

EMISSIONS TEST REPORT

Report Number: 3112039BOX-001 Project Number: 3112039

Testing performed on the

Model: GSM Basestation

To

FCC Part 22 Subpart H
And
Industry Canada RSS-132 Issue 2 September 2005

For

Vanu, Inc.

Tes	st Performed by:	Test Authorized by:	
Interte	ek – ETL SEMKO	Vanu, Inc.	
70 C	odman Hill Road	One Cambridge Center	
Boxbo	orough, MA 01719	Cambridge, MA 02142	
Prepared by:	Nicholas Abbondante	Date: 1/30/07	
Reviewed by:	Roland W. Gubisch	Date: 1-30-2007	

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

1.0 Job Description

1.1 Client Information

This EUT has been tested at the request of: Company: Vanu, Inc.

One Cambridge Center

Cambridge, MA 02142

Contact: Byron Kubert

Telephone: 617-864-1711 xt.274

Fax: N/A

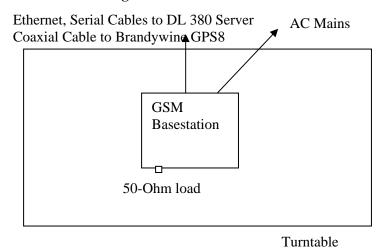
Email: <u>bkubert@vanu.com</u>

1.2 Equipment Under Test

Equipment Type: GSM Basestation **Model Number(s):** GSM Basestation

Serial number(s): 1074
Manufacturer: Vanu, Inc.
EUT receive date: 01/02/2007

EUT received condition: Prototype in Good Condition


Test start date: 01/02/2007 **Test end date:** 01/09/2007

1.3 Test Plan Reference: Tested according to the standards listed, IC SRSP-503, RSS-Gen Issue

1 September 2005, and ANSI C63.4:2003.

1.4 Test Configuration

1.4.1 Block Diagram

Ethernet and Serial Coaxial Cable to Cable to Basestation Basestation DL 380 Brandywin Server e GPS8 Ethernet Laptop Remote Remote AC Mains Location

1.4.2. Cables:

Cable	Shielding	Connector	Length (m) Qty.
EUT AC Mains	None	Plastic/IEEE	2	1
Serial Cable	Braid	Metal/DB9	2	1
Ethernet Cable	None	Plastic RJ-45	10	1
Coaxial Cable	Braid	Metal/BNC	10	1

1.4.3. Support Equipment:

Name: Brandywine Communications

Model No.: GPS8 Serial No.: 1611

Name: Dell Monitor Model No.: 2001fp

Serial No.: cn0c0646-4663353r0t6L

Name: HP Computer Model No.: XW3100 Serial No.: usv33805t5

Name: Dell Keyboard

Model No.: RT7D20

Serial No.: CN-D4N4S437172-3c2-1778

Name: Dell Mouse Model No.: 0w1668 Serial No.: LZE35117935

1.5 Mode(s) of Operation:

The EUT was activated from 120V/60Hz power and transmitted GSM carriers on low, mid, and high channels across the EUT passband. Bursts of random data were fed to the modulator. Three-tone intermodulations were also used during spurious emissions testing.

EUT passband: 869 – 894 MHz

Channels Tested:

Channel A: 869.2 MHz Channel B: 882.2 MHz Channel C: 893.8 MHz

2.0 Test Summary

TEST STANDARD	RESULTS	
FCC Part 22 Subpart H		
IC RSS-132 Issue 2 September 2005		
SUB-TEST	TEST PARAMETER	COMMENT
Effective Radiated Power	Effective Radiated Power must not exceed	Pass
FCC 2.1046, 22.913	500 Watts (57 dBm)	
Occupied Bandwidth	Emission must stay within assigned band of	Pass
(26 dB Bandwidth)	operation.	
FCC 2.1049		
Spurious Conducted Emissions	Emissions outside the passband must not	Pass
FCC 2.1051,	exceed –13 dBm when measured in a 100	
FCC Part 22 Subpart H 22.917,	kHz measurement bandwidth, except in the 1	
IC RSS-132 Section 4.5	MHz block edges above and below the band	
	of operation, where compliance is based on a	
	measurement bandwidth equal to 1% of the	
	emission bandwidth.	
Spurious Radiated Emissions	Emissions outside the passband must not	Pass
FCC 2.1053,	exceed –13 dBm when measured in a 100	
FCC Part 22 Subpart H 22.917,	kHz measurement bandwidth, except in the 1	
IC RSS-132 Section 4.5, 4.6,	MHz block edges above and below the band	
FCC Part 15 Subpart B 15.109,	of operation, where compliance is based on a	
IC RSS-Gen Sections 4.8, 6.0	measurement bandwidth equal to 1% of the	
	emission bandwidth.	
Frequency Stability	The fundamental frequency must not deviate	Pass
FCC 2.1055,	by more than ± 1.5 PPM over temperature and	
FCC Part 22 Subpart H 22.355,	voltage.	
IC RSS-132 Section 4.3		

REVISION SUMMARY – The following changes have been made to this Report:

<u>Date</u>	<u>Project</u>	<u>Project</u>	Page(s)	<u>Item</u>	Description of Change
	No	Handler			

3.0 Sample Calculations

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of $52.0~dB\mu V$ is obtained. The antenna factor of 7.4~dB and cable factor of 1.6~dB is added. The amplifier gain of 29~dB is subtracted, giving a field strength of $32~dB\mu V/m$. This value in $dB\mu V/m$ was converted to its corresponding level in $\mu V/m$.

 $RA = 52.0 dB\mu V$

AF = 7.4 dB/m

CF = 1.6 dB

AG = 29.0 dB

 $FS = 32 dB\mu V/m$

Level in $\mu V/m = [10(32 \text{ dB}\mu V/m)/20] = 39.8 \mu V/m$

The following is how net line-conducted readings were determined:

NF = RF + LF + CF + AF

Where $NF = Net Reading in dB\mu V$

RF = Reading from receiver in $dB\mu V$ LF = LISN Correction Factor in dBCF = Cable Correction Factor in dB

AF = Attenuator Loss Factor in dB

To convert from dBμV to μV or mV the following was used:

$$UF = 10^{(NF/20)}$$
 where $UF = Net$ Reading in μV

Example:

NF = RF + LF + CF + AF =
$$28.5 + 0.2 + 0.4 + 20.0 = 49.1 \ dB\mu V$$
 UF = $10^{(48.1 \ dB\mu V \ /20)} = 254 \ \mu V/m$

3.1 Measurement Uncertainty

Compliance of the product is based on the measured value. However, the measurement uncertainty is included for informational purposes.

The expanded uncertainty (k = 2) for radiated emissions from 30 to 1000 MHz has been determined to be: ± 3.5 dB at 10m, ± 3.8 dB at 3m

The expanded uncertainty (k = 2) for mains conducted emissions from 150 kHz to 30 MHz has been determined to be:

±2.6 dB

The expanded uncertainty (k = 2) for telecom port conducted emissions from 150 kHz to 30 MHz has been determined to be:

±3.2 for ISN and voltage probe measurements

 ± 3.1 for current probe measurements

3.2 Site Description

Test Site(s): 2

Our OATS are 3m and 10m sheltered emissions measurement ranges located in a light commercial environment in Boxborough, Massachusetts. They meet the technical requirements of ANSI C63.4-2003 and CISPR 22:1993/EN 55022:1994 for radiated and conducted emission measurements. The shelter structure is entirely fiberglass and plastic, with outside dimensions of 33 ft x 57 ft. The structure resembles a quonset hut with a center ceiling height of 16.5 ft.

The testing floor is covered by a galvanized sheet metal groundplane that is earth-grounded via copper rods around the perimeter of the site. The joints between individual metal sheets are bridged with a 2 inch wide metal strips to provide low RF impedance contact throughout. The sheets are screwed in place with stainless steel, round-head screws every three inches. Site illumination and HVAC are provided from beneath the ground reference plane through flush entry ports, the port covers are electrically bonded to the ground plane.

A flush metal turntable with 12 ft. diameter and 5000 lb. load capacity (12,000 lb. in Site 3) is provided for floor-standing equipment. A wooden table 80 cm high is used for table-top equipment. The turntable is electrically connected to the ground plane with three copper straps. The straps are connected to the turntable at the center of it with ground braid. The copper strap is directly connected to the groundplane at the edges of the turntable. The turntable is located on the south end of the structure and the antennas are mounted 3 and 10 meters away to the north. The antenna mast is a non-conductive with remote control of antenna height and polarization. The antenna height is adjustable from 1 to 4 meters.

All final radiated emission measurements are performed with the testing personnel and measurement equipment located below the ground reference plane. The site has a full basement underneath the turntable where support equipment may be remotely located. Operation of the antenna, turntable and equipment under test is controlled by remote controls that manipulate the antenna height and polarization and with a turntable control. Test personnel are located below the ellipse when measurements are performed, however the site maintains the ability of having personnel manipulate cables while monitoring test equipment. Ambient radiated emissions are 6 dB or more below the relevant FCC emission limits.

AC mains power is brought to the equipment under test through a power line filter, to remove ambient conducted noise. 50 Hz (240 VAC single phase), 60 Hz power (120 VAC single phase, 208 VAC three phase), and 60 Hz (480 VAC three phase) are available. Conducted emission measurements are performed with a Line Impedance Stabilization Network (LISN) or Artificial Mains Network (AMN) bonded to the ground reference plane. A removable vertical groundplane (2 meter X 2 meter area) is used for line-conducted measurements for table top equipment. The vertical groundplane is electrically connected to the reference groundplane.

The EMC Lab has two Semi-anechoic Chambers and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference groundplanes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

Test Results: Pass

Test Standard: FCC Part 22 Subpart H 22.913, IC RSS-132 Section 4.4, IC SRSP-503

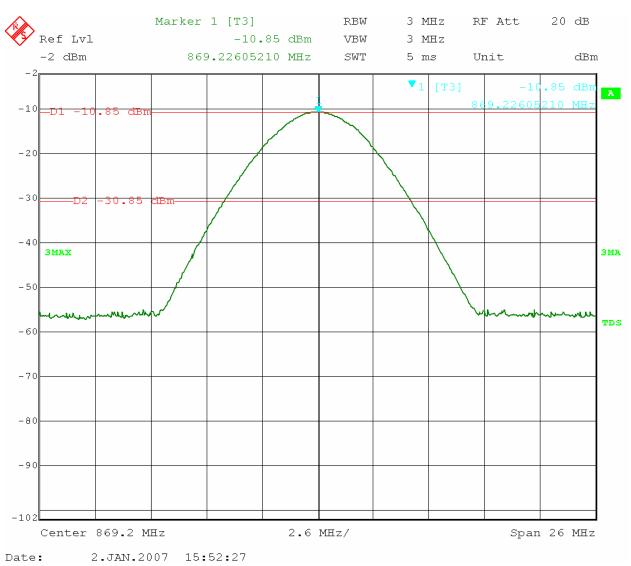
Test: Effective Radiated Power

Performance Criterion: Effective Radiated Power must not exceed 500 Watts for digital basestations.

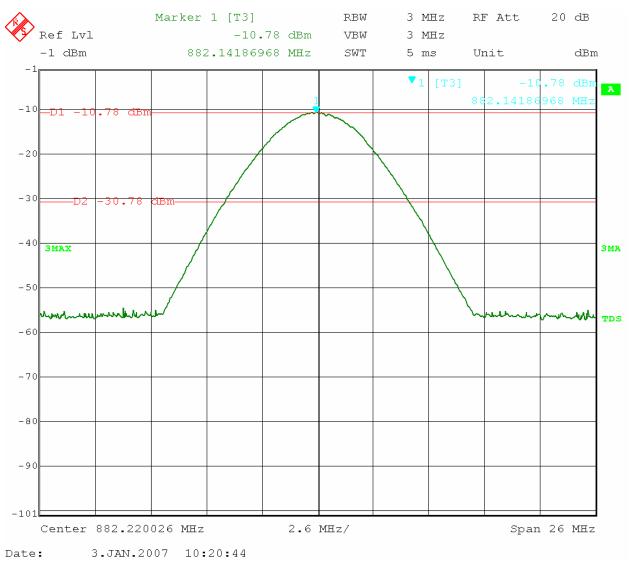
Test Environment:

Environmental Conditions During Testing:	Humidity (%):	N/A	Pressure (hPa):	N/A	Ambient (°C):	N/A
Pretest Verification Performed	Yes		Equipment under Test:		GSM Basestation	

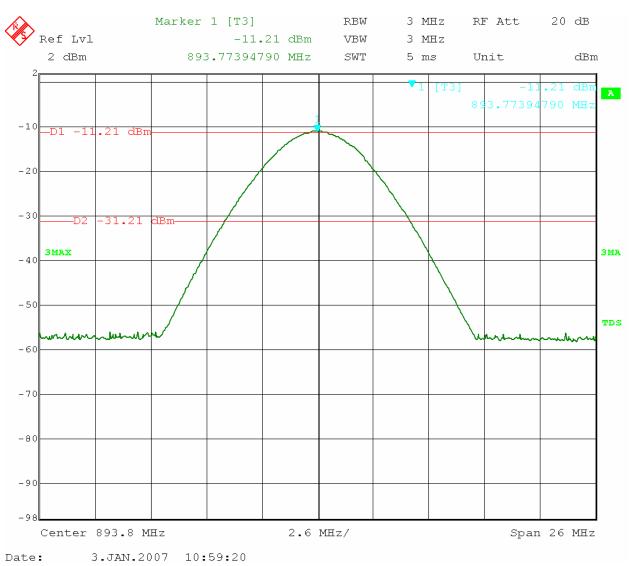
Test Equipment Used:


	TEST EQUIPMENT LIST									
Item	n Equipment Type Make Model No. Serial No.									
1	High Frequency Cable 40GHz	Megaphase	TM40 K1K1 80	CBL030	12/04/2007					
2	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	10/23/2007					

Test Details:


Test	EUT Reading dBm	Standard Limit 500 Watts – 57 dBm	Pass Fail	COMMENT
Channel A	-10.85	57 dBm	Pass	
Channel B	-10.78	57 dBm	Pass	
Channel C	-11.21	57 dBm	Pass	

Notes: Transducer factors were programmed into the spectrum analyzer to compensate for cable loss in the test setup.



