FCC ID: RF2IPLINK1000

Transmitter Certification

of

FCC ID: RF2IPLINK1000 Model: IP-Link 1000

to

Federal Communications Commission

Rule Part 15.249, Confidentiality

Date Of Amended Report: March 9, 2004

On the Behalf of the Applicant:

Helicomm

At the Request of: P.O. HC08803352

Helicomm

1947 Camino Vida Roble, Suite 109

Carlsbad, CA 92008

Attention of: Leon Gateno, Principle RF Engineer

(760) 918-0856; FAX -0338

Email: leon.gateno@helicomm.com

Supervised By: Morton Flom, P. Eng.

Х

List Of Exhibits

(FCC **Certification** (Transmitters) - Revised 9/28/98)

Applicant:	Helicomm	
FCC ID:	RF2IPLINK1000	
By Applican	t :	
	1. Letter of Authorization	х
	2. Confidentiality Request: 0.457 And 0.459	x
	3. Identification Drawings, 2.1033(c)(11) x Label x Location of Label x Compliance Statement x Location of Compliance Statement	
	4. Photographs, 2.1033(c)(12)	х
	5. Documentation: 2.1033(c) (3) User Manual (9) Tune Up Info (10) Schematic Diagram (10) Circuit Description Block Diagram	x x x x

By M.F.A. Inc.:

A. Testimonial & Statement of Certification

Active Devices

The applicant has been cautioned as to the following:

15.21 Information to User.

The users manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a) Special Accessories.

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

Table Of Contents

Rule	Description	Page	
	Test Report	1	
2.1033(c)	General Information Required	2	
	Standard Test Conditions and Engineering Practices	6	
2.1046(a)	ERP Carrier Power (Radiated)	7	
2.1053(a)	Field Strength of Spurious Radiation	8	
2.1049(c)(1)	Emission Masks (Occupied Bandwidth)	12	

Page Number 1 of 14.

Required information per ISO/IEC Guide 25-1990, paragraph 13.2:

a) Test Report

b) Laboratory: M. Flom Associates, Inc.

(FCC: 31040/SIT) 3356 N. San Marcos Place, Suite 107

(Canada: IC 2044) Chandler, AZ 85225

c) Report Number: d0430029

d) Client: Helicomm

1947 Camino Vida Roble, Suite 109

Carlsbad, CA 92008

e) Identification: IP-Link 1000

FCC ID: RF2IPLINK1000

Description: Low Power Transmitter

f) EUT Condition: Not required unless specified in individual tests.

g) Report Date: March 9, 2004 EUT Received: February 2, 2004

h, j, k): As indicated in individual tests.

i) Sampling method: No sampling procedure used.

I) Uncertainty: In accordance with MFA internal quality manual.

m) Supervised by:

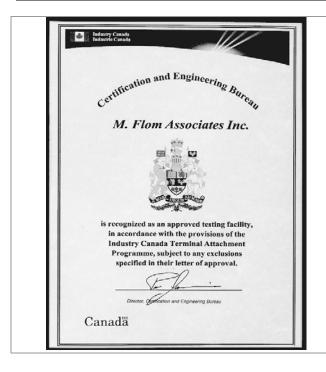
Morton Flom, P. Eng.

n) Results: The results presented in this report relate only to the item tested.

o) Reproduction: This report must not be reproduced, except in full, without written

permission from this laboratory.

2 of 14.


List Of General Information Required For Certification

In Accordance with FCC Rules and Regulations, Volume II, Part 2 and to

15.249, Confidentiality

Sub-Part 2. (c)(1): Nam	1033 e and Address of Applicant:		
	Helicomm 1947 Camino Carlsbad, CA	o Vida Roble, S 92008	Suite 109
	Manufacturer: Applicant		
(c)(2): FCC 1	D:		RF2IPLINK1000
	Model Number:		IP-Link 1000
(c)(3): Inst r	uction Manual(s):		
	Please See Attached E	Exhibits	
(c)(4): Type	of Emission:		N/A
(c)(5): FREÇ	UENCY RANGE, MHz:		902.25 to 927.75
(c)(6): Pow	er Rating, W: Switchable	Variable	0.016 Conducted 144 mw radiated 285.67 x 10 ⁻⁶ v/m _x N/A
15.203:	Antenna Requirement: The antenna is perman X The antenna uses a uni The EUT must be profes The antenna requirement	que coupling ssionally instal	led

