within this test report.
- EUT was set to transmit with 100 % duty cycle.
- Radiated measurements 30 MHz to 18 GHz were performed at a distance of 3 m, measurements 18 GHz to 26 GHz were performed at a distance of 1 m, measurements 26 GHz to 40 GHz were performed at a distance of 30 cm
- The spurious emission was tested per ANSI C63.10, Clause 12.7 and 789033 D02, Clause II(G).

Spectrum analyser for peak conducted measurements within restricted bands below 1 GHz:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyser for peak conducted measurements within restricted bands above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyser for Peak band edge within restricted bands above 1 GHz

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyser for Average band edge within restricted bands above 1 GHz

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	RMS
Trace mode:	Power average
Number of averaging traces:	100

Report reference ID: 449306-3R1TRFWL Page 34 of 44

Testing data

Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E and RSS-247, Issue 2

8.8.4 Test data

Test data, 802.11a

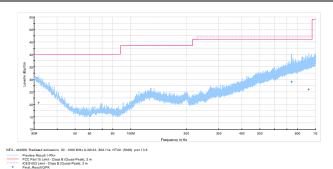


Figure 8.8-1: Sample plot, radiated spurious emissions 30-1000 MHz on 802.11a mid channel

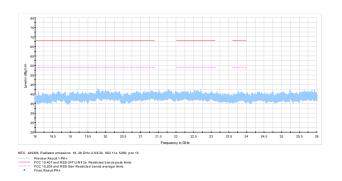


Figure 8.8-3: Sample plot, radiated spurious emissions 18-26 GHz on 802.11a low channel

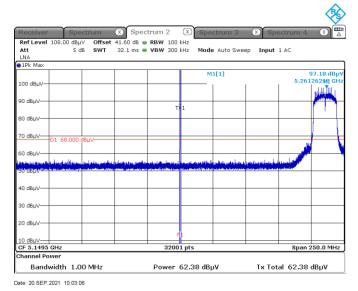


Figure 8.8-5: Radiated band edge low channel 802.11a peak

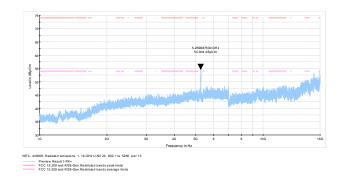


Figure 8.8-2: Sample plot, radiated spurious emissions 1-18 GHz on 802.11a low channel

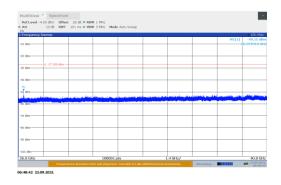


Figure 8.8-4: Sample plot, radiated spurious emissions 26-40 GHz on 802.11a low channel

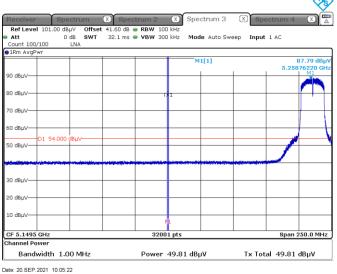


Figure 8.8-6: Radiated band edge low channel 802.11a average

Report reference ID: 449306-3R1TRFWL Page 35 of 44

Testing data

Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E and RSS-247, Issue 2

Test data, 802.11a, continued

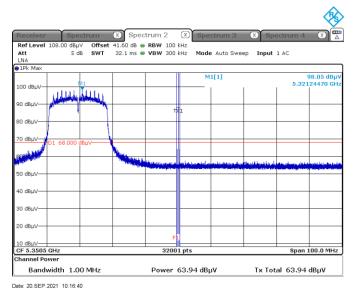
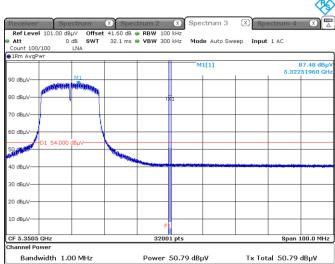