Channel C

Test Results: Pass

Test Standard: FCC Part 22 Subpart H, IC RSS-132

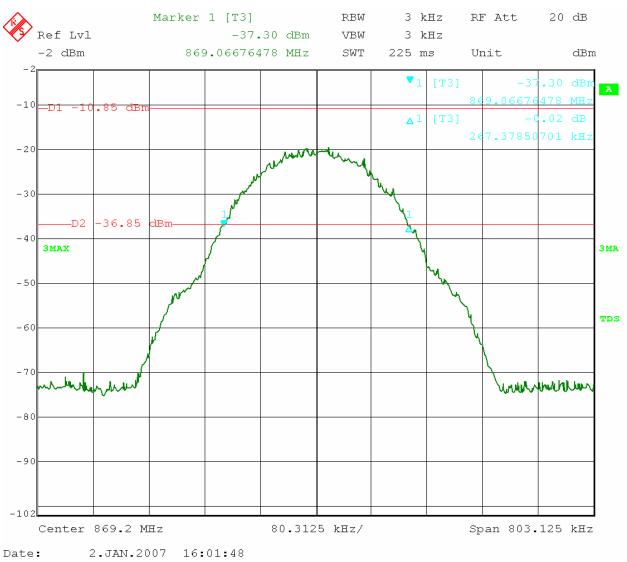
Test: Occupied Bandwidth (26 dB Bandwidth)

Performance Criterion: B

Test Environment:

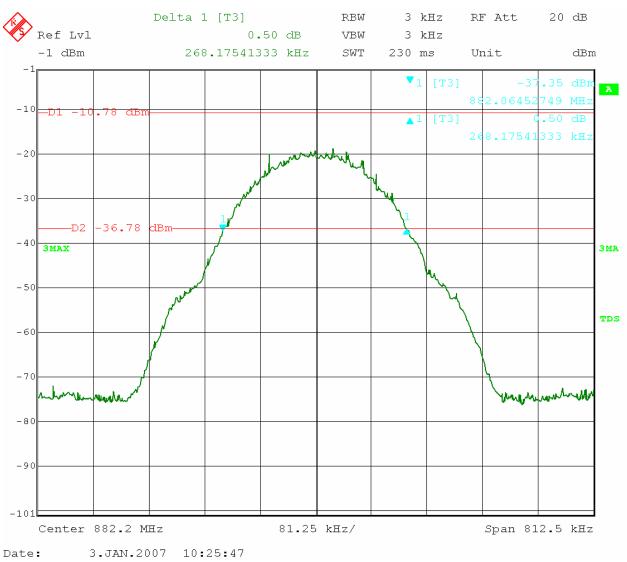
Environmental Conditions During Testing:	Humidity (%):	N/A	Pressure (hPa):	N/A	Ambient (°C):	N/A
Pretest Verification Performed	t Verification Performed Yes		Equipment under Test:		GSM Basestation	

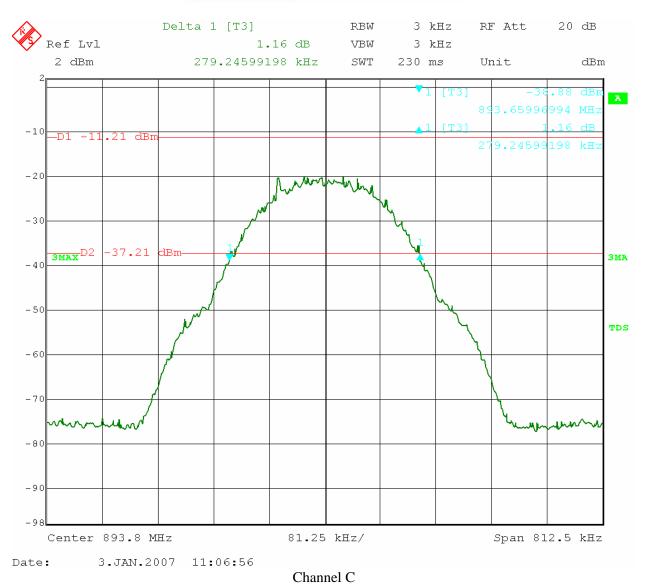
Test Equipment Used:


	TEST EQUIPMENT LIST								
Item	n Equipment Type Make Model No. Serial No.								
1	High Frequency Cable 40GHz	Megaphase	TM40 K1K1 80	CBL030	12/04/2007				
2	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	10/23/2007				

Test Details:

Test	EUT Reading kHz	Standard Limit No limit	Pass Fail	COMMENT
Channel A	267.4	No limit	Pass	
Channel B	268.2	No limit	Pass	
Channel C	279.2	No limit	Pass	


Notes: Transducer factors were programmed into the spectrum analyzer to compensate for cable loss in the test setup.



Channel A

Test Results: Pass

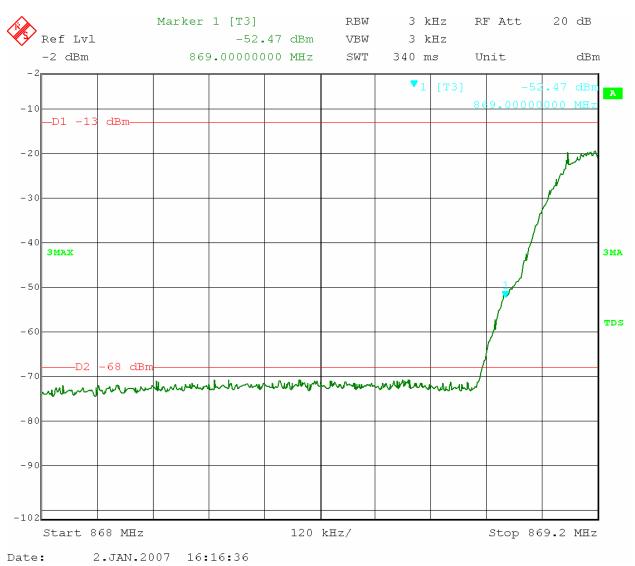
Test Standard: FCC Part 22 Subpart H 22.917, IC RSS-132 Section 4.5

Test: Spurious Conducted Emissions

Performance Criterion: Emissions outside the passband must not exceed –13 dBm when measured in a 100 kHz measurement bandwidth, except in the 1 MHz block edges above and below the band of operation, where compliance is based on a measurement bandwidth equal to 1% of the emission bandwidth.

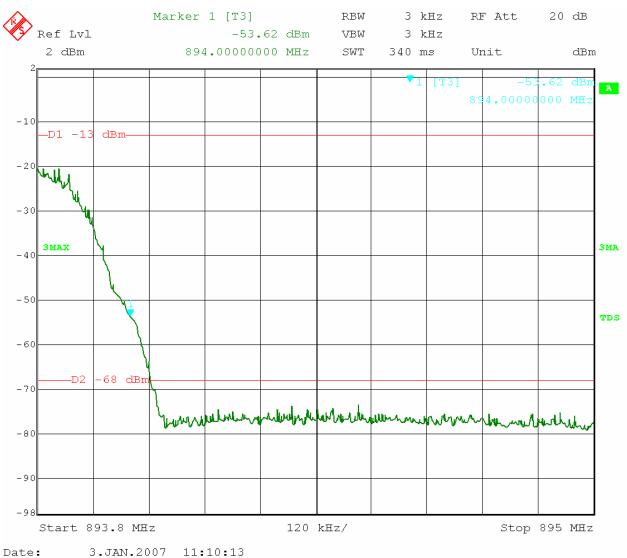
Test Environment:

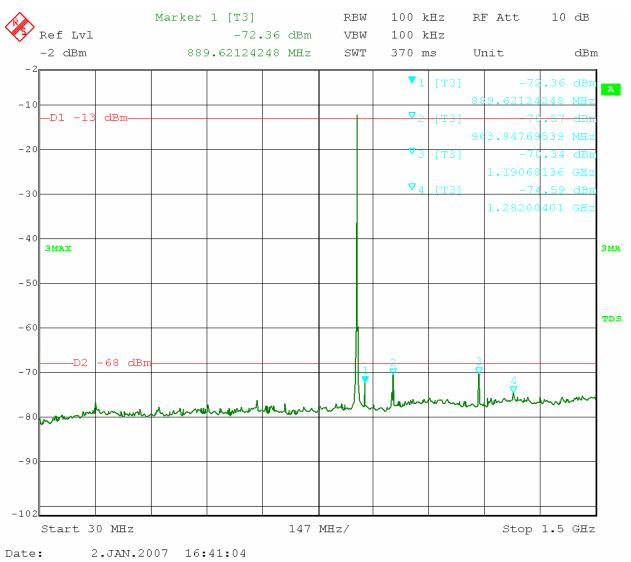
Environmental Conditions During Testing:	Humidity (%):	N/A	Pressure (hPa):	N/A	Ambient (°C):	N/A
Pretest Verification Performed	t Verification Performed Yes Equipment under Test:		Test:	GSM Basestation		

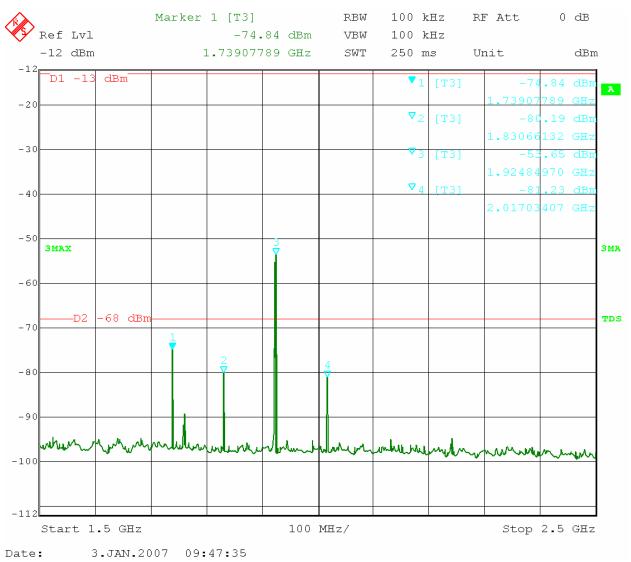

Test Equipment Used:

	TEST EQUIPMENT LIST									
Item	Equipment Type Make Model No. Serial No. Next Du									
1	High Frequency Cable 40GHz	Megaphase	TM40 K1K1 80	CBL030	12/04/2007					
2	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	10/23/2007					

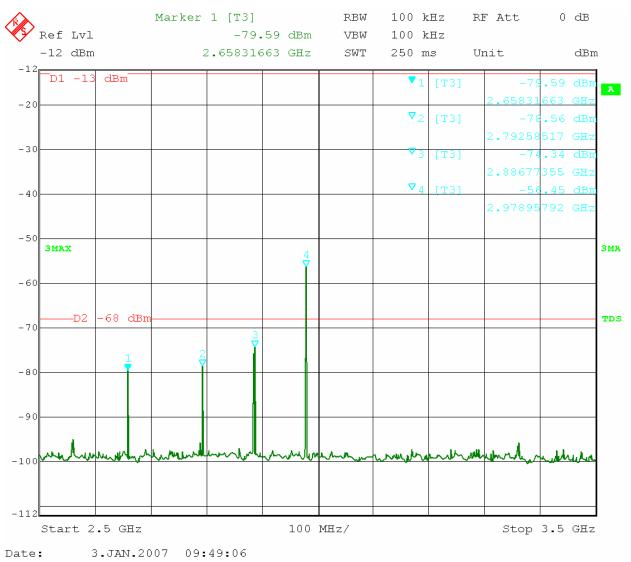
Test Details:

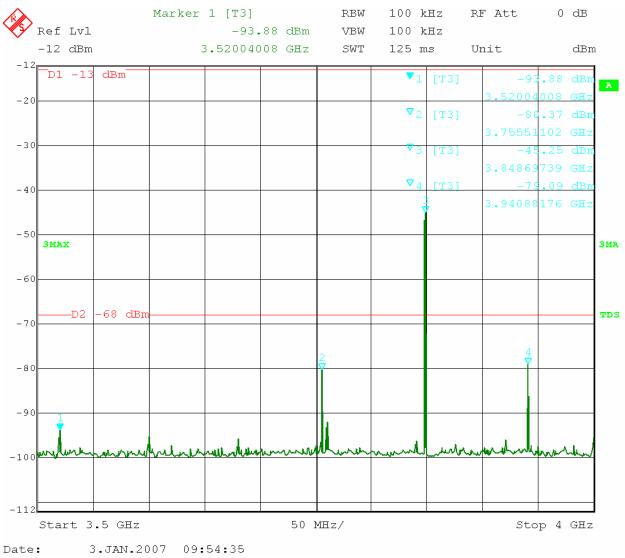

Notes: Transducer factors were programmed into the spectrum analyzer to compensate for cable loss in the test setup.