Industry Canada

Industric Canada Industry Canada
Certification and Engineering Bureau
1241 Clyde Avenue
Ottawa, Ontario
K2C 1Y3
February 24, 1998
Our File: 46327-2044
Submission: 19320 O
Mr. M. Flom
M. Flom Associates, Inc.
3356 North San Marcos Place, Suite 107
Chandler, Arizona 85224-1571
Dear Mr. Flom,
The Bureau has received your test report for the Open Area Test Site located at Chandler,
Arizona, dated January 30, 1998 and the supplemental information received February 24, 1998,
I have reviewed the report and find it complies with RSP 100, Issue 7, section 3.3 Description
of Open Area Test Site.

The site is acceptable to Industry Canada for the performance of radiated measurements.
Please reference the file number "1/C 2044 " in the body of all test reports containing
measurements made on this site. This reference number is the indication of Industry Canada's
acceptance of your site. Vour company has been added to our published list of qualified sites on
the Bureau's web page. It is located at: http://spectrum.ic.gc.cu/-cert/ Please keep the contact
information current by notifying us if it changes or is in error.
Keep informed of the latest Industry Canada regulations by visiting the Bureau's site on
the World Wide Web;

Whenever major construction or repairs to the site are completed, a re-submission of the
site attenuation characteristics will be required.

Brian Kasper
Head, EMC and Standards
Certification and Engineering Bureau

NIST

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gathersburg, Manland 20899-

September 15, 199

Mr. Morton Flom M. Flom Associates Inc. 3356 N. San Marcos Place, Suite 107 Chandler, AZ 85224

Dear Mr. Flom

I am pleased to inform you that your laboratory has been validated by the Chinese Taipei Bureau of Standards, Metrology, and Inspection (BSMI) under the Asia Pacific Beonomic Cooperation Mutual Recognition Arrangement (APEC MRA), Your laboratory is now formally designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC MRA between the American Institute in Taiwan (AIT) and the Taipei Economic and Cultural Representative Office (TECRO) in the United States, covering equipment subject to Electro-Magnetic Compatibility (EMC) requirements. The names of all validated and nominated laboratories will be posted on the NIST website at https://ts.nist.gov/mra under the "Asia" category.

As of August 1, 1999, you may submit test data to BSMI to verify that the equipment to be imported into Chinese Taipei satisfies the applicable EMC requirements. Your assigned BSMI anaber is SLZ-1N-E-041R1 you must use this number when sending test reports to BSMI. Your designation will remain in force as long as your NYLAP and/or AZLA and/or BSMI accreditation remains valid for the CNS 1342.

Please note that BSMI requires that the entity making application for the approval of regulated equipment must make such application in person at their Tajeci office. BSMI also requests the name of the authorized riggatories who are authorized to sign the test reports. You can send this information via fax to C-Tajeci CAB Response Manager at 301-375-341. I am aste enclosing a copy of the cover sheet that, according to BSMI requirements, must receiping any

If you have any questions, please contact Robert Gladhill at 301-975-4273 or Joe Dhillon at 301-975-5521. We appreciate your continued interest in our international conformity assessment activities.

Sincerely.

Belinda L. Collins, Ph.D. Director, Office of Standards Services

pline A Collins

Canadä

Enclosure

NIST

Page Number

4 of 14.

Subpart 2.1033 (continued)

(c)(8): Voltages & Currents in All Elements in Final RF Stage, Including Final Transistor or Solid State Device:

Collector Current, A = per manual Collector Voltage, Vdc = per manual Supply Voltage, Vdc = Bty 1.5

(c)(9): **Tune-Up Procedure**:

Please See Attached Exhibits

(c)(10): **Circuit Diagram/Circuit Description**:

Including description of circuitry & devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation and limiting power.

