



# FCC PART 15.225

## IC RSS-210, ISSUE 8, DECEMBER 2010

### TEST AND MEASUREMENT REPORT

For

### Transact Technologies Incorporated

2319 Whitney Ave., Suite 3B,  
Hamden, CT 06518, USA

**FCC ID: RBP-920DLRM  
IC: 4705A-920DLRM**

|                                                                                                                                            |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| <b>Report Type:</b><br>Original Report                                                                                                     | <b>Product Type:</b><br>Printer |
| <b>Prepared By:</b> <u>Wei Sun</u> <i>[Signature]</i>                                                                                      |                                 |
| <b>Report Number:</b> <u>R1209289-225</u>                                                                                                  |                                 |
| <b>Report Date:</b> <u>2013-01-22</u>                                                                                                      |                                 |
| Victor Zhang <i>[Signature]</i>                                                                                                            |                                 |
| <b>Reviewed By:</b> <u>EMC/RF Lead</u> <i>[Signature]</i>                                                                                  |                                 |
| Bay Area Compliance Laboratories Corp.<br>1274 Anvilwood Avenue,<br>Sunnyvale, CA 94089, USA<br>Tel: (408) 732-9162<br>Fax: (408) 732-9164 |                                 |

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA\* or any agency of the Federal Government. \* This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk “\*” (Rev.3)

## TABLE OF CONTENTS

|                                                                                                        |           |
|--------------------------------------------------------------------------------------------------------|-----------|
| <b>1 General Description.....</b>                                                                      | <b>5</b>  |
| 1.1 Product Description for Equipment under Test (EUT).....                                            | 5         |
| 1.2 Mechanical Description of EUT.....                                                                 | 5         |
| 1.3 Objective .....                                                                                    | 5         |
| 1.4 Related Submittal(s)/Grant(s).....                                                                 | 5         |
| 1.5 Test Methodology.....                                                                              | 5         |
| 1.6 Measurement Uncertainty .....                                                                      | 5         |
| 1.7 Test Facility .....                                                                                | 6         |
| <b>2 System Test Configuration.....</b>                                                                | <b>7</b>  |
| 2.1 Justification .....                                                                                | 7         |
| 2.2 EUT Exercise Software .....                                                                        | 7         |
| 2.3 BACL EMI Measurement Software.....                                                                 | 7         |
| 2.4 Special Equipment.....                                                                             | 7         |
| 2.5 Equipment Modifications .....                                                                      | 7         |
| 2.6 Local Support Equipment.....                                                                       | 7         |
| 2.7 EUT Internal Configuration Details .....                                                           | 7         |
| 2.8 Interface Ports and Cabling .....                                                                  | 7         |
| 2.9 Power Supply List and Details .....                                                                | 7         |
| <b>3 Summary of Test Results.....</b>                                                                  | <b>8</b>  |
| <b>4 FCC §15.207 &amp; IC RSS-Gen §7.2.4 – AC Line Conducted Emissions.....</b>                        | <b>9</b>  |
| 4.1 Applicable Standard .....                                                                          | 9         |
| 4.2 Test Setup.....                                                                                    | 9         |
| 4.3 Test Procedure.....                                                                                | 9         |
| 4.4 Test Setup Block Diagram.....                                                                      | 10        |
| 4.5 Corrected Amplitude & Margin Calculation .....                                                     | 10        |
| 4.6 Test Equipment List and Details .....                                                              | 11        |
| 4.7 Test Environmental Conditions .....                                                                | 11        |
| 4.8 Summary of Test Results.....                                                                       | 11        |
| 4.9 Conducted Emissions Test Plots and Data .....                                                      | 12        |
| <b>5 FCC §15.225 (e) &amp; IC RSS-210 §A2.6 – Frequency Stability .....</b>                            | <b>14</b> |
| 5.1 Applicable Standard .....                                                                          | 14        |
| 5.2 Measurement Procedure .....                                                                        | 14        |
| 5.3 Test Setup Block Diagram.....                                                                      | 14        |
| 5.4 Test Equipment List and Details .....                                                              | 15        |
| 5.5 Test Environmental Conditions .....                                                                | 15        |
| 5.6 Test Results .....                                                                                 | 15        |
| <b>6 FCC §15.205, §15.209, §15.225 &amp; IC RSS-210 §2.2, §A2.6 – Spurious Radiated Emissions.....</b> | <b>16</b> |
| 6.1 Applicable Standards .....                                                                         | 16        |
| 6.2 Test Setup .....                                                                                   | 16        |
| 6.3 Test Procedure .....                                                                               | 16        |
| 6.4 Test Setup Block Diagram.....                                                                      | 17        |
| 6.5 Corrected Amplitude & Margin Calculation .....                                                     | 17        |
| 6.6 Test Equipment List and Details .....                                                              | 18        |
| 6.7 Test Environmental Conditions .....                                                                | 18        |
| 6.8 Summary of Test Results.....                                                                       | 18        |
| 6.9 Radiated Emissions Test Result Data .....                                                          | 19        |
| <b>7 FCC §15.215 &amp; IC RSS-Gen §4.6 – Emission Bandwidth.....</b>                                   | <b>20</b> |
| 7.1 Applicable Standards .....                                                                         | 20        |
| 7.2 Test Equipment List and Details .....                                                              | 20        |
| 7.3 Test Environmental Conditions .....                                                                | 20        |

