

2.4GHz RF XBOX Wireless Controller

Device Working Principle

1. It is a 2.4G RF product. It works at the frequency of ISM Band (2.4GHZ). There

are up to 91 channels, and the frequency interval between each channel is 864K Hz.
2. Evenly Randomized Frequency Hopping Sequence method is implemented in the RF

technology.
3. It works in “Slave” Mode. We call it “Device.

The working procedures are:
a) When power on, the Device will search all of the channels, to see whether there is a

Host.
b) If there is a Host, the Device will identity by the data received, to see whether it can be

connected with the Host.
c) If it can connect to the Host, then the Device will respond to the Host.
d) The Host builds up the connection after receiving the response from the Device.
e) The Host sends the command request to the Device for getting the Axes and Buttons

value.
f) The Device sends Axes and Button value to the Host.
g) The Host identifies the data received and does the error detection and the error

correction.
h) The Host sends Motor commands to the Device.
i) The Device will handle the Motor behaviors by the Motor data value that sent from the

Host.
j) Repeat from step e) to step i).

Typical Product Characteristics:

Items Description
Type of Modulation GFSK
Number of Channels 91
Frequency Band 2402 MHz ~ 2479 MHz
Antenna Type PCB Antenna
Testing Duty Cycle 100%
Test Power Source DC 3V From battery
Temperature Range(Operating) 0 ~ 50 ℃

Basic Function:

- Fully compatible with XBOX Platform
- Low power Indicator
- Power on/off selection
- Rubber grips
- Auto Player matching
- 10 Meter(30ft) 2.4G RF wireless transmitting & receiving distance

2.4GHz RF XBOX Wireless Controller

Host Working Principle

4. It is a 2.4G RF product. It works at the frequency of ISM Band (2.4GHZ). There
are up to 91 channels, and the frequency interval between each channel is 864K Hz.

5. Evenly Randomized Frequency Hopping Sequence method is implemented in the RF
technology.

6. It works in “Master” Mode. We call it “Host.”

The working procedures are:
k) When power on, the Host will do the frequency hopping according to a certain

sequence, and then send the connection command.
l) If there is a Device response, the Host will judge whether it can be permitted to

connect.
m) If it can be permitted to connect, then send the connection command to build up the

connection.
n) The Host sends the request command to the Device to get the Axes and Buttons value.
o) The Device sends the Axes and Buttons value to the Host.
p) The Host will identify the data received and then do the data detection and data

correction.
q) The Host will save the data received if there is no error.
r) The Host judges whether it is required to send Axes and Buttons value to XBOX

console.
s) If it is required, then send the saved data to XBOX console.
t) The Host judges whether there is any Motor command and/or Motor value sent from

XBOX console.
u) If there is, then the Host will save the received Motor data.
v) The Host send Motor commands to the Device, and send the Motor value to the Device.
w) Repeat Step e) to Step l)
x)
Typical Product Characteristics:

Items Description
Type of Modulation GFSK
Number of Channels 91
Frequency Band 2402 MHz ~ 2479 MHz
Antenna Type PCB Antenna
Testing Duty Cycle 100%
Test Power Source DC 5V From XBOX
Temperature Range(Operating) 0 ~ 50 ℃

Basic Function:

- A LED Indicate Link & Search Mode

Randomized Frequency Hopping Sequence Working Principle

The sequence of the jump frequency will be settle by the host. The method is the host
to be connected to the device, The sequence data S(8bit) and HostID(16bit) will bring
through scan the RSSI of RF Module in different channel, and the data will be transmitted
to the device. Then the both side will calculate to the next number (F) by same
agument(S).

The way of bring sequence is as follows:

N: the numbers of useful channel

S: number of seed (8bit)=S7-S0

P: replacement control (21bit)=P20-P0 ,Each 3 bit become one figure, as follow :

 Q6=P20P19P18 Q5=P17P16P15 Q4=P14P13P12

 Q3=P11P10P9 Q2=P8P7P6 Q1=P5P4P3

 Q0=P2P1P0

 Q i ≠ Qj (0 ≤ i<6, i<j ≤ 6) to be request!

F: the figure of the sequence (0 ≤ F<N)

 Surpose the S to be S(k) in K cycle. It means the channel of the (K+1) cycle will be
F(K+1) channel.

1. S(k+1)=S(k)+1=S(k+1)7~S(k+1)0

2. S(k+1)’s Bit6~Bit0 will conversion to R(k+1)=r(k+1)7~r(k+1)0

r(k+1)i= S(k+1)Qi (0 ≤ i<6) , r(k+1) 7 = s(k+1) 7 to be request!

3. F(k+1)=R(k+1) mod N

So we got to know from above procedure, S data is come from the device ,then
transmitter the data to the device. And the above replace control data P is calculate from 16bit
HostID of host by the Host and Device both side.

Please reference to the following C program for to calculate method.

void FindFHSeed(unsigned char HostIDH, unsigned char HostIDL)

{

//--

// The following code does the same job, but in C language format

 unsigned short b = 5040;

 unsigned short m;

 char i,j,k,l;

 m = (unsigned short)(HostIDH) *0x0100 + (unsigned short)(HostIDL);

 for (i=7; i>1; i--)

 {

 m %= b;

 b /= (unsigned short)i;

 q[i-1] = (unsigned char)(m / b);

 }

 q[0] = 0;

 for (i=6; i>0; i--)

 {

 for (j=i-1; j>=0; j--)

 {

 if (q[j] >= q[i]) q[j]++;

 do

 {

 l = 0;

 for (k=i; k<7; k++)

 {

 if (q[j] == q[k])

 {

 q[j]++;

 l = 1;

 }

 }

 }while (l!=0);

 }

 }

//---

}

void NextFrequencyHop() //Calculate the frequency channel of the next hop

{ //"seed" and "q[0]- q[6]" are known parameters.

 seed++; //Result is in r18

 r11 = 0x01;

 if (seed & 0x80) r18 = 0x80;

 else r18 = 0x00;

 for (r10=0; r10<7; r10++)

 {

 if (r11 & seed)

 {

 r12 = q[r10];

 r18 |= errorPattern[r12];

 }

 r11 <<= 1;

 }

 while (r18 >= TOTAL_CHANNEL_NO) r18 -= TOTAL_CHANNEL_NO;

}

