

## RADIO REPORT

**FCC 47 CFR Part 24E, FCC 47 CFR Part 27**


**ISED Canada RSS-133, Issue 7**  
**ISED Canada RSS-139, Issue 4 Amendment 1**  
**ISED Canada RSS-130, Issue 2**

|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Report Reference No</b>         | G0M-2303-1961-TFCMOCORSE-V07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Testing Laboratory</b>          | Eurofins Product Service GmbH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Address                            | Storkower Str. 38c<br>15526 Reichenwalde<br>Germany                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Accreditation                      |    <br>DAkkS - Registration number : D-PL-12092-01-03 (ISED)<br>ISED Testing Laboratory site: 3470A<br>DAkkS - Registration number : D-PL-12092-01-04 (FCC)<br>FCC Filed Test Laboratory, Reg.-No.: 96970 |
| <b>Applicant</b>                   | Navico Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>Address</b>                     | 4500 S. 129th East Avenue, Ste. 200<br>OK 74134 Tulsa<br>USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Test Specification</b>          | 47 CFR Part 24E<br>47 CFR Part 27<br>ISED RSS-133, Issue 7: 2024-07<br>ISED RSS-139, Issue 4 Amendment 1: 2022-10<br>ISED RSS-130, Issue 2: 2019-02                                                                                                                                                                                                                                                                                                                                                                                              |
| Non-Standard Test Method           | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>Equipment under Test (EUT):</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Product Description                | Marine and recreational IoT Gateway and vessel management system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Model(s)                           | Connect 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Model(s) number                    | 80-911-0270-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Brand Name(s)                      | CZone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Hardware Version(s)                | E4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Software Version(s)                | emc_tests_op11587 / 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FCC ID                             | RAYE3801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IC                                 | 978B-E3801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>Test Result</b>                 | <b>PASSED</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

---

Test Report No.: G0M-2303-1961-TFCMOCORSE-V07

Eurofins Product Service GmbH  
Storkower Str. 38c, D-15526 Reichenwalde, Germany

| <b>Possible test case verdicts:</b>                                                                                                                                                                                                                                                                                                                           |                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Required by standard but not tested                                                                                                                                                                                                                                                                                                                           | N/T                                                                                                     |
| Not required by standard                                                                                                                                                                                                                                                                                                                                      | N/R                                                                                                     |
| Not applicable to EUT                                                                                                                                                                                                                                                                                                                                         | N/A                                                                                                     |
| Test object does meet the requirement                                                                                                                                                                                                                                                                                                                         | P(PASS)                                                                                                 |
| Test object does not meet the requirement                                                                                                                                                                                                                                                                                                                     | F(FAIL)                                                                                                 |
| <b>Testing:</b>                                                                                                                                                                                                                                                                                                                                               |                                                                                                         |
| Test Lab Temperature                                                                                                                                                                                                                                                                                                                                          | 20 °C – 23 °C                                                                                           |
| Test Lab Humidity                                                                                                                                                                                                                                                                                                                                             | 32 % – 38 %                                                                                             |
| Date of receipt of test item                                                                                                                                                                                                                                                                                                                                  | 2023-05-16                                                                                              |
| <b>Report:</b>                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |
| Compiled by                                                                                                                                                                                                                                                                                                                                                   | Stephan Liebich                                                                                         |
| Supervised by (+ signature)<br>(Responsible for Test)                                                                                                                                                                                                                                                                                                         | Burkhard Pudell<br> |
| Approved by (+ signature)<br>(Senior Radio Expert)                                                                                                                                                                                                                                                                                                            | Radwan Jaafar<br>  |
| Date of Issue                                                                                                                                                                                                                                                                                                                                                 | 2025-03-11                                                                                              |
| Total number of pages                                                                                                                                                                                                                                                                                                                                         | 70                                                                                                      |
| <b>General Remarks:</b>                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |
| <p><b>The test results presented in this report relate only to the object tested.</b><br/><b>The results contained in this report reflect the results for this particular model and serial number. It is the responsibility of the manufacturer to ensure that all production models meet the intent of the requirements detailed within this report.</b></p> |                                                                                                         |
| This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.                                                                                                                                                                                                                                          |                                                                                                         |
| <b>Additional Comments:</b>                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |
| None                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |

**VERSION HISTORY**

| Version History |            |                                                                                                                                                                                                                                                                                                    |             |
|-----------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Version         | Issue Date | Remarks                                                                                                                                                                                                                                                                                            | Revised By  |
| 01              | 2023-11-22 | Initial Release                                                                                                                                                                                                                                                                                    | --          |
| 02              | 2024-02-05 | Replaced document: G0M-2303-1961-TFCMOCORSE-V01<br>Replaced by: G0M-2303-1961-TFCMOCORSE-V02<br><br>Reason:<br>- Brand name updated<br>- Model name updated<br>- Model number added                                                                                                                | G. Offorji  |
| 03              | 2024-05-30 | Replaced document: G0M-2303-1961-TFCMOCORSE-V02<br>Replaced by: G0M-2303-1961-TFCMOCORSE-V03<br><br>Reason:<br>- Applicant updated<br>- Address update                                                                                                                                             | St. Liebich |
| 04              | 2024-12-18 | Replaced document: G0M-2303-1961-TFCMOCORSE-V03<br>Replaced by: G0M-2303-1961-TFCMOCORSE-V04<br><br>Reason:<br>- Update master data                                                                                                                                                                | St. Liebich |
| 05              | 2025-01-10 | Replaced document: G0M-2303-1961-TFCMOCORSE-V04<br>Replaced by: G0M-2303-1961-TFCMOCORSE-V05<br><br>Reason:<br>- Update radiated power results according antenna gain                                                                                                                              | A. Ibraimov |
| 06              | 2025-02-06 | Replaced document: G0M-2303-1961-TFCMOCORSE-V05<br>Replaced by: G0M-2303-1961-TFCMOCORSE-V06<br><br>Reason:<br>- Update radio module, FCC ID of the module and reference module report<br>- Update test modes<br>- Recalculation of radiated power results<br>- Add spurious emission test results | A. Ibraimov |
| 07              | 2025-03-11 | Replaced document: G0M-2303-1961-TFCMOCORSE-V06<br>Replaced by: G0M-2303-1961-TFCMOCORSE-V07<br><br>Reason:<br>- Correction of applicant address on page 1                                                                                                                                         | A. Ibraimov |

**ABBREVIATIONS AND ACRONYMS**

| <b>Acronyms</b>  |                                                     |
|------------------|-----------------------------------------------------|
| Acronym          | Description                                         |
| EUT              | Equipment Under Test                                |
| FCC              | Federal Communications Commission                   |
| ISED             | Innovation, Science and Economic Development Canada |
| RBW              | Resolution bandwidth                                |
| RMS              | Root mean square                                    |
| VBW              | Video bandwidth                                     |
| V <sub>NOM</sub> | Nominal supply voltage                              |

**REPORT INDEX**

|          |                                                                    |           |
|----------|--------------------------------------------------------------------|-----------|
| <b>1</b> | <b>Equipment (Test Item) Under Test.....</b>                       | <b>6</b>  |
| 1.1      | Photos – Equipment External.....                                   | 7         |
| 1.2      | Photos – Equipment Internal .....                                  | 11        |
| 1.3      | Support Equipment.....                                             | 14        |
| 1.4      | Test Modes .....                                                   | 15        |
| 1.5      | Sample emission level calculation.....                             | 19        |
| <b>2</b> | <b>Result Summary.....</b>                                         | <b>21</b> |
| <b>3</b> | <b>Test Conditions and Results.....</b>                            | <b>22</b> |
| 3.1      | Test Conditions and Results - Radiated power .....                 | 22        |
| 3.2      | Test Conditions and Results - Transmitter radiated emissions ..... | 24        |
| 3.3      | Test Conditions and Results - Receiver radiated emissions .....    | 32        |
| ANNEX A  | Transmitter radiated emissions .....                               | 38        |
| ANNEX B  | Receiver radiated emissions .....                                  | 59        |

## 1 Equipment (Test Item) Under Test

|                        |                                                                                                                                                                                                              |                             |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Description            | Marine and recreational IoT Gateway and vessel management system                                                                                                                                             |                             |
| Model(s)               | Connect 1                                                                                                                                                                                                    |                             |
| Model(s) number        | 80-911-0270-00                                                                                                                                                                                               |                             |
| Brand Name(s)          | CZone                                                                                                                                                                                                        |                             |
| Serial Number(s)       | EHE22000056                                                                                                                                                                                                  |                             |
| Test Sample Id(s)      | 44397                                                                                                                                                                                                        |                             |
| Hardware Version(s)    | E4                                                                                                                                                                                                           |                             |
| Software Version(s)    | emc_tests_op11587 / 1.0                                                                                                                                                                                      |                             |
| PMN                    | Connect 1                                                                                                                                                                                                    |                             |
| HVIN                   | E4/A                                                                                                                                                                                                         |                             |
| FVIN                   | 1.18.0                                                                                                                                                                                                       |                             |
| HMN                    | n/a                                                                                                                                                                                                          |                             |
| IC                     | 978B-E3801                                                                                                                                                                                                   |                             |
| FCC ID                 | RAYE3801                                                                                                                                                                                                     |                             |
| Equipment type         | End Product                                                                                                                                                                                                  |                             |
| Radio type             | Transceiver                                                                                                                                                                                                  |                             |
| Radio technologies     | LTE FDD NB-IoT, LTE Cat M1                                                                                                                                                                                   |                             |
| NB-IoT frequency bands | FDD 2 : UL = 1850 - 1910 MHz, DL = 1930 - 1990 MHz<br>FDD 4 : UL = 1710 - 1755 MHz, DL = 2110 - 2155 MHz<br>FDD12 : UL = 699 - 716 MHz, DL = 729 - 746 MHz<br>FDD13 : UL = 777 - 787 MHz, DL = 746 - 756 MHz |                             |
| Modulations            | $\pi/2$ - BPSK, $\pi/4$ - QPSK, QPSK, 16-QAM                                                                                                                                                                 |                             |
| Number of modules      | 1                                                                                                                                                                                                            |                             |
| Radio Module           | Type                                                                                                                                                                                                         | NB-IoT, Cat M1 Radio module |
|                        | Model                                                                                                                                                                                                        | ME910G1-W1                  |
|                        | Manufacturer                                                                                                                                                                                                 | Telit                       |
|                        | HW Version                                                                                                                                                                                                   | Not specified               |
|                        | SW Version                                                                                                                                                                                                   | Not specified               |
|                        | FCC-ID                                                                                                                                                                                                       | RI7ME910G1W1                |
|                        | IC                                                                                                                                                                                                           | 5131A-ME910G1W1             |
| Antenna                | Type                                                                                                                                                                                                         | External antenna            |
|                        | Model                                                                                                                                                                                                        | JCG913L-2                   |
|                        | Manufacturer                                                                                                                                                                                                 | JC Antenna                  |
|                        | Gain                                                                                                                                                                                                         | 3 dBi (antenna datasheet)   |
| Supply Voltage         | V <sub>NOM</sub>                                                                                                                                                                                             | 13.8 V DC                   |
| AC/DC-Adaptor          | None                                                                                                                                                                                                         |                             |
| Manufacturer           | Fell Technology AS<br>Bragernes Torg 2<br>3017 Drammen<br>NORWAY                                                                                                                                             |                             |

### 1.3 Support Equipment

| Product Type | Device               | Manufacturer | Model  | Comment                |
|--------------|----------------------|--------------|--------|------------------------|
| SIM          | Communication Tester | R&S          | CMW500 | Base Station Simulator |
| Description: |                      |              |        |                        |
| AE           | Auxiliary Equipment  |              |        |                        |
| SIM          | Simulator            |              |        |                        |
| CBL          | Connecting Cable     |              |        |                        |
| SFT          | Software             |              |        |                        |
| Comment:     |                      |              |        |                        |

## 1.4 Test Modes

### 1.4.1 Test modes - Transmitter and receiver radiated emissions, Radiated power calculation

| Mode               | Description                                                                                                                                                                        |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NB1 FDD2 / EMI1    | Channel = 19198<br>Mode = RMC<br>TPC = Max power<br>Modulation = $\pi/4$ - QPSK<br>Bandwidth = 45 kHz<br>Number of tones = 3<br>Start tone offset = 3                              |
| LTE FDD4 / EMI1    | Channel = 19965<br>Mode = RMC<br>TPC = Max. Power<br>Modulation = QPSK<br>Bandwidth = 3 MHz<br>Number of resource blocks = 1<br>Resource block offset = 0                          |
| NB1 FDD12 / EMI1   | Channel = 23095<br>Mode = RMC<br>TPC = Max power<br>Modulation = $\pi/4$ - QPSK<br>Bandwidth = 45 kHz<br>Number of tones = 3<br>Start tone offset = 3                              |
| NB1 FDD13 / EMI1   | Channel = 23230<br>Mode = RMC<br>TPC = Max power<br>Modulation = $\pi/4$ - QPSK<br>Bandwidth = 15 kHz<br>Number of tones = 1<br>Start tone offset = 0                              |
| NB1 FDD4 / EMI1    | Channel = 19198<br>Mode = RMC<br>TPC = Max power<br>Modulation = QPSK<br>Subcarrier spacing = 15 kHz<br>Number of tones = 1<br>Start tone offset = 0                               |
| NB1 FDD12 / EMI2   | Channel = 23012<br>Mode = RMC<br>TPC = Max. Power<br>Modulation = QPSK<br>Subcarrier spacing = 3.75 kHz<br>Number of tones = 1<br>Start tone offset = 0                            |
| NB1 FDD13 / EMI2   | Channel = 23230<br>Mode = RMC<br>TPC = Max. Power<br>Modulation = QPSK<br>Subcarrier spacing = 3.75 kHz<br>Number of tones = 1<br>Start tone offset = 0                            |
| LTE FDD4 / Receive | Channel = 1965<br>Mode = RMC<br>TPC = Max. Power<br>Modulation = QPSK<br>Bandwidth = 3 MHz<br>Number of resource blocks = 0<br>Resource block offset = 0<br>Narrowband index = Low |

|                     |                                                                                                                                                                                       |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NB1 FDD2 / Receive  | Channel = 1198<br>Mode = No scheduling<br>Modulation = $\pi/4$ - QPSK<br>Bandwidth = 15 kHz<br>Number of tones = 1<br>Start tone offset = 0                                           |
| NB1 FDD12 / Receive | Channel = 5095<br>Mode = No scheduling<br>Modulation = $\pi/4$ - QPSK<br>Bandwidth = 45 kHz<br>Number of tones = 3<br>Start tone offset = 3                                           |
| NB1 FDD13 / Receive | Channel = 5230<br>Mode = No scheduling<br>Modulation = $\pi/4$ - QPSK<br>Bandwidth = 15 kHz<br>Number of tones = 1<br>Start tone offset = 0                                           |
| NB1 FDD2 / PMAX     | Channel = 19198<br>Mode = RMC<br>TPC = Max power<br>Modulation = QPSK<br>Subcarrier spacing = 15 kHz<br>Number of tones = 3<br>Start tone offset = 3                                  |
| NB1 FDD4 / PMAX     | Channel = 20398<br>Mode = RMC<br>TPC = Max power<br>Modulation = QPSK<br>Subcarrier spacing = 15 kHz<br>Number of tones = 3<br>Start tone offset = 3                                  |
| NB1 FDD12 / PMAX    | Channel = 23095<br>Mode = RMC<br>TPC = Max power<br>Modulation = QPSK<br>Subcarrier spacing = 15 kHz<br>Number of tones = 3<br>Start tone offset = 3                                  |
| NB1 FDD13 / PMAX    | Channel = 23230<br>Mode = RMC<br>TPC = Max power<br>Modulation = QPSK<br>Subcarrier spacing = 15 kHz<br>Number of tones = 3<br>Start tone offset = 3                                  |
| LTE FDD2 / PMAX     | Channel = 18900<br>Mode = RMC<br>TPC = Max. Power<br>Modulation = QPSK<br>Bandwidth = 1.4 MHz<br>Number of resource blocks = 1<br>Resource block offset = 0<br>Narrowband index = Low |
| LTE FDD4 / PMAX     | Channel = 20175<br>Mode = RMC<br>TPC = Max. Power<br>Modulation = QPSK<br>Bandwidth = 1.4 MHz<br>Number of resource blocks = 1<br>Resource block offset = 0<br>Narrowband index = Low |

|                  |                                                                                                                                                                                        |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LTE FDD12 / PMAX | Channel = 23017<br>Mode = RMC<br>TPC = Max. Power<br>Modulation = QPSK<br>Bandwidth = 1.4 MHz<br>Number of resource blocks = 1<br>Resource block offset = 0<br>Narrowband index = Low  |
| LTE FDD13 / PMAX | Channel = 23230<br>Mode = RMC<br>TPC = Max. Power<br>Modulation = QPSK<br>Bandwidth = 10 MHz<br>Number of resource blocks = 5<br>Resource block offset = 1<br>Narrowband index = High  |
| LTE FDD2 / QPSK  | Channel = 18900<br>Mode = RMC<br>TPC = Max. Power<br>Modulation = QPSK<br>Bandwidth = 20 MHz<br>Number of resource blocks = 1<br>Resource block offset = 0<br>Narrowband index = Low   |
| LTE FDD2 / QAM   | Channel = 18900<br>Mode = RMC<br>TPC = Max. Power<br>Modulation = 16-QAM<br>Bandwidth = 20 MHz<br>Number of resource blocks = 6<br>Resource block offset = 0<br>Narrowband index = Low |
| LTE FDD4 / QPSK  | Channel = 20175<br>Mode = RMC<br>TPC = Max. Power<br>Modulation = QPSK<br>Bandwidth = 20 MHz<br>Number of resource blocks = 1<br>Resource block offset = 0<br>Narrowband index = Low   |
| LTE FDD4 / QAM   | Channel = 20175<br>Mode = RMC<br>TPC = Max. Power<br>Modulation = 16-QAM<br>Bandwidth = 20 MHz<br>Number of resource blocks = 6<br>Resource block offset = 0<br>Narrowband index = Low |
| LTE FDD12 / QPSK | Channel = 23130<br>Mode = RMC<br>TPC = Max. Power<br>Modulation = QPSK<br>Bandwidth = 10 MHz<br>Number of resource blocks = 1<br>Resource block offset = 0<br>Narrowband index = High  |
| LTE FDD12 / QAM  | Channel = 23060<br>Mode = RMC<br>TPC = Max. Power<br>Modulation = 16-QAM<br>Bandwidth = 10 MHz<br>Number of resource blocks = 5<br>Resource block offset = 0<br>Narrowband index = Low |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LTE FDD13 / QPSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Channel = 23230<br>Mode = RMC<br>TPC = Max. Power<br>Modulation = QPSK<br>Bandwidth = 10 MHz<br>Number of resource blocks = 5<br>Resource block offset = 1<br>Narrowband index = High   |
| LTE FDD13 / QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Channel = 23230<br>Mode = RMC<br>TPC = Max. Power<br>Modulation = 16-QAM<br>Bandwidth = 10 MHz<br>Number of resource blocks = 5<br>Resource block offset = 1<br>Narrowband index = High |
| <p>Comment: The test modes for NB1 FDD2 / EMI1, LTE FDD4 / EMI1, NB1 FDD12 / EMI1, NB1 FDD13 / EMI1 are based on worst case evaluation of the conducted output power from module test reports "STS1912245W01" and "STS1912245W02" issued by "Shenzhen STS Test Services Co., Ltd." on 2020-03-11.</p> <p>The test modes for NB1 FDD4 / EMI1, NB1 FDD12 / EMI2, NB1 FDD13 / EMI2, are chosen on worst case evaluation of spurious emission test results, the remaining non mentioned test modes are chosen on worst case conducted output power from test reports "50289118 001" and "50289118 002" issued by "TÜV Rheinland (Shenzhen) Co., Ltd." on 2020-01-15.</p> <p>Above mentioned test reports do belong to two different modules ME910G1WW and ME910G1W1. Both modules are from same series but are not identical. Module ME910G1WW was declared by customer, however module ME910G1W1 is built into EUT. Spurious emission results of module test reports for module ME910G1W1 have been evaluated and critical test modes were retested. Output power calculation is updated to be correct with ME910G1W1 module measurements.</p> |                                                                                                                                                                                         |

## 1.5 Sample emission level calculation

The following is a description of terms and a sample calculation, as appears in the radiated emissions data table. The numbers used in the calculation are for example only. There is no direct correlation to the specific data taken for the product described in this document:

Reading:

This is the reading obtained on the spectrum analyzer in dB $\mu$ V. Any external preamplifiers used are taken into account through internal analyzer settings.

A.F.:

This is the antenna factor for the receiving antenna. It is a conversion factor, which converts electric fields strengths to voltages, which can be measured directly on the spectrum analyzer. It is treated as a loss in dB. Cable losses have been included with the A.F. to simplify the calculations. The antenna factor is used in calculations as follows:

$$\text{Reading on Analyzer (dB}\mu\text{V)} + \text{A.F. (dB/m)} = \text{Net field strength (dB}\mu\text{V/m)}$$

Net:

This is the net field strength measurement (as shown above).

Margin:

This is the margin of compliance below the FCC limit. The units are given in dB. A negative margin indicates the emission was below the limit. A positive margin indicates that the emission exceeds the limit.