|           |                                                                              |           |
|-----------|------------------------------------------------------------------------------|-----------|
| 7.4       | Test Setup Block Diagram.....                                                | 20        |
| 7.5       | Test Result Data ad Plot .....                                               | 20        |
| <b>8</b>  | <b>RSS-Gen §4.10 &amp; §6.1 – Receiver Spurious Radiated Emissions.....</b>  | <b>22</b> |
| 8.1       | Applicable Standard .....                                                    | 22        |
| 8.2       | Measurement Procedure .....                                                  | 23        |
| 8.3       | Test Setup Block Diagram.....                                                | 23        |
| 8.4       | Test Equipment List and Details .....                                        | 23        |
| 8.5       | Test Environmental Conditions .....                                          | 24        |
| 8.6       | Summary of Test Results.....                                                 | 24        |
| 8.7       | Test Data and Plots.....                                                     | 25        |
| <b>9</b>  | <b>Exhibit A – FCC &amp; IC Equipment Labeling Requirements .....</b>        | <b>26</b> |
| 9.1       | FCC ID Label Requirements .....                                              | 26        |
| 9.2       | IC Label Requirements .....                                                  | 26        |
| 9.3       | FCC ID & IC Label Contents .....                                             | 27        |
| 9.4       | FCC ID & IC Label Location .....                                             | 28        |
| <b>10</b> | <b>Exhibit B – Test Setup Photographs .....</b>                              | <b>29</b> |
| 10.1      | Radiated Emission Front View at 3 Meters Distance .....                      | 29        |
| 10.2      | Radiated Emission below 30 MHz to 1 GHz Rear View at 3 Meters Distance ..... | 29        |
| 10.3      | Radiated Emission 1MHz to 30 MHz Rear View at 3 Meters Distance .....        | 30        |
| 10.4      | Radiated Emission 9 kHz to 1 MHz Rear View at 3 Meters Distance .....        | 30        |
| 10.5      | AC Line Conducted Emission Front View .....                                  | 31        |
| 10.6      | AC Line Conducted Emission Side View .....                                   | 31        |
| <b>11</b> | <b>Exhibit C – EUT Photographs.....</b>                                      | <b>32</b> |
| 11.1      | EUT – Front View .....                                                       | 32        |
| 11.2      | EUT – Rear View .....                                                        | 32        |
| 11.3      | EUT- Left Side View.....                                                     | 33        |
| 11.4      | EUT- Right Side View .....                                                   | 33        |
| 11.5      | EUT – Open Case View .....                                                   | 34        |
| 11.6      | EUT – Power Supply Component View.....                                       | 34        |
| 11.7      | EUT – Power Supply Solder View .....                                         | 35        |
| 11.8      | EUT – Display Board Component View .....                                     | 35        |
| 11.9      | EUT – Display Board Solder View .....                                        | 36        |
| 11.10     | EUT – RFID Sensor Component View .....                                       | 36        |
| 11.11     | EUT – RFID Sensor Solder View .....                                          | 37        |
| 11.12     | EUT – Controller Board Component View .....                                  | 37        |
| 11.13     | EUT – Controller Board Solder View .....                                     | 38        |
| 11.14     | RF Tag.....                                                                  | 38        |

**DOCUMENT REVISION HISTORY**

| <b>Revision Number</b> | <b>Report Number</b> | <b>Description of Revision</b> | <b>Date of Revision</b> |
|------------------------|----------------------|--------------------------------|-------------------------|
| 0                      | R1209289-225         | Original Report                | 2013-01-22              |

## 1 General Description

---

### 1.1 Product Description for Equipment under Test (EUT)

This test and measurement report has been prepared on behalf of Transact Technologies Incorporated and their product model: 920DL RM Chassis with FCC ID: RBP-920DLRM and IC: 4705A-920DLRM which will henceforth be referred to as the EUT. The EUT is a Printrex 920 printer with 13.56 MHz RFID built in.

### 1.2 Mechanical Description of EUT

The “EUT” measures approximately *510 mm (L) x 480 mm (W) x 130 mm (H)*, and weighs approximately *10kg*.

*The test data gathered are from typical production sample, serial number: JV004917463 assigned by Transact Technologies Incorporated.*

### 1.3 Objective

This report is prepared on behalf of *Transact Technologies Incorporated* in accordance with Part 2, Subpart J, and Part 15, Subparts B and C of the Federal Communication Commissions rules and IC RSS-210 Issue 8, Dec 2010.

The objective is to determine compliance with FCC Part 15.225 and IC RSS-210 rules for Radiated Spurious Emission, Conducted Emission, Frequency Stability and Receiver Spurious Emission.

### 1.4 Related Submittal(s)/Grant(s)

N/A

### 1.5 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

### 1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR16-4-2:2003, The Treatment of Uncertainty in EMC Measurements, the values ranging from  $\pm 2.0$  dB for Conducted Emissions tests and  $\pm 4.0$  dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL Corp.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

## 1.7 Test Facility

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test site at BACL Corp. has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997, and Article 8 of the VCCI regulations on December 25, 1997. The test site also complies with the test methods and procedures set forth in CISPR 22:2008 §10.4 for measurements below 1 GHz and §10.6 for measurements above 1 GHz as well as ANSI C63.4-2003, ANSI C63.4-2009, TIA/EIA-603 & CISPR 24:2010.

The Federal Communications Commission and Voluntary Control Council for Interference have the reports on file and they are listed under FCC registration number: 90464 and VCCI Registration No.: A-0027. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL Corp. is an American Association for Laboratory Accreditation (A2LA) accredited laboratory (Lab Code 3297-02). The current scope of accreditations can be found at

<http://www.a2la.org/scopepdf/3297-02.pdf?CFID=1132286&CFTOKEN=e42a3240dac3f6ba-6DE17DCB-1851-9E57-477422F667031258&jsessionid=8430d44f1f47cf2996124343c704b367816b>

## **2 System Test Configuration**

---

### **2.1 Justification**

The EUT was configured for testing according to ANSI C63.4-2009.

### **2.2 EUT Exercise Software**

N/A

### **2.3 BACL EMI Measurement Software**

The software used was EMISoft-Vasona 5.0068 for EMI testing.

### **2.4 Special Equipment**

N/A

### **2.5 Equipment Modifications**

No modifications were made to the EUT.

### **2.6 Local Support Equipment**

N/A

### **2.7 EUT Internal Configuration Details**

| Manufacturer                | Description      | Model No.    | Serial No.        |
|-----------------------------|------------------|--------------|-------------------|
| TDK-Lambda                  | Power Supply     | CCB024C      | -                 |
| Transact Technologies, Inc. | Display Board    | PWB ART SRT  | 81-11546L A3      |
| Transact Technologies, Inc. | RFID Sensor      | 81-115318LB2 | -                 |
| Transact Technologies, Inc. | Controller Board | 81-11293-03  | ETI-E2,94V-0,3312 |

### **2.8 Interface Ports and Cabling**

| Cable Descriptions | Length (m) | From | To          |
|--------------------|------------|------|-------------|
| USB Cable          | 0.5        | EUT  | Termination |
| RJ 45 Cable        | 0.5        | EUT  | Termination |

### **2.9 Power Supply List and Details**

N/A

### 3 Summary of Test Results

Results reported relate only to the product tested.

| FCC & IC Rules                           | Description of Test         | Results   |
|------------------------------------------|-----------------------------|-----------|
| FCC §15.207(a)<br>IC RSS-Gen §7.2.4      | AC Line Conducted Emissions | Compliant |
| FCC §15.209, §15.225<br>IC RSS-210 §A8.5 | Radiated Spurious Emissions | Compliant |
| FCC §15.225 (e)<br>IC RSS-210 §A2.6      | Frequency Stability         | Compliant |
| IC RSS-Gen §4.10, §6                     | Receiver Spurious Emission  | Compliant |