Please See Attached Exhibits

(c)(11): **Label Information**:

Please See Attached Exhibits

(c)(12): **Photographs**:

Please See Attached Exhibits

(c)(13): **Digital Modulation Description**:

____ Attached Exhibits x N/A

(c)(14): Test and Measurement Data:

Follows

Page Number 5 of 14.

Sub-part 2.1033(b):

Test and Measurement Data

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.1031, 2.1033, 2.1035, 2.1041, 2.1043, 2.1045, and the following individual Parts:

	15.209	Radiated emission limits; general requirements
	15.209 15.211 15.213 15.214 15.217 15.219 15.221 15.223 15.225 15.227 15.229 15.231 15.233	Tunnel radio systems
	15.213	Cable locating equipment
	15.214	Cordless telephones
	15.217	Operation in the band 160-190 kHz
	15.219	Operation in the band 510-1705 kHz
	15.221	Operation in the band 525-1705 kHz (leaky coax)
	15.223	Operation in the band 1.705-10 MHz
	15.225	Operation in the band 13.553-13.567 MHz
	15.227	Operation in the band 26-27.28 MHz (remote control)
	15.229	Operation in the band 40.66-40.70 MHz
	15.231	Periodic operation in the band 40.66-40.70 MHz and above 70 MHz
	15.233	Operation within the bands 43.71-44.49, 46.60-46.98 MHz
		48.75-49.51 MHz and 49.66-50.0 MHz
	15.235	Operation within the band 49.82-49.90 MHz
	15.237	Operation within the bands 72.0-73.0 MHz, 74.6-74.8 MHz
		and 75.2-76.0 MHz (auditory assistance)
	15.239 15.241 15.243 15.245	Operation in band 88-108 MHz
	15.241	Operation in the band 174-216 MHz (biomedical)
	15.243	Operation in the band 890-940 MHz (materials)
	15.245	Operation within the bands 902-928 MHz, 2435-2465 MHz, 5785-5815 MHz,
	15 247	10500-10550 MHz, and 24075-24175 MHz (filed disturbance sensors)
	15.247	Operation within bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz (spread spectrum)
X	15.249	Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz,
^	13.249	and 24.0-24.25 GHz
	15.251	Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz,
	13.231	and 3.358-3.6 GHz (vehicle identification systems)
	15.321	Specific requirements for asynchronous devices operating in the 1910-1920
		MHz and 2390-2400 MHz bands (Unlicensed PCS)
	15.323	Specific requirements for isochronous devices operating in the 1920-1930 MHz
		sub-band (Unlicensed PCS)

Page Number

6 of 14.

Standard Test Conditions And Engineering Practices

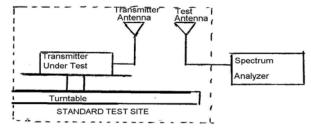
Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSIC63.4-1992/2000 Draft, section 6.1.9, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40° C (50° to 104 °F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst-case measurements.

Page Number 7 of 14.


Name of Test: ERP Carrier Power (Radiated)

Specification: TIA/EIA 603A (Substitution Method), 15.249

2.2.17.1 Definition: The average radiated power of a licensed device is the equivalent power required, when delivered to a half-wave dipole or horn antenna, to produce at a distant point the same average received power as produced by the licensed device.

2.2.17.2 Method of Measurement:

a) Connect the equipment as illustrated. Place the transmitter to be tested on the turntable in the standard test site.

- b) Raise and lower the test antenna from 1m to 6 m with the transmitter facing the antenna and record the highest received signal in dB as LVL.
- c) Repeat step b) for seven additional readings at 45° interval positions of the turntable.
- d) Replace the transmitter under test with a half-wave or horn vertically polarized antenna. The center of the antenna should be at the same location as the transmitter under test. Connect the antenna to a signal generator with a known output power and record the path loss in dB or LOSS.
- e) Calculate the average radiated output power from the readings in step c) and d) by the following:

average radiated power = $10 \log_{10} \Sigma 10(LVL - LOSS)/10 (dBm)$

Results						
	907	.5 MHz	91.	5 MHz	917	.7 MHz
	LVL,	Path Loss,	LVL,	Path Loss,	LVL,	Path Loss,
	dbm	db	dbm	db	dbm	db
0°	-26	0	-26	0	-25	0
45°	-26	0	-24	0	-25	0
90°	-25	0	-26	0	-27	0
135°	-25	0	-26	0	-27	0
180°	-26	0	-24	0	-27	0
225°	-26	0	-24	0	-25	0
270°	-26	0	-25	0	-27	0
315°	-26	0	-25	0	-27	0

907.5 MHz 915 MHz 917.7 MHz

Av. Radiated Power: -8.8 dbm -9.0 dbm -8.4 dbm

144 milliwatts 285.67 x 10⁻⁶ volts/meter

Page Number

8 of 14.