Field strength limit:

This is the FCC Class B radiated emission limit (in units of dB $\mu$ V/m). The FCC limits are given in units of  $\mu$ V/m. The following formula is used to convert the units of  $\mu$ V/m to dB $\mu$ V/m:

$$\text{Field strength limit (dB}\mu\text{V/m)} = 20 \cdot \log (\mu\text{V/m})$$

Example only for radiated field strength:

|                  |               |   |                   |                        |          |
|------------------|---------------|---|-------------------|------------------------|----------|
| Reading + AF     | = Net Reading | : | Net reading       | - Field strength limit | = Margin |
| +21.5 dB $\mu$ V | + 26 dB/m     | : | 47.5 dB $\mu$ V/m | - 57.0 dB $\mu$ V/m    | = -9.5   |

Di:

This is the measurement distance between the test sample and the measurement antenna in meter (m)

ERP:

This is the emitted power by the test sample as Effective Radiated Power (dBm)

EIRP:

This is the emitted power by the test sample as Effective Isotropic Radiated Power (dBm)

Calculation of measurement result:

ERP = Net field strength (dB $\mu$ V/m) + 20 · log(Di) - 106.95

EIRP = Net field strength (dB $\mu$ V/m) + 20 · log(Di) - 104.8

P<sub>Watt</sub>:

This is power in Watts

P<sub>dBm</sub>:

This is power in dBm. P<sub>dBm</sub> = 10 · log(P<sub>Watt</sub> · 1000)

Power limit:

This is the radiated emission limit expressed in P<sub>dBm</sub>. FCC limits are typically given as an attenuation of carrier power in dB by the formula x + 10 · log(P<sub>Watt</sub>)

Calculation example of emission limit:

Assuming x = 43

Power-Limit = P<sub>dBm</sub> - 43 + 10 · log(P<sub>Watt</sub>)

Power-Limit = 30 dBm - 43 + 10 · log(1 W) = -13 dBm

Example only for radiated power:

|                            |                     |
|----------------------------|---------------------|
| Reading + AF               | = Net Reading       |
| +21.5 dB $\mu$ V + 26 dB/m | = 47.5 dB $\mu$ V/m |

|                                           |             |
|-------------------------------------------|-------------|
| Net Reading + 20 · log(Di) - 104.8        | = EIRP      |
| 47.5 dB $\mu$ V/m + 20 · log(3 m) - 104.8 | = -47.8 dBm |

|                      |            |
|----------------------|------------|
| EIRP - Power limit   | = Margin   |
| -47.8 dBm - (-13dBm) | = -34.8 dB |

## 2 Result Summary

| Test Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                           |        |                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------|--------|---------------------------------------------------------------------------------------------|
| Product Standard Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Requirement                                | Reference Method          | Result | Remarks                                                                                     |
| 47 CFR §24.232<br>47 CFR §27.50<br>ISED RSS-133 §5.5<br>ISED RSS-139 §6.5<br>ISED RSS-130 §4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Radiated power                             | ANSI C63.26<br>KDB 971168 | PASS   | Calculations based on measurements in module test reports, referenced in test modes section |
| 47 CFR §2.1047<br>ISED RSS-130 §4.1<br>ISED RSS-133 §5.3<br>ISED RSS-139 §6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Modulation characteristics                 | ANSI C63.26<br>KDB 971168 | N/T    | See note 1                                                                                  |
| 47 CFR §24.235<br>47 CFR §27.54<br>ISED RSS-130 §4.3<br>ISED RSS-133 §5.4<br>ISED RSS-139 §6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Frequency stability                        | ANSI C63.26<br>KDB 971168 | N/T    | See note 1                                                                                  |
| 47 CFR §2.1049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Occupied Bandwidth                         | ANSI C63.26<br>KDB 971168 | N/T    | See note 1                                                                                  |
| 47 CFR §24.238<br>47 CFR §27.53<br>ISED RSS-133 §5.6<br>ISED RSS-139 §6.6<br>ISED RSS-130 §4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Transmitter out-of-band unwanted emissions | ANSI C63.26<br>KDB 971168 | N/T    | See note 1                                                                                  |
| 47 CFR §24.238<br>47 CFR §27.53<br>47 CFR §90.691<br>ISED RSS-133 §5.6<br>ISED RSS-139 §6.6<br>ISED RSS-130 §4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Transmitter conducted spurious emissions   | ANSI C63.26<br>KDB 971168 | N/T    | See note 1                                                                                  |
| 47 CFR §24.238<br>47 CFR §27.53<br>47 CFR §90.691<br>ISED RSS-133 §5.6<br>ISED RSS-139 §6.6<br>ISED RSS-130 §4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Transmitter radiated spurious emissions    | ANSI C63.26<br>KDB 971168 | PASS   | --                                                                                          |
| ISED RSS-133 §3.4<br>ISED RSS-139 §3.1<br>ISED RSS-130 §3.3<br>ISED RSS-Gen §7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Receiver radiated spurious emissions       | ANSI C63.4                | PASS   | --                                                                                          |
| Note 1: These test cases are not retested because the radio module was already tested. Original module test reports are: "50289118 001" and "50289118 002" issued by "TÜV Rheinland (Shenzhen) Co., Ltd." on 2020-01-15.<br>Comment: The Decision Rule is applied on the basis of ETSI TR 102 273 and ETSI TR 100 028.<br>These standards provide guidance on how to calculate and apply measurement uncertainty whilst providing maximum uncertainties allowance. In all cases due consideration will be given to ILAC-G8:09/2019.<br>Where a result is considered conditional in respect of its proximity to the limit line, the customer would be made aware of situation so that they can make an informed decision on how to proceed. |                                            |                           |        |                                                                                             |

| Possible Test Case Verdicts |                                              |
|-----------------------------|----------------------------------------------|
| PASS                        | Test object does meet the requirements       |
| FAIL                        | Test object does not meet the requirements   |
| N/T                         | Required by standard but not tested          |
| N/R                         | Not required by standard for the test object |

### 3 Test Conditions and Results

#### 3.1 Test Conditions and Results - Radiated power

##### 3.1.1 Information

| Test Information   |                                                                                                |
|--------------------|------------------------------------------------------------------------------------------------|
| Reference          | 47 CFR §24.232<br>47 CFR §27.50<br>ISED RSS-133 §5.5<br>ISED RSS-139 §6.5<br>ISED RSS-130 §4.6 |
| Measurement Method | Calculation based on module report conducted results referenced in test modes section          |
| Operator           | Azamat Ibraimov                                                                                |
| Date               | 2025-02-03                                                                                     |

##### 3.1.2 Limits

| Limits - Portable equipment |                       |                       |                     |                        |                      |
|-----------------------------|-----------------------|-----------------------|---------------------|------------------------|----------------------|
| Band                        | Frequency range [MHz] | Power limit [dBm ERP] | Power limit [W ERP] | Power limit [dBm EIRP] | Power limit [W EIRP] |
| LTE FDD 2                   | 1850 - 1910           | -                     | -                   | 33                     | 2                    |
| LTE FDD 4                   | 1710 - 1755           | -                     | -                   | 30                     | 1                    |
| LTE FDD12                   | 699 - 716             | 34.77                 | 3                   | -                      | -                    |
| LTE FDD13                   | 777 - 787             | 34.77                 | 3                   | -                      | -                    |

##### 3.1.3 Procedure

| Test Procedure - Calculation                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol style="list-style-type: none"><li>1. The highest conducted output power for each radio band is determined from the modular approval report</li><li>2. The antenna gain for the corresponding transmission frequency is added to the conducted output power</li><li>3. The calculated radiated power is compared to the transmitter output power limit</li></ol> |

## 3.1.4 Results

| Test Results - FDD2 |             |                    |                           |                  |             |        |
|---------------------|-------------|--------------------|---------------------------|------------------|-------------|--------|
| Mode                | Power [dBm] | Antenna gain [dBi] | Radiated power [dBm EIRP] | Limit [dBm EIRP] | Margin [dB] | Result |
| LTE FDD2 / PMAX     | 21.4        | 3                  | 24.4                      | 33               | -8.60       | PASS   |
| NB1 FDD2 / PMAX     | 20.87       | 3                  | 23.87                     | 33               | -9.13       | PASS   |
| LTE FDD2 / QPSK     | 21.08       | 3                  | 24.08                     | 33               | -8.92       | PASS   |
| LTE FDD2 / QAM      | 20.92       | 3                  | 23.92                     | 33               | -9.08       | PASS   |

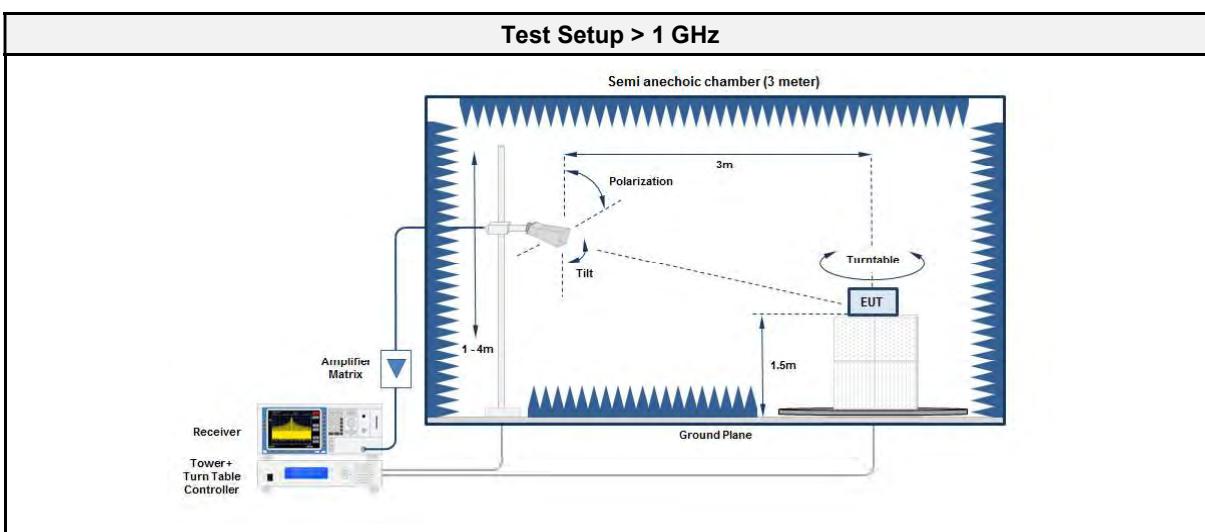
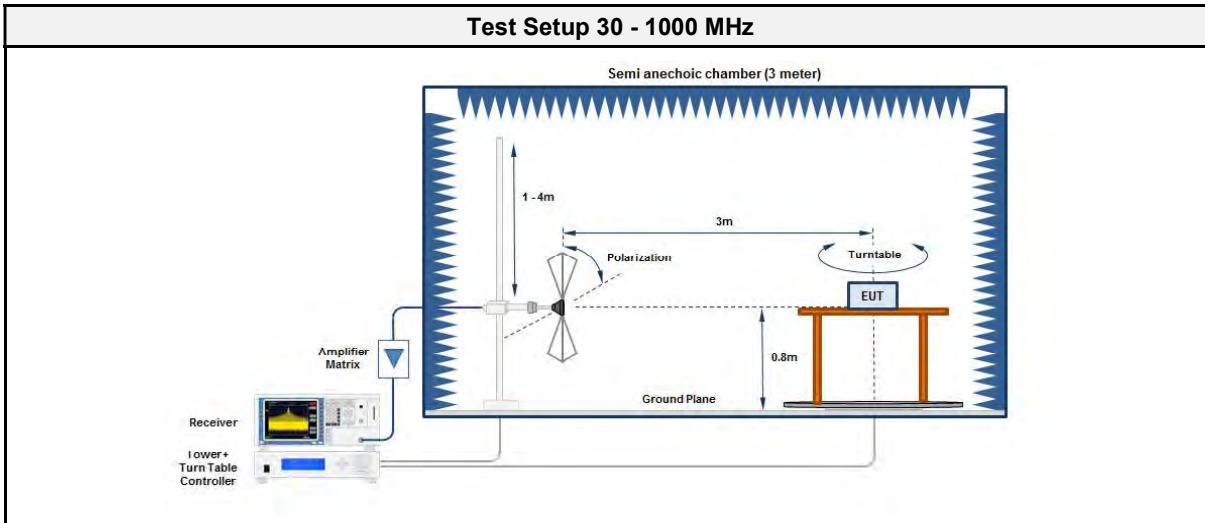
| Test Results - FDD4 |             |                    |                           |                  |             |        |
|---------------------|-------------|--------------------|---------------------------|------------------|-------------|--------|
| Mode                | Power [dBm] | Antenna gain [dBi] | Radiated power [dBm EIRP] | Limit [dBm EIRP] | Margin [dB] | Result |
| LTE FDD4 / PMAX     | 21.16       | 3                  | 24.16                     | 30               | -5.84       | PASS   |
| NB1 FDD4 / PMAX     | 20.29       | 3                  | 23.29                     | 30               | -6.71       | PASS   |
| LTE FDD4 / QPSK     | 20.93       | 3                  | 23.93                     | 30               | -6.07       | PASS   |
| LTE FDD4 / QAM      | 20.79       | 3                  | 23.79                     | 30               | -6.21       | PASS   |

| Test Results - FDD12 |             |                    |                          |                 |             |        |
|----------------------|-------------|--------------------|--------------------------|-----------------|-------------|--------|
| Mode                 | Power [dBm] | Antenna gain [dBd] | Radiated power [dBm ERP] | Limit [dBm ERP] | Margin [dB] | Result |
| LTE FDD12 / PMAX     | 21.6        | 0.85               | 22.45                    | 34.77           | -12.32      | PASS   |
| NB1 FDD12 / PMAX     | 20.92       | 0.85               | 21.77                    | 34.77           | -13.00      | PASS   |
| LTE FDD12 / QPSK     | 21.31       | 0.85               | 22.16                    | 34.77           | -12.61      | PASS   |
| LTE FDD12 / QAM      | 21.19       | 0.85               | 22.04                    | 34.77           | -12.73      | PASS   |

| Test Results - FDD13 |             |                    |                          |                 |             |        |
|----------------------|-------------|--------------------|--------------------------|-----------------|-------------|--------|
| Mode                 | Power [dBm] | Antenna gain [dBd] | Radiated power [dBm ERP] | Limit [dBm ERP] | Margin [dB] | Result |
| LTE FDD13 / PMAX     | 21.39       | 0.85               | 22.24                    | 34.77           | -12.53      | PASS   |
| NB1 FDD13 / PMAX     | 20.99       | 0.85               | 21.84                    | 34.77           | -12.93      | PASS   |
| LTE FDD13 / QPSK     | 21.39       | 0.85               | 22.24                    | 34.77           | -12.53      | PASS   |
| LTE FDD13 / QAM      | 21.14       | 0.85               | 21.99                    | 34.77           | -12.78      | PASS   |

### 3.2 Test Conditions and Results - Transmitter radiated emissions

#### 3.2.1 Information



| Test Information        |                                                                                                |
|-------------------------|------------------------------------------------------------------------------------------------|
| Reference               | 47 CFR §24.238<br>47 CFR §27.53<br>ISED RSS-133 §5.6<br>ISED RSS-139 §6.6<br>ISED RSS-130 §4.7 |
| Measurement Method      | FCC KDB 971168 D01 Section 7<br>ANSI C63.26-2015 5.5                                           |
| Measurement Uncertainty | ± 5.95 dB                                                                                      |
| Operator                | Azamat Ibraimov, Florian Voigt                                                                 |
| Date                    | 2023-08-17 - 2025-02-03                                                                        |

#### 3.2.2 Limits

| Limits FCC |                       |           |                        |             |
|------------|-----------------------|-----------|------------------------|-------------|
| Band       | Frequency range [MHz] | Bandwidth | Attenuation [dB]       | Limit [dBm] |
| LTE FDD 2  | -                     | 1 MHz     | $43 + \log_{10}(P[W])$ | -13         |
| LTE FDD 4  | -                     | 1 MHz     | $43 + \log_{10}(P[W])$ | -13         |
| LTE FDD12  | -                     | 100 kHz   | $43 + \log_{10}(P[W])$ | -13         |
| LTE FDD13  | -                     | 100 kHz   | $43 + \log_{10}(P[W])$ | -13         |
| LTE FDD13  | 763-775               | 6.25 kHz  | $65 + \log_{10}(P[W])$ | -35         |
| LTE FDD13  | 793-805               | 6.25 kHz  | $65 + \log_{10}(P[W])$ | -35         |
| LTE FDD13  | 1559-1610             | 700 Hz    | -                      | -50         |
| LTE FDD13  | 1559-1610             | 1 MHz     | -                      | -40         |

| Limits ISED |                       |           |                        |             |
|-------------|-----------------------|-----------|------------------------|-------------|
| Band        | Frequency range [MHz] | Bandwidth | Attenuation [dB]       | Limit [dBm] |
| LTE FDD 2   | -                     | 1 MHz     | $43 + \log_{10}(P[W])$ | -13         |
| LTE FDD 4   | -                     | 1 MHz     | $43 + \log_{10}(P[W])$ | -13         |
| LTE FDD12   | -                     | 100 kHz   | $43 + \log_{10}(P[W])$ | -13         |
| LTE FDD13   | -                     | 100 kHz   | $43 + \log_{10}(P[W])$ | -13         |
| LTE FDD13   | 763-775               | 6.25 kHz  | $65 + \log_{10}(P[W])$ | -35         |
| LTE FDD13   | 793-806               | 6.25 kHz  | $65 + \log_{10}(P[W])$ | -35         |
| LTE FDD13   | 1559-1610             | 700 Hz    | -                      | -50         |
| LTE FDD13   | 1559-1610             | 1 MHz     | -                      | -40         |

## 3.2.3 Setup



## 3.2.4 Equipment

| Test Software |                  |            |          |
|---------------|------------------|------------|----------|
| Description   | Manufacturer     | Name       | Version  |
| EMC Software  | DARE Instruments | RadiMation | 2020.1.8 |
| EMC Software  | Raditeq B.V.     | RadiMation | 2024.1.4 |

| Test Equipment 30 - 1000 MHz |              |                |            |           |          |
|------------------------------|--------------|----------------|------------|-----------|----------|
| Description                  | Manufacturer | Model          | Identifier | Cal. Date | Cal. Due |
| Anechoic Chamber             | Frankonia    | AC1            | EF00062    | 2022-11   | 2025-11  |
| Measurement Receiver         | Agilent      | N9038A-526/WXP | EF01070    | 2023-02   | 2024-02  |
| Trilog Broadband Antenna     | Schwarzbeck  | VULB 9168      | EF01824    | 2022-10   | 2023-10  |

| Test Equipment > 1 GHz |                    |                |            |                    |                    |
|------------------------|--------------------|----------------|------------|--------------------|--------------------|
| Description            | Manufacturer       | Model          | Identifier | Cal. Date          | Cal. Due           |
| Anechoic Chamber       | Frankonia          | AC1            | EF01011    | 2022-11<br>2024-07 | 2023-11<br>2027-07 |
| Measurement Receiver   | Agilent            | N9038A-526/WXP | EF01070    | 2023-02            | 2024-02            |
| EMI Test Receiver      | R&S                | ESW44          | EF01856    | 2024-04            | 2025-04            |
| Antenna                | Schwarzbeck        | BBHA 9120D     | EF01561    | 2021-11            | 2024-11            |
| Horn antenna           | Schwarzbeck        | BBHA 9120D     | EF00019    | 2023-12            | 2026-12            |
| Horn antenna           | Amplifier Research | ATH18G40       | EF01152    | 2020-11            | 2023-11            |

## 3.2.5 Procedure

| Test Procedure 30 - 1000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <ol style="list-style-type: none"> <li>1. EUT is placed on a non conducting support at the center of a turn table 0.8 m above the ground</li> <li>2. EUT set to test mode</li> <li>3. The receiver is set to peak detection with max hold</li> <li>4. The EUT is rotated through 360° and the height of the antenna is varied from 1 m to 4 m</li> <li>5. All significant emissions are measured again using the corresponding final detector</li> </ol> |  |  |  |  |  |

| Test Procedure > 1 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <ol style="list-style-type: none"> <li>1. EUT is placed on a non conducting support at the center of a turn table 1.5 m above the ground</li> <li>2. EUT set to test mode</li> <li>3. The receiver is set to peak detection with max hold</li> <li>4. The EUT is rotated through 360° and the height of the antenna is varied from 1 m to 4 m</li> <li>5. All significant emissions are measured again using the corresponding final detector</li> </ol> |  |  |  |  |  |

## 3.2.6 Results

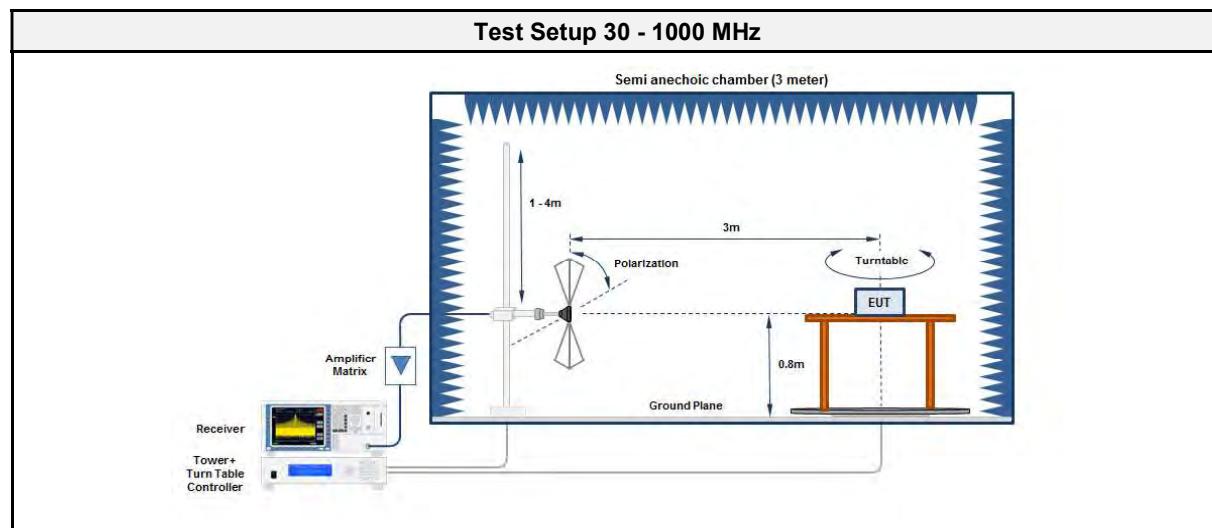
| Test Results - FDD2 |                 |             |              |             |             |        |
|---------------------|-----------------|-------------|--------------|-------------|-------------|--------|
| Mode                | Frequency [MHz] | Level [dBm] | Polarization | Limit [dBm] | Margin [dB] | Result |
| NB1 FDD2 / EMI1     | 600.142         | -48.50      | ver          | -13.00      | -35.53      | PASS   |

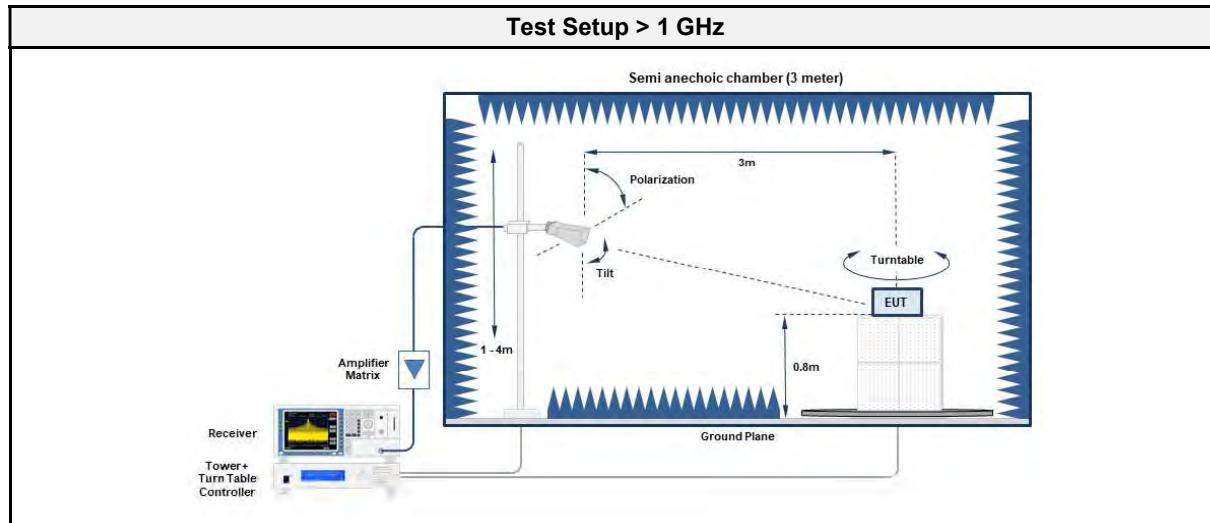
| Test Results - FDD4 |                 |             |              |             |             |        |
|---------------------|-----------------|-------------|--------------|-------------|-------------|--------|
| Mode                | Frequency [MHz] | Level [dBm] | Polarization | Limit [dBm] | Margin [dB] | Result |
| LTE FDD4 / EMI1     | 600.118         | -38.50      | ver          | -13.00      | -25.50      | PASS   |
| LTE FDD4 / EMI1     | 3000            | -50.80      | ver          | -13.00      | -37.79      | PASS   |
| LTE FDD4 / EMI1     | 4500            | -47.10      | ver          | -13.00      | -34.12      | PASS   |
| NB1 FDD4 / EMI1     | 2154.833        | -34.3       | ver          | -13.00      | -21.32      | PASS   |
| NB1 FDD4 / EMI1     | 4499.8          | -45         | ver          | -13.00      | -31.98      | PASS   |
| NB1 FDD4 / EMI1     | 5264.2          | -43.6       | ver          | -13.00      | -30.64      | PASS   |

| Test Results - FDD12 |                 |             |              |             |             |        |
|----------------------|-----------------|-------------|--------------|-------------|-------------|--------|
| Mode                 | Frequency [MHz] | Level [dBm] | Polarization | Limit [dBm] | Margin [dB] | Result |
| NB1 FDD12 / EMI1     | 600.772         | -46.10      | ver          | -13.00      | -33.11      | PASS   |
| NB1 FDD12 / EMI1     | 4501            | -48.00      | ver          | -13.00      | -34.98      | PASS   |
| NB1 FDD12 / EMI2     | 1398.16         | -52.5       | ver          | -13.00      | -39.54      | PASS   |
| NB1 FDD12 / EMI2     | 2097.37         | -44.8       | ver          | -13.00      | -31.81      | PASS   |
| NB1 FDD12 / EMI2     | 4499.89         | -47.2       | ver          | -13.00      | -34.23      | PASS   |

| Test Results - FDD13 |                 |             |              |             |             |        |
|----------------------|-----------------|-------------|--------------|-------------|-------------|--------|
| Mode                 | Frequency [MHz] | Level [dBm] | Polarization | Limit [dBm] | Margin [dB] | Result |
| NB1 FDD13 / EMI1     | 600.093         | -48.70      | ver          | -13.00      | -35.66      | PASS   |
| NB1 FDD13 / EMI1     | 1564            | -48.60      | hor          | -40.00      | -08.58      | PASS   |
| NB1 FDD13 / EMI1     | 1564            | -61.60      | hor          | -50.00      | -11.58      | PASS   |
| NB1 FDD13 / EMI1     | 1564            | -44.10      | ver          | -40.00      | -04.11      | PASS   |
| NB1 FDD13 / EMI1     | 1564            | -54.30      | ver          | -50.00      | -04.28      | PASS   |
| NB1 FDD13 / EMI1     | 4500            | -49.10      | ver          | -13.00      | -36.11      | PASS   |
| NB1 FDD13 / EMI2     | 1573.387        | -52         | hor          | -40.00      | -12         | PASS   |
| NB1 FDD13 / EMI2     | 1573.425        | -54.7       | ver          | -50.00      | -4.68       | PASS   |
| NB1 FDD13 / EMI2     | 1573.425        | -55.7       | ver          | -50.00      | -5.75       | PASS   |
| NB1 FDD13 / EMI2     | 1573.425        | -56.3       | hor          | -50.00      | -6.32       | PASS   |
| NB1 FDD13 / EMI2     | 1573.447        | -50.6       | ver          | -40.00      | -10.62      | PASS   |
| NB1 FDD13 / EMI2     | 4499.89         | -47.1       | ver          | -13.00      | -34.14      | PASS   |