## 4 FCC §15.207 & IC RSS-Gen §7.2.4 – AC Line Conducted Emissions

### 4.1 Applicable Standard

As per FCC §15.207 & IC RSS-Gen §7.2.4 Conducted limits:

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

| Frequency of Emission (MHz) | Conducted Limit (dBuV)     |                            |
|-----------------------------|----------------------------|----------------------------|
|                             | Quasi-peak                 | Average                    |
| 0.15-0.5                    | 66 to 56 <sup>Note 1</sup> | 56 to 46 <sup>Note 1</sup> |
| 0.5-5                       | 56                         | 46                         |
| 5-30                        | 60                         | 50                         |

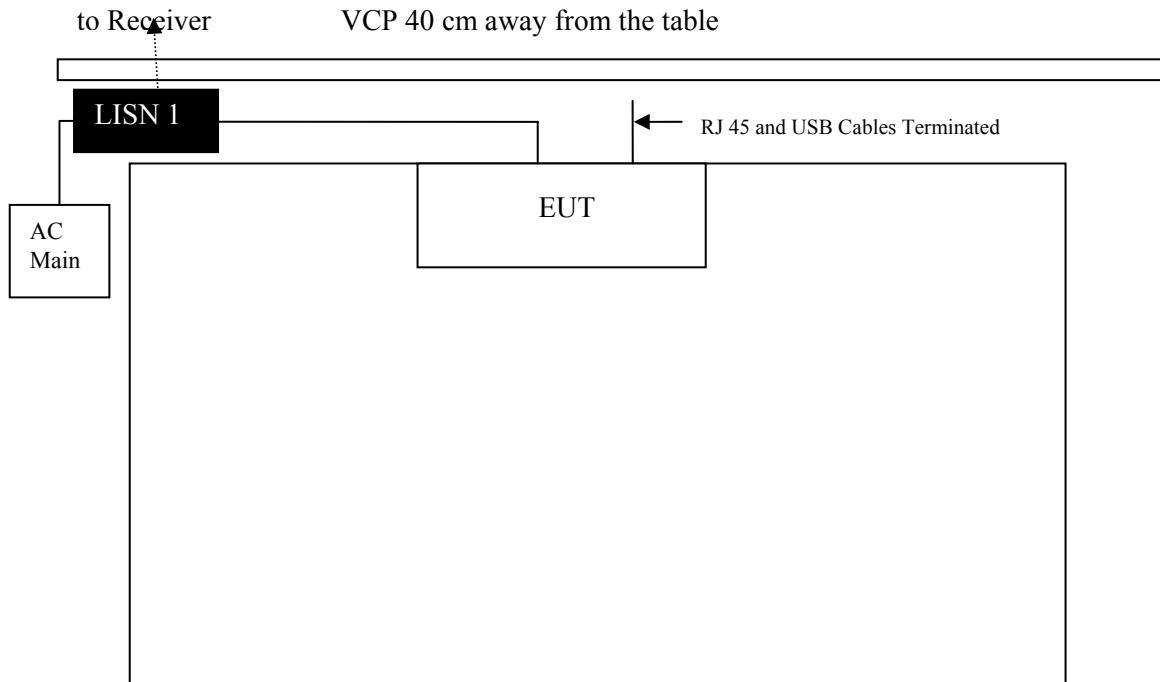
*Note 1: Decreases with the logarithm of the frequency.*

### 4.2 Test Setup

The measurement was performed at shield room, using the setup per ANSI C63.4-2009 measurement procedure. The specification used was FCC Part15.207 limits and IC RSS-Gen §7.2.4 limits.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The AC/DC power adapter of the EUT was connected with LISN-1 which provided 120 V / 60 Hz AC power.


### 4.3 Test Procedure

During the conducted emissions test, the power cord of the EUT host system was connected to the mains outlet of the LISN-2.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the peak detection mode, quasi-peak and average. Quasi-Peak readings are distinguished with a “QP.” Average readings are distinguished with an “Ave”.

#### 4.4 Test Setup Block Diagram



#### 4.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Cable Loss (CL) plus the High Pass Filter/Attenuator value (HA) and subtracting the Amplifier Gain (Ga) to the indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + CL + HA - Ga$$

For example, a corrected amplitude (CA) of 36 dBuV = Indicated Amplitude reading (Ai) of 50.0 dBuV + Cable Loss (CL) 1.0 dB + High Pass Filter/Attenuator (IA) 5 dB - Amplifier Gain (Ga) 20 dB

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

$$\text{Margin (dB)} = \text{Corrected Amplitude (dBuV)} - \text{Limit (dBuV)}$$

#### 4.6 Test Equipment List and Details

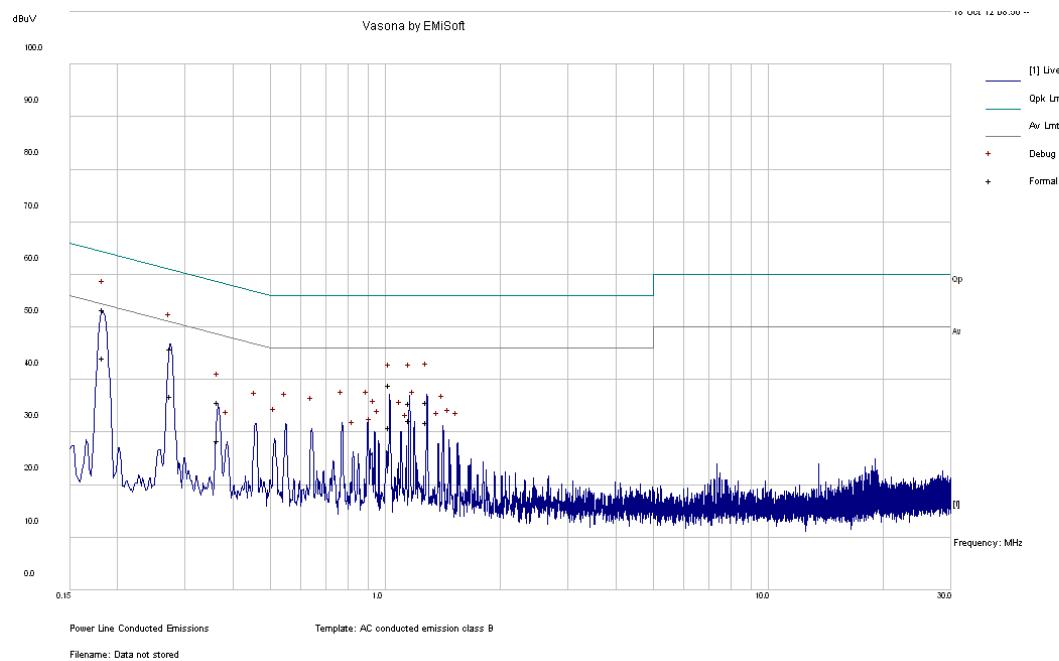
| Manufacturer      | Description       | Model              | Serial Number | Calibration Date | Calibration Interval |
|-------------------|-------------------|--------------------|---------------|------------------|----------------------|
| Rohde & Schwarz   | EMI Test Receiver | ESCI 1166.5950K03  | 100044        | 2012-04-18       | 1 year               |
| Solar Electronics | LISN              | 9252-50-R-24-N     | 511213        | 2012-06-25       | 1 year               |
| TTE               | Filter, High Pass | H962-150K-50-21378 | K7133         | 2012-05-30       | 1 year               |