Name of Test:

Field Strength of Spurious Radiation

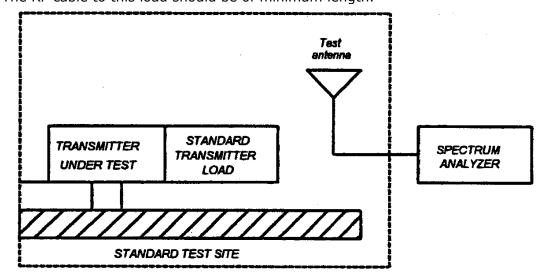
Specification:

47 CFR 2.1053(a)

Guide:

ANSI/TIA/EIA-603-1992/2001, Paragraph 1.2.12 and Table 16, 47

CFR 22.917

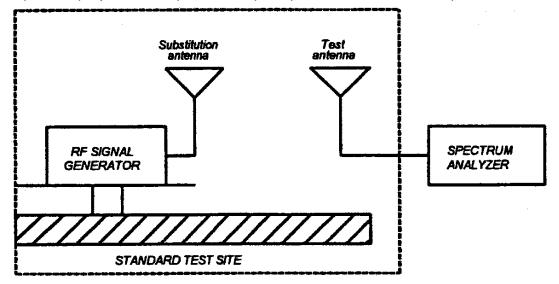

Measurement Procedure

1.2.12.1 Definition: Radiated spurious emissions are emissions

from the equipment when transmitting into a non-radiating load on a frequency or frequencies which are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communications desired.

1.2.12.2 Method of Measurement

- A) Connect the equipment as illustrated
- B) Adjust the spectrum analyzer for the following settings:
 - 1) Resolution Bandwidth 100 kHz (<1 GHZ), 1 MHZ (> 1GHz).
 - 2) Video Bandwidth ≥ 3 times Resolution Bandwidth, or 30 kHz (22.917)
 - 3) Sweep Speed ≤2000 Hz/second
 - 4) Detector Mode = Mean or Average Power
- C) Place the transmitter to be tested on the turntable in the standard test site. The transmitter is transmitting into a non-radiating load which is placed on the turntable. The RF cable to this load should be of minimum length.



Page Number

Name of Test: Field Strength of Spurious Radiation (Cont.)

9 of 14.

- D) For each spurious measurement the test antenna should be adjusted to the correct length for the frequency involved. This length may be determined from a calibration ruler supplied with the equipment. Measurements shall be made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier, except for the region close to the carrier equal to \pm the test bandwidth (see section 1.3.4.4).
- E) For each spurious frequency, raise and lower the test antenna from 1 m to 4 m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Repeat this procedure to obtain the highest possible reading. Record this maximum reading.
- F) Repeat step E) for each spurious frequency with the test antenna polarized vertically.

- G) Reconnect the equipment as illustrated.
- H) Keep the spectrum analyzer adjusted as in step B).
- I) Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.

Page Number 10 of 14.

Name of Test: Field Strength of Spurious Radiation (Cont.)

- J) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- K) Repeat step J) with both antennas vertically polarized for each spurious frequency.
- L) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps J) and K) by the power loss in the cable between the generator and the antenna and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna.
- M) The levels recorded in step L) are absolute levels of radiated spurious emissions in dBm. The radiated spurious emissions in dB can be calculated by the following:

Radiated spurious emissions dB =

 $10\log_{10}(TX \text{ power in watts}/0.001)$ – the levels in step I)

NOTE: It is permissible that other antennas provided can be referenced to a dipole.