### 3.3 Test Conditions and Results - Receiver radiated emissions


#### 3.3.1 Information


| Test Information        |                                                                               |
|-------------------------|-------------------------------------------------------------------------------|
| Reference               | ISED RSS-133 §3.4, ISED RSS-130 §3.3,<br>ISED RSS-139 §3.4, ISED RSS-Gen §7.4 |
| Measurement Method      | ANSI C63.4-2014 8.1-8.3                                                       |
| Measurement Uncertainty | ± 5.95 dB                                                                     |
| Operator                | Azamat Ibraimov                                                               |
| Date                    | 2023-08-21 - 2023-09-19                                                       |

#### 3.3.2 Limits

| Limits                |           |            |                            |
|-----------------------|-----------|------------|----------------------------|
| Frequency range [MHz] | Bandwidth | Detector   | Limit [dB $\mu$ V/m @ 3 m] |
| 30 - 88               | 100 kHz   | Quasi-peak | 40                         |
| 88 - 216              | 100 kHz   | Quasi-peak | 43.5                       |
| 216 - 960             | 100 kHz   | Quasi-peak | 46                         |
| 960 - 1000            | 100 kHz   | Quasi-peak | 54                         |
| > 1000                | 1 MHz     | Average    | 54                         |

#### 3.3.3 Setup





### 3.3.4 Equipment

| Test Software |                  |          |  |          |  |
|---------------|------------------|----------|--|----------|--|
| Description   | Manufacturer     | Name     |  | Version  |  |
| EMC Software  | DARE Instruments | RadiMatM |  | 2020.1.8 |  |

| Test Equipment 30 - 1000 MHz |              |                |            |           |          |
|------------------------------|--------------|----------------|------------|-----------|----------|
| Description                  | Manufacturer | Model          | Identifier | Cal. Date | Cal. Due |
| Anechoic Chamber             | Frankonia    | AC1            | EF00062    | 2022-11   | 2025-11  |
| Measurement Receiver         | Agilent      | N9038A-526/WXP | EF01070    | 2023-02   | 2024-02  |
| Trilog Broadband Antenna     | Schwarzbeck  | VULB 9168      | EF01824    | 2022-10   | 2023-10  |

| Test Equipment > 1 GHz |              |                |            |           |          |
|------------------------|--------------|----------------|------------|-----------|----------|
| Description            | Manufacturer | Model          | Identifier | Cal. Date | Cal. Due |
| Anechoic Chamber       | Frankonia    | AC1            | EF01011    | 2022-11   | 2023-11  |
| Measurement Receiver   | Agilent      | N9038A-526/WXP | EF01070    | 2023-02   | 2024-02  |
| Antenna                | Schwarzbeck  | BBHA 9120D     | EF01561    | 2021-11   | 2024-11  |
| Horn Antenna           | Schwarzbeck  | HWRD 650       | EF01679    | 2021-03   | 2024-03  |

### 3.3.5 Procedure

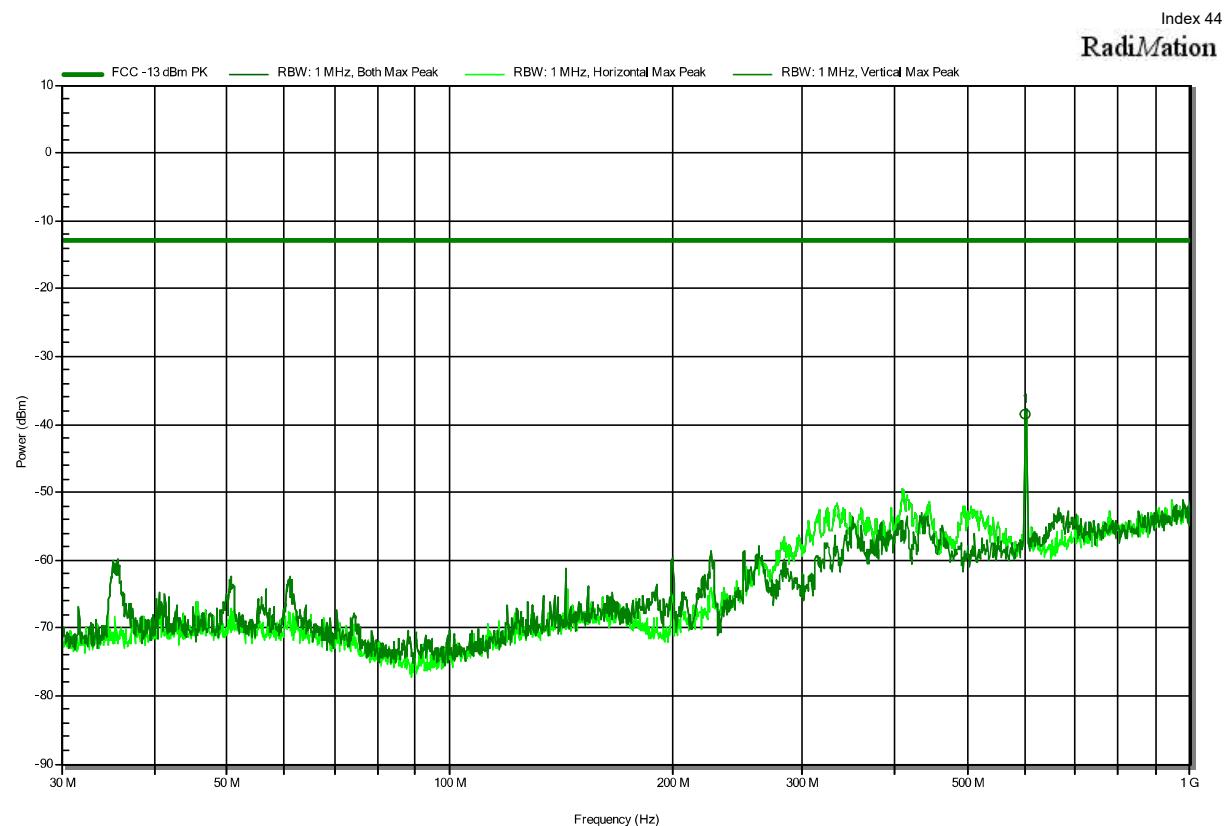
| Test Procedure 30 - 1000 MHz                                                                      |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1. EUT is placed on a non conducting support at the center of a turn table 0.8 m above the ground |  |  |  |  |  |
| 2. EUT set to test mode                                                                           |  |  |  |  |  |
| 3. The receiver is set to peak detection with max hold                                            |  |  |  |  |  |
| 4. The EUT is rotated through 360° and the height of the antenna is varied from 1 m to 4 m        |  |  |  |  |  |
| 5. All significant emissions are measured again using the corresponding final detector            |  |  |  |  |  |

| Test Procedure > 1 GHz                                                                            |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1. EUT is placed on a non conducting support at the center of a turn table 1.5 m above the ground |  |  |  |  |  |
| 2. EUT set to test mode                                                                           |  |  |  |  |  |
| 3. The receiver is set to peak detection with max hold                                            |  |  |  |  |  |
| 4. The EUT is rotated through 360° and the height of the antenna is varied from 1 m to 4 m        |  |  |  |  |  |
| 5. All significant emissions are measured again using the corresponding final detector            |  |  |  |  |  |

## 3.3.6 Results

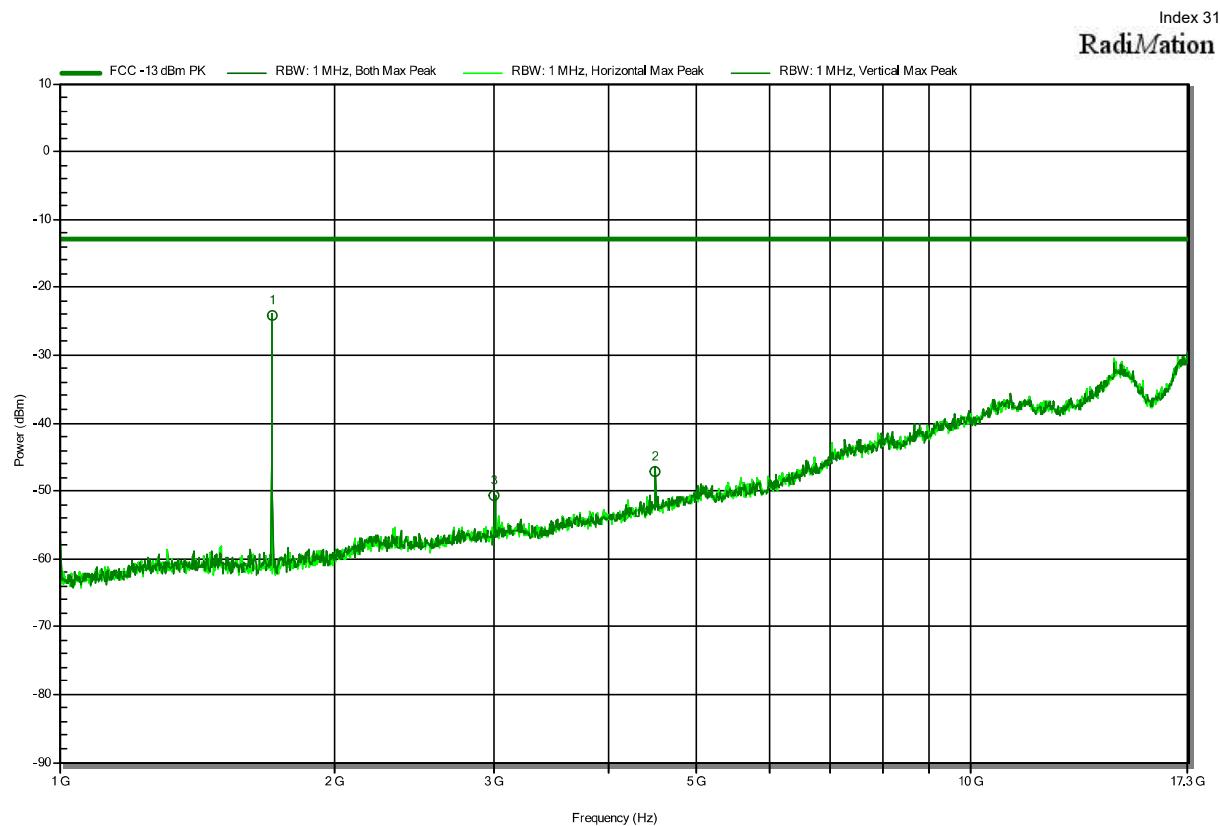
| Test Results - LTE FDD2 |                 |                      |          |              |                      |             |        |
|-------------------------|-----------------|----------------------|----------|--------------|----------------------|-------------|--------|
| Mode                    | Frequency [MHz] | Level [dB $\mu$ V/m] | Detector | Polarization | Limit [dB $\mu$ V/m] | Margin [dB] | Result |
| NB1 FDD2 / Receive      | 148.8007        | 31.60                | pk       | hor          | 43.50                | -11.89      | PASS   |
| NB1 FDD2 / Receive      | 444.6507        | 40.70                | pk       | hor          | 46.00                | -05.25      | PASS   |
| NB1 FDD2 / Receive      | 599.2688        | 38.70                | pk       | ver          | 46.00                | -07.34      | PASS   |
| NB1 FDD2 / Receive      | 3000            | 47.50                | pk       | ver          | 74.00                | -26.50      | PASS   |
| NB1 FDD2 / Receive      | 3000            | 43.49                | avg      | ver          | 53.98                | -10.49      | PASS   |
| NB1 FDD2 / Receive      | 7501            | 41.86                | pk       | ver          | 74.00                | -32.14      | PASS   |
| NB1 FDD2 / Receive      | 7501            | 37.47                | avg      | ver          | 53.98                | -16.51      | PASS   |
| NB1 FDD2 / Receive      | 10500           | 43.24                | pk       | ver          | 74.00                | -30.76      | PASS   |
| NB1 FDD2 / Receive      | 10500           | 37.16                | avg      | ver          | 53.98                | -16.82      | PASS   |

| Test Results - LTE FDD4 |                 |                      |          |              |                      |             |        |
|-------------------------|-----------------|----------------------|----------|--------------|----------------------|-------------|--------|
| Mode                    | Frequency [MHz] | Level [dB $\mu$ V/m] | Detector | Polarization | Limit [dB $\mu$ V/m] | Margin [dB] | Result |
| LTE FDD4 / Receive      | 199.7742        | 28.90                | pk       | hor          | 43.50                | -14.58      | PASS   |
| LTE FDD4 / Receive      | 359.9906        | 39.70                | qpk      | hor          | 46.00                | -06.31      | PASS   |
| LTE FDD4 / Receive      | 600.7879        | 36.30                | qpk      | ver          | 46.00                | -09.69      | PASS   |
| LTE FDD4 / Receive      | 1501            | 43.08                | pk       | hor          | 74.00                | -30.92      | PASS   |
| LTE FDD4 / Receive      | 1501            | 24.90                | avg      | hor          | 53.98                | -29.08      | PASS   |
| LTE FDD4 / Receive      | 3000            | 44.82                | pk       | ver          | 74.00                | -29.18      | PASS   |
| LTE FDD4 / Receive      | 3000            | 39.50                | avg      | ver          | 53.98                | -14.48      | PASS   |
| LTE FDD4 / Receive      | 4500            | 49.36                | pk       | ver          | 74.00                | -24.64      | PASS   |
| LTE FDD4 / Receive      | 4500            | 44.23                | avg      | ver          | 53.98                | -09.75      | PASS   |


| Test Results - LTE FDD12 |                 |                      |          |              |                      |             |        |
|--------------------------|-----------------|----------------------|----------|--------------|----------------------|-------------|--------|
| Mode                     | Frequency [MHz] | Level [dB $\mu$ V/m] | Detector | Polarization | Limit [dB $\mu$ V/m] | Margin [dB] | Result |
| NB1 FDD12 / Receive      | 249.9874        | 36.40                | qpk      | hor          | 46.00                | -09.62      | PASS   |
| NB1 FDD12 / Receive      | 359.996         | 33.90                | qpk      | ver          | 46.00                | -12.11      | PASS   |
| NB1 FDD12 / Receive      | 600.7266        | 36.70                | qpk      | ver          | 46.00                | -09.30      | PASS   |

| Test Results - LTE FDD13 |                 |                      |          |              |                      |             |        |
|--------------------------|-----------------|----------------------|----------|--------------|----------------------|-------------|--------|
| Mode                     | Frequency [MHz] | Level [dB $\mu$ V/m] | Detector | Polarization | Limit [dB $\mu$ V/m] | Margin [dB] | Result |
| NB1 FDD13 / Receive      | 249.9594        | 36.20                | qpk      | hor          | 46.00                | -09.84      | PASS   |
| NB1 FDD13 / Receive      | 359.9866        | 39.90                | qpk      | hor          | 46.00                | -06.11      | PASS   |
| NB1 FDD13 / Receive      | 600.3183        | 33.50                | qpk      | ver          | 46.00                | -12.54      | PASS   |

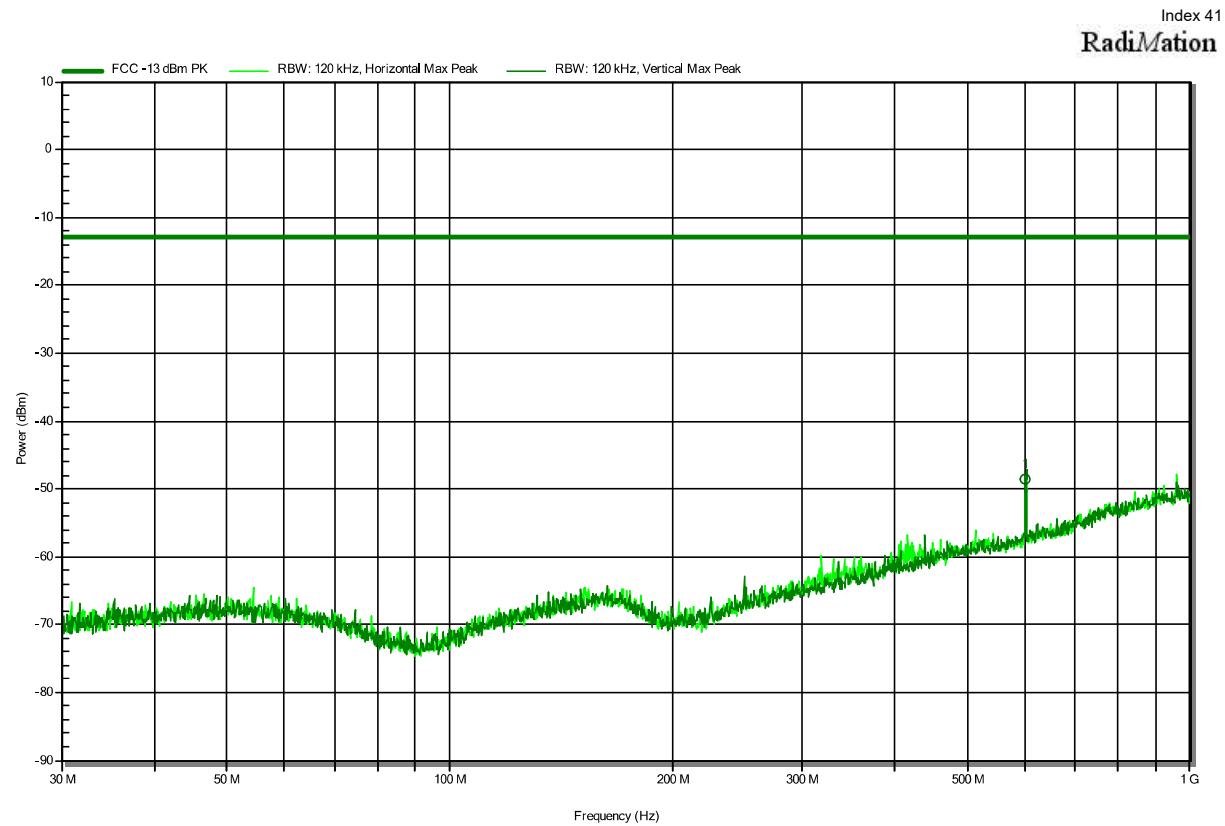
## ANNEX A Transmitter radiated emissions


### Radiated Spurious Emissions according to RSS-139; 47 CFR Part 27 Subpart C

Project Number: G0M-2303-1961  
 Applicant: Navico Inc.  
 Model Description: Marine and recreational IoT Gateway and vessel management system  
 Model: Connect 1  
 Test Sample ID: 44396  
 Test Site: Eurofins Product Service GmbH  
 Operator: A.Ibraimov  
 Measurement software: RadiMation, version 2020.1.8  
 Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
 Antenna: Schwarzbeck VULB 9168  
 Measurement distance: 3 m  
 Mode: Tx; LTE Cat M1, FDD4, 3 MHz, CH\_19965, RB 1#0  
 Test Date: 2023-08-21  
 Note:



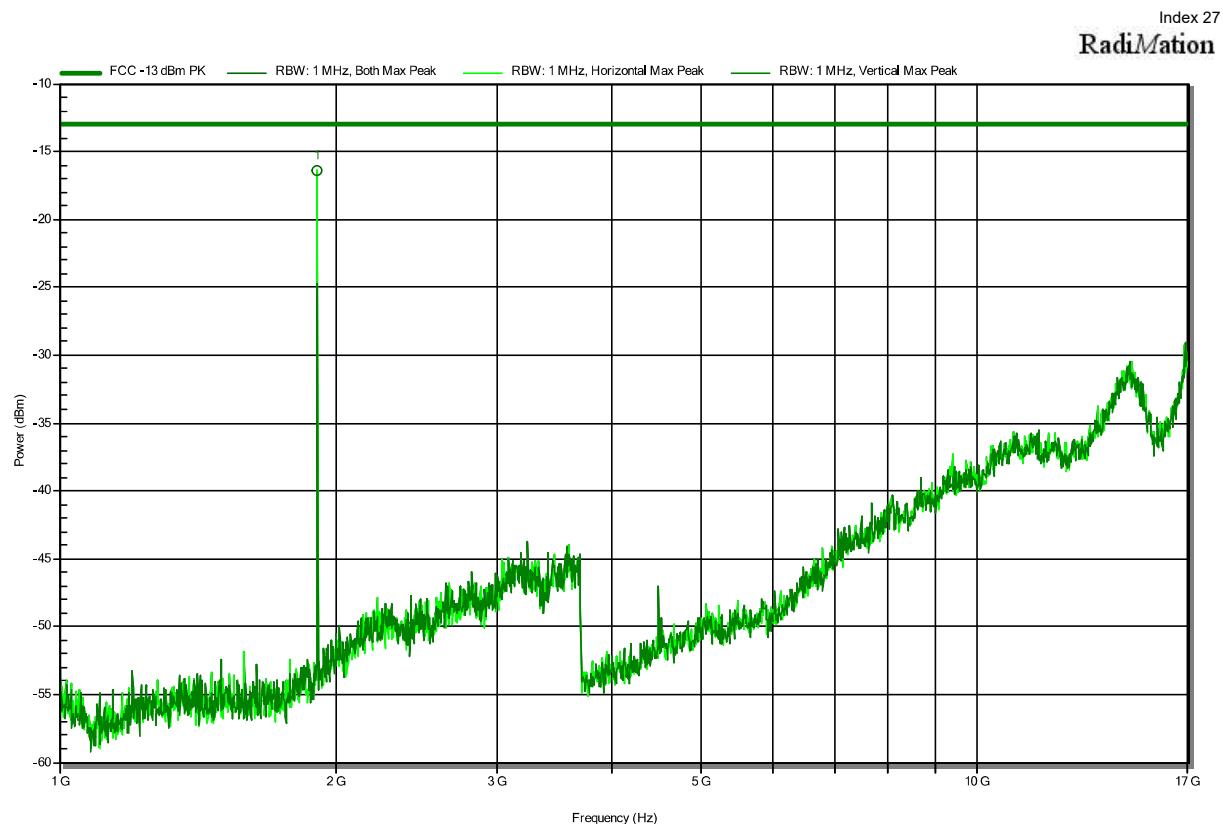
**Radiated Spurious Emissions according to RSS-139; 47 CFR Part 27 Subpart C**


Project Number: G0M-2303-1961  
 Applicant: Navico Inc.  
 Model Description: Marine and recreational IoT Gateway and vessel management system  
 Model: Connect 1  
 Test Sample ID: 44396  
 Test Site: Eurofins Product Service GmbH  
 Operator: A.Ibraimov  
 Measurement software: RadiMation, version 2020.1.8  
 Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
 Antenna: Schwarzbeck BBHA 9120D  
 Measurement distance: 3 m  
 Mode: Tx; LTE Cat M1, FDD4, 3 MHz, CH\_19965, RB 1#0  
 Test Date: 2023-08-17  
 Note: Marker 1 is uplink



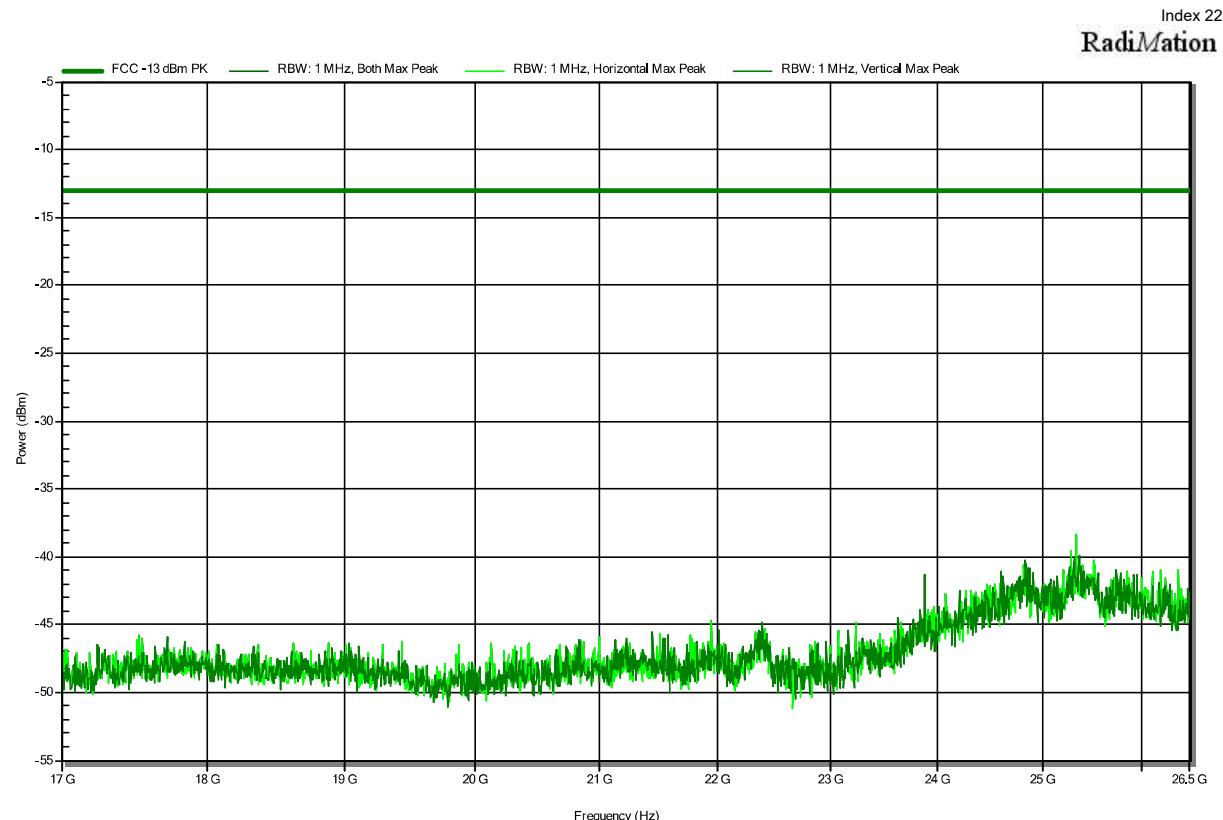
| Frequency | Peak      | Peak Limit | Peak Difference | Peak Status | Polarization |
|-----------|-----------|------------|-----------------|-------------|--------------|
| 1.71 GHz  | -24.1 dBm | ---        | ---             | Uplink      | Vertical     |
| 3 GHz     | -50.8 dBm | -13 dBm    | -37.79 dB       | Pass        | Vertical     |
| 4.5 GHz   | -47.1 dBm | -13 dBm    | -34.12 dB       | Pass        | Vertical     |