**Statement of Traceability:** **BACL Corp.** attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

#### 4.7 Test Environmental Conditions

|                           |           |
|---------------------------|-----------|
| <b>Temperature:</b>       | 24°C      |
| <b>Relative Humidity:</b> | 52%       |
| <b>ATM Pressure:</b>      | 101.99kPa |

*The testing was performed by Wei Sun on 2012-10-18 at 5 meter chamber #3.*

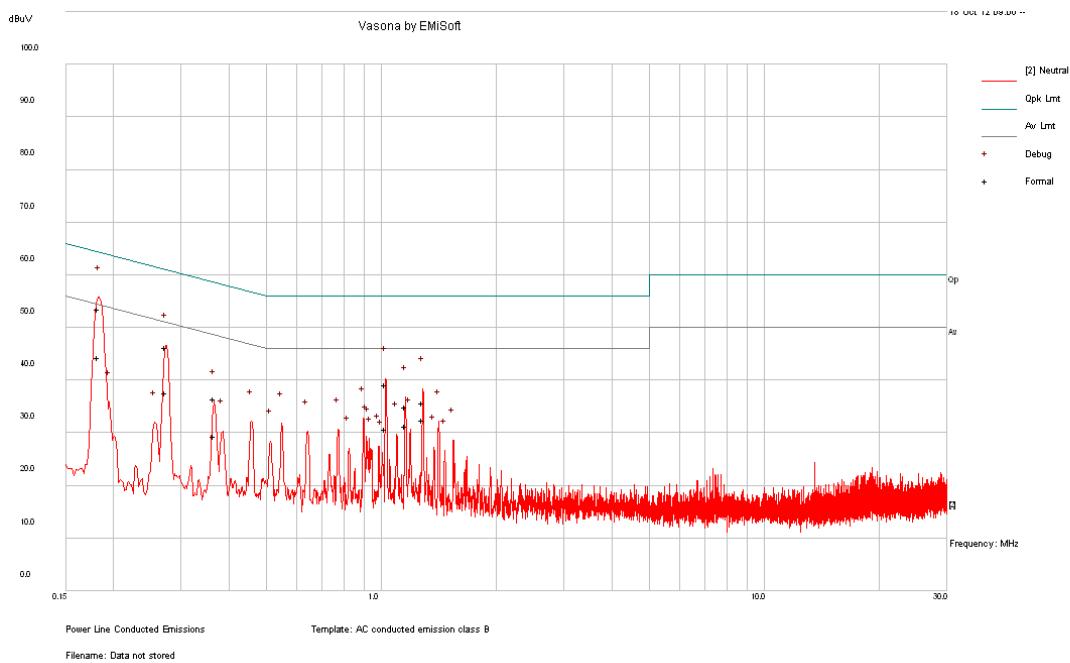

#### 4.8 Summary of Test Results

According to the recorded data in following table, the EUT complied with the FCC & IC standard's conducted emissions limits, with the margin reading of:

| Connection: AC/DC adapter connected to 120 V/60 Hz, AC |                 |                          |             |
|--------------------------------------------------------|-----------------|--------------------------|-------------|
| Margin (dB)                                            | Frequency (MHz) | Conductor (Line/Neutral) | Range (MHz) |
| -10.05                                                 | 0.182499        | Neutral                  | 0.15-30     |

## 4.9 Conducted Emissions Test Plots and Data

### 120 V, 60 Hz – Line




#### Quasi-Peak Measurements

| Frequency (MHz) | Corrected Amplitude (dB $\mu$ V) | Conductor (Line/Neutral) | Limit (dB $\mu$ V) | Margin (dB) |
|-----------------|----------------------------------|--------------------------|--------------------|-------------|
| 0.184065        | 53.42                            | Line                     | 64.3               | -10.88      |
| 0.274815        | 45.9                             | Line                     | 60.97              | -15.08      |
| 1.281902        | 35.66                            | Line                     | 56                 | -20.34      |
| 1.026738        | 39.01                            | Line                     | 56                 | -16.99      |
| 1.1562          | 35.45                            | Line                     | 56                 | -20.55      |
| 0.365444        | 35.8                             | Line                     | 58.6               | -22.80      |

#### Average Measurements

| Frequency (MHz) | Corrected Amplitude (dB $\mu$ V) | Conductor (Line/Neutral) | Limit (dB $\mu$ V) | Margin (dB) |
|-----------------|----------------------------------|--------------------------|--------------------|-------------|
| 0.184065        | 44.16                            | Line                     | 54.3               | -10.14      |
| 0.274815        | 36.88                            | Line                     | 50.97              | -14.09      |
| 1.281902        | 31.92                            | Line                     | 46                 | -14.08      |
| 1.026738        | 30.87                            | Line                     | 46                 | -15.13      |
| 1.1562          | 32.29                            | Line                     | 46                 | -13.71      |
| 0.365444        | 28.49                            | Line                     | 48.6               | -20.12      |