Channel A Lower Band Edge Compliance

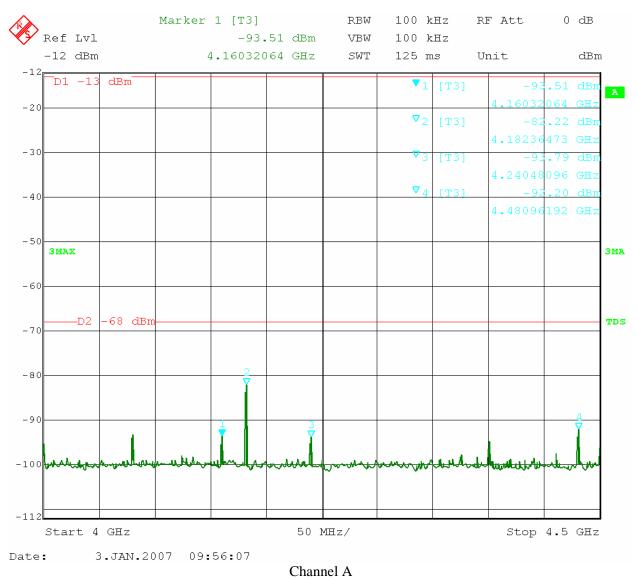


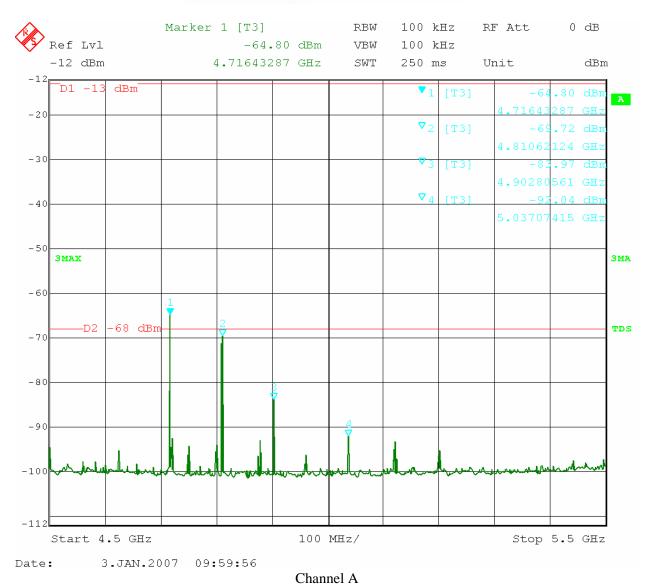
Channel C Upper Band Edge Compliance



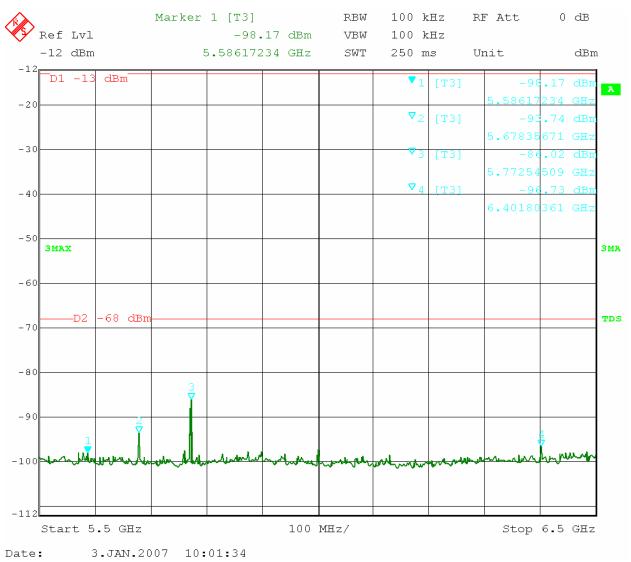


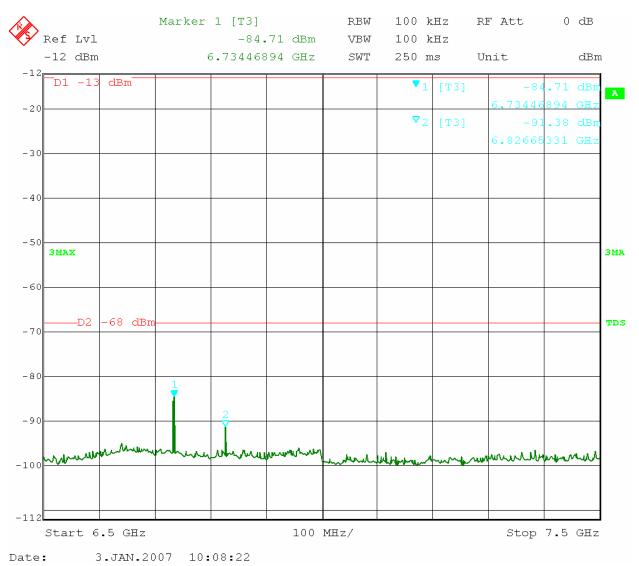
Channel A

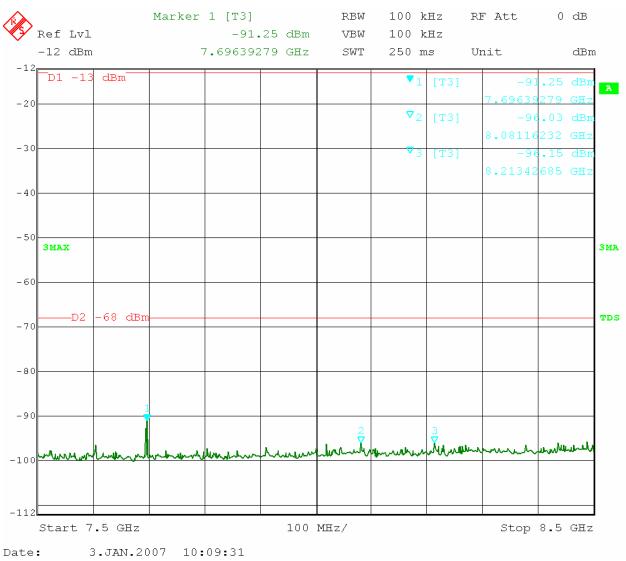


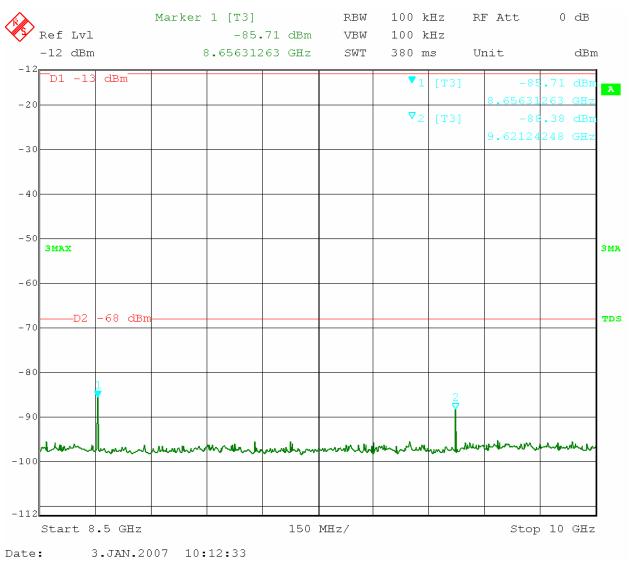


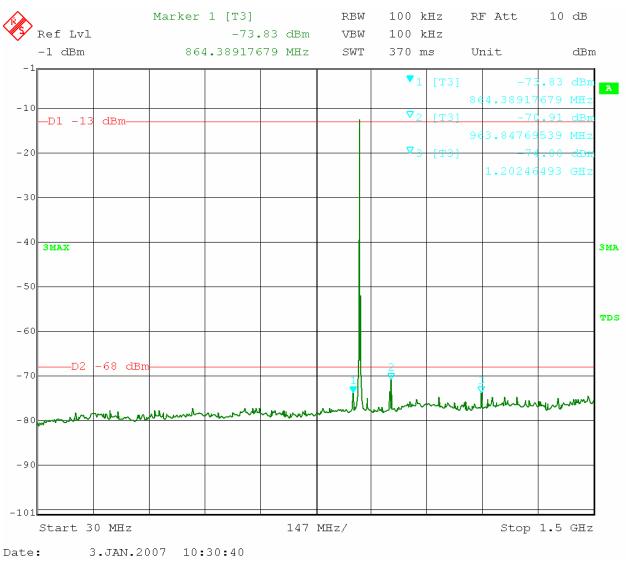
Channel A



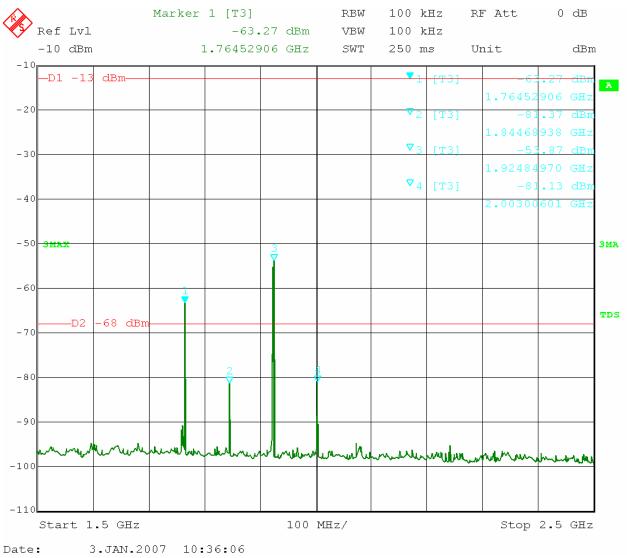


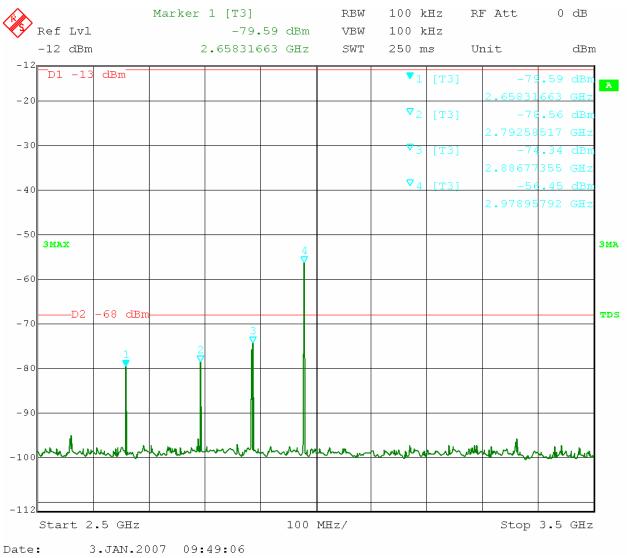


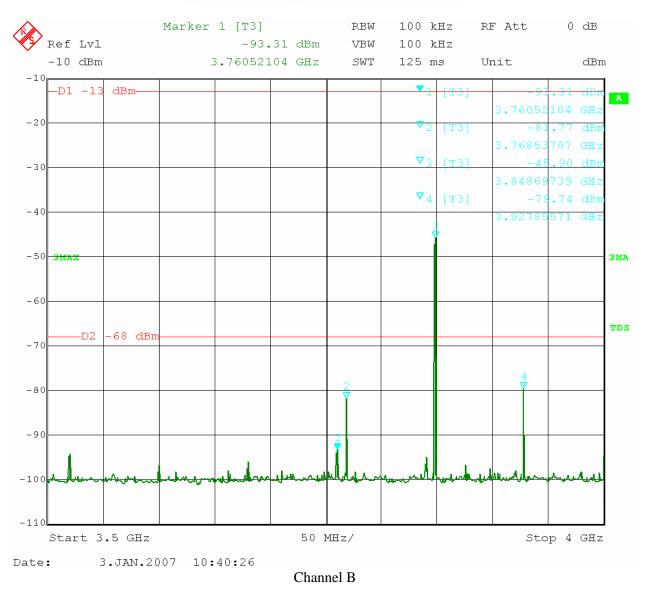


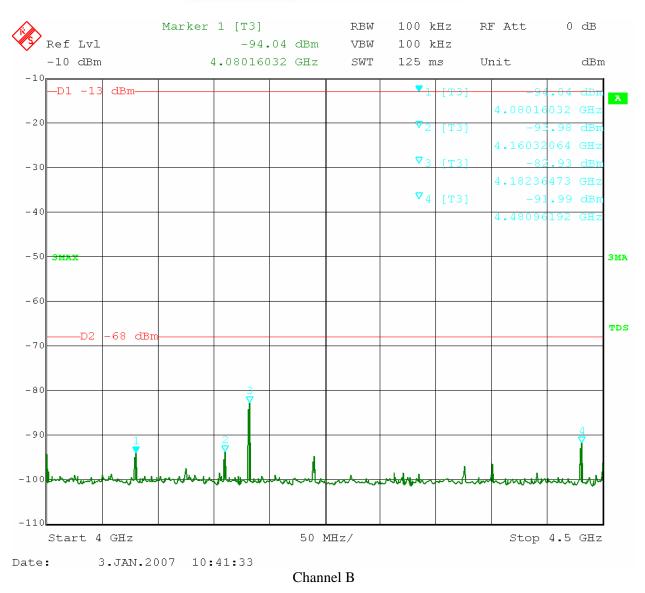


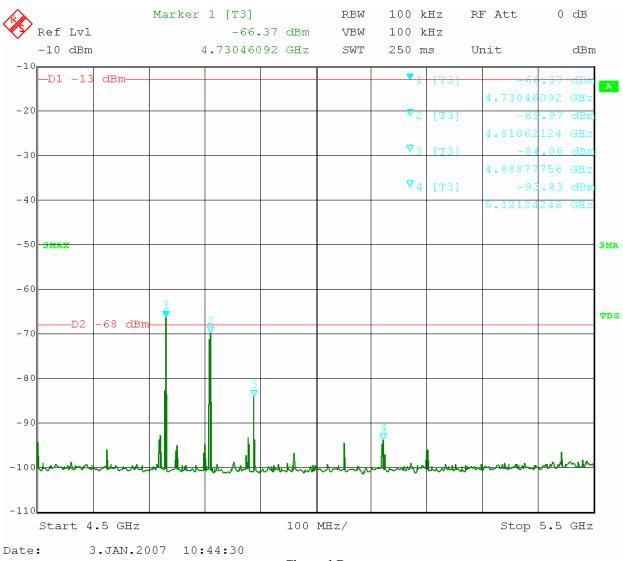
Channel A

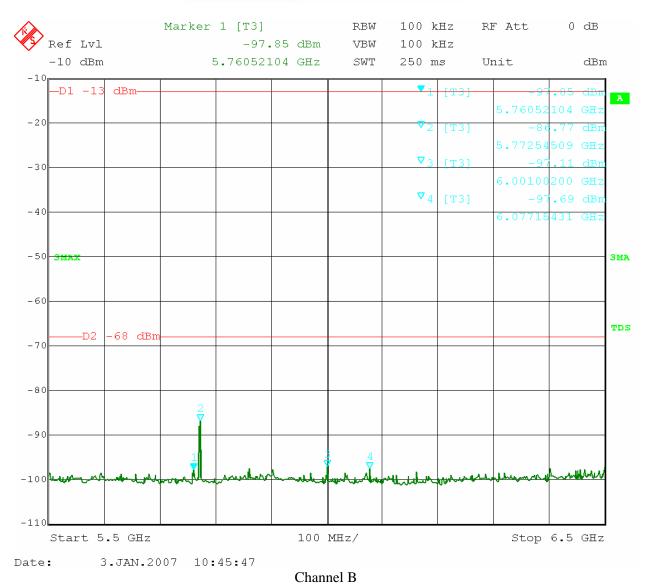


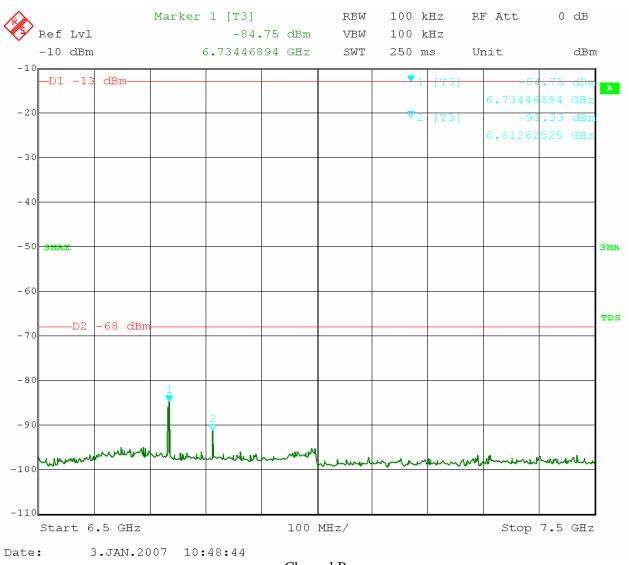


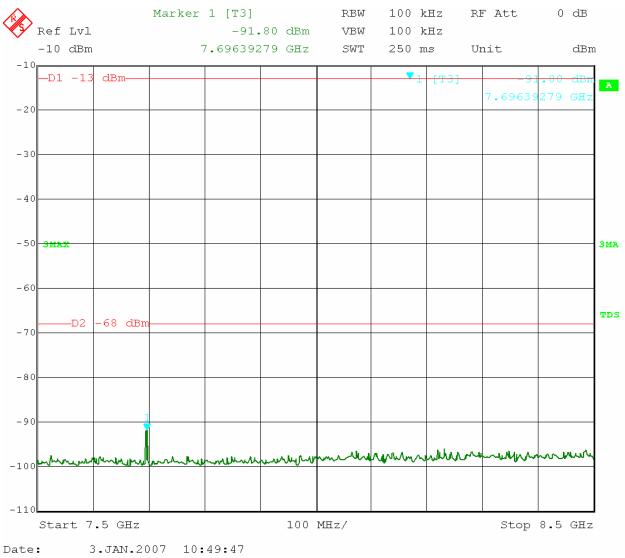


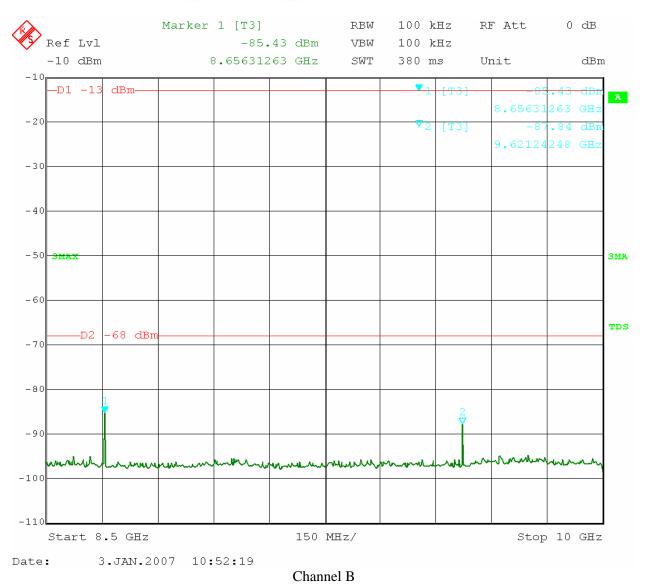


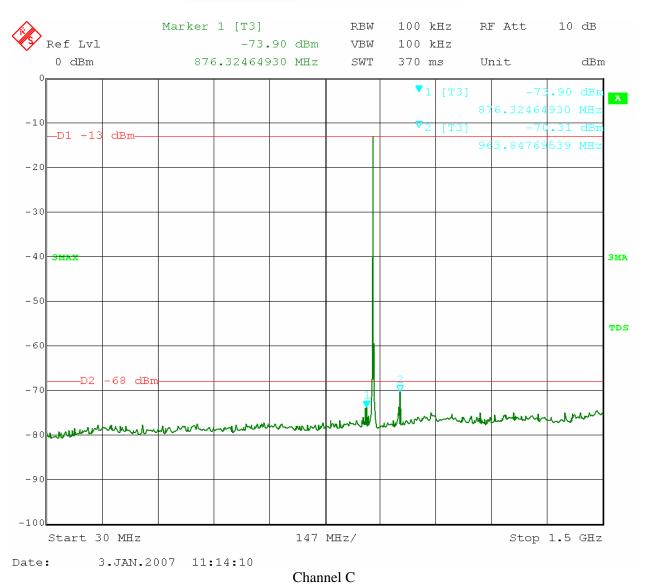




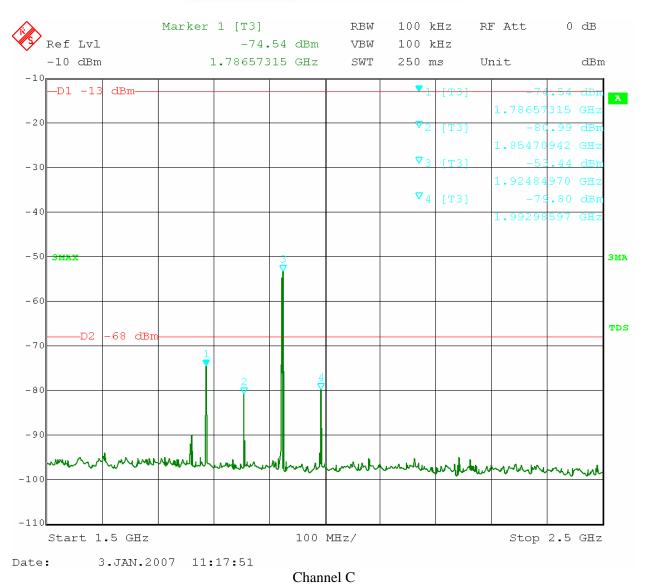


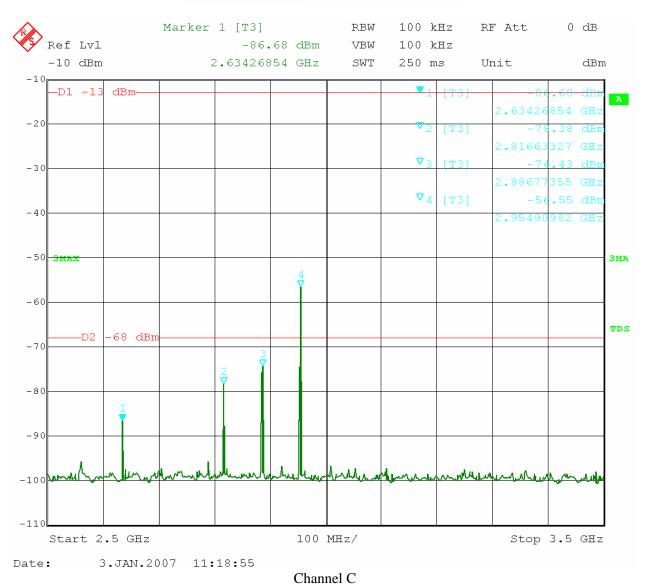


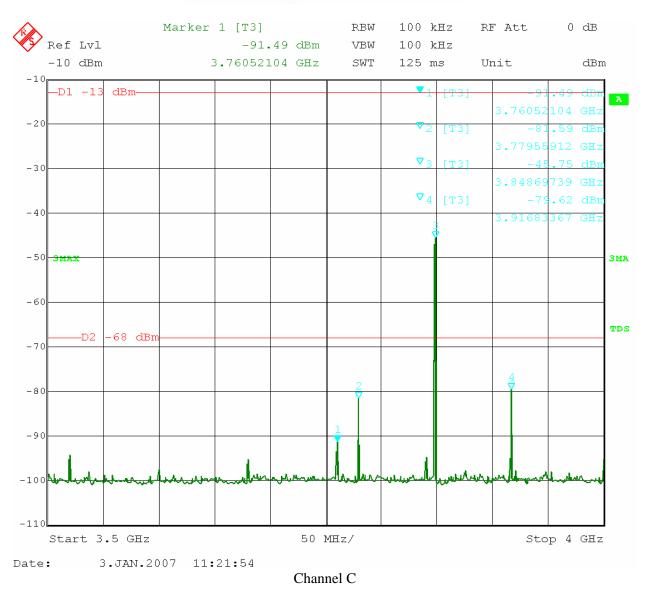


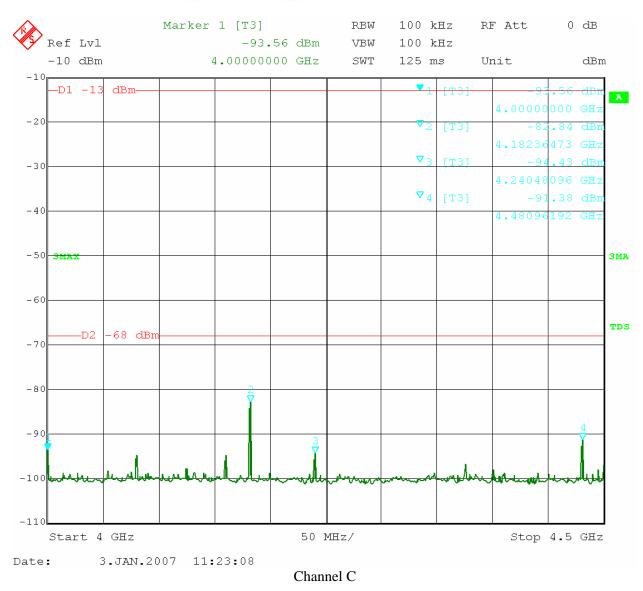


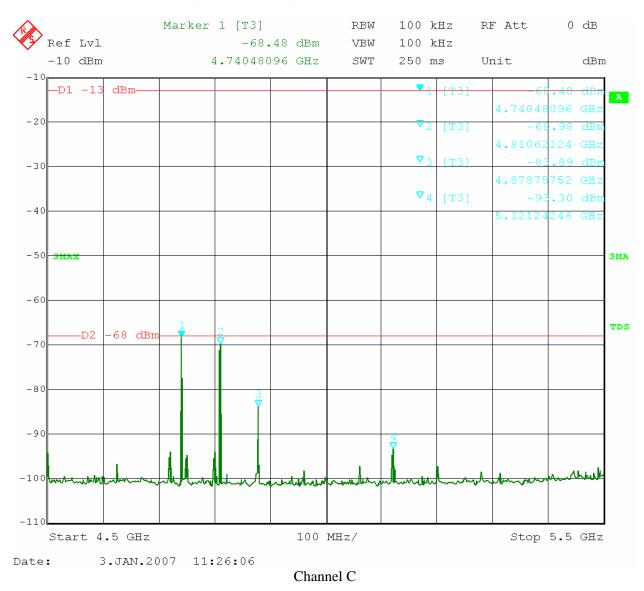
Channel B

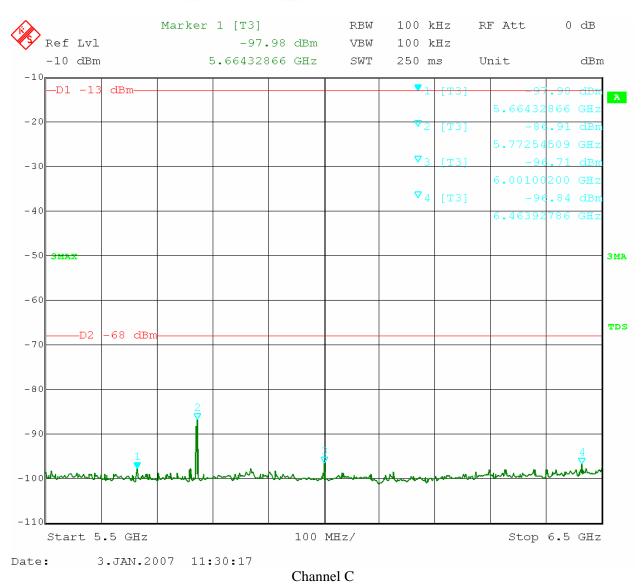


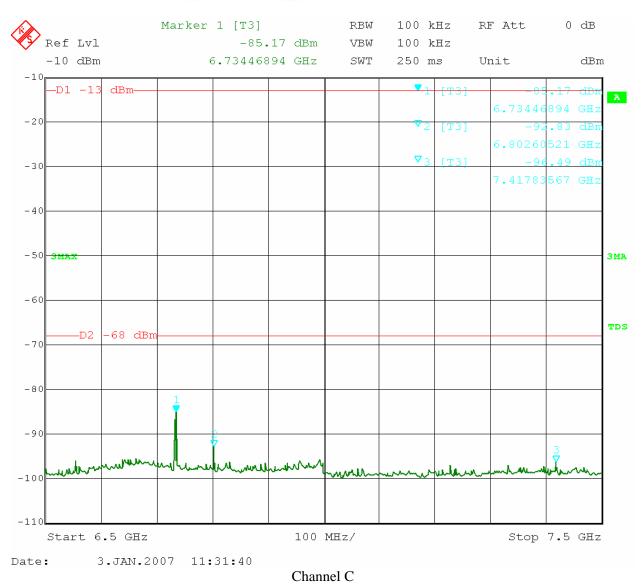


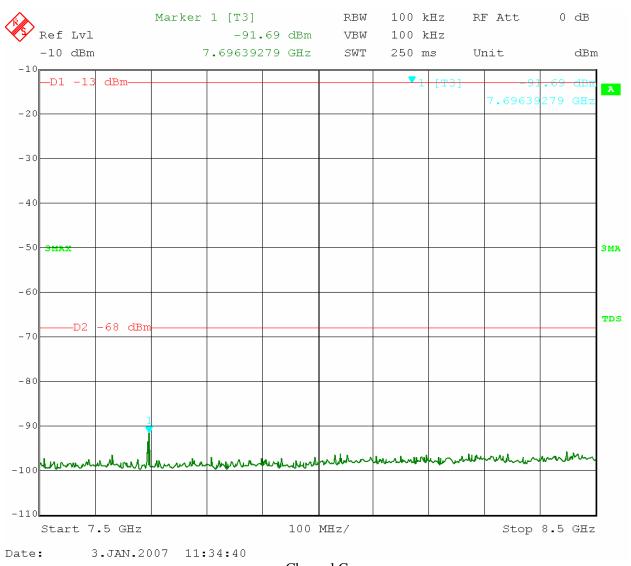


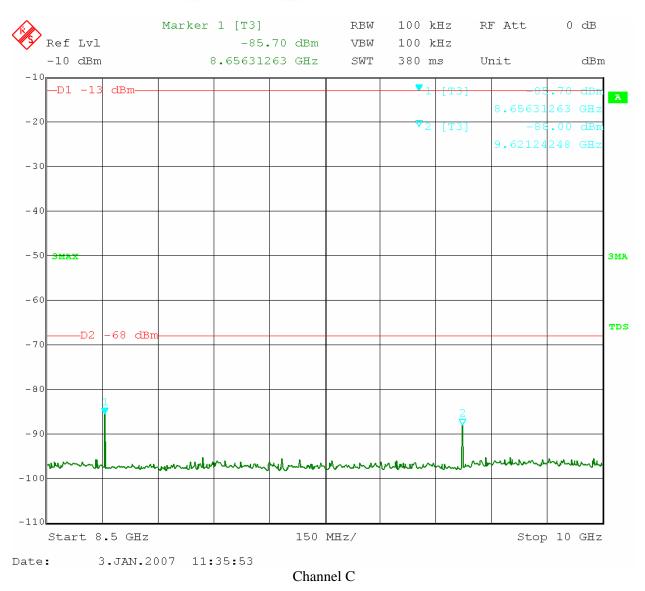


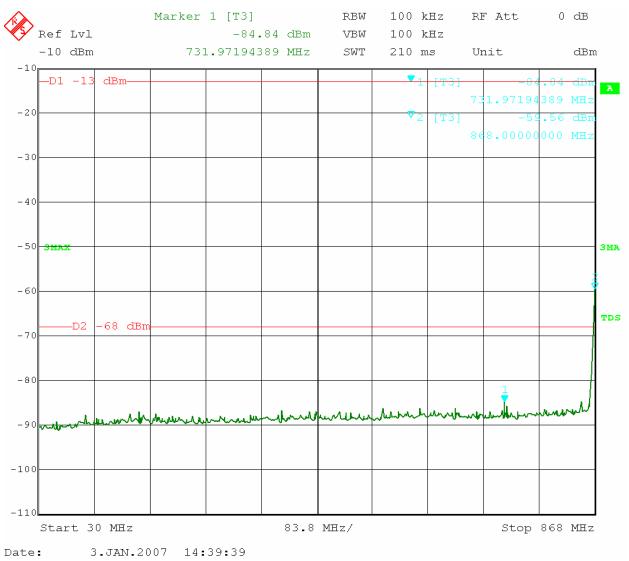


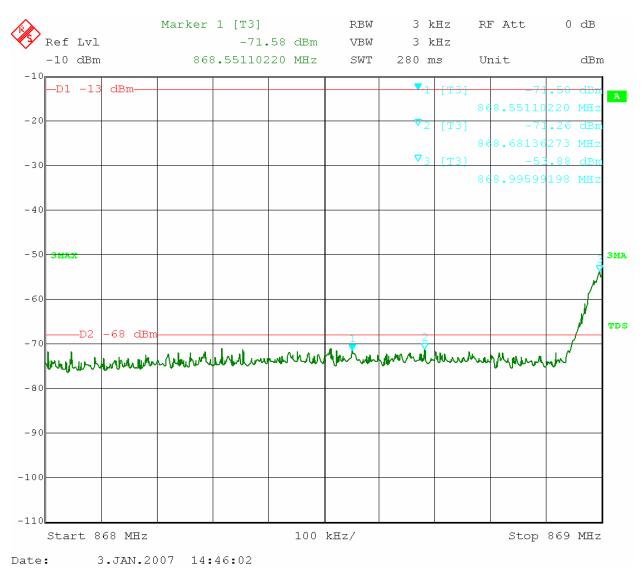


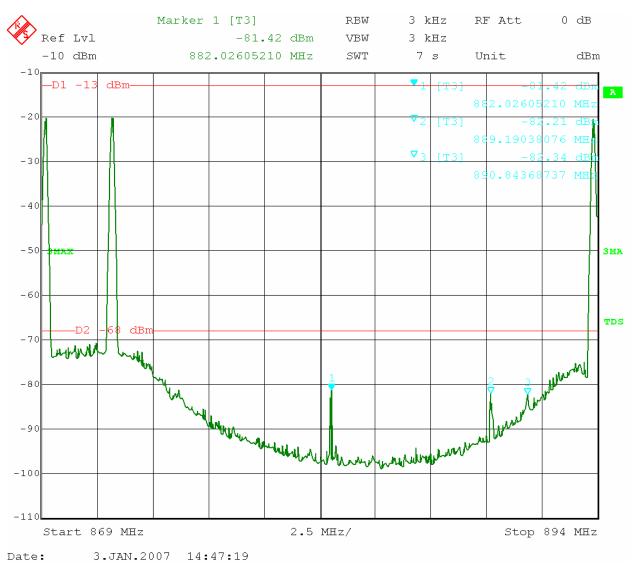


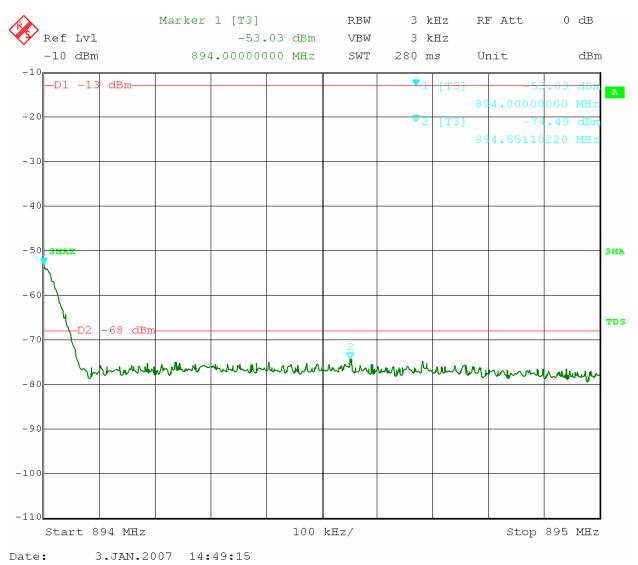


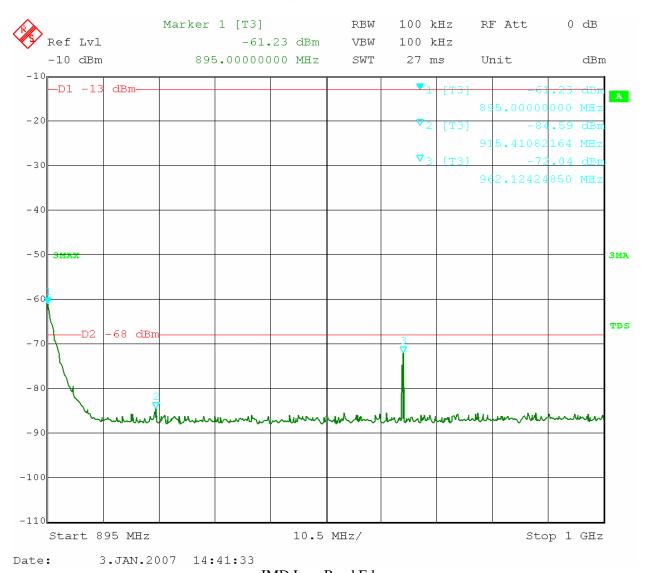


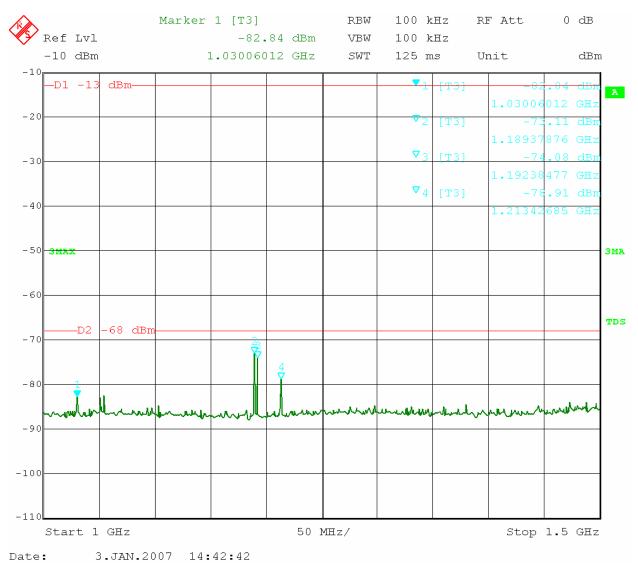


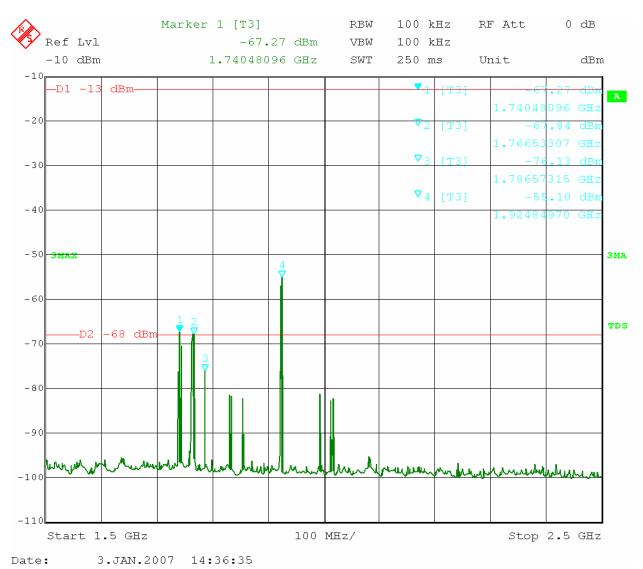


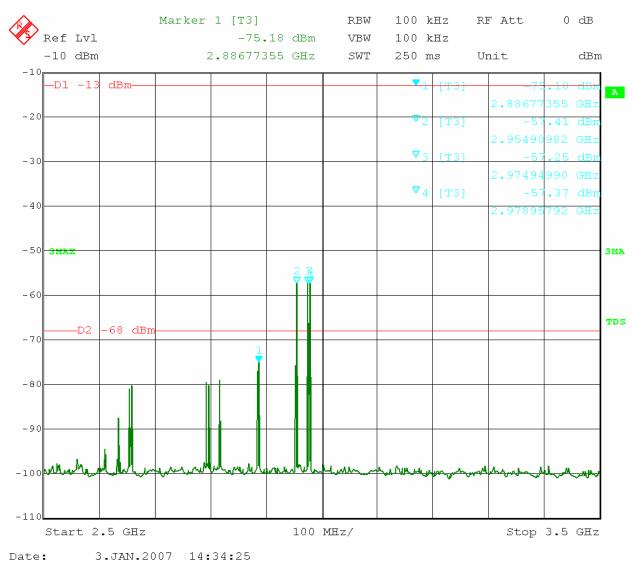

IMD Low Band Edge

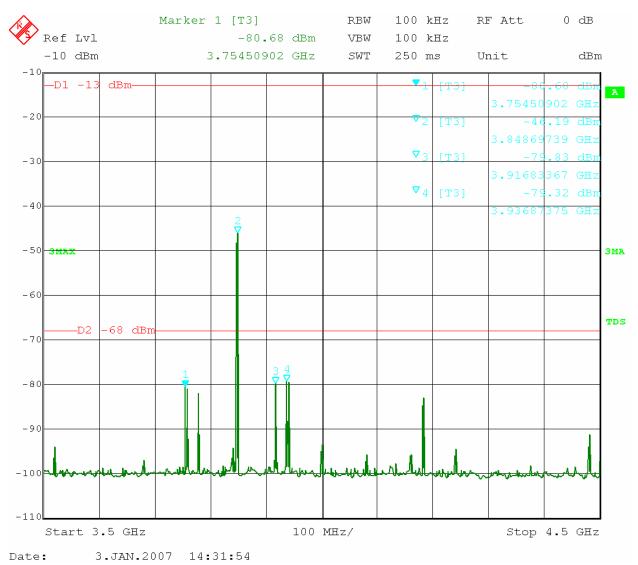

IMD Low Band Edge

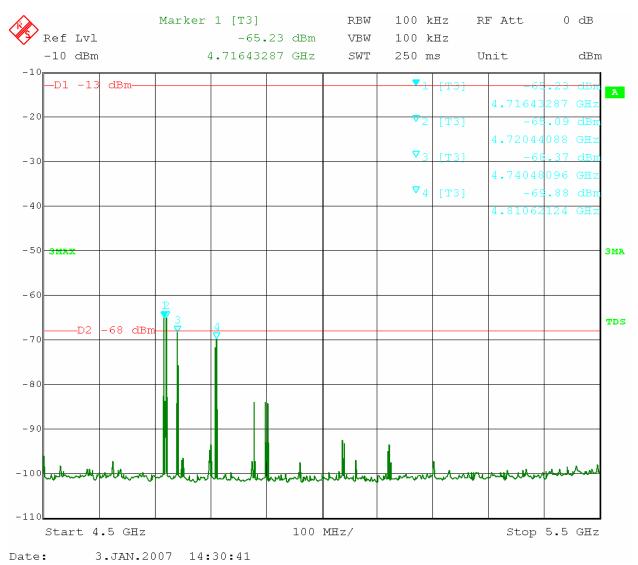

IMD Low Band Edge

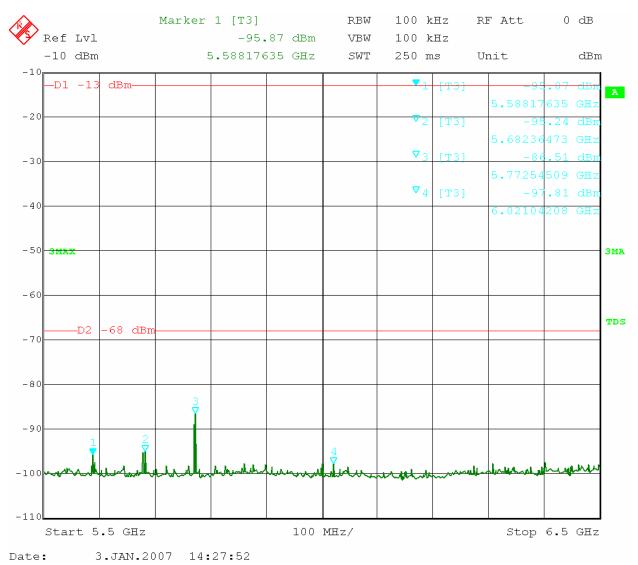

IMD Low Band Edge