**Radiated Spurious Emissions according to RSS-133; 47 CFR Part 24 Subpart E**


Project Number: G0M-2303-1961  
Applicant: Navico Inc.  
Model Description: Marine and recreational IoT Gateway and vessel management system  
Model: Connect 1  
Test Sample ID: 44396  
Test Site: Eurofins Product Service GmbH  
Operator: A.Ibraimov  
Measurement software: RadiMation, version 2020.1.8  
Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
Antenna: Schwarzbeck VULB 9168  
Measurement distance: 3 m  
Mode: Tx; NB-IoT, FDD2, 15kHz, tone 3, offset 3, CH\_19198  
Test Date: 2023-08-21  
Note:

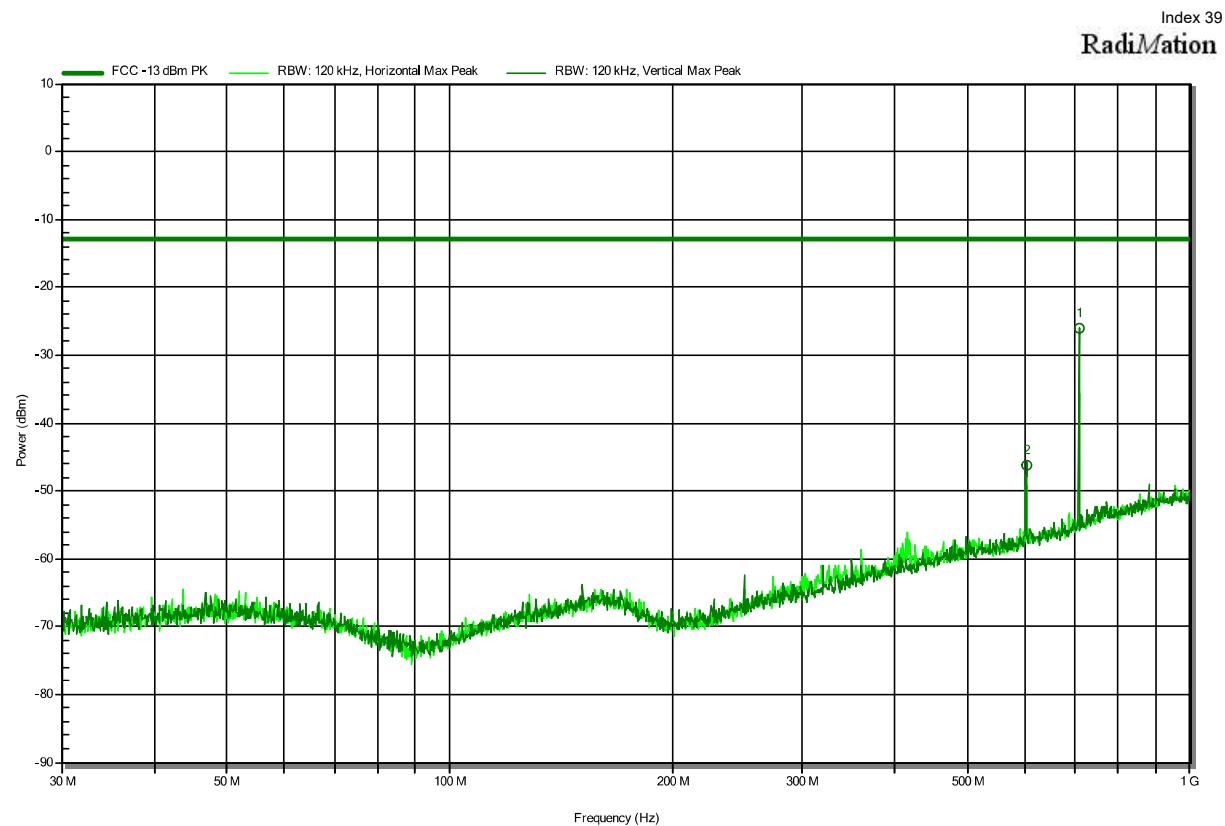


|                          |                   |                       |                              |                     |                          |
|--------------------------|-------------------|-----------------------|------------------------------|---------------------|--------------------------|
| Frequency<br>600.142 MHz | Peak<br>-48.5 dBm | Peak Limit<br>-13 dBm | Peak Difference<br>-35.53 dB | Peak Status<br>Pass | Polarization<br>Vertical |
|--------------------------|-------------------|-----------------------|------------------------------|---------------------|--------------------------|


**Radiated Spurious Emissions according to RSS-133; 47 CFR Part 24 Subpart E**

Project Number: G0M-2303-1961  
 Applicant: Navico Inc.  
 Model Description: Marine and recreational IoT Gateway and vessel management system  
 Model: Connect 1  
 Test Sample ID: 44396  
 Test Site: Eurofins Product Service GmbH  
 Operator: A.Ibraimov  
 Measurement software: RadiMation, version 2020.1.8  
 Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
 Antenna: Schwarzbeck BBHA 9120D  
 Measurement distance: 3 m  
 Mode: Tx; NB-IoT, FDD2, 15kHz, tone 3, offset 3, CH\_19198  
 Test Date: 2023-08-17  
 Note: Marker 1 Uplink

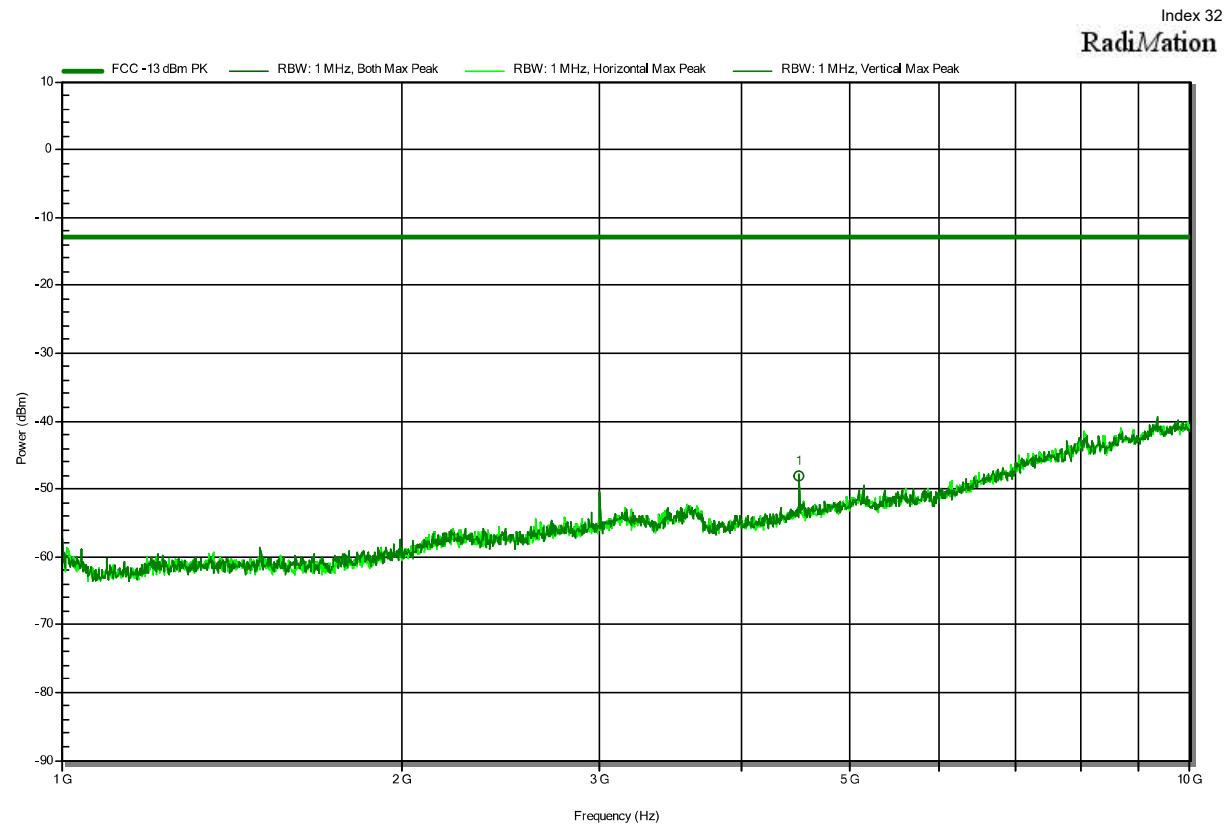



**Radiated Spurious Emissions according to RSS-133; 47 CFR Part 24 Subpart E**

Project Number: G0M-2303-1961  
Applicant: Navico Inc.  
Model Description: Marine and recreational IoT Gateway and vessel management system  
Model: Connect 1  
Test Sample ID: 44396  
Test Site: Eurofins Product Service GmbH  
Operator: A.Ibraimov  
Measurement software: RadiMation, version 2020.1.8  
Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
Antenna: Amplifier Research AT4560  
Measurement distance: 3 m  
Mode: Tx; NB-IoT, FDD2, 15kHz, tone 3, offset 3, CH\_19198  
Test Date: 2023-08-17  
Note:

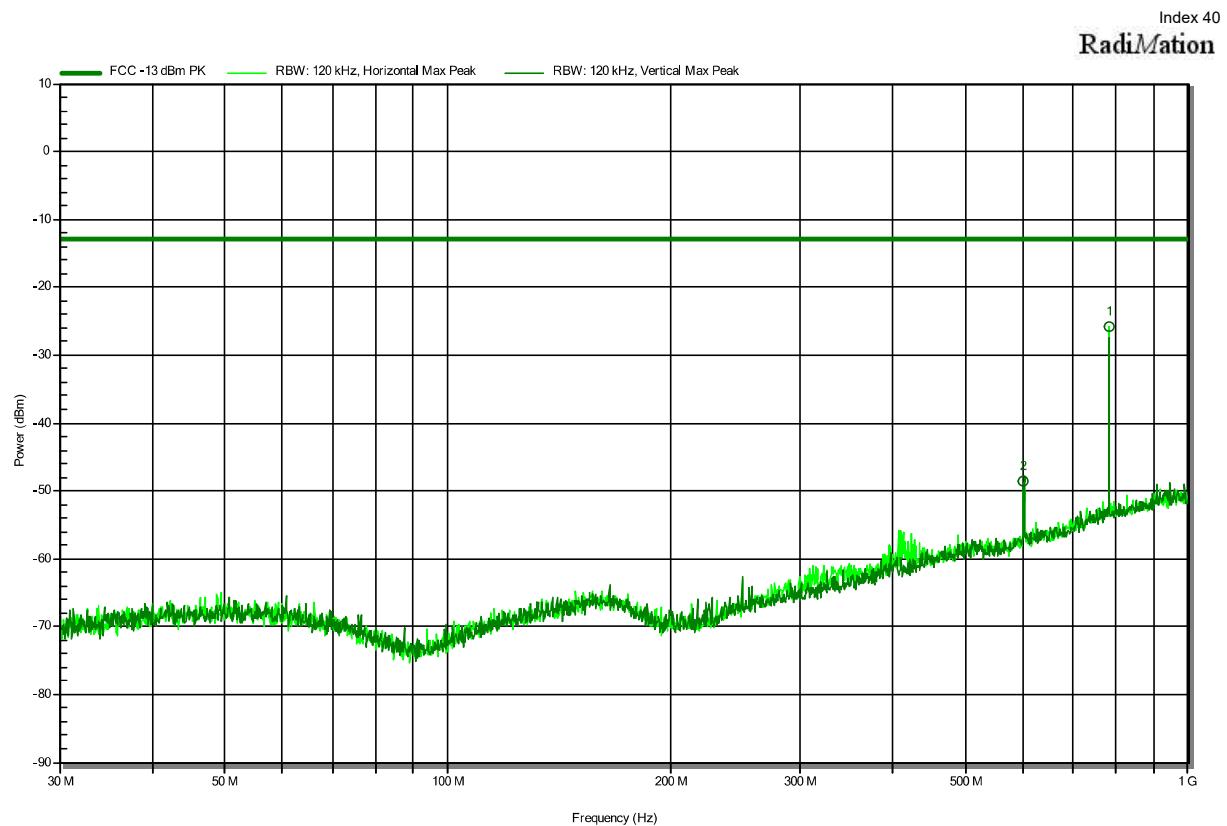


**Radiated Spurious Emissions according to RSS-130; 47 CFR Part 27 Subpart C**


Project Number: G0M-2303-1961  
 Applicant: Navico Inc.  
 Model Description: Marine and recreational IoT Gateway and vessel management system  
 Model: Connect 1  
 Test Sample ID: 44396  
 Test Site: Eurofins Product Service GmbH  
 Operator: A.Ibraimov  
 Measurement software: RadiMation, version 2020.1.8  
 Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
 Antenna: Schwarzbeck VULB 9168  
 Measurement distance: 3 m  
 Mode: Tx; NB-IoT, FDD12, 15kHz, tone 3, offset 3, CH\_23095  
 Test Date: 2023-08-21  
 Note: Marker 1 = Uplink



| Frequency   | Peak      | Peak Limit | Peak Difference | Peak Status | Polarization |
|-------------|-----------|------------|-----------------|-------------|--------------|
| 600.772 MHz | -46.1 dBm | -13 dBm    | -33.11 dB       | Pass        | Vertical     |
| 707.472 MHz | -25.9 dBm | ---        | ---             | Uplink      | Vertical     |


**Radiated Spurious Emissions according to RSS-130; 47 CFR Part 27 Subpart C**

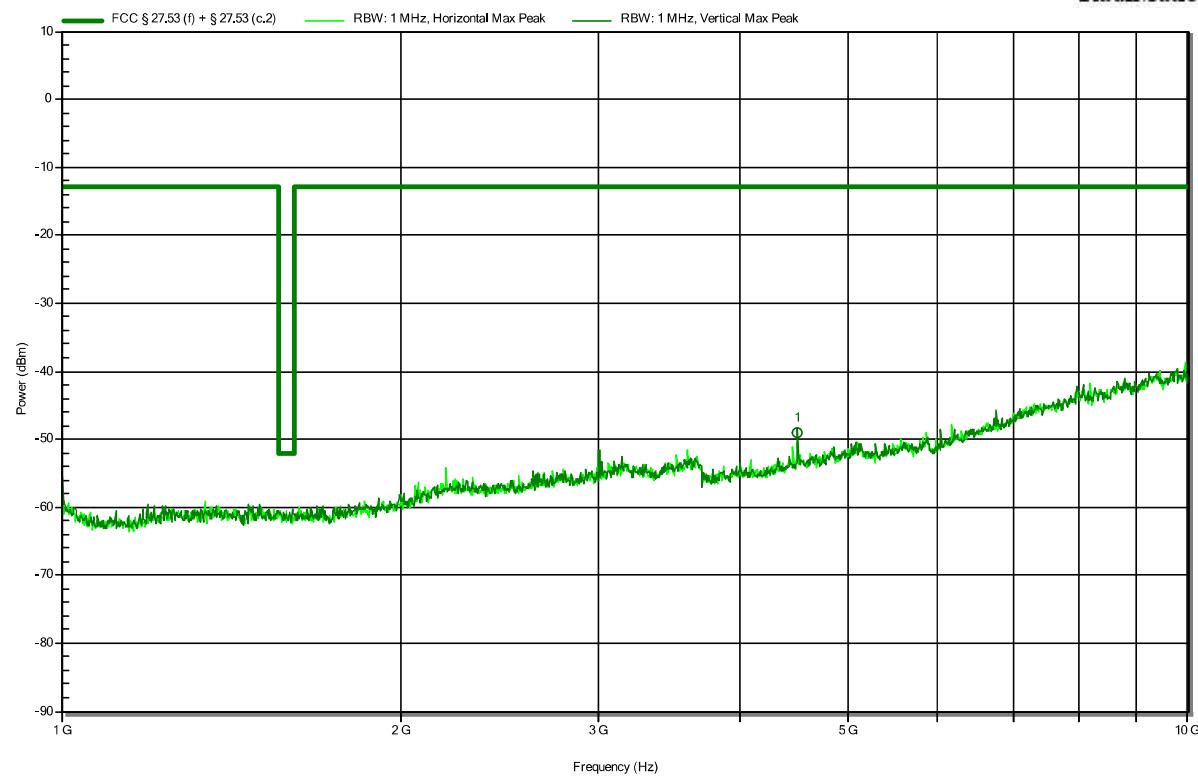
Project Number: G0M-2303-1961  
Applicant: Navico Inc.  
Model Description: Marine and recreational IoT Gateway and vessel management system  
Model: Connect 1  
Test Sample ID: 44396  
Test Site: Eurofins Product Service GmbH  
Operator: A.Ibraimov  
Measurement software: RadiMation, version 2020.1.8  
Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
Antenna: Schwarzbeck BBHA 9120D  
Measurement distance: 3 m  
Mode: Tx; NB-IoT, FDD12, 15kHz, tone 3, offset 3, CH\_23095  
Test Date: 2023-08-17  
Note:



**Radiated Spurious Emissions according to RSS-130; 47 CFR Part 27 Subpart C**

Project Number: G0M-2303-1961  
 Applicant: Navico Inc.  
 Model Description: Marine and recreational IoT Gateway and vessel management system  
 Model: Connect 1  
 Test Sample ID: 44396  
 Test Site: Eurofins Product Service GmbH  
 Operator: A.Ibraimov  
 Measurement software: RadiMation, version 2020.1.8  
 Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
 Antenna: Schwarzbeck VULB 9168  
 Measurement distance: 3 m  
 Mode: Tx; NB-IoT, FDD13, 15kHz, tone 1, offset 0, CH\_23230  
 Test Date: 2023-08-21  
 Note: Marker 1 = Uplink



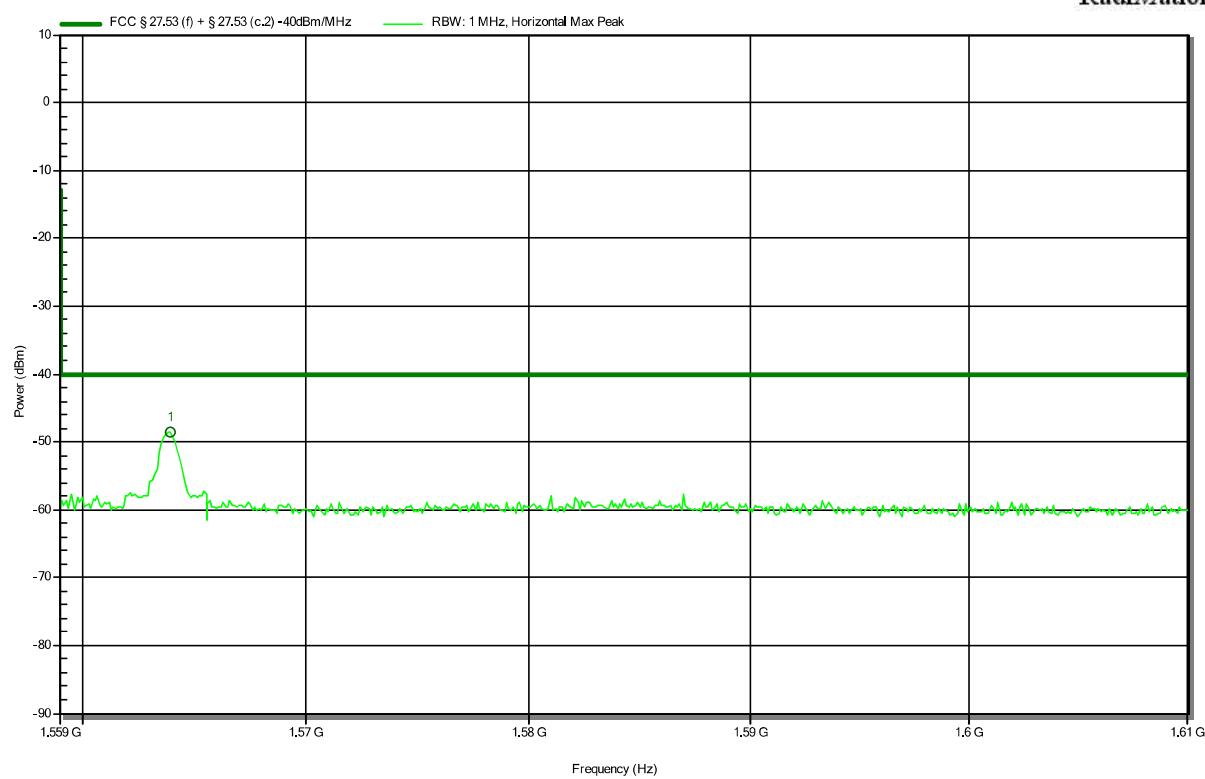

| Frequency   | Peak      | Peak Limit | Peak Difference | Peak Status | Polarization |
|-------------|-----------|------------|-----------------|-------------|--------------|
| 600.093 MHz | -48.7 dBm | -13 dBm    | -35.66 dB       | Pass        | Vertical     |
| 781.92 MHz  | -25.7 dBm | ---        | ---             | Uplink      | Horizontal   |

## Radiated Spurious Emissions according to RSS-130; 47 CFR Part 27 Subpart C

Project Number: G0M-2303-1961  
 Applicant: Navico Inc.  
 Model Description: Marine and recreational IoT Gateway and vessel management system  
 Model: Connect 1  
 Test Sample ID: 44396  
 Test Site: Eurofins Product Service GmbH  
 Operator: A.Ibraimov  
 Measurement software: RadiMation, version 2020.1.8  
 Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
 Antenna: Schwarzbeck BBHA 9120D  
 Measurement distance: 3 m  
 Mode: Tx; NB-IoT, FDD13, 15kHz, tone 1, offset 0, CH\_23230  
 Test Date: 2023-08-17  
 Note:

Index 33

### RadiMation

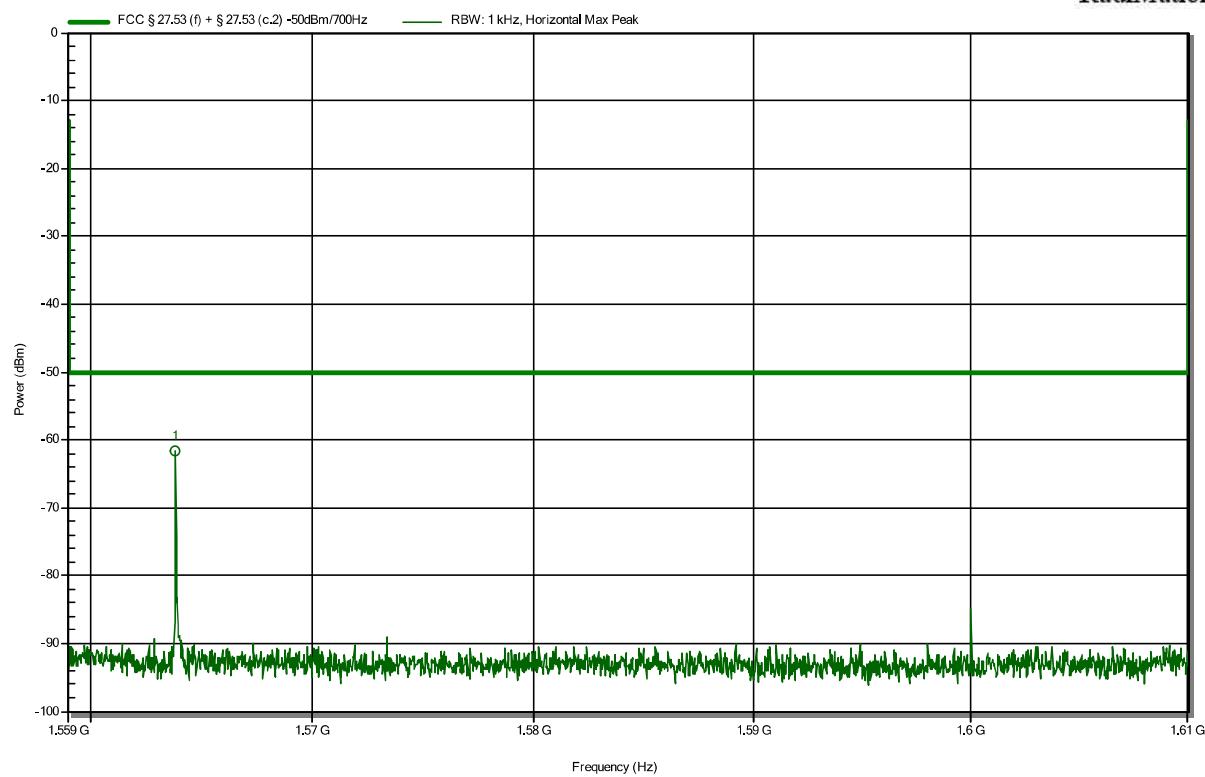



|                      |                   |                       |                              |                     |                          |
|----------------------|-------------------|-----------------------|------------------------------|---------------------|--------------------------|
| Frequency<br>4.5 GHz | Peak<br>-49.1 dBm | Peak Limit<br>-13 dBm | Peak Difference<br>-36.11 dB | Peak Status<br>Pass | Polarization<br>Vertical |
|----------------------|-------------------|-----------------------|------------------------------|---------------------|--------------------------|

**Radiated Spurious Emissions according to RSS-130; 47 CFR Part 27 Subpart C**

Project Number: G0M-2303-1961  
 Applicant: Navico Inc.  
 Model Description: Marine and recreational IoT Gateway and vessel management system  
 Model: Connect 1  
 Test Sample ID: 44396  
 Test Site: Eurofins Product Service GmbH  
 Operator: A.Ibraimov  
 Measurement software: RadiMation, version 2020.1.8  
 Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
 Antenna: Schwarzbeck BBHA 9120D  
 Measurement distance: 3 m  
 Mode: Tx; NB-IoT, FDD13, 15kHz, tone 1, offset 0, CH\_23230  
 Test Date: 2023-08-17  
 Note: With antenna

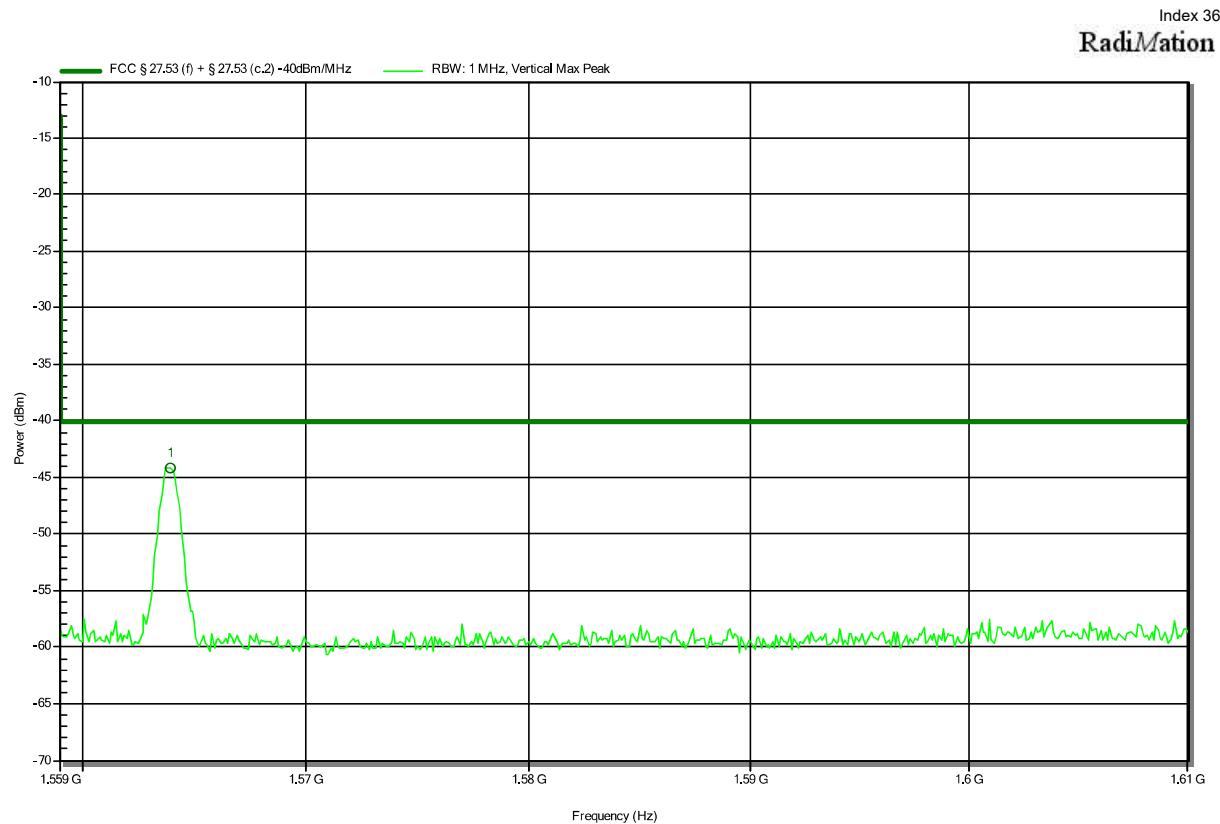
Index 34


**RadiMation**


| Frequency | Peak      | Peak Limit | Peak Difference | Peak Status | Polarization |
|-----------|-----------|------------|-----------------|-------------|--------------|
| 1.564 GHz | -48.6 dBm | -40 dBm    | -8.58 dB        | Pass        | Horizontal   |

**Radiated Spurious Emissions according to RSS-130; 47 CFR Part 27 Subpart C**

Project Number: G0M-2303-1961  
Applicant: Navico Inc.  
Model Description: Marine and recreational IoT Gateway and vessel management system  
Model: Connect 1  
Test Sample ID: 44396  
Test Site: Eurofins Product Service GmbH  
Operator: A.Ibraimov  
Measurement software: RadiMation, version 2020.1.8  
Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
Antenna: Schwarzbeck BBHA 9120D  
Measurement distance: 3 m  
Mode: Tx; NB-IoT, FDD13, 15kHz, tone 1, offset 0, CH\_23230  
Test Date: 2023-08-17  
Note: With antenna

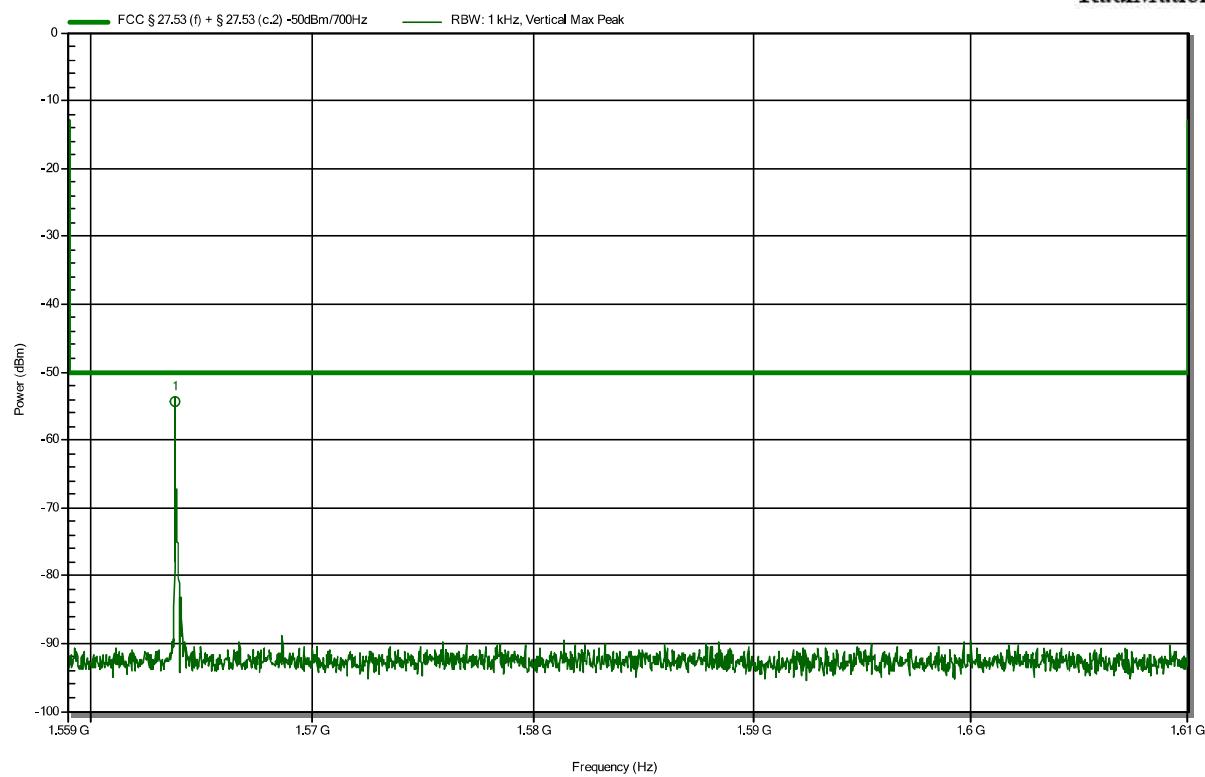

Index 35

**RadiMation**

Frequency  
1.564 GHz      Peak  
-61.6 dBm      Peak Limit  
-50 dBm      Peak Difference  
-11.58 dB      Peak Status  
Pass      Polarization  
Horizontal

**Radiated Spurious Emissions according to RSS-130; 47 CFR Part 27 Subpart C**

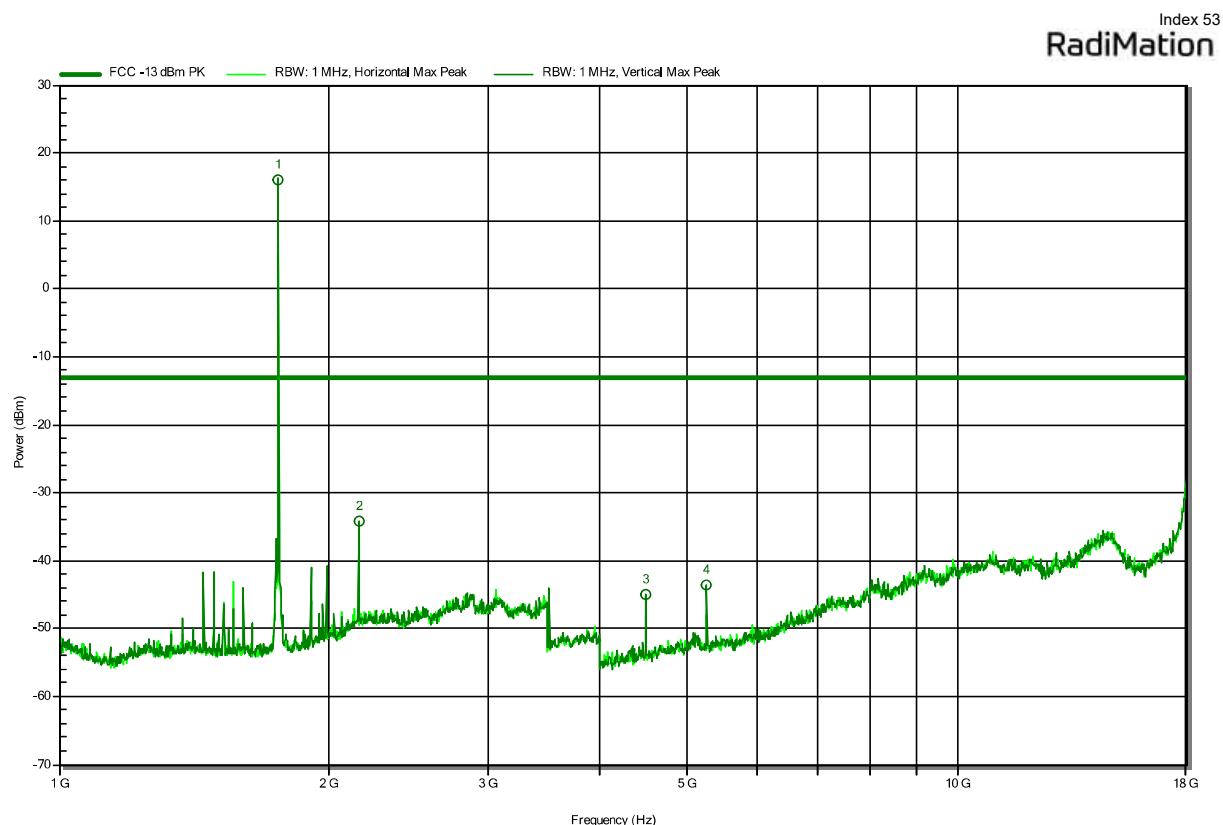
Project Number: G0M-2303-1961  
Applicant: Navico Inc.  
Model Description: Marine and recreational IoT Gateway and vessel management system  
Model: Connect 1  
Test Sample ID: 44396  
Test Site: Eurofins Product Service GmbH  
Operator: A.Ibraimov  
Measurement software: RadiMation, version 2020.1.8  
Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
Antenna: Schwarzbeck BBHA 9120D  
Measurement distance: 3 m  
Mode: Tx; NB-IoT, FDD13, 15kHz, tone 1, offset 0, CH\_23230  
Test Date: 2023-08-17  
Note: With antenna




|                        |                   |                       |                             |                     |                          |
|------------------------|-------------------|-----------------------|-----------------------------|---------------------|--------------------------|
| Frequency<br>1.564 GHz | Peak<br>-44.1 dBm | Peak Limit<br>-40 dBm | Peak Difference<br>-4.11 dB | Peak Status<br>Pass | Polarization<br>Vertical |
|------------------------|-------------------|-----------------------|-----------------------------|---------------------|--------------------------|

**Radiated Spurious Emissions according to RSS-130; 47 CFR Part 27 Subpart C**

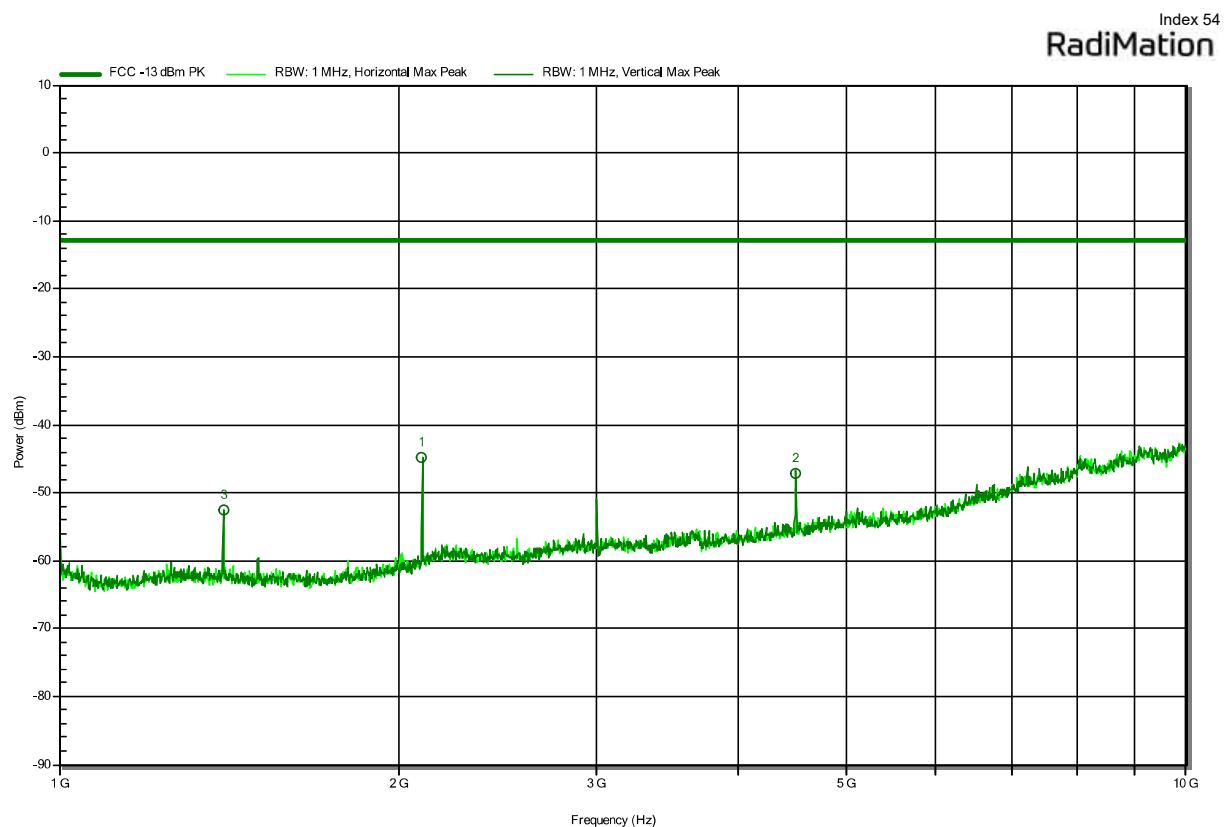
Project Number: G0M-2303-1961  
Applicant: Navico Inc.  
Model Description: Marine and recreational IoT Gateway and vessel management system  
Model: Connect 1  
Test Sample ID: 44396  
Test Site: Eurofins Product Service GmbH  
Operator: A.Ibraimov  
Measurement software: RadiMation, version 2020.1.8  
Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
Antenna: Schwarzbeck BBHA 9120D  
Measurement distance: 3 m  
Mode: Tx; NB-IoT, FDD13, 15kHz, tone 1, offset 0, CH\_23230  
Test Date: 2023-08-17  
Note: With antenna


Index 37

**RadiMation**

| Frequency | Peak      | Peak Limit | Peak Difference | Peak Status | Polarization |
|-----------|-----------|------------|-----------------|-------------|--------------|
| 1.564 GHz | -54.3 dBm | -50 dBm    | -4.28 dB        | Pass        | Vertical     |

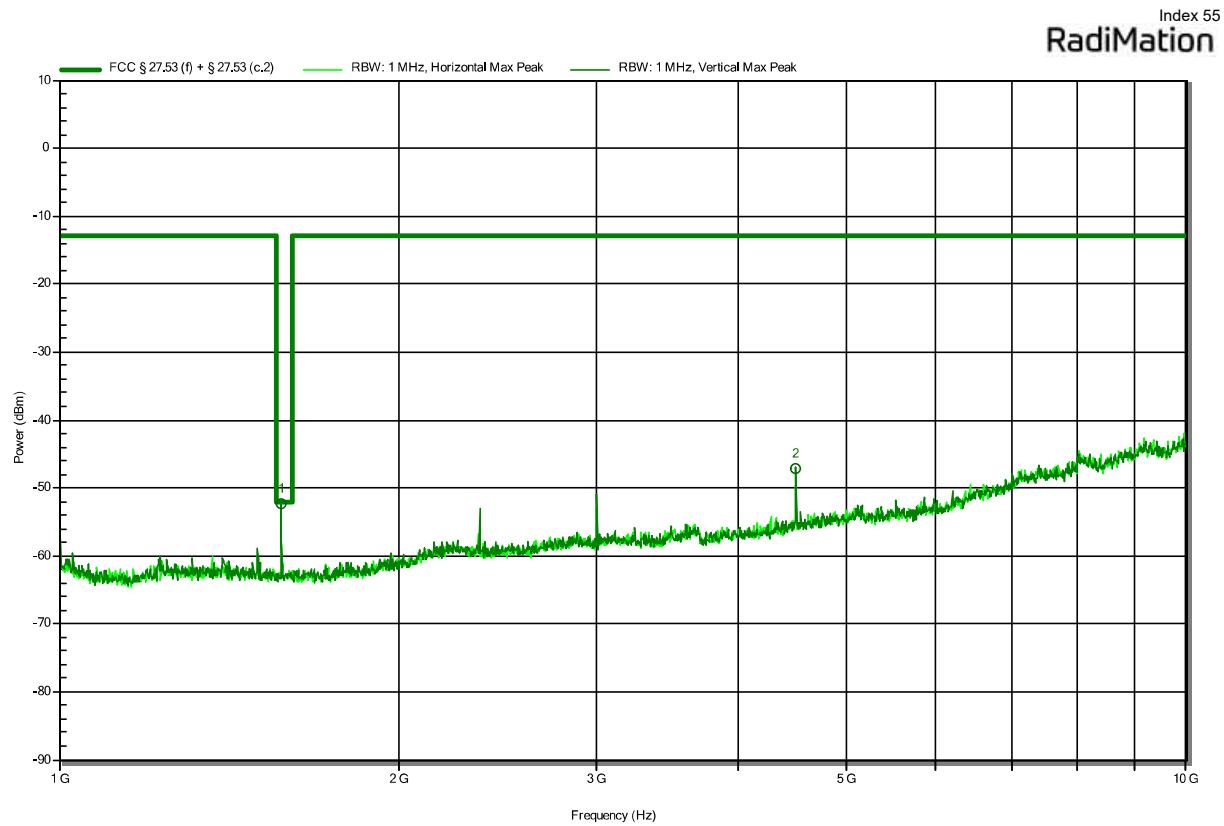
## Radiated Spurious Emissions according to 47 CFR Part 27 Subpart C


Project Number: G0M-2303-1961  
 Applicant: Fell Technology AS  
 Model Description: Marine and recreational IoT Gateway and vessel management system  
 Model: Europa Gateway  
 Test Sample ID: 44396  
 Test Site: Eurofins Product Service GmbH  
 Operator: Mr. Ibraimov  
 Measurement software: RadiMation, version 2024.1.6  
 Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
 Antenna: Schwarzbeck BBHA 9120D  
 Measurement distance: 3 m  
 Mode: Tx; NB-IoT\_FDD 4\_CH 20398\_15 kHz\_tone 1\_offset 0  
 Test Date: 2025-01-31



| Peak Number | Frequency (MHz) | Peak (dBm) | Peak Limit (dBm) | Peak Difference (dB) | Peak Status | Polarization |
|-------------|-----------------|------------|------------------|----------------------|-------------|--------------|
| 1           | 1754.75         | 16.1       | ---              | ---                  | Uplink      | Vertical     |
| 2           | 2154.833        | -34.3      | -13              | -21.32               | Pass        | Vertical     |
| 3           | 4499.8          | -45        | -13              | -31.98               | Pass        | Vertical     |
| 4           | 5264.2          | -43.6      | -13              | -30.64               | Pass        | Vertical     |

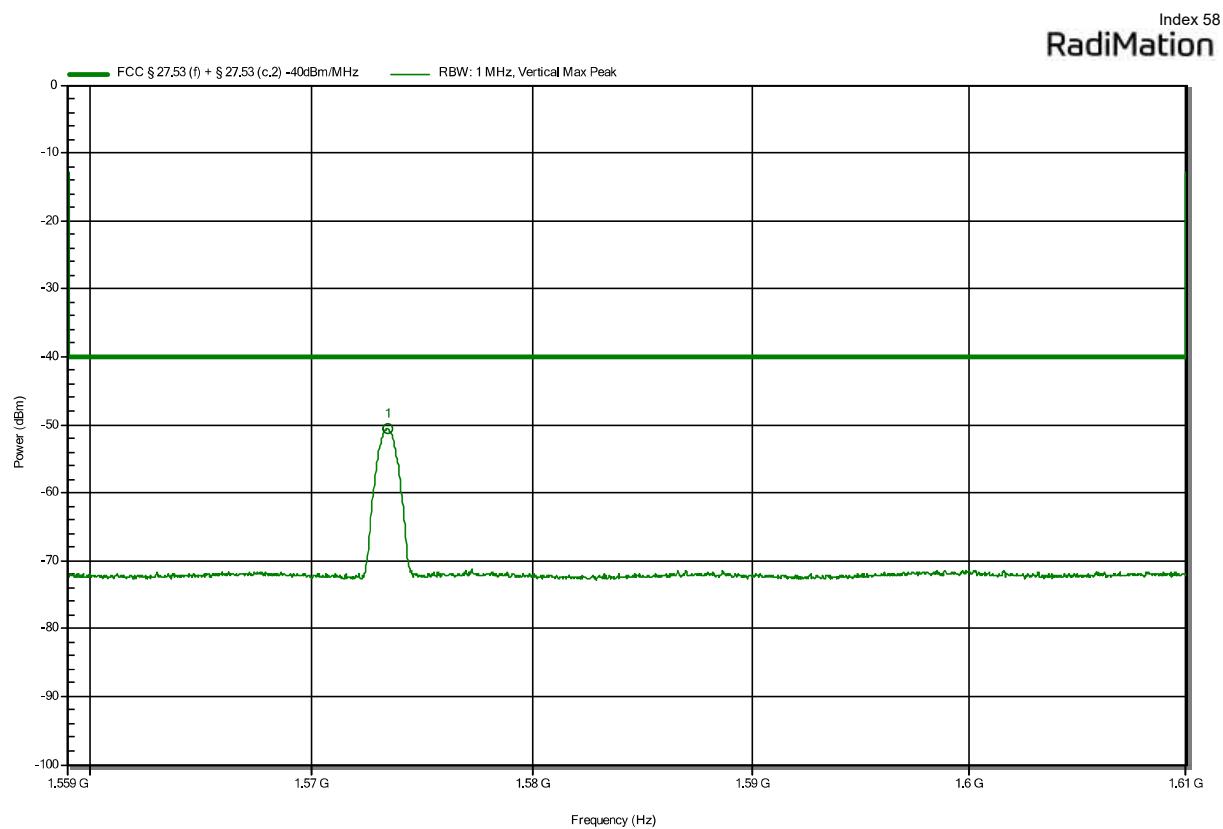
## Radiated Spurious Emissions according to 47 CFR Part 27 Subpart C