**120 V, 60 Hz – Neutral****Quasi-Peak Measurements**

| Frequency (MHz) | Corrected Amplitude (dB $\mu$ V) | Conductor (Line/Neutral) | Limit (dB $\mu$ V) | Margin (dB) |
|-----------------|----------------------------------|--------------------------|--------------------|-------------|
| 0.182499        | 53.61                            | Neutral                  | 64.37              | -10.76      |
| 0.274437        | 46.34                            | Neutral                  | 60.98              | -14.64      |
| 1.026983        | 39.15                            | Neutral                  | 56                 | -16.85      |
| 1.282406        | 35.72                            | Neutral                  | 56                 | -20.28      |
| 1.155811        | 34.93                            | Neutral                  | 56                 | -21.07      |
| 0.366146        | 36.45                            | Neutral                  | 58.59              | -22.14      |

**Average Measurements**

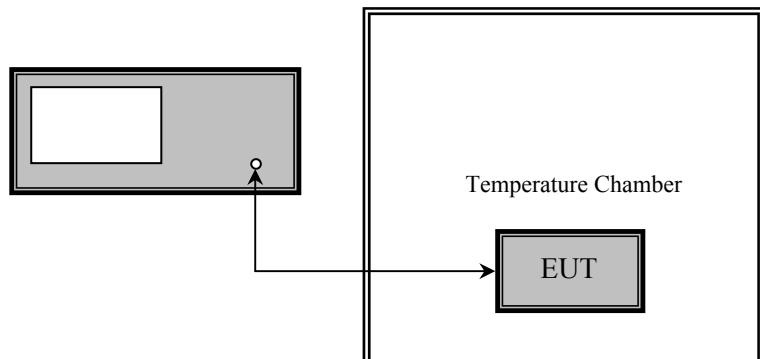
| Frequency (MHz) | Corrected Amplitude (dB $\mu$ V) | Conductor (Line/Neutral) | Limit (dB $\mu$ V) | Margin (dB) |
|-----------------|----------------------------------|--------------------------|--------------------|-------------|
| 0.182499        | 44.32                            | Neutral                  | 54.37              | -10.05      |
| 0.274437        | 37.67                            | Neutral                  | 50.98              | -13.31      |
| 1.026983        | 30.66                            | Neutral                  | 46                 | -15.34      |
| 1.282406        | 32.51                            | Neutral                  | 46                 | -13.49      |
| 1.155811        | 31.41                            | Neutral                  | 46                 | -14.59      |
| 0.366146        | 29.38                            | Neutral                  | 48.59              | -19.21      |

## 5 FCC §15.225 (e) & IC RSS-210 §A2.6 – Frequency Stability

### 5.1 Applicable Standard

For FCC §15.225(e) and IC RSS-210 §A2.6.

The frequency tolerance of the carrier signal shall be maintained within  $\pm 0.01\%$  of the operating frequency over a temperature variation of  $-20$  degrees to  $+50$  degrees C at normal supply voltage, and for a variation in the primary supply voltage from  $85\%$  to  $115\%$  of the rated supply voltage at a temperature of  $20$  degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.


### 5.2 Measurement Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to the Spectrum Analyzer via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the Spectrum Analyzer.

Frequency Stability vs. Voltage: An external variable DC power supply Source. The voltage was set to  $115\%$  and  $85\%$  of the nominal value. The output frequency was recorded for each voltage.

### 5.3 Test Setup Block Diagram



## 5.4 Test Equipment List and Details

| Manufacturer | Description         | Model No.  | Serial No. | Calibration Date | Calibration Interval |
|--------------|---------------------|------------|------------|------------------|----------------------|
| Agilent      | Spectrum Analyzer   | E4440A     | MY44303352 | 2012-05-10       | 1 year               |
| Tenney       | Temperature Chamber | Versa Tenn | 12.222-193 | -                | -                    |

**Statement of Traceability:** **BACL Corp.** attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

## 5.5 Test Environmental Conditions

|                           |           |
|---------------------------|-----------|
| <b>Temperature:</b>       | 24 °C     |
| <b>Relative Humidity:</b> | 49%       |
| <b>ATM Pressure:</b>      | 101.97kPa |

*The testing was performed by Wei Sun on 2012-10-10 at RF Site.*

## 5.6 Test Results

| Test Condition   |                     | Frequency<br>(MHz) | Frequency<br>Error<br>(ppm) | Limit<br>(ppm) |
|------------------|---------------------|--------------------|-----------------------------|----------------|
| Voltage<br>(Vac) | Temperature<br>(°C) |                    |                             |                |
| 138              | 20 °C               | 13.56              | 0                           | 100            |
| 102              |                     | 13.56              | 0                           | 100            |
| 120              | 40 °C               | 13.560003          | 0.22                        | 100            |
| 120              | 0 °C                | 13.56              | 0                           | 100            |

Note: EUT can only work at the range of 0 °C to 40 °C.

## 6 FCC §15.205, §15.209, §15.225 & IC RSS-210 §2.2, §A2.6 – Spurious Radiated Emissions

### 6.1 Applicable Standards

FCC §15.225, §15.205, §15.209 and IC RSS-210 §2.2, §A2.6

### 6.2 Test Setup

The radiated emissions tests were performed in the 5-meter Chamber, using the setup in accordance with ANSI C63.4-2009. The specification used was the FCC 15C and IC RSS-210, RSS-Gen limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

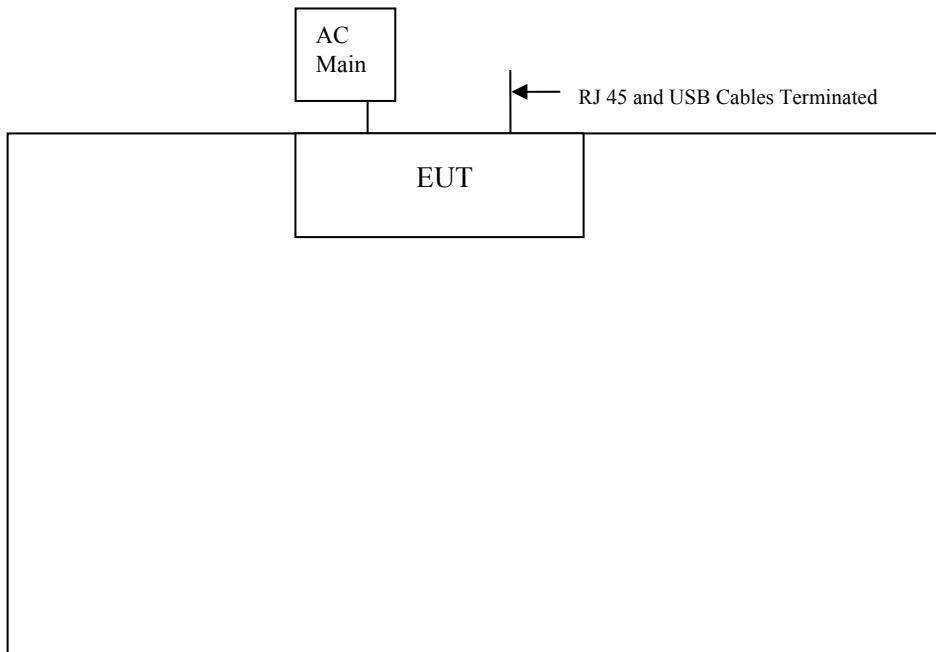
### 6.3 Test Procedure

For the radiated emissions test, the EUT host, and all support equipment power cords was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 meter, and the EUT is placed on a turntable, which is 0.8 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