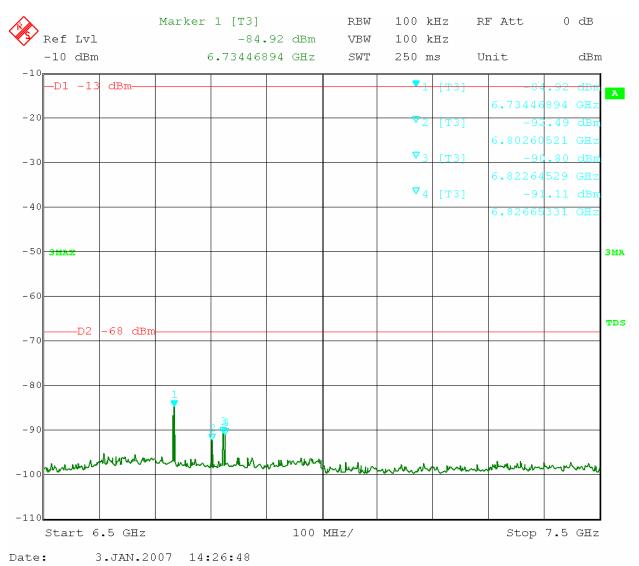

IMD Low Band Edge

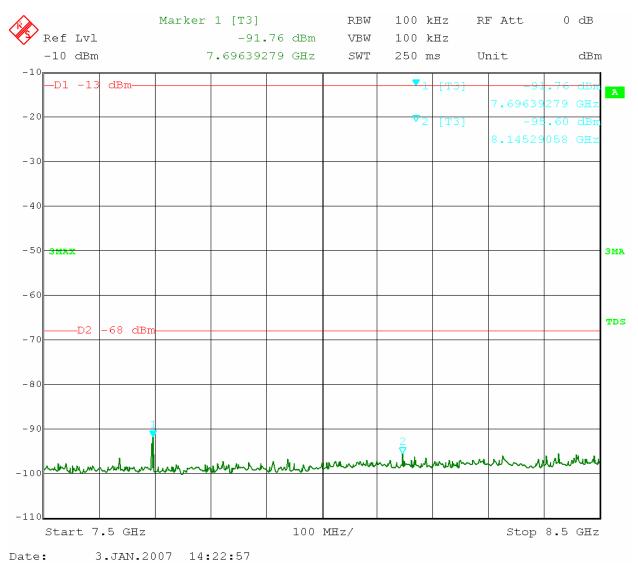

IMD Low Band Edge

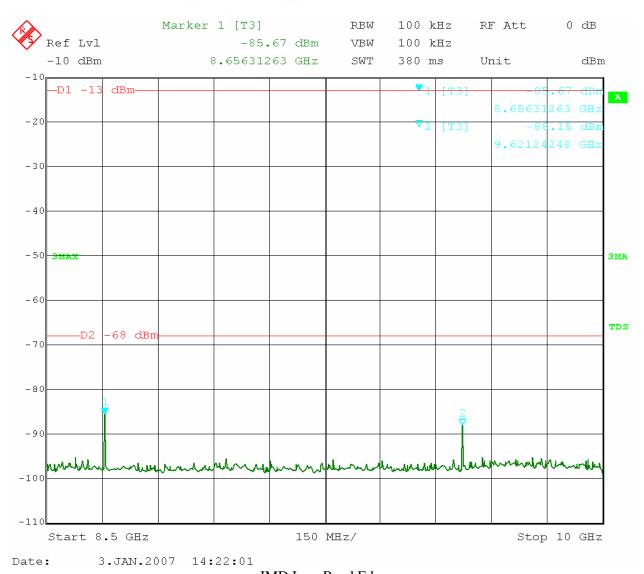

IMD Low Band Edge

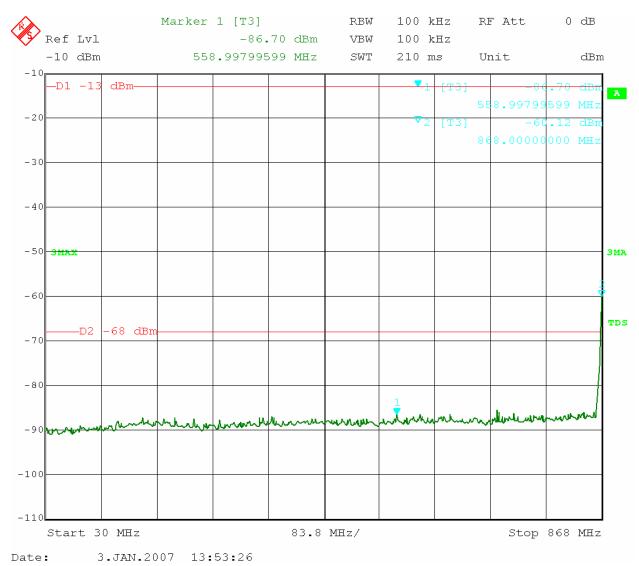

IMD Low Band Edge

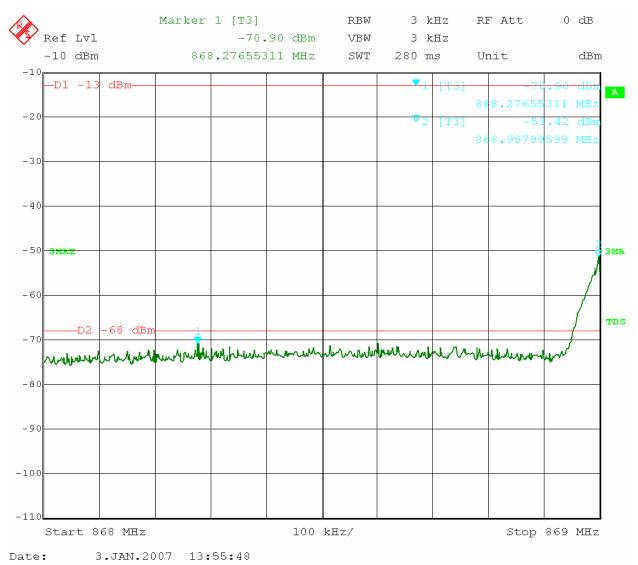

IMD Low Band Edge

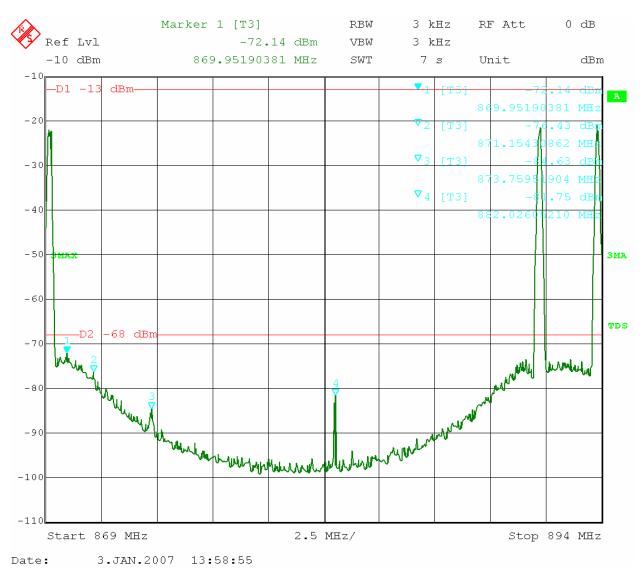

IMD Low Band Edge

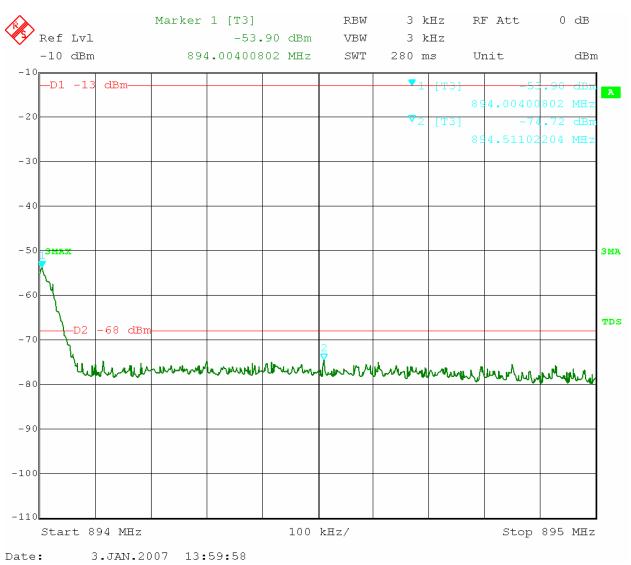

IMD Low Band Edge

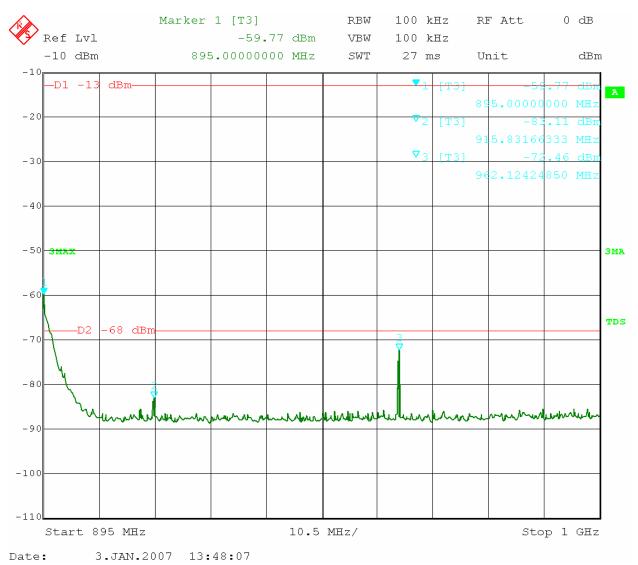

IMD Low Band Edge

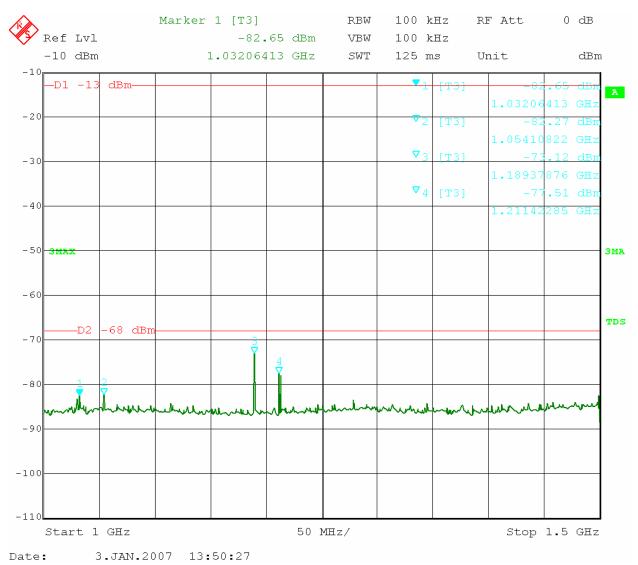

IMD Low Band Edge

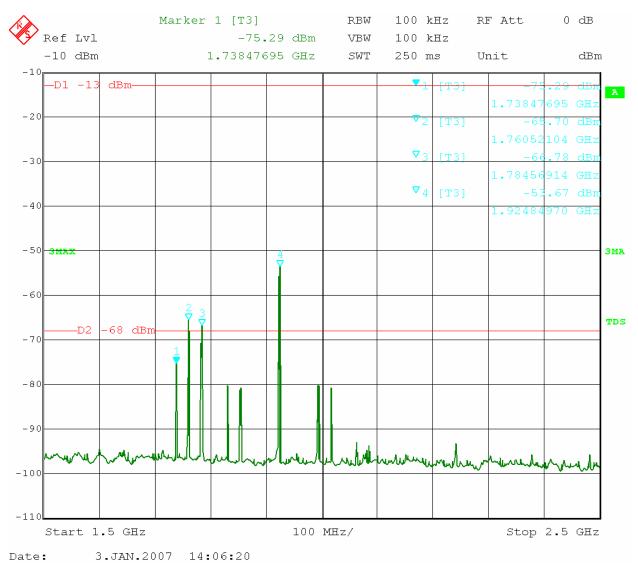

IMD Low Band Edge

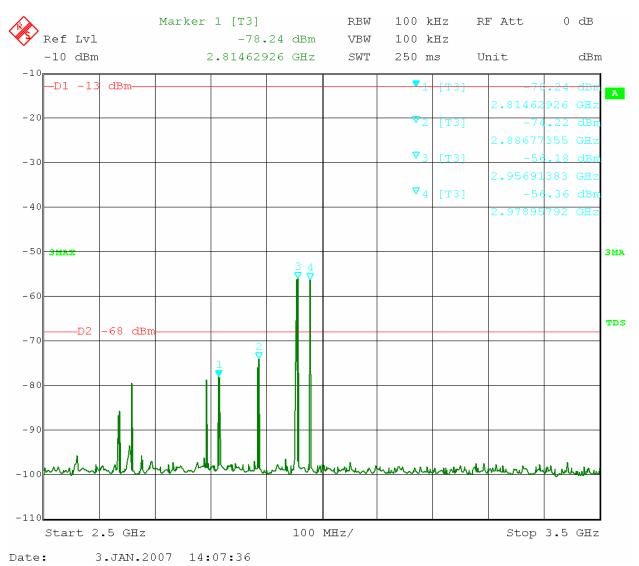

IMD High Band Edge

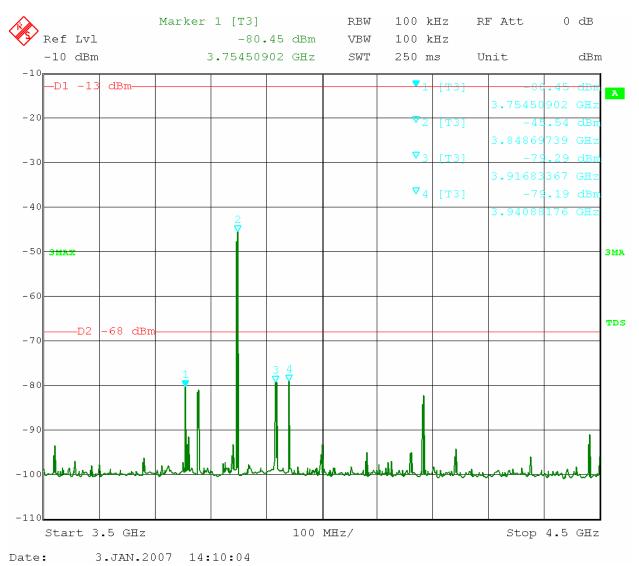

IMD High Band Edge

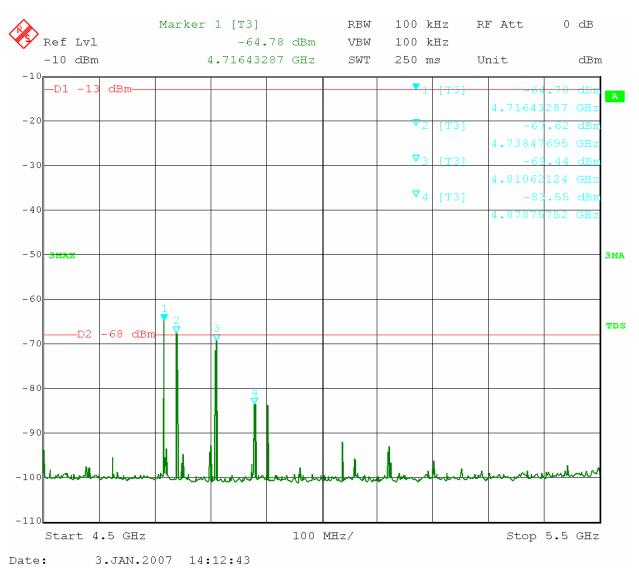

IMD High Band Edge

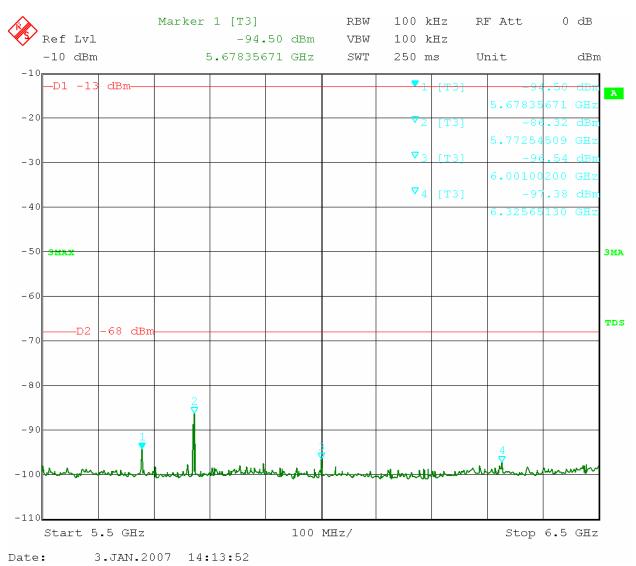

IMD High Band Edge

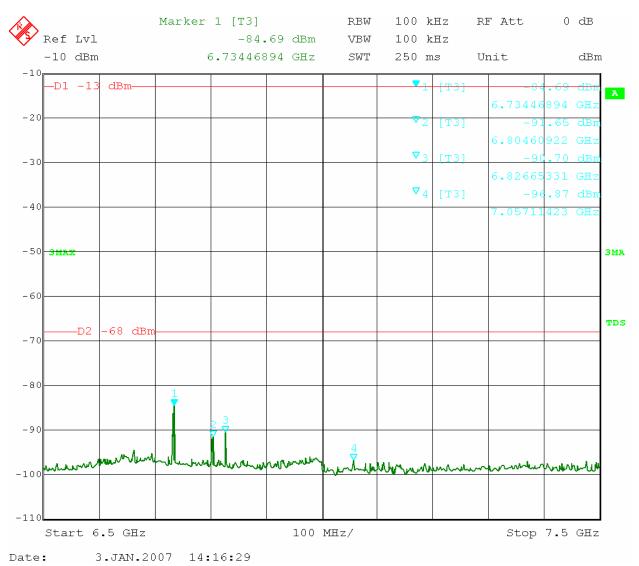

IMD High Band Edge

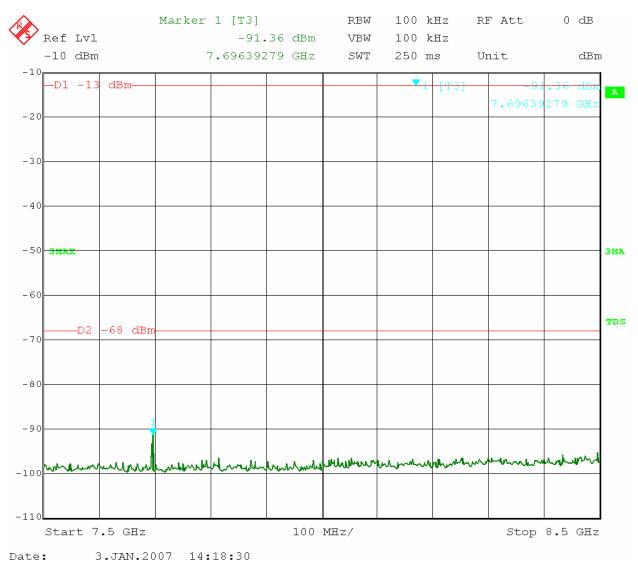

IMD High Band Edge

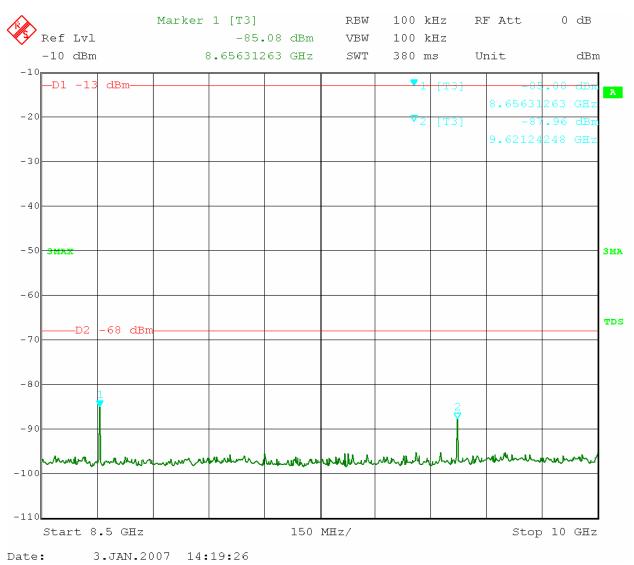

IMD High Band Edge


IMD High Band Edge


IMD High Band Edge


IMD High Band Edge


IMD High Band Edge


IMD High Band Edge

IMD High Band Edge

IMD High Band Edge

Test Results: Pass

Test Standard: FCC Part 22 Subpart H 22.917, IC RSS-132 Section 4.5, 4.6, FCC Part 15 Subpart B 15.109, IC RSS-Gen Sections 4.8, 6.0

Test: Radiated Spurious Emissions

Performance Criterion: Emissions outside the passband must not exceed –13 dBm when measured in a 100 kHz measurement bandwidth, except in the 1 MHz block edges above and below the band of operation, where compliance is based on a measurement bandwidth equal to 1% of the emission bandwidth. Receiver spurious emissions must meet the requirements of FCC Part 15 Subpart B 15.109 and IC RSS-Gen Table 1 per Sections 4.8 and 6.0.

