

FCC Test Report

Report No.: RFBARR-WTW-P21060023F-7

FCC ID: RAS-MT7922A12L

Test Model: MT7922A12L

Received Date: 2022/3/16

Test Date: 2022/3/21 ~ 2022/3/28

Issued Date: 2022/4/6

Applicant: MediaTek Inc.

Address: No. 1, Dusing 1st Rd., Hsinchu Science Park Hsinchu City 30078, Taiwan

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,
Taiwan

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,
Taiwan

**FCC Registration /
Designation Number:** 723255 / TW2022

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification

Table of Contents

Release Control Record	3
1 Certificate of Conformity.....	4
2 Summary of Test Results	5
2.1 Measurement Uncertainty	5
2.2 Modification Record	5
3 General Information.....	6
3.1 General Description of EUT	6
3.2 Description of Test Modes	9
3.2.1 Test Mode Applicability and Tested Channel Detail.....	10
3.3 Duty Cycle of Test Signal	11
3.4 Description of Support Units	13
3.4.1 Configuration of System under Test	14
3.5 General Description of Applied Standards and References	15
4 Test Types and Results	16
4.1 Radiated Emission and Bandedge Measurement.....	16
4.1.1 Limits of Radiated Emission and Bandedge Measurement	16
4.1.2 Test Instruments	17
4.1.3 Test Procedure	19
4.1.4 Test Setup.....	20
4.1.5 EUT Operating Condition	21
4.1.6 Test Results	22
4.2 Transmit Power Measurement	26
4.2.1 Limits of Transmit Power Measurement	26
4.2.2 Test Setup.....	26
4.2.3 Test Instruments	26
4.2.4 Test Procedure	26
4.2.5 EUT Operating Condition	26
4.2.6 Test Result.....	27
5 Pictures of Test Arrangements.....	28
Appendix – Information of the Testing Laboratories	29

Release Control Record

Issue No.	Description	Date Issued
RFBARR-WTW-P21060023F-7	Original release.	2022/4/6

1 Certificate of Conformity

Product: 2TX 11ax (WiFi6E) BW160 + BT/BLE Combo Card

Brand: MediaTek

Test Model: MT7922A12L

Sample Status: Engineering sample

Applicant: MediaTek Inc.

Test Date: 2022/3/21 ~ 2022/3/28

Standard: 47 CFR FCC Part 15, Subpart E (Section 15.407)

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : Vivian Huang, **Date:** 2022/4/6
Vivian Huang / Specialist

Approved by : May Chen, **Date:** 2022/4/6
May Chen / Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart E (Section 15.407)			
FCC Clause	Test Item	Result	Remarks
15.407(b)(8)	AC Power Conducted Emissions	NA	Refer to Note 1 below
15.407(b)(5) (8)	Radiated Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -0.6 dB at 5924.30 MHz.
15.407(a)(3)	Max Average Transmit Power	Pass	Meet the requirement of limit.
15.407(a) (3)	Peak Power Spectral Density	NA	Refer to Note 1 below
15.407(e)	6dB Bandwidth Measurement	NA	Refer to Note 1 below
15.407(g)	Frequency Stability	NA	Refer to Note 1 below
15.403	Operational restrictions U-NII 4 devices	NA	Refer to Note 1 below
15.203 or 15.403	Antenna Requirement	Pass	Antenna connector is i-peX(MHF) not a standard connector.

Note:

1. Radiated Emissions Measurement & Max Average Transmit Power were performed for this addendum. The others testing data refer to original test report.
2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	3.1 dB
	30MHz ~ 1GHz	5.5 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	5.1 dB
	18GHz ~ 40GHz	5.3 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	2TX 11ax (WiFi6E) BW160 + BT/BLE Combo Card
Brand	MediaTek
Test Model	MT7922A12L
Status of EUT	Engineering sample
Power Supply Rating	3.3 Vdc from host equipment
Modulation Type	64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode only 1024QAM for OFDMA in 11ax mode only
Modulation Technology	OFDM, OFDMA
Transfer Rate	802.11a: up to 54 Mbps 802.11n: up to 300 Mbps 802.11ac: up to 1733.3 Mbps 802.11ax: up to 2401.9 Mbps
Operating Frequency	5.845 ~ 5.885 GHz
Number of Channel	802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): 3 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): 2 802.11ac (VHT80), 802.11ax (HE80): 1 802.11ac (VHT160), 802.11ax (HE160): 1
EIRP	26.86 dBm (485.289 mW)
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	NA
Data Cable Supplied	NA

Note:

1. This is a supplementary report of Report No.: RFBARR-WTW-P21060023B. The differences between them are as below information:
 - ◆ Enable WiFi 6E 802.11a SISO mode through software change.
2. According to above conditions, only verify output power & radiated emissions need to be performed. And all data are verified to meet the requirements.
3. There are Bluetooth and WLAN (2.4GHz & 5GHz & 5.9GHz & 6GHz) technology used for the EUT.
4. Simultaneously transmission condition.