The spectrum analyzer or receiver is set as:


Below 1000 MHz:

RBW = 100 kHz / VBW = 300 kHz / Sweep = Auto

Above 1000 MHz:

- (1) Peak: RBW = 1MHz / VBW = 1MHz / Sweep = Auto
- (2) Average: RBW = 1MHz / VBW = 10Hz / Sweep = Auto

## 6.4 Test Setup Block Diagram



## 6.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) to the indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + AF + CL + Atten - Ga$$

For example, the Corrected Amplitude (CA) of 40.3 dBuV/m = indicated Amplitude reading (Ai) 32.5 dBuV + Antenna Factor (AF) 23.5dB + Cable Loss (CL) 3.7 dB + Attenuator (Atten) 10 dB - Amplifier Gain (Ga) 29.4 dB

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

$$\text{Margin (dB)} = \text{Corrected Amplitude (dBuV/m)} - \text{Limit (dBuV/m)}$$

## 6.6 Test Equipment List and Details

| Manufacturer       | Description          | Model             | Serial Number | Calibration Date | Calibration Interval |
|--------------------|----------------------|-------------------|---------------|------------------|----------------------|
| Hewlett Packard    | Pre-amplifier        | 8447D             | 2944A07030    | 2012-04-08       | 1 year               |
| Rohde & Schwarz    | EMI Test Receiver    | ESCI 1166.5950K03 | 100044        | 2012-04-18       | 1 year               |
| Sunol Science Corp | Combination Antenna  | JB3               | A020106-2     | 2012-08-15       | 1 year               |
| Sunol Science Corp | System Controller    | SC99V             | 122303-1      | N/R              | N/R                  |
| Sunol Science Corp | Combination Antenna  | JB3               | A020106-3     | 2012-06-18       | 1 year               |
| HP                 | Pre-amplifier        | 8449B             | 3147A00400    | 2012-02-03       | 1 year               |
| Agilent            | Spectrum Analyzer    | E4440A            | MY44303352    | 2012-05-10       | 1 year               |
| EMCO               | Passive Rod Antenna  | 3303              | 2849          | 2012-01-14       | 1 year               |
| EMCO               | Passive Loop Antenna | 6512              | 24167         | 2012-04-10       | 2 years              |

**Statement of Traceability:** BACL attests that all calibrations have been performed per the A2LA requirements, traceable to NIST.

## 6.7 Test Environmental Conditions

|                           |           |
|---------------------------|-----------|
| <b>Temperature:</b>       | 24 °C     |
| <b>Relative Humidity:</b> | 52%       |
| <b>ATM Pressure:</b>      | 101.99kPa |

The testing was performed by Wei Sun on 2012-10-12 at 5 meter chamber #3.

## 6.8 Summary of Test Results

According to the data hereinafter, the EUT complied with the FCC Part 15C and IC RSS-210 standard's radiated emissions limits, and had the worst margin of:

| <b>Mode: Transmitting</b> |                        |                                           |                       |
|---------------------------|------------------------|-------------------------------------------|-----------------------|
| <b>Margin (dB)</b>        | <b>Frequency (MHz)</b> | <b>Polarization (Horizontal/Vertical)</b> | <b>Channel, Range</b> |
| -8.38                     | 244.13                 | Horizontal                                | 9kHz – 1GHz           |

Please refer to the following table for specific test result details

## 6.9 Radiated Emissions Test Result Data

Radiated Emission at 3 meters, 9 kHz – 1 GHz

| Frequency<br>(MHz)                      | S.A.<br>Reading<br>(dB $\mu$ V) | Turntable<br>Azimuth<br>(degrees) | Test Antenna   |                   |                  | Cable<br>Loss<br>(dB) | Pre-<br>Amp.<br>(dB) | Cord.<br>Reading<br>(dB $\mu$ V/m) | FCC/IC                  |                | Comments |
|-----------------------------------------|---------------------------------|-----------------------------------|----------------|-------------------|------------------|-----------------------|----------------------|------------------------------------|-------------------------|----------------|----------|
|                                         |                                 |                                   | Height<br>(cm) | Polarity<br>(H/V) | Factor<br>(dB/m) |                       |                      |                                    | Limit<br>(dB $\mu$ V/m) | Margin<br>(dB) |          |
| Transmitting Mode, measured at 3 meters |                                 |                                   |                |                   |                  |                       |                      |                                    |                         |                |          |
| 13.563                                  | 34.64                           | 21                                | 100            | NA <sup>1</sup>   | 11.5             | 0.02                  | 0                    | 46.16                              | 124                     | -77.84         | Peak     |
| 13.563                                  | 54.1                            | 21                                | 100            | NA <sup>1</sup>   | 11.5             | 0.02                  | 25.5                 | 40.12                              | 124                     | -63.88         | Ave      |
| 244.12                                  | 49.1                            | 265                               | 121            | H                 | 11.5             | 1.34                  | 24.32                | 37.62                              | 46                      | -8.38          | QP       |
| 244.12                                  | 47.22                           | 113                               | 137            | V                 | 11.5             | 1.34                  | 24.32                | 35.74                              | 46                      | -10.26         | QP       |
| 18.77                                   | 54.08                           | 11                                | 100            | NA <sup>1</sup>   | 11.2             | 0.02                  | 25.5                 | 39.8                               | 70                      | -30.2          | QP       |

Note: <sup>1</sup>Loop antenna was used during the test.