Figure 8.8-7: Radiated band edge high channel 802.11a peak

Date: 20.SEP.2021 10:18:19

Figure 8.8-8: Radiated band edge high channel 802.11a average

Test data, 802.11ac VHT20

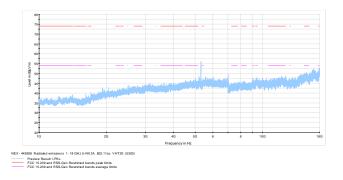


Figure 8.8-9: Sample plot, radiated spurious emissions 1-18 GHz on 802.11ac VHT20 mid channel

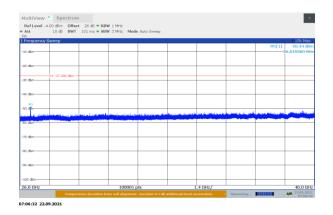


Figure 8.8-11: Sample plot, radiated spurious emissions 26-40 GHz on 802.11ac VHT20 mid channel

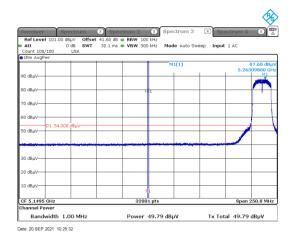


Figure 8.8-13: Radiated band edge low channel 802.11ac VHT20 average

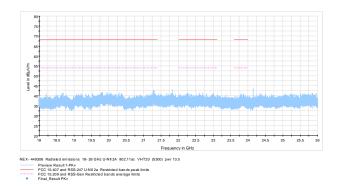


Figure 8.8-10: Sample plot, radiated spurious emissions 18-26 GHz on 802.11ac VHT20 mid channel

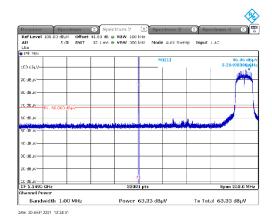


Figure 8.8-12: Radiated band edge low channel 802.11ac VHT20 peak

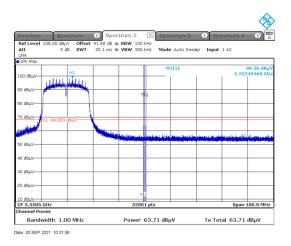


Figure 8.8-14: Radiated band edge high channel 802.11ac VHT20 Peak

Report reference ID: 449306-3R1TRFWL Page 37 of 44

Section 8 Test name Testing data

Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E and RSS-247, Issue 2 Specification

Test data, 802.11ac VHT20, continued

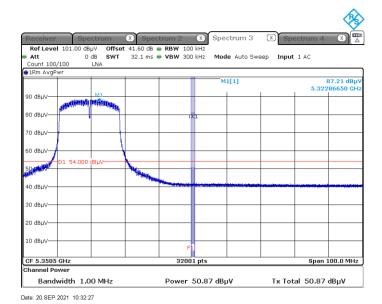


Figure 8.8-15: Radiated band edge high channel 802.11ac VHT20 average

Test data, 802.11ac VHT40

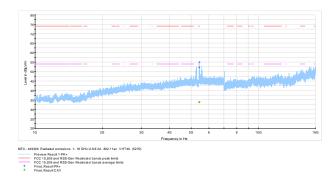


Figure 8.8-16: Sample plot, radiated spurious emissions 1-18 GHz on 802.11ac VHT40 low channel

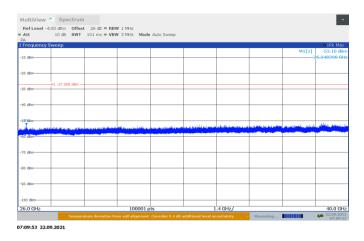


Figure 8.8-18: Sample plot, radiated spurious emissions 26-40 GHz on 802.11ac VHT40 low channel