Project Number: G0M-2303-1961  
 Applicant: Fell Technology AS  
 Model Description: Marine and recreational IoT Gateway and vessel management system  
 Model: Europa Gateway  
 Test Sample ID: 44396  
 Test Site: Eurofins Product Service GmbH  
 Operator: Mr. Ibraimov  
 Measurement software: RadiMation, version 2024.1.6  
 Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
 Antenna: Schwarzbeck BBHA 9120D  
 Measurement distance: 3 m  
 Mode: Tx; NB-IoT\_FDD 12\_CH 23012\_3.75 kHz\_tone 1\_offset 0  
 Test Date: 2025-01-31



| Peak Number | Frequency (MHz) | Peak (dBm) | Peak Limit (dBm) | Peak Difference (dB) | Peak Status | Polarization |
|-------------|-----------------|------------|------------------|----------------------|-------------|--------------|
| 1           | 2097.37         | -44.8      | -13              | -31.81               | Pass        | Vertical     |
| 2           | 4499.89         | -47.2      | -13              | -34.23               | Pass        | Vertical     |
| 3           | 1398.16         | -52.5      | -13              | -39.54               | Pass        | Vertical     |

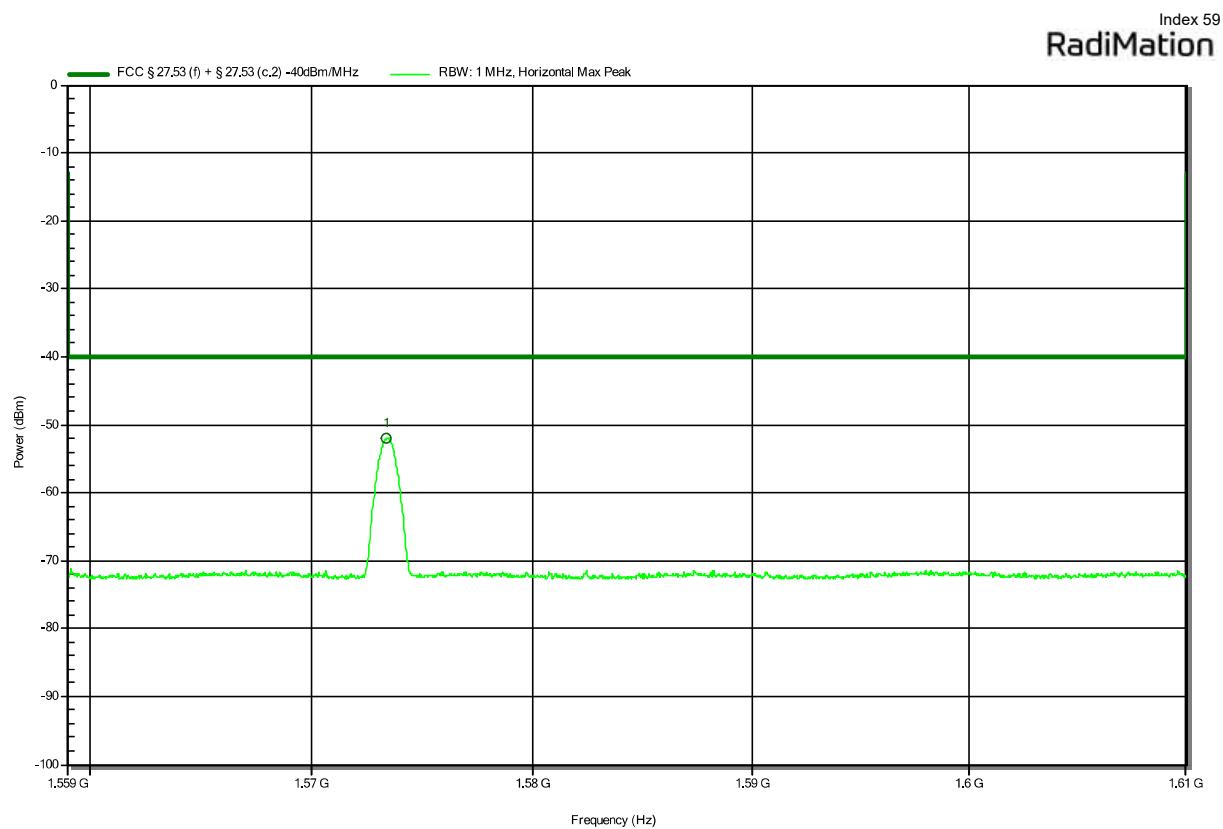
## Radiated Spurious Emissions according to 47 CFR Part 27 Subpart C


Project Number: G0M-2303-1961  
 Applicant: Fell Technology AS  
 Model Description: Marine and recreational IoT Gateway and vessel management system  
 Model: Europa Gateway  
 Test Sample ID: 44396  
 Test Site: Eurofins Product Service GmbH  
 Operator: Mr. Ibraimov  
 Measurement software: RadiMation, version 2024.1.6  
 Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
 Antenna: Schwarzbeck BBHA 9120D  
 Measurement distance: 3 m  
 Mode: Tx; NB-IoT\_FDD 13\_CH 23278\_3.75 kHz\_tone 1\_offset 0  
 Test Date: 2025-01-31  
 Note: 1559 - 1610 MHz frequency range is measured separately



| Peak Number | Frequency (MHz) | Peak (dBm) | Peak Limit (dBm) | Peak Difference (dB) | Peak Status       | Polarization |
|-------------|-----------------|------------|------------------|----------------------|-------------------|--------------|
| 1           | 1573.48         | -52.2      | --               | --                   | Separately tested | Vertical     |
| 2           | 4499.89         | -47.1      | -13              | -34.14               | Pass              | Vertical     |

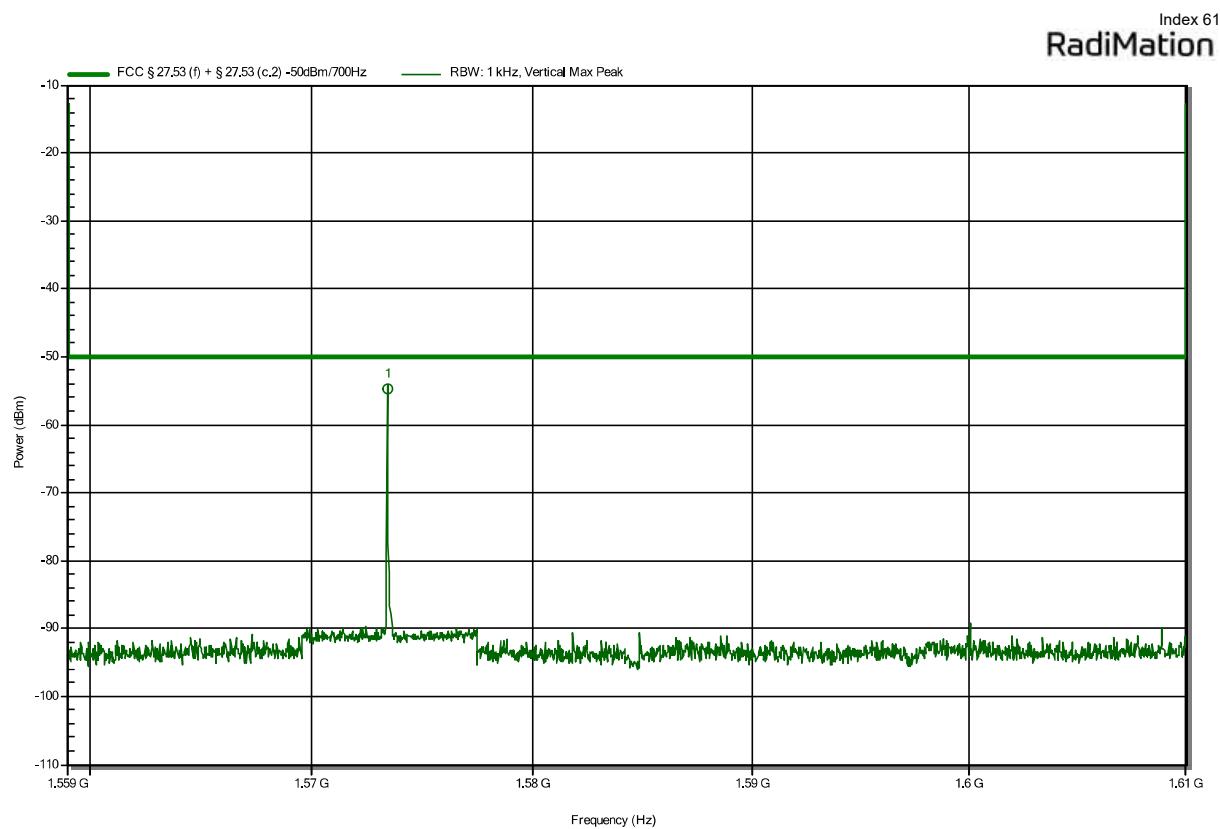
## Radiated Spurious Emissions according to 47 CFR Part 27 Subpart C


Project Number: G0M-2303-1961  
 Applicant: Fell Technology AS  
 Model Description: Marine and recreational IoT Gateway and vessel management system  
 Model: Europa Gateway  
 Test Sample ID: 44396  
 Test Site: Eurofins Product Service GmbH  
 Operator: Mr. Ibraimov  
 Measurement software: RadiMation, version 2024.1.6  
 Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
 Antenna: Schwarzbeck BBHA 9120D  
 Measurement distance: 3 m  
 Mode: Tx; NB-IoT\_FDD 13\_CH 23278\_3.75 kHz\_tone 1\_offset 0  
 Test Date: 2025-01-31



| Peak Number | Frequency (MHz) | Peak (dBm) | Peak Limit (dBm) | Peak Difference (dB) | Peak Status | Polarization |
|-------------|-----------------|------------|------------------|----------------------|-------------|--------------|
| 1           | 1573.447        | -50.6      | -40              | -10.62               | Pass        | Vertical     |

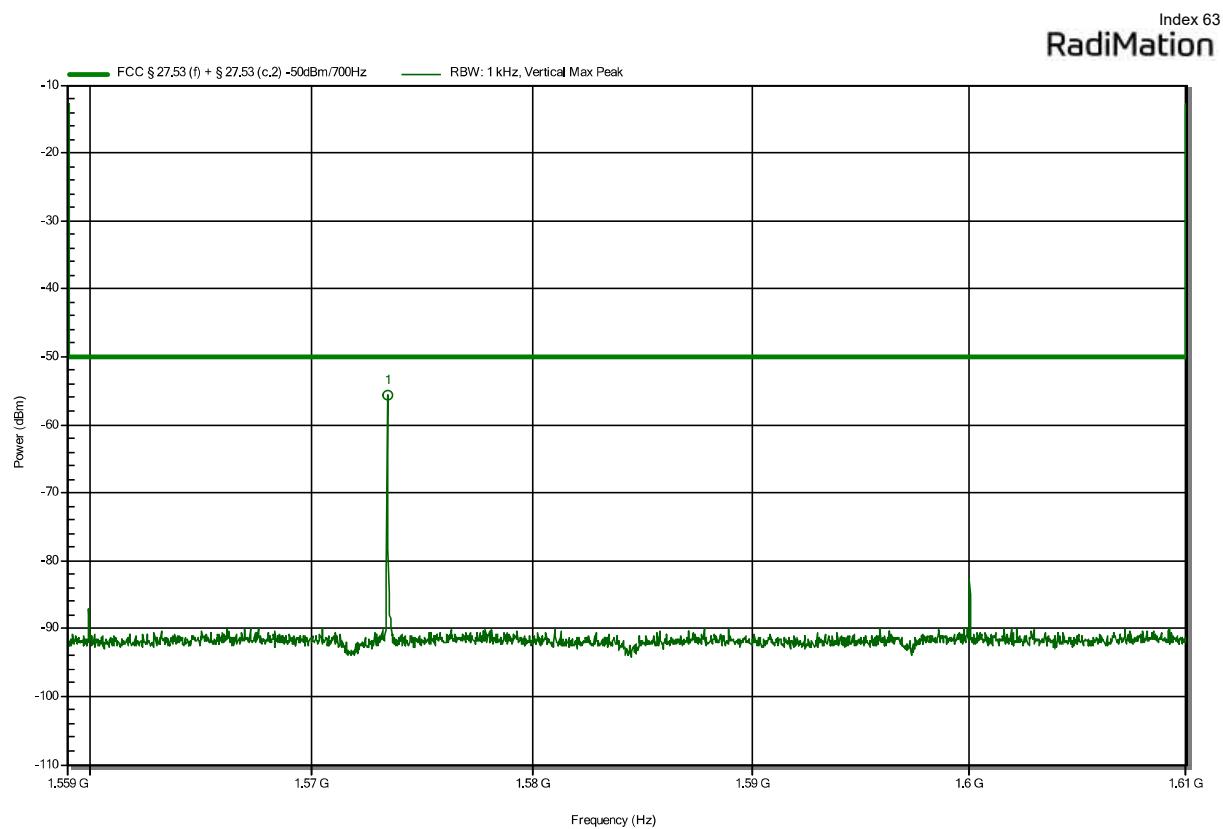
**Radiated Spurious Emissions according to 47 CFR Part 27 Subpart C**


Project Number: G0M-2303-1961  
Applicant: Fell Technology AS  
Model Description: Marine and recreational IoT Gateway and vessel management system  
Model: Europa Gateway  
Test Sample ID: 44396  
Test Site: Eurofins Product Service GmbH  
Operator: Mr. Ibraimov  
Measurement software: RadiMation, version 2024.1.6  
Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
Antenna: Schwarzbeck BBHA 9120D  
Measurement distance: 3 m  
Mode: Tx; NB-IoT\_FDD 13\_CH 23278\_3.75 kHz\_tone 1\_offset 0  
Test Date: 2025-01-31



| Peak Number | Frequency (MHz) | Peak (dBm) | Peak Limit (dBm) | Peak Difference (dB) | Peak Status | Polarization |
|-------------|-----------------|------------|------------------|----------------------|-------------|--------------|
| 1           | 1573.387        | -52        | -40              | -12                  | Pass        | Horizontal   |

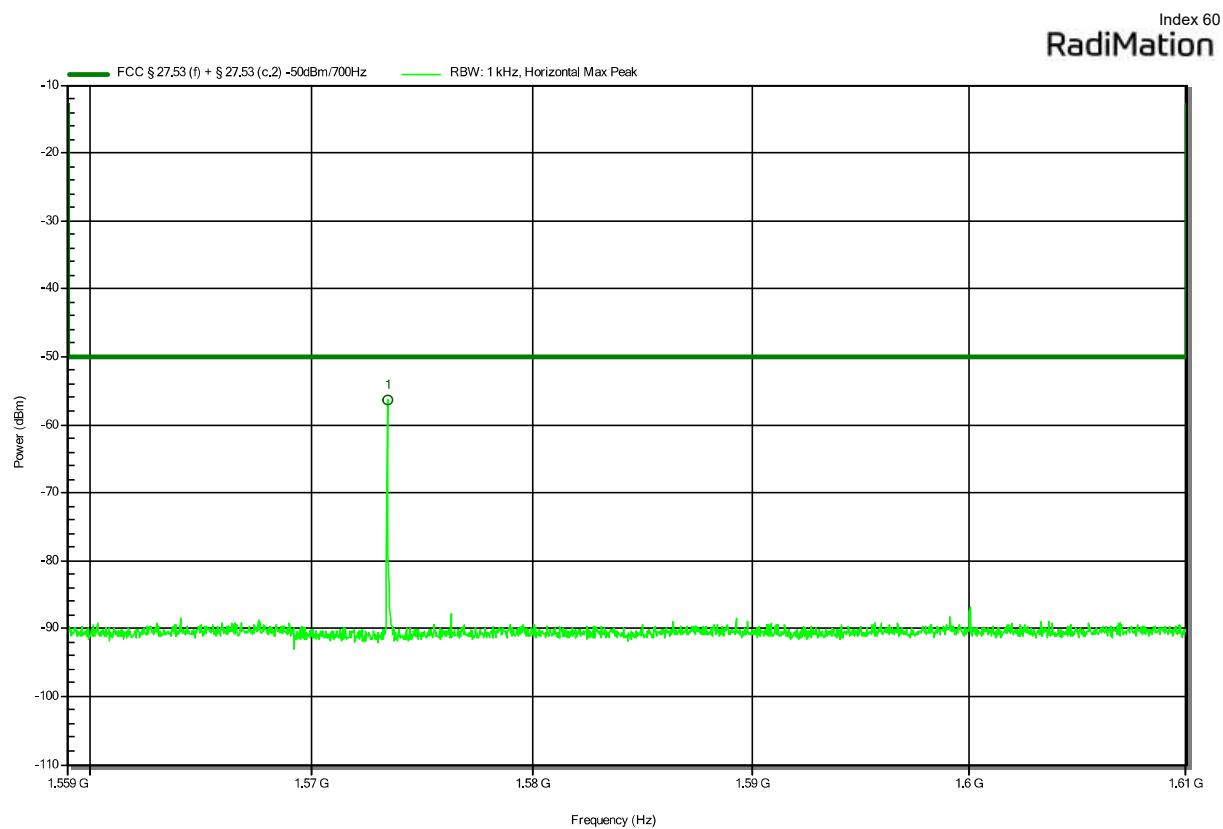
**Radiated Spurious Emissions according to 47 CFR Part 27 Subpart C**


Project Number: G0M-2303-1961  
Applicant: Fell Technology AS  
Model Description: Marine and recreational IoT Gateway and vessel management system  
Model: Europa Gateway  
Test Sample ID: 44396  
Test Site: Eurofins Product Service GmbH  
Operator: Mr. Ibraimov  
Measurement software: RadiMation, version 2024.1.6  
Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
Antenna: Schwarzbeck BBHA 9120D  
Measurement distance: 3 m  
Mode: Tx; NB-IoT\_FDD 13\_CH 23278\_3.75 kHz\_tone 1\_offset 0  
Test Date: 2025-01-31



| Peak Number | Frequency (MHz) | Peak (dBm) | Peak Limit (dBm) | Peak Difference (dB) | Peak Status | Polarization |
|-------------|-----------------|------------|------------------|----------------------|-------------|--------------|
| 1           | 1573.425        | -54.7      | -50              | -4.68                | Pass        | Vertical     |

**Radiated Spurious Emissions according to 47 CFR Part 27 Subpart C**

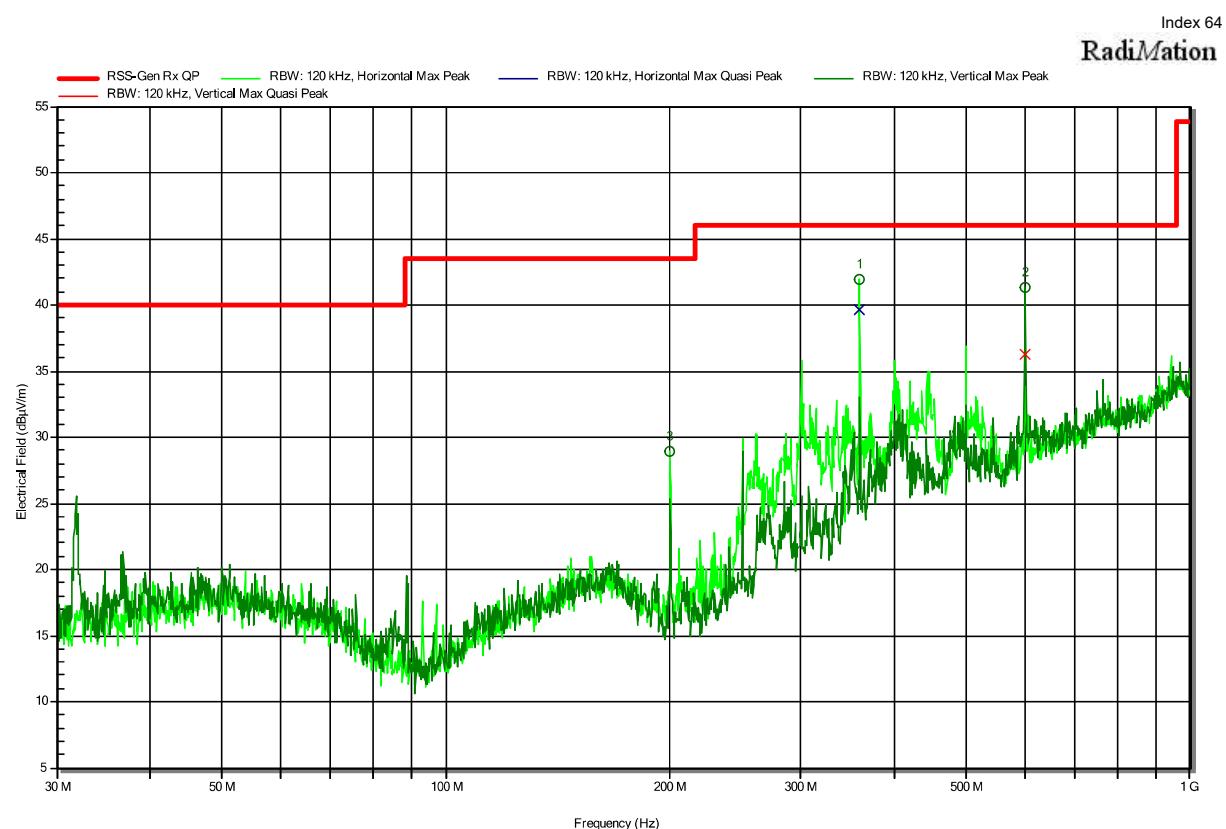

Project Number: G0M-2303-1961  
Applicant: Fell Technology AS  
Model Description: Marine and recreational IoT Gateway and vessel management system  
Model: Europa Gateway  
Test Sample ID: 44396  
Test Site: Eurofins Product Service GmbH  
Operator: Mr. Ibraimov  
Measurement software: RadiMation, version 2024.1.6  
Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
Antenna: Schwarzbeck BBHA 9120D  
Measurement distance: 3 m  
Mode: Tx; NB-IoT\_FDD 13\_CH 23278\_3.75 kHz\_tone 1\_offset 0  
Test Date: 2025-01-31



| Peak Number | Frequency (MHz) | Peak (dBm) | Peak Limit (dBm) | Peak Difference (dB) | Peak Status | Polarization |
|-------------|-----------------|------------|------------------|----------------------|-------------|--------------|
| 1           | 1573.425        | -55.7      | -50              | -5.75                | Pass        | Vertical     |

**Radiated Spurious Emissions according to 47 CFR Part 27 Subpart C**

Project Number: G0M-2303-1961  
Applicant: Fell Technology AS  
Model Description: Marine and recreational IoT Gateway and vessel management system  
Model: Europa Gateway  
Test Sample ID: 44396  
Test Site: Eurofins Product Service GmbH  
Operator: Mr. Ibraimov  
Measurement software: RadiMation, version 2024.1.6  
Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
Antenna: Schwarzbeck BBHA 9120D  
Measurement distance: 3 m  
Mode: Tx; NB-IoT\_FDD 13\_CH 23278\_3.75 kHz\_tone 1\_offset 0  
Test Date: 2025-01-31