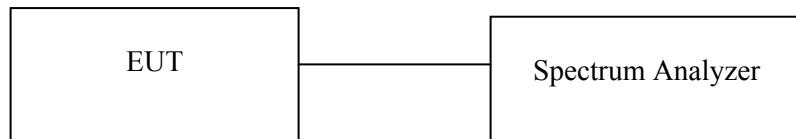
## 7 FCC §15.215 & IC RSS-Gen §4.6 – Emission Bandwidth

### 7.1 Applicable Standards

FCC §15.215 and IC RSS-Gen §4

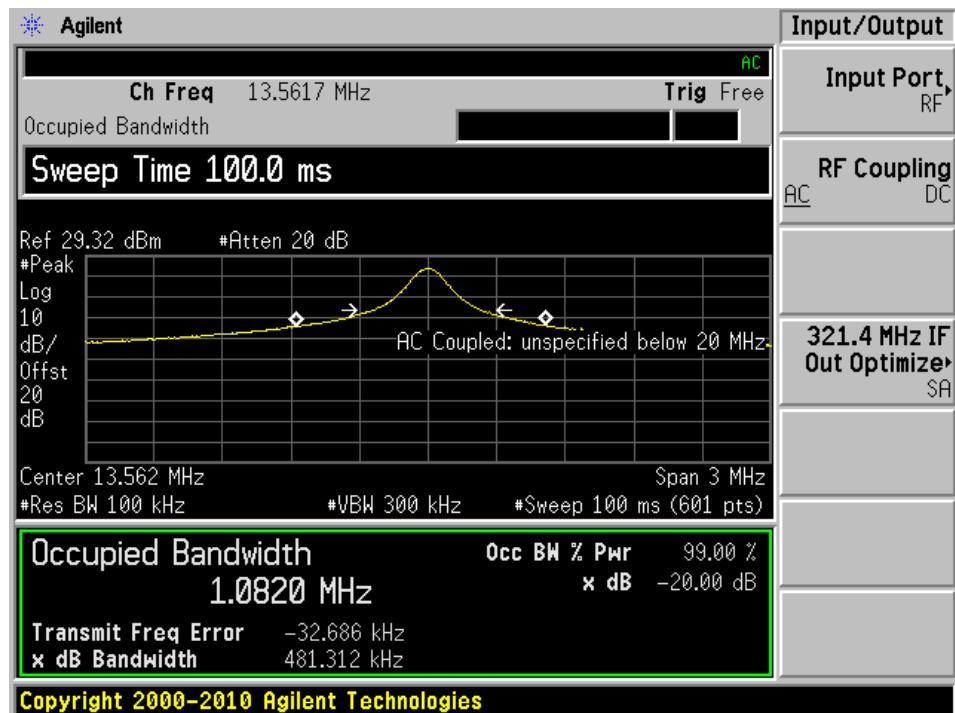
### 7.2 Test Equipment List and Details

| Manufacturer | Description       | Model No. | Serial No. | Calibration Date | Calibration Interval |
|--------------|-------------------|-----------|------------|------------------|----------------------|
| Agilent      | Spectrum Analyzer | E4440A    | MY44303352 | 2012-05-10       | 1 year               |


**Statement of Traceability:** BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

### 7.3 Test Environmental Conditions

|                    |           |
|--------------------|-----------|
| Temperature:       | 24 °C     |
| Relative Humidity: | 49%       |
| ATM Pressure:      | 101.97kPa |


The testing was performed by Wei Sun on 2012-10-10 at RF Site.

### 7.4 Test Setup Block Diagram



### 7.5 Test Result Data ad Plot

| Frequency (MHz) | 20 dB OBW (kHz) | 99% OBW (kHz) |
|-----------------|-----------------|---------------|
| 13.56           | 481.312         | 1080.2        |

**Emission Bandwidth**

## 8 RSS-Gen §4.10 & §6.1 – Receiver Spurious Radiated Emissions

### 8.1 Applicable Standard

As per IC RSS-Gen §4.10

The receiver shall be operated in the normal receive mode near the mid-point of the band in which the receiver is designed to operate.

Radiated emission measurements are to be performed on a test site registered with Industry Canada. As an alternative, the conducted measurement method may be used when the antenna is detachable. In such a case, the receiver spurious signal may be measured at the antenna port.

If the receiver is super-regenerative, stabilize it by coupling to it an unmodulated carrier on the receiver frequency (antenna conducted measurement) or by transmitting an unmodulated carrier on the receiver frequency from an antenna in the proximity of the receiver (radiated measurement). Taking care not to overload the receiver, vary the amplitude and frequency of the stabilizing signal to obtain the highest level of the spurious emissions from the receiver.

For either method, the search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is higher, to at least 3 times the highest tuneable or local oscillator frequency, whichever is higher, without exceeding 40 GHz.

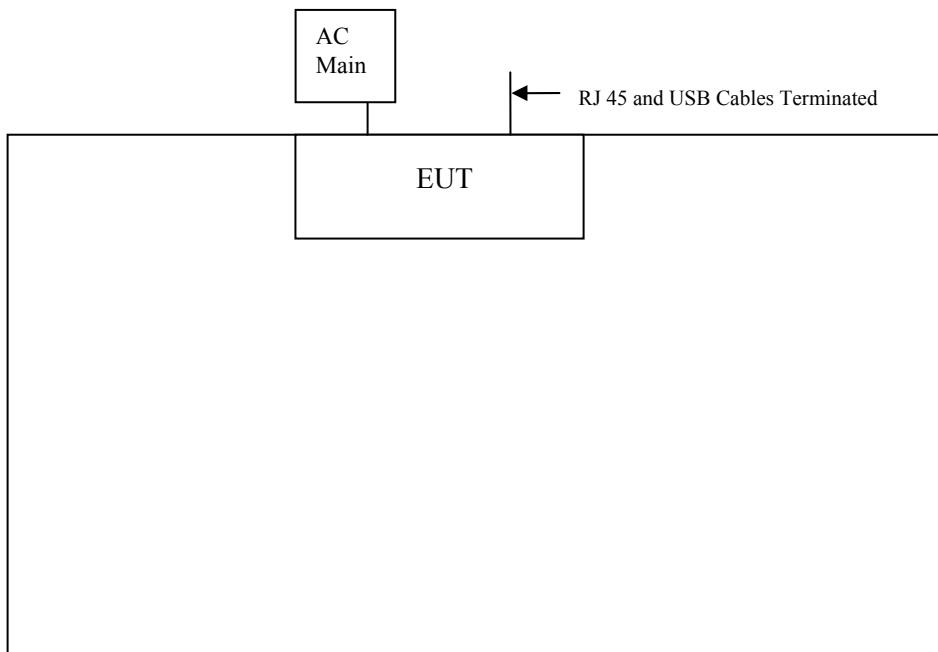
For emissions below 1000 MHz, measurements shall be performed using a CISPR quasi-peak detector and the related measurement bandwidth. As an alternative to CISPR quasi-peak measurement, compliance with the emission limit can be demonstrated using measuring equipment employing a peak detector function properly adjusted for factors such as pulse desensitization as required, with an equal or greater measurement bandwidth relative to the applicable CISPR quasi-peak bandwidth.