Test Environment:

Environmental Conditions During Testing:	Humidity (%):	See Table	Pressure (hPa):	See Table	Ambient (°C):	See Table
Pretest Verification Performed	Yes		Equipment under	Test:	GSM Basestation	

Test Equipment Used:

_ = = = =	TEST EQUIPMENT LIST										
Item	Equipment Type	Make	Model No.	Serial No.	Next Cal. Due						
1	Digital 4 Line Barometer	Mannix	0ABA116	BAR2	08/02/2007						
2	ANTENNA	EMCO	3142	9711-1223	01/25/2007						
3	BROADBAND ANTENNA	Compliance Design	B100	3317	10/11/2007						
4	BROADBAND ANTENNA	Compliance Design	B200	3245	10/11/2007						
5	BROADBAND ANTENNA	Compliance Design	B300	3352	10/11/2007						
6	HORN ANTENNA	EMCO	3115	9610-4980	06/12/2007						
7	HORN ANTENNA	EMCO	3115	9602-4675	09/11/2007						
8	High Frequency Cable 40GHz	Megaphase	TM40 K1K1 197	CBL028	12/04/2007						
9	High Frequency Cable 40GHz	Megaphase	TM40 K1K1 80	CBL029	12/04/2007						
10	High Frequency Cable 40GHz	Megaphase	TM40 K1K1 80	CBL030	12/04/2007						
11	3 Meter In floor cable for site 2	ITS	RG214B/U	S2 3M FLR	09/26/2007						
12	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	10/23/2007						
13	EMI Receiver Set W/RF Filter	Hewlett Packard	8542E	3520A00125	02/28/2007						
14	RF FILTER	Hewlett Packard	85420E	3427A00126	02/28/2007						
15	PREAMPLFIER 1- 40 GHz	MITEQ	NSP4000-NF	507145	11/14/2007						
16	Synthesized Sweep Generator	Hewlett Packard	83620A	3213A01244	01/25/2007						

Software Utilized:

Name	Manufacturer	Version
EXCEL 2000	Microsoft Corporation	9.0.6926 SP-3
EMI BOXBOROUGH	Intertek	9/20/06 Revision

Test Details:

Transmitter Spurious Emissions

Radiated Emissions, Substitution

Company: Vanu, Inc. Rx Antenna: HORN3 LOG2

Model #: GSM Basestation Rx Cable(s): CBL029 CBL030 S2 3M FLR