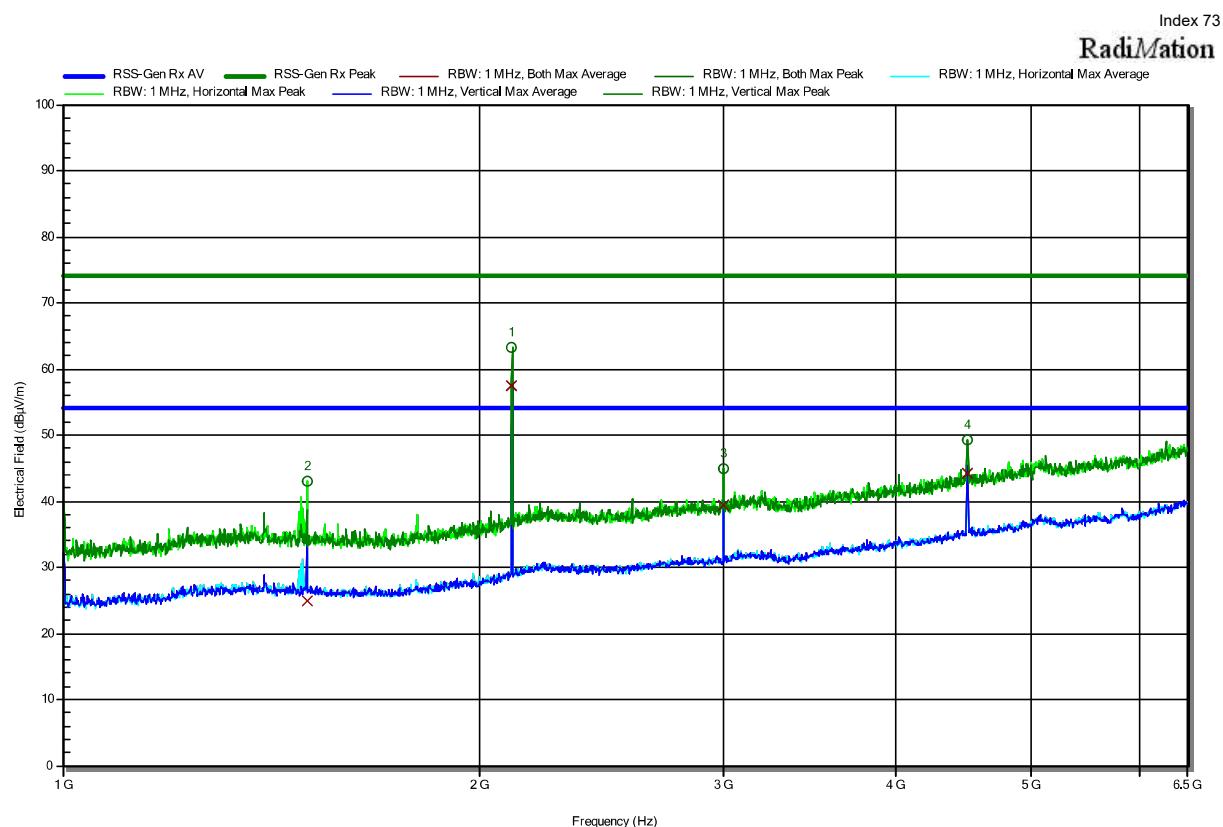

| Peak Number | Frequency (MHz) | Peak (dBm) | Peak Limit (dBm) | Peak Difference (dB) | Peak Status | Polarization |
|-------------|-----------------|------------|------------------|----------------------|-------------|--------------|
| 1           | 1573.425        | -56.3      | -50              | -6.32                | Pass        | Horizontal   |

## ANNEX B Receiver radiated emissions

### Radiated Spurious Emissions according to ISED RSS-139, Issue 4+A1

Project Number: G0M-2303-1961  
 Applicant: Navico Inc.  
 Model Description: Marine and recreational IoT Gateway and vessel management system  
 Model: Connect 1  
 Test Sample ID: 44396  
 Test Site: Eurofins Product Service GmbH  
 Operator: A.Ibraimov  
 Measurement software: RadiMation, version 2020.1.8  
 Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
 Antenna: Schwarzbeck VULB 9168  
 Measurement distance: 3 m  
 Mode: Rx; LTE Cat M1, FDD4, 3 MHz, CH\_1965, RX  
 Test Date: 2023-09-19  
 Note:




| Frequency    | Peak        | Peak Limit       | Peak Difference       | Peak Status       | Polarization |
|--------------|-------------|------------------|-----------------------|-------------------|--------------|
| 199.7742 MHz | 28.9 dBµV/m | 43.5 dBµV/m      | -14.58 dB             | Pass              | Horizontal   |
| Frequency    | Quasi-Peak  | Quasi-Peak Limit | Quasi-Peak Difference | Quasi-Peak Status | Polarization |
| 359.9906 MHz | 39.7 dBµV/m | 46 dBµV/m        | -6.31 dB              | Pass              | Horizontal   |
| 600.7879 MHz | 36.3 dBµV/m | 46 dBµV/m        | -9.69 dB              | Pass              | Vertical     |

Test Report No.: G0M-2303-1961-TFCMOCORSE-V07

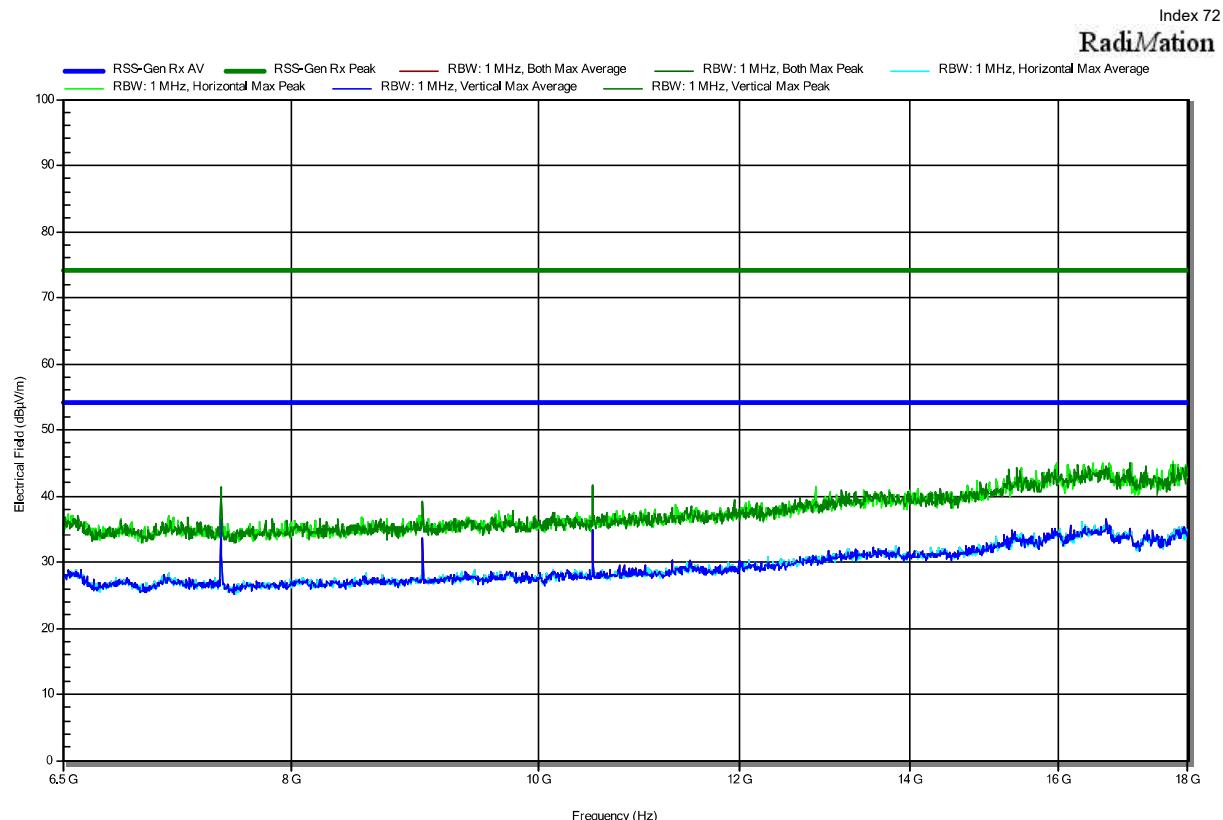
Eurofins Product Service GmbH  
 Storkower Str. 38c, D-15526 Reichenwalde, Germany

## Radiated Spurious Emissions according to ISED RSS-139, Issue 4+A1

Project Number: G0M-2303-1961  
 Applicant: Navico Inc.  
 Model Description: Marine and recreational IoT Gateway and vessel management system  
 Model: Connect 1  
 Test Sample ID: 44396  
 Test Site: Eurofins Product Service GmbH  
 Operator: A.Ibraimov  
 Measurement software: RadiMation, version 2020.1.8  
 Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
 Antenna: Schwarzbeck BBHA 9120D  
 Measurement distance: 3 m  
 Mode: Rx; LTE Cat M1, FDD4, 3 MHz, CH\_1965, RX  
 Test Date: 2023-09-19  
 Note: Marker 1 Downlink

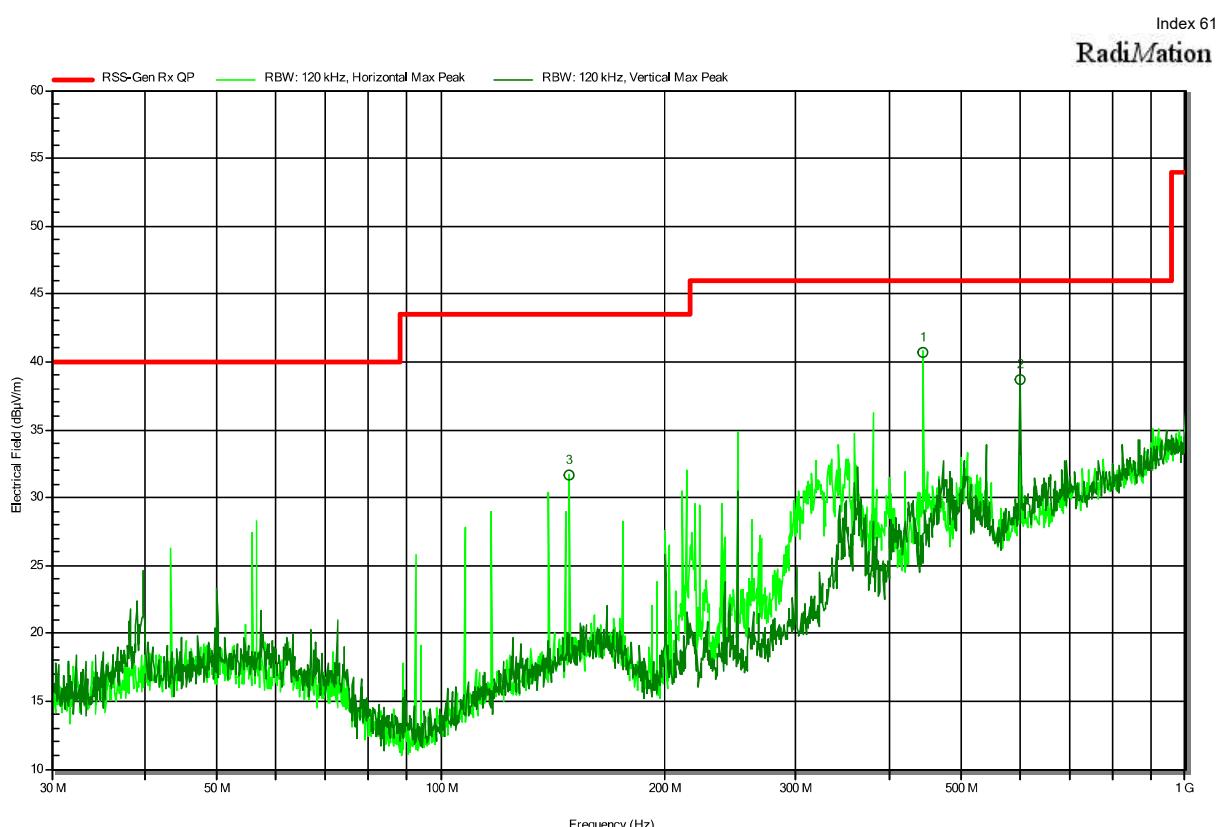


| Frequency | Peak               | Peak Limit      | Peak Difference | Peak Status | Polarization |
|-----------|--------------------|-----------------|-----------------|-------------|--------------|
| 1.501 GHz | 43.08 dB $\mu$ V/m | 74 dB $\mu$ V/m | -30.92 dB       | Pass        | Horizontal   |
| 2.111 GHz | ---                | ---             | ---             | Downlink    | Vertical     |
| 3 GHz     | 44.82 dB $\mu$ V/m | 74 dB $\mu$ V/m | -29.18 dB       | Pass        | Vertical     |
| 4.5 GHz   | 49.36 dB $\mu$ V/m | 74 dB $\mu$ V/m | -24.64 dB       | Pass        | Vertical     |


| Frequency | Average            | Average Limit      | Average Difference | Average Status | Polarization |
|-----------|--------------------|--------------------|--------------------|----------------|--------------|
| 1.501 GHz | 24.9 dB $\mu$ V/m  | 53.98 dB $\mu$ V/m | -29.08 dB          | Pass           | Horizontal   |
| 2.111 GHz | ---                | ---                | ---                | Downlink       | Vertical     |
| 3 GHz     | 39.5 dB $\mu$ V/m  | 53.98 dB $\mu$ V/m | -14.48 dB          | Pass           | Vertical     |
| 4.5 GHz   | 44.23 dB $\mu$ V/m | 53.98 dB $\mu$ V/m | -9.75 dB           | Pass           | Vertical     |

Test Report No.: G0M-2303-1961-TFCMOCORSE-V07

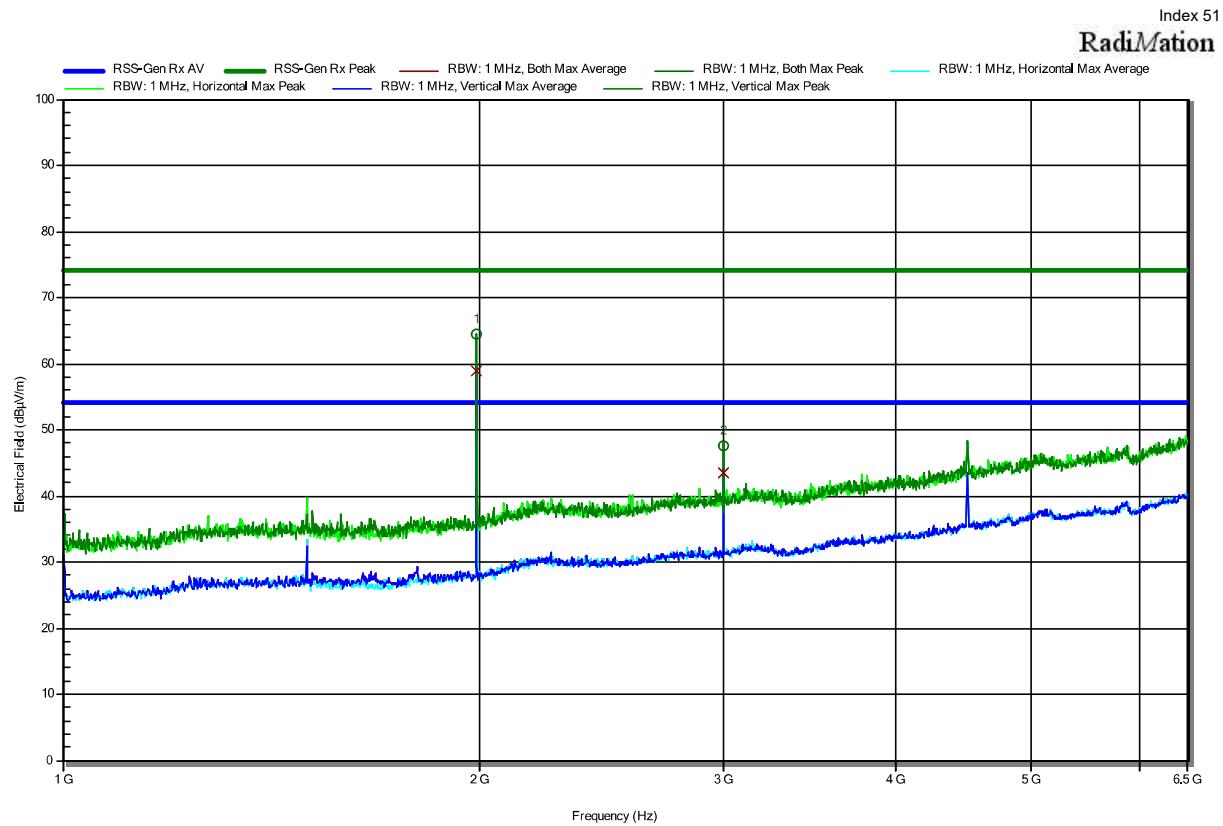
Eurofins Product Service GmbH  
 Storkower Str. 38c, D-15526 Reichenwalde, Germany


**Radiated Spurious Emissions according to ISED RSS-139, Issue 4+A1**

Project Number: G0M-2303-1961  
Applicant: Navico Inc.  
Model Description: Marine and recreational IoT Gateway and vessel management system  
Model: Connect 1  
Test Sample ID: 44396  
Test Site: Eurofins Product Service GmbH  
Operator: A.Ibraimov  
Measurement software: RadiMation, version 2020.1.8  
Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
Antenna: Schwarzbeck HWRD 650  
Measurement distance: 3 m  
Mode: Rx; LTE Cat M1, FDD4, 3 MHz, CH\_1965, RX  
Test Date: 2023-09-19  
Note:



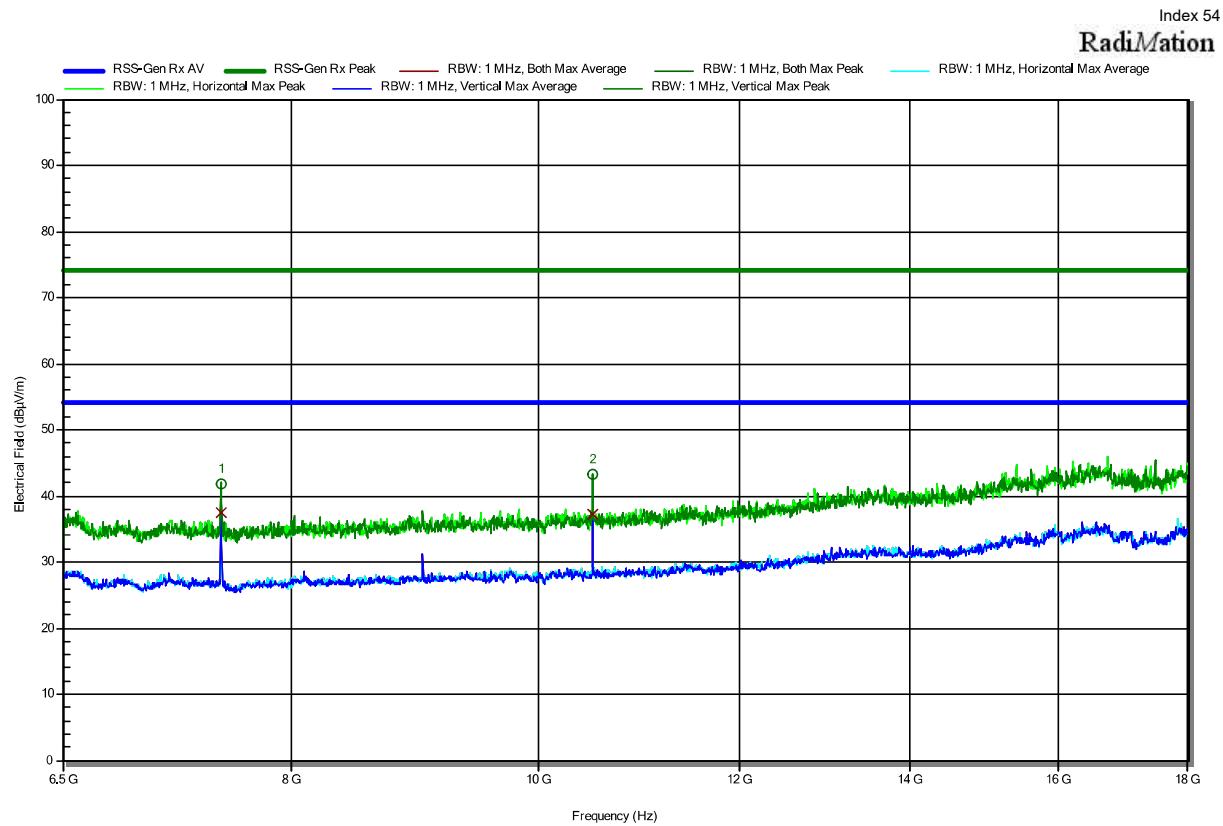
## Radiated Spurious Emissions according to ISED RSS-133, Issue 7


Project Number: G0M-2303-1961  
 Applicant: Navico Inc.  
 Model Description: Marine and recreational IoT Gateway and vessel management system  
 Model: Connect 1  
 Test Sample ID: 44396  
 Test Site: Eurofins Product Service GmbH  
 Operator: A.Ibraimov  
 Measurement software: RadiMation, version 2020.1.8  
 Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
 Antenna: Schwarzbeck VULB 9168  
 Measurement distance: 3 m  
 Mode: Rx; NB-IoT, FDD2, 15kHz, CH\_1198, RX  
 Test Date: 2023-09-18  
 Note:



| Frequency    | Peak              | Peak Limit        | Peak Difference | Peak Status | Polarization |
|--------------|-------------------|-------------------|-----------------|-------------|--------------|
| 148.8007 MHz | 31.6 dB $\mu$ V/m | 43.5 dB $\mu$ V/m | -11.89 dB       | Pass        | Horizontal   |
| 444.6507 MHz | 40.7 dB $\mu$ V/m | 46 dB $\mu$ V/m   | -5.25 dB        | Pass        | Horizontal   |
| 599.2688 MHz | 38.7 dB $\mu$ V/m | 46 dB $\mu$ V/m   | -7.34 dB        | Pass        | Vertical     |

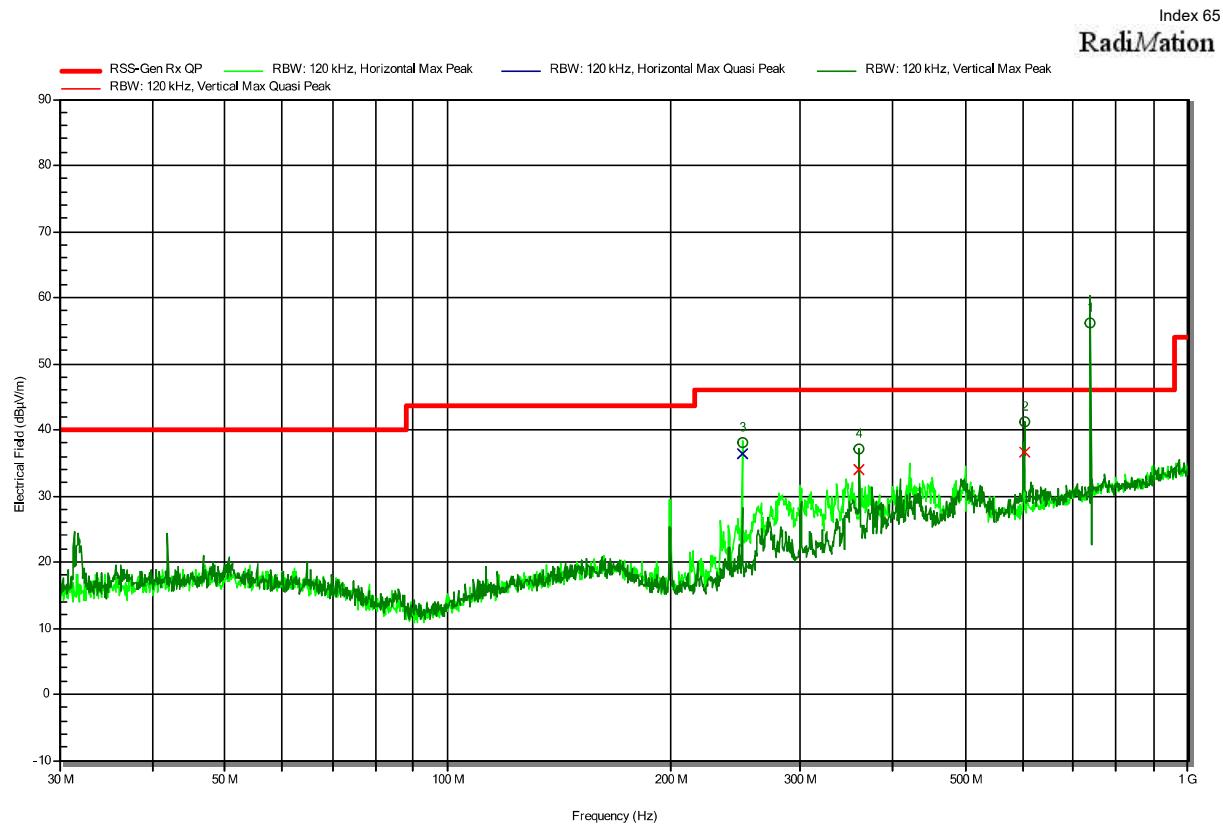
## Radiated Spurious Emissions according to ISED RSS-133, Issue 7