Test Equipment:

	Asset	Description	s/n	Cycle	Last Cal
		Transducei	r		
	i00088	EMCO 3109-B 25MHz-300MHz	2336	12 mo.	Sep-03
Χ	i00089	Aprel 2001 200MHz-1GHz	001500	12 mo.	Sep-03
Χ	i00103	EMCO 3115 1GHz-18GHz	9208-3925	12 mo.	Jan-03
		Amplifier			
Х	i00028	HP 8449A	2749A00121	12 mo.	May-03
		Spectrum Anal	vzer		
Χ	i00029	HP 8563E	3213A00104	12 mo.	May-03
Χ	i00033	HP 85462A	3625A00357	12 mo.	Aug-03
			_		
		Substitution Gen		4.0	
Х	i00067	HP 8920A Communication TS	3345U01242	12 mo.	Oct-03
	i00207	HP 8753D Network Analyzer	3410A08514	12 mo.	Jul-03

Microphone, Antenna Port, and Cabling

Microphone	<u>N/A</u>	Cable Length N/A	Meters
Antenna Port Terminated	Yes	Load N/A_	Antenna Gain <u>0 dBd</u>
All Ports Terminated by Load	Yes	Peripheral N/A	

Page Number 11 of 14.

Name of Test: Field Strength of Spurious Radiation

g0420005: 2004-Feb-02 Mon 13:24:00

STATE: 2:High Power Ambient Temperature: 23°C ± 3°C

Frequency Tuned, MHz	Frequency Emission, MHz	ERP, dBm	ERP, dBc
907.511029	1815.022058	-50.3	≤ -59.7*
915.027455	1829.831577	-50.1	≤ -59.7*
917.760031	1835.520062	-50.7	≤ -59.7*
907.511029	2722.533087	-57.4	≤ -59.7*
915.027455	2745.079032	-49.8	≤ -59.7*
917.760031	2753.280093	-57.5	≤ -59.7*
907.511029	3630.044116	-54.6	≤ -59.7*
915.027455	3660.106487	-53.8	≤ -59.7*
917.760031	3671.040124	-54.2	≤ -59.7*
907.511029	4537.555145	-51.9	≤ -59.7*
915.027455	4575.133942	-51.8	≤ -59.7*
917.760031	4588.800155	-52.1	≤ -59.7*
907.511029	5445.066174	-52.4	≤ -59.7*
915.027455	5490.161397	-52.2	≤ -59.7*
917.760031	5506.560186	-52.4	≤ -59.7*
907.511029	6352.577203	-51.6	≤ -59.7*
915.027455	6405.188852	-51.5	≤ -59.7*
917.760031	6424.320217	-51.7	≤ -59.7*
907.511029	7260.088232	-50.1	≤ -59.7*
915.027455	7320.216307	-49.6	≤ -59.7*
917.760031	7342.080248	-54.9	≤ -59.7*
907.511029	8167.599261	-51.8	≤ -59.7*
915.027455	8235.243762	-51.9	≤ -59.7*
917.760031	8259.840279	-51.8	≤ -59.7*
907.511029	9075.110290	-54.6	≤ -59.7*
915.027455	9150.271217	-53.5	≤ -59.7*
917.760031	9177.600310	-53.1	≤ -59.7*
*≤ 204 μν/m			

Performed by:

Daniel M. Dillon, Test Engineer

Page Number 12 of 14.

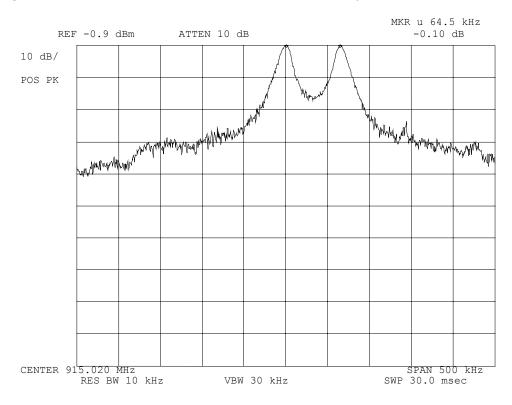
Name of Test: Emission Masks (Occupied Bandwidth)

Specification: 47 CFR 2.1049(c)(1)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.11

Test Equipment: As per previous page

Measurement Procedure


- 1. The EUT and test equipment were set up as shown on the following page, with the Spectrum Analyzer connected.
- 2. For EUTs supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for $\pm 2.5/\pm 1.25$ kHz deviation (or 50% modulation). With level constant, the signal level was increased 16 dB.
- 3. For EUTs supporting digital modulation, the digital modulation mode was operated to its maximum extent.
- 4. The Occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.
- 5. Measurement Results: Attached

Page Number 13 of 14.