Serial #: 1074 Rx Preamp: PRE8 Receiver: ROS001

Engineer(s): Nicholas Abbondante Location: Site 2 Tx Antenna: HORN2 ANT4

Project #: 3112039 Date(s): 01/09/07 Tx Cable(s): CBL028 REC2/RECFL2 REA005

Standard: FCC Part 22/IC RSS-132 Tx Signal Generator: HEW62

Barometer: BAR2 Temp/Humidity/Pressure: 20c 28% 994mB ERP or EIRP?: ERP

Test Distance (m): 3 Voltage/Frequency: 120V/60Hz Frequency Range: 30 MHz - 1 GHz

Net = Generator Level (0.00 dBm) + (EUT reading - Generator reading) - Cable Loss + Antenna Gain (dBi or dBd)

Net = Generator Level (0.00 dBm) + (EUT reading - Generator reading) - Cable Loss + Antenna Gain (dBi or dBd)

Net = Generator Level (0.00 dBm) + (EUT reading - Generator reading) - Cable Loss + Antenna Gain (dBi or dBd)

Peak: PK	Quasi-Pea	ak: QP Ave		RMS: RMS	; NF = Nois				andwidth de	enoted as R	BW/VBW
	Ant.		EUT	Generator	Transmit	Transmit	Generator				
Detector	Pol.	Frequency	Reading	Reading	Cable	Antenna	Level	Net	Limit	Margin	Bandwidth
Type	(V/H)	MHz	dB(uV)	dB(uV)	Loss dB	dBi	dBm	dBm	dBm	dB	
PK	V	34.650	24.4	72.0	0.4	-9.1	0.0	-59.3	-13.0	-46.3	120/300 kHz
PK	V	46.610	25.5	79.2	0.5	-6.9	0.0	-63.2	-13.0	-50.2	120/300 kHz
PK	V	49.980	29.2	81.0	0.5	-6.4	0.0	-60.9	-13.0	-47.9	120/300 kHz
PK	V	63.000	27.5	82.3	0.5	-2.9	0.0	-60.4	-13.0	-47.4	120/300 kHz
PK	V	74.430	22.5	86.6	0.6	1.7	0.0	-65.1	-13.0	-52.1	120/300 kHz
PK	V	109.400	19.0	87.4	0.7	-1.2	0.0	-72.4	-13.0	-59.4	120/300 kHz
PK	V	129.000	21.0	87.7	0.7	-0.1	0.0	-69.7	-13.0	-56.7	120/300 kHz
PK	V	141.500	25.3	88.4	0.7	1.6	0.0	-64.4	-13.0	-51.4	120/300 kHz
PK	Н	154.800	17.8	90.0	0.8	1.9	0.0	-73.2	-13.0	-60.2	120/300 kHz
PK	Н	196.800	22.3	88.3	0.9	0.9	0.0	-68.1	-13.0	-55.1	120/300 kHz
PK	Н	208.000	19.6	88.2	0.9	0.7	0.0	-70.9	-13.0	-57.9	120/300 kHz
