

MPE CALCULATION

MPE Limit Calculation: EUT's operating frequencies @ 5150-5250 MHz; highest conducted power = 16.5 dBm (peak) therefore, **Limit for Uncontrolled exposure: 1 mW/cm² or 10 W/m²**

EUT maximum antenna gain = 5 dBi.

Equation from page 18 of OET 65, Edition 97-01

EUT with 5dBi Antenna

$$S = PG / 4\pi R^2 \quad \text{or} \quad R = \sqrt{PG / 4\pi S}$$

where, $S = \text{Power Density (1 mW/cm}^2\text{)}$
 $P = \text{Power Input to antenna (44.66mW)}$
 $G = \text{Antenna Gain (3.16 numeric)}$

$$S = (141.12/4*3.14*20^2) = (141.12/5024) = \mathbf{0.02 \text{ mW/cm}^2}$$

MPE Limit Calculation: EUT's operating frequencies @ 5250-5350 MHz, 5470-5725 MHz; highest conducted power = 23.9 dBm (peak) therefore, **Limit for Uncontrolled exposure: 1 mW/cm² or 10 W/m²**

EUT maximum antenna gain = 5 dBi.

Equation from page 18 of OET 65, Edition 97-01

EUT with 5dBi Antenna

$$S = PG / 4\pi R^2 \quad \text{or} \quad R = \sqrt{PG / 4\pi S}$$

where, $S = \text{Power Density (1 mW/cm}^2\text{)}$
 $P = \text{Power Input to antenna (245.4mW)}$
 $G = \text{Antenna Gain (3.16 numeric)}$

$$S = (775.4/4*3.14*20^2) = (775.4/5024) = \mathbf{0.15 \text{ mW/cm}^2}$$