Name of Test: Emission Masks (Occupied Bandwidth)

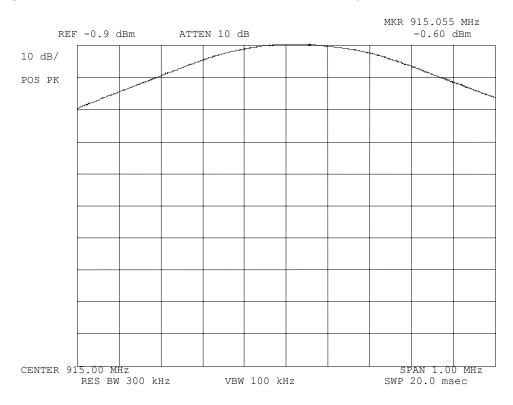
g0420007: 2004-Feb-03 Tue 09:15:00

State: 2:High Power Ambient Temperature: $23^{\circ}C \pm 3^{\circ}C$

Power: HIGH
Modulation: FSK 64 KHZ
FUNDAMENTAL

Performed by:

Daniel M. Dillon, Test Engineer


Osmif M. O. Mr.

Page Number 14 of 14.

Name of Test: Emission Masks (Occupied Bandwidth)

g0420008: 2004-Feb-03 Tue 09:17:00

State: 2:High Power Ambient Temperature: $23^{\circ}C \pm 3^{\circ}C$

Power: HIGH
Modulation: FSK 64 KHZ
POWER OUTPUT

Performed by:

Daniel M. Dillon, Test Engineer

Omif M. Oilfor

Radiated Measurements For Part 15 Transmitters with Integral Antennas

Radiated Measurements

Range Of Measurement	Specification	Resolution B/W	Video B/A
30 to 1000 MHz	CISPR	≥100 kHz	≥100 kHz
>1000 MHz	FCC, 15.37(b)	1 MHz	≥1 MHz
(if averaging)	FCC, 15.37(b)	1 MHz	10 Hz

Measuring Equipment

a. **Antennas**:

EMCO 3109	20 - 300 MHz
APREL AALP2001	200 - 1000 MHz
APREL AAB20200	20 - 200 MHz
APREL AAH118	1 - 18 GHz

b. **Instruments**:

HP8566B	Spectrum Analyzer
HP85685A	Preselector, w/ preamp below 2 GHz
HP85650A	Quasi Peak Adapter
HP8449	Preamp, above 2 GHz

All test instrumentation is calibrated every January and every July. In addition, all test instrumentation is calibrated daily, or as required by the manufacturer. A Calibration Agreement is maintained with Hewlett Packard.

Occupied Bandwidth

Occupied Bandwidth is measured as a radiated signal without attenuators and/or filter. RBW, VBW and scan settings as shown were set to produce a meaningful result in accordance with ANSI C63.4, Section 13.1.7.

Part 15.21, Information to User

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly avoided by the party responsible for compliance could void the user's authority to operate the equipment.

§ 15.205 Restricted Bands of Operation

(a) Except as shown in paragraph (b) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.25
0.495-0.505	16.69475-16.69625	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-339.4	3600-4400	(2)
13.36-13.41			

Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. Above 38.6

Testimonial and Statement of Certification

This is to certify that:

- 1. **That** the application was prepared either by, or under the direct supervision of, the undersigned.
- 2. **That** the technical data supplied with the application was taken under my direction and supervision.
- 3. **That** the data was obtained on representative units, randomly selected.
- 4. **That**, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

Certifying Engineer:

Morton Flom, P. Eng.