PK	Н	217.800	17.2	87.2	0.9	0.6	0.0	-72.5	-13.0	-59.5	120/300 kHz
PK	Н	234.600	17.1	85.9	0.9	-0.3	0.0	-72.2	-13.0	-59.2	120/300 kHz
PK	Н	240.000	29.9	86.2	1.0	-0.6	0.0	-60.0	-13.0	-47.0	120/300 kHz
PK	V	250.000	20.7	71.4	1.0	-0.9	0.0	-54.7	-13.0	-41.7	120/300 kHz
PK	V	256.000	21.0	73.4	1.0	-0.8	0.0	-56.3	-13.0	-43.3	120/300 kHz
PK	V	267.100	18.3	75.7	1.0	-1.1	0.0	-61.7	-13.0	-48.7	120/300 kHz
PK	V	292.000	18.8	74.3	1.0	-0.7	0.0	-59.4	-13.0	-46.4	120/300 kHz
PK	Н	320.000	23.1	83.3	1.1	-1.6	0.0	-65.1	-13.0	-52.1	120/300 kHz
PK	V	350.000	21.1	76.1	1.1	-1.5	0.0	-59.8	-13.0	-46.8	120/300 kHz
PK	V	360.000	21.5	77.1	1.2	-1.9	0.0	-60.8	-13.0	-47.8	120/300 kHz
PK	V	375.000	22.7	77.0	1.2	-0.9	0.0	-58.5	-13.0	-45.5	120/300 kHz
PK	Н	400.000	16.7	72.9	1.2	0.0	0.0	-59.6	-13.0	-46.6	120/300 kHz
PK	V	405.900	11.9	78.1	1.2	0.6	0.0	-69.0	-13.0	-56.0	120/300 kHz
PK	V	480.000	20.2	76.4	1.3	0.7	0.0	-58.9	-13.0	-45.9	120/300 kHz
PK	V	720.000	19.3	69.2	1.6	0.6	0.0	-53.1	-13.0	-40.1	120/300 kHz
PK	V	869.200	5.7	67.8	1.8	1.3	0.0	-64.7	-13.0	-51.7	120/300 kHz
PK	V	893.800	2.5	67.1	1.8	0.8	0.0	-67.8	-13.0	-54.8	120/300 kHz

Radiated Emissions, Substitution

Company: Vanu, Inc. Rx Antenna: HORN3 LOG2

Model #: GSM Basestation Rx Cable(s): CBL029 CBL030 S2 3M FLR
Serial #: 1074 Rx Preamp: PRE8 Receiver: ROS001

Engineer(s): Nicholas Abbondante Location: Site 2 Tx Antenna: HORN2 ANT4

Project #: 3112039 Date(s): 01/09/07 Tx Cable(s): CBL028 REC2/RECFL2 REA005

Standard: FCC Part 22/IC RSS-132 Tx Signal Generator: HEW62

Barometer: BAR2 Temp/Humidity/Pressure: 20c 28% 994mB ERP or EIRP?: ERP

Test Distance (m): 3 Voltage/Frequency: 120V/60Hz Frequency Range: 1 - 9 GHz

Net = Generator Level (0.00 dBm) + (EUT reading - Generator reading) - Cable Loss + Antenna Gain (dBi or dBd)