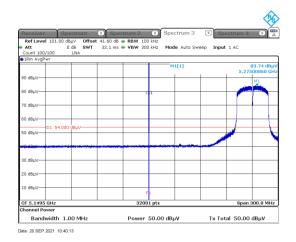


Figure 8.8-20: Radiated band edge low channel 802.11ac VHT40 average

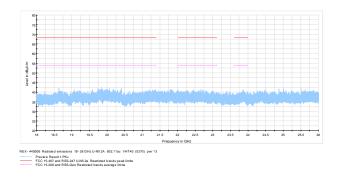


Figure 8.8-17: Sample plot, radiated spurious emissions 18-26 GHz on 802.11ac VHT40 mid channel

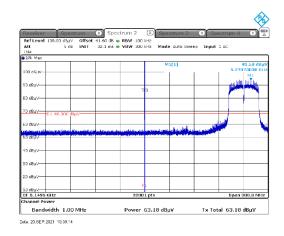


Figure 8.8-19: Radiated band edge low channel 802.11ac VHT40 peak

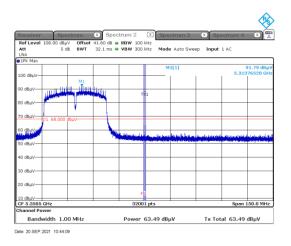


Figure 8.8-21: Radiated band edge high channel 802.11ac VHT40 Peak

Report reference ID: 449306-3R1TRFWL Page 39 of 44

Section 8 Test name Testing data

Test name Spurious of **Specification** FCC Part 2

Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E and RSS-247, Issue 2

Test data, 802.11ac VHT40, continued

Figure 8.8-22: Radiated band edge high channel 802.11ac VHT40 average

26.0 GHz

07:19:07 22.09.2021

Testing data Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E and RSS-247, Issue 2

Test data, 802.11ac VHT80

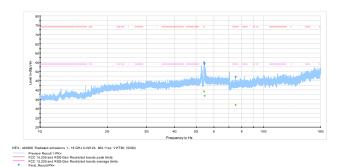


Figure 8.8-23: Radiated spurious emissions 1-18 GHz on 802.11ac VHT80

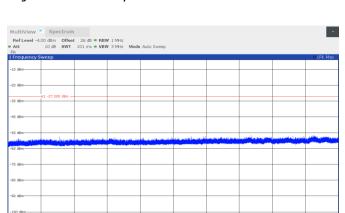


Figure 8.8-25: Radiated spurious emissions 26-40 GHz on 802.11ac VHT80 low channel

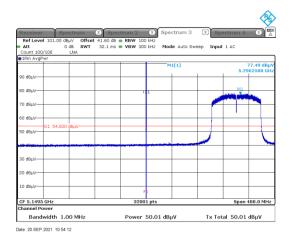


Figure 8.8-27: Radiated band edge low channel 802.11ac VHT80 average

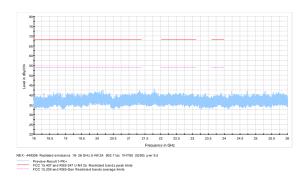


Figure 8.8-24: Radiated spurious emissions 18-26 GHz on 802.11ac VHT80

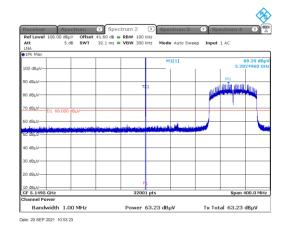


Figure 8.8-26: Radiated band edge low channel 802.11ac VHT80 peak

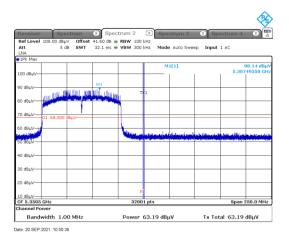


Figure 8.8-28: Radiated band edge high channel 802.11ac VHT80 Peak

Report reference ID: 449306-3R1TRFWL Page 41 of 44

Testing data

Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E and RSS-247, Issue 2

Test data, 802.11ac VHT80, continued

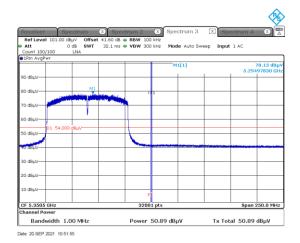


Figure 8.8-29: Radiated band edge high channel 802.11ac VHT80 average

8.9 Frequency stability

8.9.1 References, definitions and limits

FCC §15.407:

(g) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

RSS-Gen, Clause 8.11:

If the frequency stability of the licence-exempt radio apparatus is not specified in the applicable RSS, the fundamental emissions of the radio apparatus should be kept within at least the central 80% of its permitted operating frequency band in order to minimize the possibility of out-of-band operation.

8.9.2 Test summary

Verdict	Pass		
Tested by	Tarek Elkholy	Test date	December 14, 2021

8.9.3 Observations, settings and special notes

Frequency stability test was performed as per ANSI C63.10, Clause 6.8 and 789033 D02, Clause II(A)(3). Spectrum analyser settings:

Resolution bandwidth:	100 Hz
Video bandwidth:	300 Hz
Detector mode:	Peak
Trace mode:	Max Hol

8.9.4 Test data

Frequency stability =
$$\frac{F_{\textit{Measured}} - F_{\textit{reference}}}{F_{\textit{reference}}} \times 1 \cdot 10^6$$

Table 8.9-1: Frequency drift measurement – 802.11a

Test conditions	Frequency, GHz	Frequency stability
+50 °C, Nominal	5.259980	-5.0323
+40 °C, Nominal	5.259985	-4.0817
+30 °C, Nominal	5.259980	-5.0323
+20 °C, Nominal	5.260025	Reference
+10 °C, Nominal	5.260024	2.5342
0 °C, Nominal	5.260056	3.2432
−10 °C, Nominal	5.260018	9.4163
−20 °C, Nominal	5.259980	2.1920
−30 °C, Nominal	5.259985	3.5228

Report reference ID: 449306-3R1TRFWL Page 43 of 44

Test data, continued

Table 8.9-2: Frequency drift measurement – 802.11ac VHT20

Test conditions	Frequency, GHz	Frequency stability
+50 °C, Nominal	5.299982	-1.5564
+40 °C, Nominal	5.299984	-1.0564
+30 °C, Nominal	5.299985	-0.9683
+20 °C, Nominal	5.299990	Reference
0 °C, Nominal	5.300015	5.8291
−10 °C, Nominal	5.300011	11.9047
−20 °C, Nominal	5.300021	1.8857
−30 °C, Nominal	5.300053	4.7262

Table 8.9-3: Frequency drift measurement – 802.11ac VHT40

Test conditions	Frequency, GHz	Frequency stability
+50 °C, Nominal	5.270024	-2.9501
+40 °C, Nominal	5.270030	-1.7395
+30 °C, Nominal	5.270032	-1.4118
+20 °C, Nominal	5.270040	Reference
+10 °C, Nominal	5.270015	-4.6958
0 °C, Nominal	5.270033	-1.2846
−10 °C, Nominal	5.270045	1.0457
−20 °C, Nominal	5.270061	4.0504
−30 °C, Nominal	5.270013	-4.9704

Table 8.9-4: Frequency drift measurement – 802.11ac VHT80

Test conditions	Frequency, GHz	Frequency stability
+50 °C, Nominal	5.290108	-7.0805
+40 °C, Nominal	5.290043	-19.3050
+30 °C, Nominal	5.290103	-7.8828
+20 °C, Nominal	5.290145	Reference
+10 °C, Nominal	5.290127	-3.4141
0 °C, Nominal	5.290168	4.3347
−10 °C, Nominal	5.290188	8.0964
−20 °C, Nominal	5.290188	8.0951
−30 °C, Nominal	5.290103	-7.9605

End of the test report