Above 1000 MHz, measurements shall be performed using an average detector with a minimum resolution bandwidth of 1 MHz.

As per IC RSS-Gen §6.1

Spurious emissions from receivers shall not exceed the radiated limits shown in the table below:

Radiated Limits of Receiver Spurious Emissions


| Frequency (MHz) | Field Strength (microvolts/m at 3 metres)* |
|-----------------|--------------------------------------------|
| 30-88           | 100                                        |
| 88-216          | 150                                        |
| 216-960         | 200                                        |
| Above 960       | 500                                        |

## 8.2 Measurement Procedure

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations.

All data were recorded in the peak detection mode. Quasi-peak readings was performed only when an emissions was found to be marginal (within -4 dB of specification limits), and are distinguished with a "QP" in the data table.

## 8.3 Test Setup Block Diagram



## 8.4 Test Equipment List and Details

| Manufacturer       | Description         | Model             | Serial Number | Calibration Date | Calibration Interval |
|--------------------|---------------------|-------------------|---------------|------------------|----------------------|
| Hewlett Packard    | Pre-amplifier       | 8447D             | 2944A07030    | 2012-04-08       | 1 year               |
| Rohde & Schwarz    | EMI Test Receiver   | ESCI 1166.5950K03 | 100044        | 2012-04-18       | 1 year               |
| Sunol Science Corp | Combination Antenna | JB3               | A020106-2     | 2012-08-15       | 1 year               |
| Sunol Science Corp | System Controller   | SC99V             | 122303-1      | N/R              | N/R                  |
| HP                 | Pre-amplifier       | 8449B             | 3147A00400    | 2012-02-03       | 1 year               |
| Agilent            | Spectrum Analyzer   | E4440A            | MY44303352    | 2012-05-10       | 1 year               |

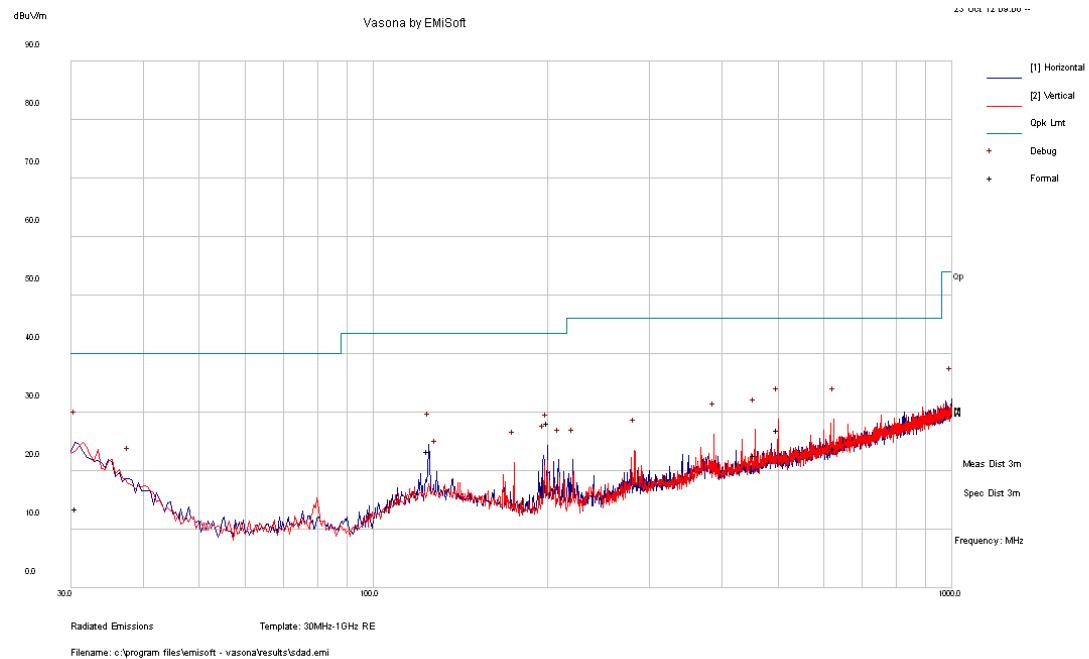
**Statement of Traceability:** **BACL Corp.** attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

## 8.5 Test Environmental Conditions

|                           |           |
|---------------------------|-----------|
| <b>Temperature:</b>       | 24 °C     |
| <b>Relative Humidity:</b> | 52%       |
| <b>ATM Pressure:</b>      | 101.99kPa |

The testing was performed by Wei Sun on 2012-10-19 in 5 meters chamber 3.

## 8.6 Summary of Test Results


According to the test data, the EUT complied with IC RSS-210/RSS-Gen, with the closest margins from the limit listed below:

| Mode: Receiving |                    |                                       |                |
|-----------------|--------------------|---------------------------------------|----------------|
| Margin<br>(dB)  | Frequency<br>(MHz) | Polarization<br>(Horizontal/Vertical) | Range<br>(MHz) |
| -15.23          | 199.982            | Horizontal                            | 30 to 1GHz     |

## 8.7 Test Data and Plots

### 30 -1000 MHz, Measured at 3 meters

#### Receiving Mode



#### Quasi-Peak Measurements

| Frequency (MHz) | Corrected Amplitude (dB $\mu$ V/m) | Antenna Height (cm) | Antenna Polarity (H/V) | Turntable Azimuth (degrees) | Limit (dB $\mu$ V/m) | Margin (dB) |
|-----------------|------------------------------------|---------------------|------------------------|-----------------------------|----------------------|-------------|
| 30.6995         | 13.59                              | 173                 | H                      | 74                          | 40                   | -26.41      |
| 499.9848        | 27.04                              | 99                  | V                      | 0                           | 46                   | -18.96      |
| 625.015         | 23.9                               | 108                 | V                      | 333                         | 46                   | -22.10      |
| 124.4728        | 23.39                              | 235                 | H                      | 360                         | 43.5                 | -20.11      |
| 456.028         | 22.64                              | 109                 | V                      | 360                         | 46                   | -23.36      |
| 199.982         | 28.27                              | 155                 | H                      | 254                         | 43.5                 | -15.23      |