Project Number: G0M-2303-1961  
 Applicant: Navico Inc.  
 Model Description: Marine and recreational IoT Gateway and vessel management system  
 Model: Connect 1  
 Test Sample ID: 44396  
 Test Site: Eurofins Product Service GmbH  
 Operator: A.Ibraimov  
 Measurement software: RadiMation, version 2020.1.8  
 Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
 Antenna: Schwarzbeck BBHA 9120D  
 Measurement distance: 3 m  
 Mode: Rx; NB-IoT, FDD2, 15kHz, CH\_1198, RX  
 Test Date: 2023-08-21  
 Note: Marker 1 Downlink



| Frequency | Peak         | Peak Limit    | Peak Difference    | Peak Status    | Polarization |
|-----------|--------------|---------------|--------------------|----------------|--------------|
| 1.99 GHz  | ---          | ---           | ---                |                |              |
| 3 GHz     | 47.5 dBµV/m  | 74 dBµV/m     | -26.5 dB           | Pass           | Vertical     |
| Frequency | Average      | Average Limit | Average Difference | Average Status | Polarization |
| 1.99 GHz  | ---          | ---           | ---                |                |              |
| 3 GHz     | 43.49 dBµV/m | 53.98 dBµV/m  | -10.49 dB          | Pass           | Vertical     |

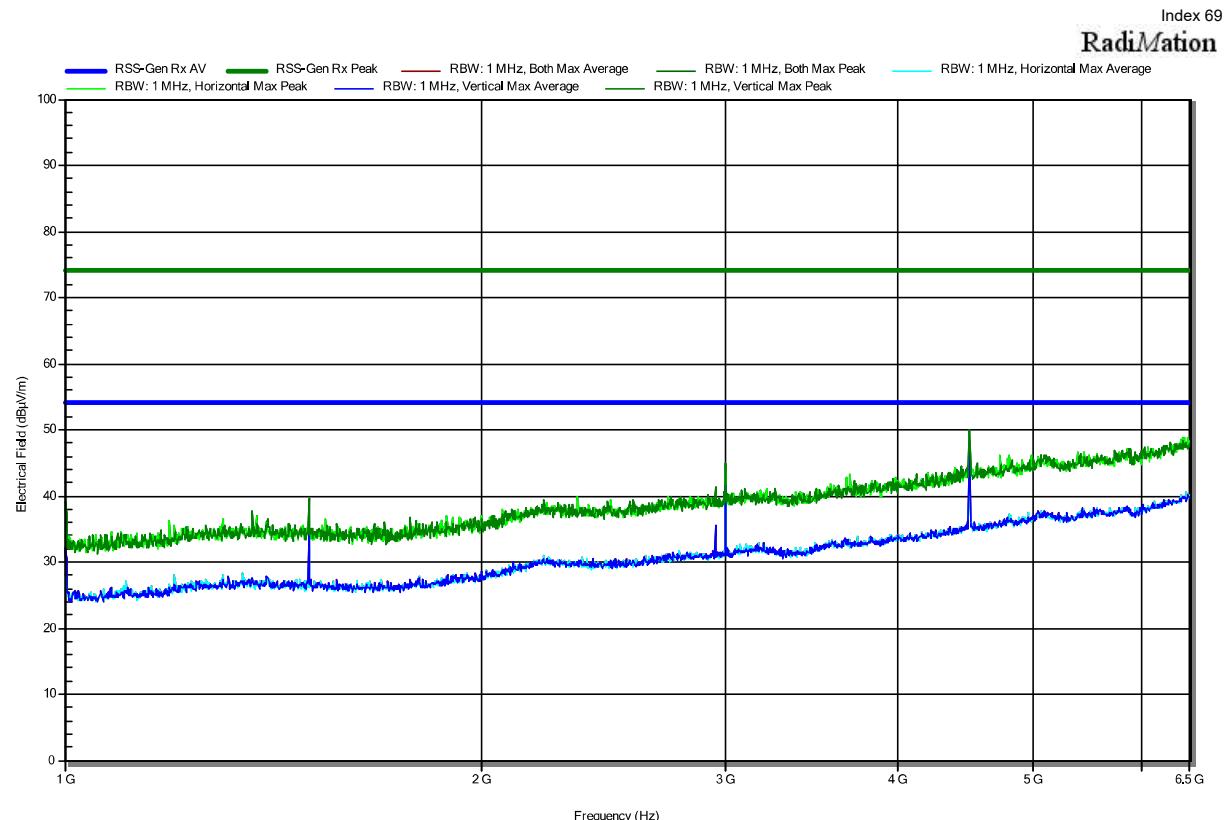
## Radiated Spurious Emissions according to ISED RSS-133, Issue 7


Project Number: G0M-2303-1961  
 Applicant: Navico Inc.  
 Model Description: Marine and recreational IoT Gateway and vessel management system  
 Model: Connect 1  
 Test Sample ID: 44396  
 Test Site: Eurofins Product Service GmbH  
 Operator: A.Ibraimov  
 Measurement software: RadiMation, version 2020.1.8  
 Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
 Antenna: Schwarzbeck HWRD 650  
 Measurement distance: 3 m  
 Mode: Rx; NB-IoT, FDD2, 15kHz, CH\_1198, RX  
 Test Date: 2023-08-21  
 Note:



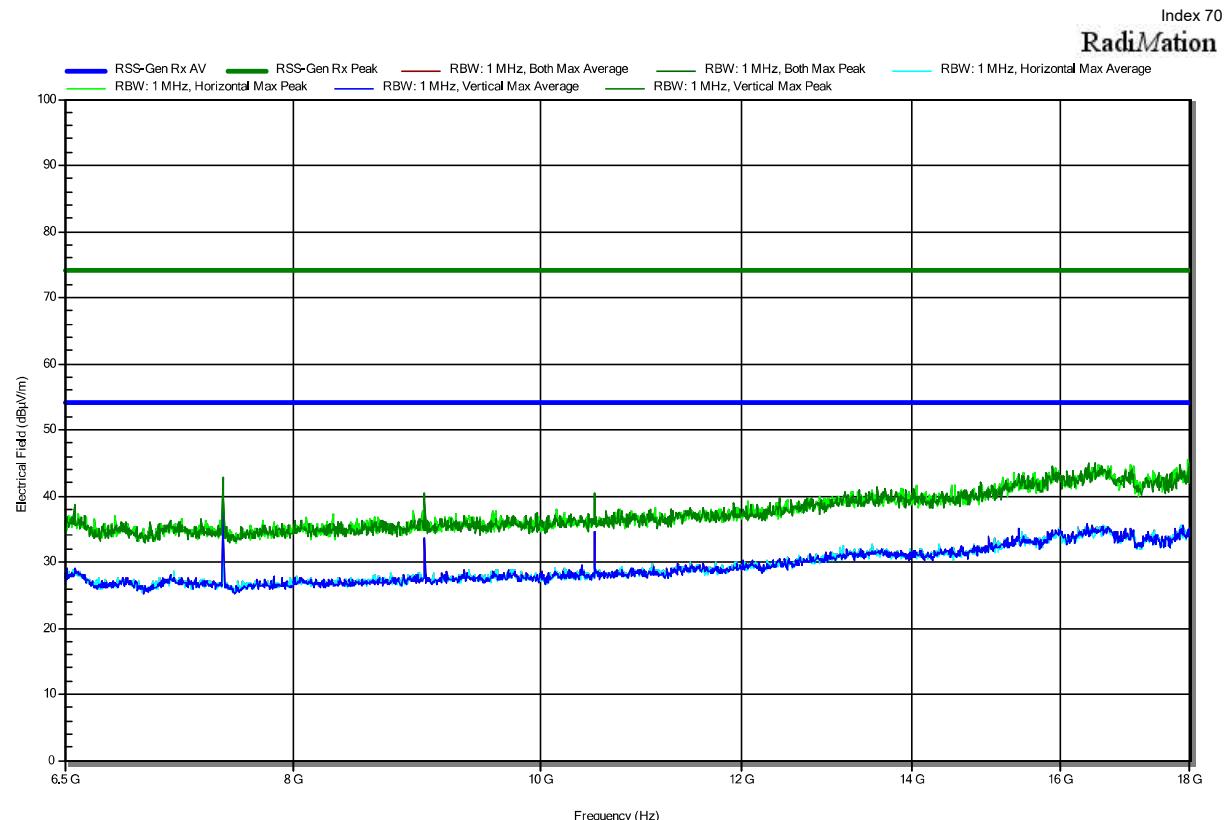
| Frequency | Peak               | Peak Limit         | Peak Difference    | Peak Status    | Polarization |
|-----------|--------------------|--------------------|--------------------|----------------|--------------|
| 7.501 GHz | 41.86 dB $\mu$ V/m | 74 dB $\mu$ V/m    | -32.14 dB          | Pass           | Vertical     |
| 10.5 GHz  | 43.24 dB $\mu$ V/m | 74 dB $\mu$ V/m    | -30.76 dB          | Pass           | Vertical     |
| Frequency | Average            | Average Limit      | Average Difference | Average Status | Polarization |
| 7.501 GHz | 37.47 dB $\mu$ V/m | 53.98 dB $\mu$ V/m | -16.51 dB          | Pass           | Vertical     |
| 10.5 GHz  | 37.16 dB $\mu$ V/m | 53.98 dB $\mu$ V/m | -16.82 dB          | Pass           | Vertical     |

## Radiated Spurious Emissions according to ISED RSS-130, Issue 2


Project Number: G0M-2303-1961  
 Applicant: Navico Inc.  
 Model Description: Marine and recreational IoT Gateway and vessel management system  
 Model: Connect 1  
 Test Sample ID: 44396  
 Test Site: Eurofins Product Service GmbH  
 Operator: A.Ibraimov  
 Measurement software: RadiMation, version 2020.1.8  
 Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
 Antenna: Schwarzbeck VULB 9168  
 Measurement distance: 3 m  
 Mode: Rx; NB-IoT, FDD12, 15kHz, CH\_5095, RX  
 Test Date: 2023-09-19  
 Note: Marker 1 Downlink

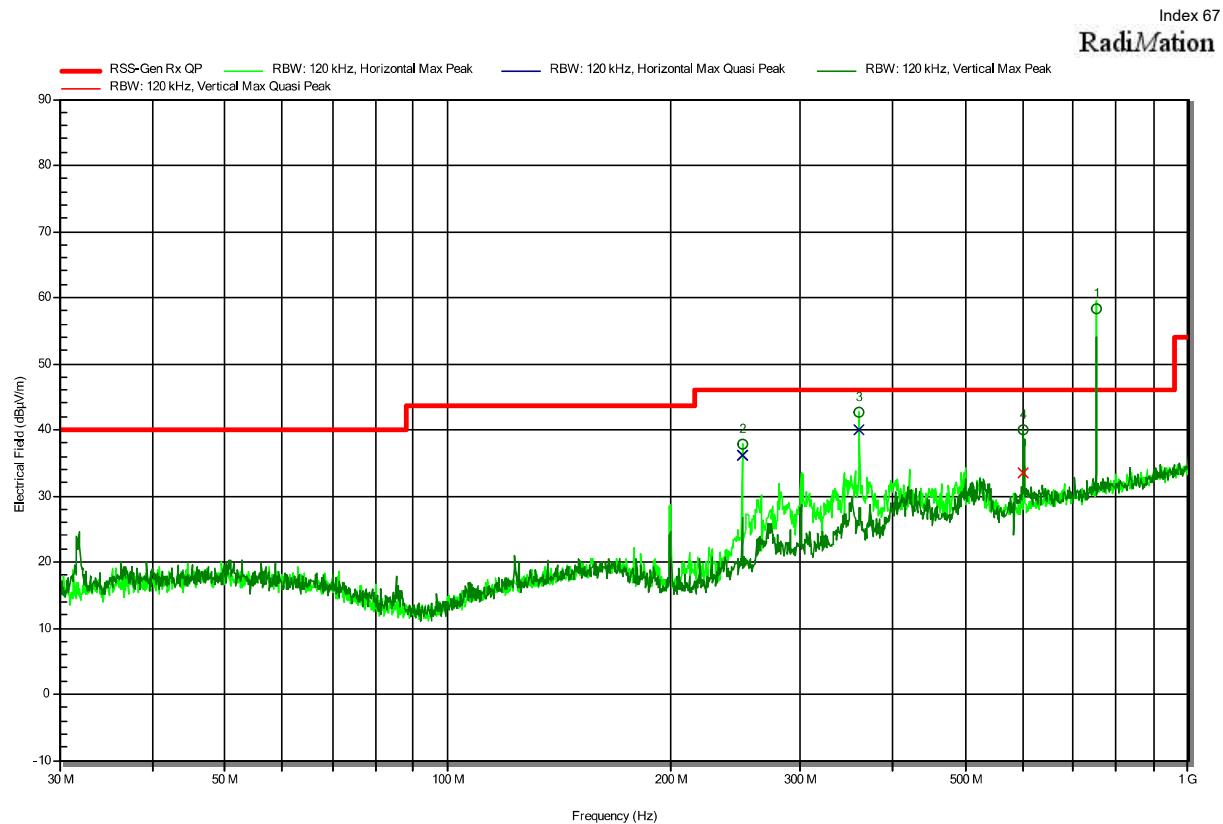


| Frequency    | Quasi-Peak        | Quasi-Peak Limit | Quasi-Peak Difference | Quasi-Peak Status | Polarization |
|--------------|-------------------|------------------|-----------------------|-------------------|--------------|
| 249.9874 MHz | 36.4 dB $\mu$ V/m | 46 dB $\mu$ V/m  | -9.62 dB              | Pass              | Horizontal   |
| 359.996 MHz  | 33.9 dB $\mu$ V/m | 46 dB $\mu$ V/m  | -12.11 dB             | Pass              | Vertical     |
| 600.7266 MHz | 36.7 dB $\mu$ V/m | 46 dB $\mu$ V/m  | -9.3 dB               | Pass              | Vertical     |
| 737.4938 MHz | ---               | ---              | ---                   | Downlink          | Vertical     |


## Radiated Spurious Emissions according to ISED RSS-130, Issue 2

Project Number: G0M-2303-1961  
 Applicant: Navico Inc.  
 Model Description: Marine and recreational IoT Gateway and vessel management system  
 Model: Connect 1  
 Test Sample ID: 44396  
 Test Site: Eurofins Product Service GmbH  
 Operator: A.Ibraimov  
 Measurement software: RadiMation, version 2020.1.8  
 Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
 Antenna: Schwarzbeck BBHA 9120D  
 Measurement distance: 3 m  
 Mode: Rx; NB-IoT, FDD12, 15kHz, CH\_5095, RX  
 Test Date: 2023-09-19  
 Note:

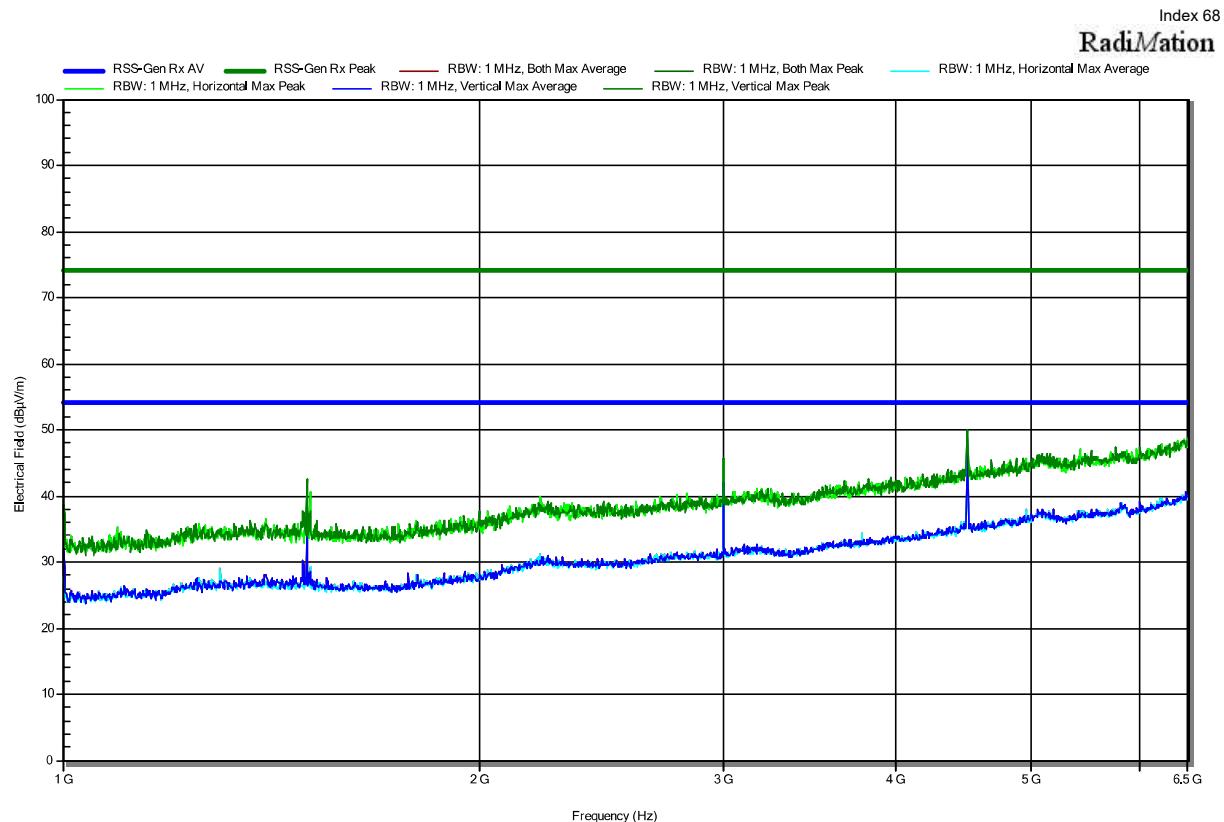



**Radiated Spurious Emissions according to ISED RSS-130, Issue 2**

Project Number: G0M-2303-1961  
Applicant: Navico Inc.  
Model Description: Marine and recreational IoT Gateway and vessel management system  
Model: Connect 1  
Test Sample ID: 44396  
Test Site: Eurofins Product Service GmbH  
Operator: A.Ibraimov  
Measurement software: RadiMation, version 2020.1.8  
Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
Antenna: Schwarzbeck HWRD 650  
Measurement distance: 3 m  
Mode: Rx; NB-IoT, FDD12, 15kHz, CH\_5095, RX  
Test Date: 2023-09-19  
Note:

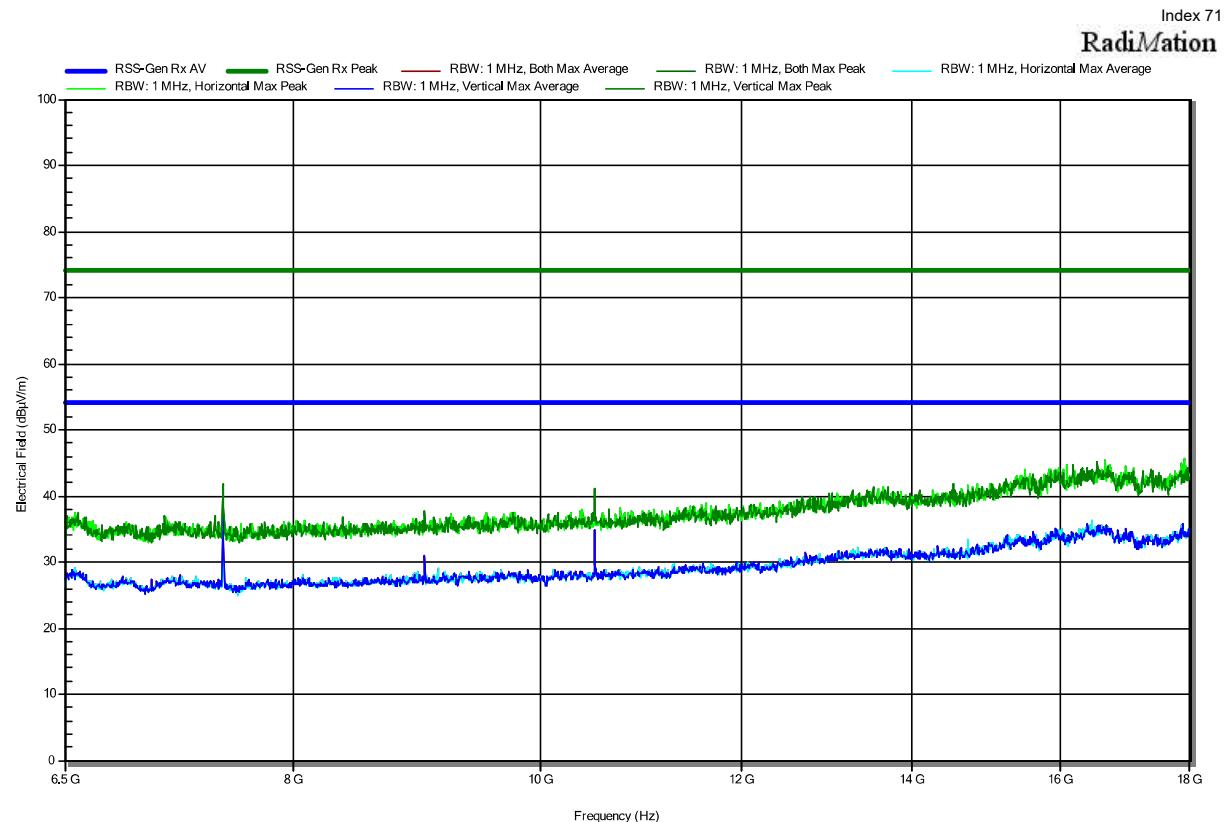


## Radiated Spurious Emissions according to ISED RSS-130, Issue 2


Project Number: G0M-2303-1961  
 Applicant: Navico Inc.  
 Model Description: Marine and recreational IoT Gateway and vessel management system  
 Model: Connect 1  
 Test Sample ID: 44396  
 Test Site: Eurofins Product Service GmbH  
 Operator: A.Ibraimov  
 Measurement software: RadiMation, version 2020.1.8  
 Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
 Antenna: Schwarzbeck VULB 9168  
 Measurement distance: 3 m  
 Mode: Rx; NB-IoT, FDD13, 15kHz, CH\_5230, RX  
 Test Date: 2023-09-19  
 Note: Marker 1 Downlink



| Frequency    | Quasi-Peak        | Quasi-Peak Limit | Quasi-Peak Difference | Quasi-Peak Status | Polarization |
|--------------|-------------------|------------------|-----------------------|-------------------|--------------|
| 249.9594 MHz | 36.2 dB $\mu$ V/m | 46 dB $\mu$ V/m  | -9.84 dB              | Pass              | Horizontal   |
| 359.9866 MHz | 39.9 dB $\mu$ V/m | 46 dB $\mu$ V/m  | -6.11 dB              | Pass              | Horizontal   |
| 600.3183 MHz | 33.5 dB $\mu$ V/m | 46 dB $\mu$ V/m  | -12.54 dB             | Pass              | Vertical     |
| 751.001 MHz  | ---               | ---              | ---                   | Downlink          | Horizontal   |


**Radiated Spurious Emissions according to ISED RSS-130, Issue 2**

Project Number: G0M-2303-1961  
Applicant: Navico Inc.  
Model Description: Marine and recreational IoT Gateway and vessel management system  
Model: Connect 1  
Test Sample ID: 44396  
Test Site: Eurofins Product Service GmbH  
Operator: A.Ibraimov  
Measurement software: RadiMation, version 2020.1.8  
Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
Antenna: Schwarzbeck BBHA 9120D  
Measurement distance: 3 m  
Mode: Rx; NB-IoT, FDD13, 15kHz, CH\_5230, RX  
Test Date: 2023-09-19  
Note:



## Radiated Spurious Emissions according to ISED RSS-130, Issue 2

Project Number: G0M-2303-1961  
 Applicant: Navico Inc.  
 Model Description: Marine and recreational IoT Gateway and vessel management system  
 Model: Connect 1  
 Test Sample ID: 44396  
 Test Site: Eurofins Product Service GmbH  
 Operator: A.Ibraimov  
 Measurement software: RadiMation, version 2020.1.8  
 Test Conditions: Tnom: 24 °Celsius, Vnom: 13.8 VDC  
 Antenna: Schwarzbeck HWRD 650  
 Measurement distance: 3 m  
 Mode: Rx; NB-IoT, FDD13, 15kHz, CH\_5230, RX  
 Test Date: 2023-09-19  
 Note:



==== END OF TEST REPORT ====