Peak: PK	Quasi-Pe	ak: QP Ave	rage: AVG	RMS: RMS	S; NF = Nois	se Floor RE	B = Restricte	ed Band; E	Bandwidth de	enoted as R	BW/VBW
	Ant.		EUT	Generator	Transmit	Transmit	Generator				
Detector	Pol.	Frequency	Reading	Reading	Cable	Antenna	Level	Net	Limit	Margin	Bandwidth
Type	(V/H)	MHz	dB(uV)	dB(uV)	Loss dB	dBi	dBm	dBm	dBm	dB	
PK	V	1190.680	21.5	70.2	2.1	6.0	0.0	-46.9	-13.0	-33.9	120/300 kH
PK	V	1282.004	22.4	69.5	2.2	6.6	0.0	-44.8	-13.0	-31.8	120/300 kH
PK	V	1920.400	26.9	90.0	2.8	8.3	0.0	-59.7	-13.0	-46.7	120/300 kH
PK	Н	2000.000	33.9	84.7	2.8	8.3	0.0	-47.6	-13.0	-34.6	120/300 kH
PK	V	2560.000	26.4	87.8	3.3	9.4	0.0	-57.3	-13.0	-44.3	120/300 kH
PK	V	1738.400	21.3	87.0	2.6	8.2	0.0	-62.3	-13.0	-49.3	120/300 kH
PK	V	2607.600	21.1	86.1	3.3	9.3	0.0	-61.1	-13.0	-48.1	120/300 kH
PK	V	3476.800	22.8	84.2	4.0	9.5	0.0	-58.0	-13.0	-45.0	120/300 kH
PK	V	4346.000	21.1	86.8	4.6	10.2	0.0	-62.3	-13.0	-49.3	120/300 kH
PK	V	5215.200	22.5	86.0	5.3	10.2	0.0	-60.7	-13.0	-47.7	120/300 kH
PK	V	6084.400	23.4	85.0	5.9	11.1	0.0	-58.5	-13.0	-45.5	120/300 kH
PK	V	6953.600	24.6	81.4	6.5	11.2	0.0	-54.2	-13.0	-41.2	120/300 kH
PK	V	7822.800	22.5	77.9	7.3	10.7	0.0	-54.2	-13.0	-41.2	120/300 kH
PK	V	8692.000	23.0	77.0	7.8	11.0	0.0	-53.0	-13.0	-40.0	120/300 kH
PK	V	1764.400	21.5	84.8	2.6	8.2	0.0	-59.9	-13.0	-46.9	120/300 kH
PK	V	2646.600	22.6	86.3	3.3	9.3	0.0	-59.9	-13.0	-46.9	120/300 kH
PK	V	3528.800	21.6	84.8	4.0	9.5	0.0	-59.9	-13.0	-46.9	120/300 kH
PK	V	4411.000	21.3	86.2	4.6	10.3	0.0	-61.4	-13.0	-48.4	120/300 kH
PK	V	5293.200	22.0	85.9	5.3	10.3	0.0	-61.2	-13.0	-48.2	120/300 kH
PK	V	6175.400	22.2	84.3	6.0	11.2	0.0	-59.0	-13.0	-46.0	120/300 kH
PK	V	7057.600	22.6	81.8	6.6	11.1	0.0	-56.8	-13.0	-43.8	120/300 kH
PK	V	7939.800	21.4	76.7	7.4	10.8	0.0	-54.0	-13.0	-41.0	120/300 kH
PK	V	8822.000	23.1	74.9	7.8	11.0	0.0	-50.8	-13.0	-37.8	120/300 kH
PK	V	1787.600	21.7	86.5	2.7	8.2	0.0	-61.4	-13.0	-48.4	120/300 kH
PK	V	2681.400	22.6	86.8	3.4	9.3	0.0	-60.4	-13.0	-47.4	120/300 kH
PK	V	3575.200	21.6	84.8	4.0	9.5	0.0	-59.9	-13.0	-46.9	120/300 kH
PK	V	4469.000	21.8	87.0	4.7	10.4	0.0	-61.7	-13.0	-48.7	120/300 kH
PK	V	5362.800	21.9	85.7	5.3	10.3	0.0	-61.0	-13.0	-48.0	120/300 kH
PK	V	6256.600	22.7	84.8	6.1	11.2	0.0	-59.1	-13.0	-46.1	120/300 kH
PK	V	7150.400	21.6	81.3	6.7	11.0	0.0	-57.6	-13.0	-44.6	120/300 kH
PK	V	8044.200	22.3	78.2	7.5	10.9	0.0	-54.6	-13.0	-41.6	120/300 kH
PK	V	8938.000	22.7	75.9	7.9	11.0	0.0	-52.2	-13.0	-39.2	120/300 kH:

Receiver Spurious Emissions

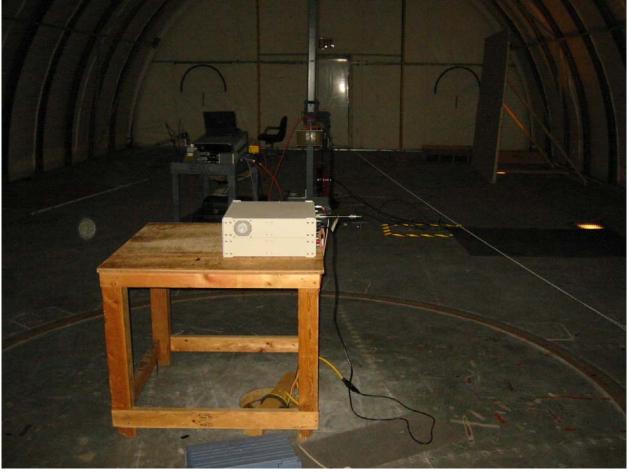
Radiated Emissions

Company: Vanu, Inc. Model #: GSM Basestation Antenna & Cables: Bands: N, LF, HF, SHF

LF Antenna: NONE. NONE.

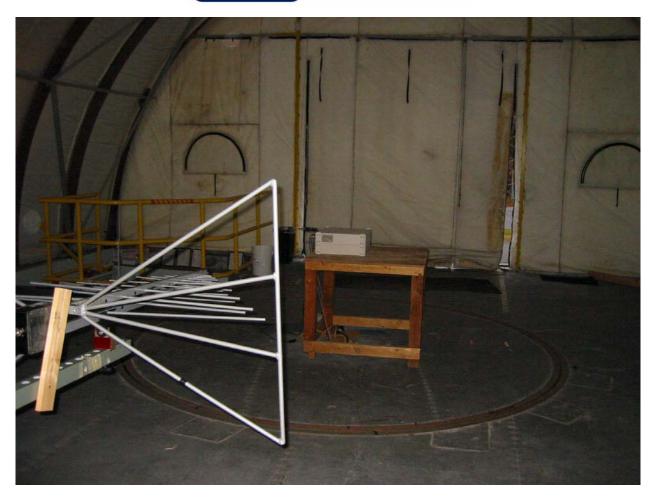
Serial #: 1074 N Antenna: LOG2 1-25-07 V3.txt LOG2 1-25-07 H3.txt HF Antenna: HORN3 V3m 6-12-07.txt HORN3 H3m 6-12-07.txt Engineers: Nicholas Abbondante Location: Site 2 Date(s): 01/05/07 SHF Antenna: HORN3 V3m 6-12-07.txt HORN3 H3m 6-12-07.txt Project #: 3112039

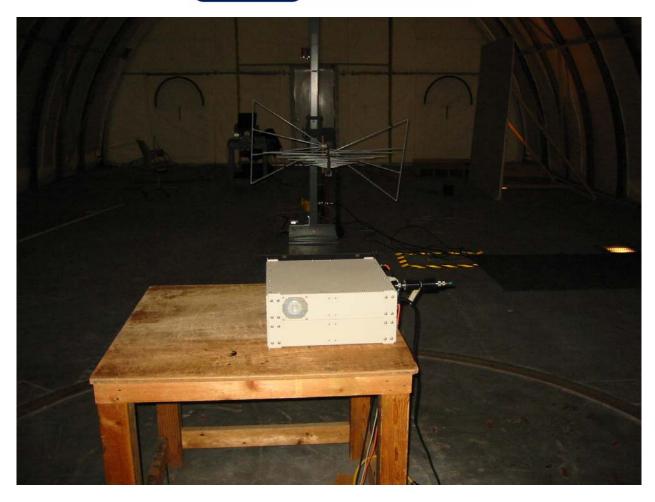
Standard: FCC Part 15 Subpart B 15.109/IC RSS-Gen Table 1 LF Cable(s): NONE. NONE. Limit Distance (m): 3 N Cable(s): S2 3M FLR 9-26-07.txt NONE.


Test Distance (m): 3 HF Cable(s): CBL029 12-04-2007.txt NONE. Receiver: R&S FSEK-30 (ROS001) PreAmp: PRE8 11-14-07.txt

1000mB SHF Cable(s): CBL029 12-04-2007.txt CBL030 12-04-2007.txt Barometer: BAR2 44%

Barometer:	BAR2	l emp/Humid	ity/Pressure:	20c	44%	1000mB	SHF Cable(s):	CBL029 12	·04-2007.txt	CBL030 12	-04-2007.txt		
		ed? (Y or N):			Frequency:		/60Hz		ncy Range:		00 MHz		
Peak: Pl	K Quasi-Pe	eak: QP Ave	erage: AVG	RMS: RMS	S; NF = Nois	se Floor, RE	B = Restricte	ed Band; Ba	ndwidth der	noted as RE	BW/VBW		
	Ant.			Antenna	Cable	Pre-amp	Distance						
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth		
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FCC	IC
QP	V	34.650	20.1	14.3	1.0	0.0	0.0	35.3	40.0	-4.7	120/300 kHz		
QP	V	46.610	19.9	9.3	0.9	0.0	0.0	30.2	40.0	-9.8	120/300 kHz		
QP	V	49.980	25.1	8.4	1.0	0.0	0.0	34.5	40.0	-5.5	120/300 kHz		
QP	V	63.000	23.5	8.4	1.1	0.0	0.0	33.0	40.0	-7.0	120/300 kHz	4	
QP	V	74.430	16.9	7.5	1.2	0.0	0.0	25.6	40.0	-14.4	120/300 kHz	RB	RB
QP	V	109.400	13.5	7.9	1.4	0.0	0.0	22.8	43.5	-20.7	120/300 kHz	RB	RB
QP	V	129.000	15.5	6.6	1.4	0.0	0.0	23.5	43.5	-20.0	120/300 kHz	RB	RB
QP	V	141.500	21.3	7.4	1.6	0.0	0.0	30.2	43.5	-13.3	120/300 kHz		
QP	Н	154.800	12.5	9.4	1.7	0.0	0.0	23.6	43.5	-19.9	120/300 kHz		
QP	Н	196.800	16.0	10.4	2.0	0.0	0.0	28.4	43.5	-15.1	120/300 kHz		
QP	Н	208.000	15.4	10.7	2.1	0.0	0.0	28.2	43.5	-15.3	120/300 kHz		
QP	Н	217.800	12.6	11.2	2.2	0.0	0.0	26.0	46.0	-20.0	120/300 kHz	:	
QP	Н	234.600	14.2	11.8	2.2	0.0	0.0	28.2	46.0	-17.8	120/300 kHz	-	
QP	Н	240.000	29.2	12.0	2.2	0.0	0.0	43.4	46.0	-2.6	120/300 kHz	RB	RB
QP	V	250.000	17.6	12.6	2.2	0.0	0.0	32.4	46.0	-13.6	120/300 kHz	RB	RB
QP	V	256.000	16.7	12.8	2.4	0.0	0.0	31.9	46.0	-14.1	120/300 kHz	RB	RB
QP	V	267.100	13.9	13.1	2.5	0.0	0.0	29.5	46.0	-16.5	120/300 kHz	RB	RB
QP	V	292.000	15.0	14.0	2.4	0.0	0.0	31.4	46.0	-14.6	120/300 kHz	:	
QP	Н	320.000	21.6	14.8	2.5	0.0	0.0	38.9	46.0	-7.1	120/300 kHz		
QP	V	350.000	19.2	15.2	2.4	0.0	0.0	36.8	46.0	-9.3	120/300 kHz		
QP	V	360.000	19.5	15.2	2.7	0.0	0.0	37.4	46.0	-8.6	120/300 kHz		
QP	V	375.000	20.6	15.3	3.0	0.0	0.0	38.9	46.0	-7.1	120/300 kHz		
QP	Н	400.000	12.9	16.5	2.8	0.0	0.0	32.2	46.0	-13.8	120/300 kHz	RB	RB
QP	V	405.900	7.0	15.9	2.7	0.0	0.0	25.6	46.0	-20.4	120/300 kHz	RB	RB
QP	V	480.000	19.1	18.5	3.0	0.0	0.0	40.6	46.0	-5.4	120/300 kHz		
QP	V	720.000	18.4	20.7	3.8	0.0	0.0	42.9	46.0	-3.1	120/300 kHz		


Setup Photos



Test Results: Pass

Test Standard: FCC Part 22 Subpart H 22.355, IC RSS-132 Section 4.3

Test: Frequency Stability

Performance Criterion: The fundamental frequency must not deviate by more than ± 1.5 PPM over

temperature and voltage.

Test Environment:

Environmental Conditions During Testing:	Humidity (%):	N/A	Pressure (hPa):	N/A	Ambient (°C):	See Table
Pretest Verification Performed	Yes		Equipment under	Test:	GSM Basestation	

Test Equipment Used:

	TEST EQUIPMENT LIST												
Item	Equipment Type	Make	Model No.	Serial No.	Next Cal. Due								
1	Variac, 0-140V	Powerstat	3PN126	N/L	Verified								
2	Small Temperature/Humid ity Chamber	Bryant Manufacturing	TH-5S	1207	04/06/2007								
3	Spectrum Analyzer	Agilent	E7405A	US40240205	08/16/2007								
4	Digital Multimeter	Fluke	87	55900169	04/12/2007								
5	High Frequency Cable 40GHz	Megaphase	TM40 K1K1 80	CBL030	12/04/2007								

Test Details:

 Channels
 Freq MHz

 Low:
 869.2

 Mid:
 882.2

 High:
 893.8

Passband: 869-894 MHz

Passband:	869-894	MHz			
Temp	Channel	Freq MHz	Deviation, Hz	Deviation, MHz	PPM
-30	LOW	869.200040	0	0.000000	0.00
-30	MID	882.200040	0	0.000000	0.00
-30	HIGH	893.800040	0	0.000000	0.00
-20	LOW	869.200040	0	0.000000	0.00
-20	MID	882.200040	0	0.000000	0.00
-20	HIGH	893.800040	0	0.000000	0.00
-10	LOW	869.200040	0	0.000000	0.00
-10	MID	882.200040	0	0.000000	0.00
-10	HIGH	893.800040	0	0.000000	0.00
	LOW	869.200030	-10	-0.000010	-0.01
0	MID	882.200030	-10	-0.000010	-0.01
0	HIGH	893.800030	-10	-0.000010	-0.01
10	LOW	869.200040	0	0.000000	0.00
10	MID	882.200040	0	0.000000	0.00
10	HIGH	893.800040	0	0.000000	0.00
20	LOW	869.200040	0	0.000000	0.00
20	MID	882.200040	0	0.000000	0.00
20	HIGH	893.800040	0	0.000000	0.00
30	LOW	869.200030	-10	-0.000010	-0.01
30	MID	882.200030	-10	-0.000010	-0.01
30	HIGH	893.800030	-10	-0.000010	-0.01
40	LOW	869.200040	0	0.000000	0.00
40	MID	882.200040	0	0.000000	0.00
40	HIGH	893.800040	0	0.000000	0.00
50	LOW	869.200030	-10	-0.000010	-0.01
50	MID	882.200030	-10	-0.000010	-0.01
50	HIGH	893.800030	-10	-0.000010	-0.01
Voltage	Channel	Freq MHz	Deviation, Hz	Deviation, MHz	PPM
102V	LOW	869.200040	0	0.000000	0.00
102V	MID	882.200040	0	0.000000	0.00
102V	HIGH	893.800040	0	0.000000	0.00
120V	LOW	869.200040	0	0.000000	0.00
120V	MID	882.200040	0	0.000000	0.00
120V	HIGH	893.800040	0	0.000000	0.00
138V	LOW	869.200040	0	0.000000	0.00
138V	MID	882.200040	0	0.000000	0.00
138V	HIGH	893.800040	0	0.000000	0.00