Condition	Technology	
1	WLAN (5GHz)	Bluetooth
2	WLAN (6GHz)	Bluetooth
3	WLAN (5.9GHz)	Bluetooth

Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.

5. The antenna information is listed as below.

Ant. Set	RF Chain No.	Brand	Model	Antenna Net Gain (dBi)	Frequency Range (GHz)	Antenna Type	Connector Type	Cable Length (mm)
1	Chain0	PSA	RFMTA340718EMLB302	3.18 4.92	2.4~2.4835 5.15~5.895	PIFA	i-pex(MHF)	200
	Chain1	PSA	RFMTA340718EMLB302	3.18 4.92	2.4~2.4835 5.15~5.895	PIFA	i-pex(MHF)	200
2	Chain0	PSA	RFMTA311020EMMB301	1.71 4.82 4.76 4.29 4.61 4.09	2.4~2.4835 5.15~5.895 5.925~6.425 6.425~6.525 6.525~6.875 6.875~7.125	PIFA	i-pex(MHF)	200
	Chain1	PSA	RFMTA311020EMMB301	1.71 4.82 4.76 4.29 4.61 4.09	2.4~2.4835 5.15~5.895 5.925~6.425 6.425~6.525 6.525~6.875 6.875~7.125	PIFA	i-pex(MHF)	200
3	Chain0	MSI	WA-P-LE-02-045 (Main)	2.24 2.68 3.01 -1.23 -1.96 -3.68	2.4~2.4835 5.15~5.895 5.925~6.425 6.425~6.525 6.525~6.875 6.875~7.125	PIFA	IPEX-4L	190
	Chain1	MSI	WA-P-LE-02-046 (Aux)	-2.96 1.16 0.99 -2.31 -2.54 -7.44	2.4~2.4835 5.15~5.895 5.925~6.425 6.425~6.525 6.525~6.875 6.875~7.125	PIFA	IPEX-4L	325
4	Chain0	PSA	RFPCA460632IMMB701	-13.20 -13.67 -13.67 -13.09	5.925~6.425 6.425~6.525 6.525~6.875 6.875~7.125	Dipole	IPEX	320
	Chain1	PSA	RFPCA460632IMMB701	-13.20 -13.67 -13.67 -13.09	5.925~6.425 6.425~6.525 6.525~6.875 6.875~7.125	Dipole	IPEX	320
5	Chain0	PSA	RFMTA421230IMMB701	-13.92 -13.91 -13.91 -14.46	5.925~6.425 6.425~6.525 6.525~6.875 6.875~7.125	PIFA	IPEX	300
	Chain1	PSA	RFMTA421230IMMB701	-13.92 -13.91 -13.91 -14.46	5.925~6.425 6.425~6.525 6.525~6.875 6.875~7.125	PIFA	IPEX	300

Note: Max. gain was selected for the final test.

6. The EUT incorporates a MIMO function:

5GHz Band				
MODULATION MODE	TX & RX	CDD mode	Beamforming mode	
802.11a	2TX	2RX	Support	Not Support
802.11n (HT20)	2TX	2RX	Support	Not Support
802.11n (HT40)	2TX	2RX	Support	Not Support
802.11ac (VHT20)	2TX	2RX	Support	Not Support
802.11ac (VHT40)	2TX	2RX	Support	Not Support
802.11ac (VHT80)	2TX	2RX	Support	Not Support
802.11ac (VHT160)	2TX	2RX	Support	Not Support
802.11ax (HE20)	2TX	2RX	Support	Not Support
802.11ax (HE40)	2TX	2RX	Support	Not Support
802.11ax (HE80)	2TX	2RX	Support	Not Support
802.11ax (HE160)	2TX	2RX	Support	Not Support
802.11ax (RU26/52/106/242/484/996/1992)	2TX	2RX	Support	Not Support

Note:

1. The modulation and bandwidth are similar for 802.11n mode for 20MHz (40MHz), 802.11ac mode for 20MHz (40MHz, 80MHz, 160MHz) and 802.11ax mode for 20MHz (40MHz, 80MHz, 160MHz), therefore the manufacturer will control the power for 802.11n/ac mode is the same as the 802.11ax or more lower than it and investigated worst case to representative mode in test report.
7. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.
8. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

3.2 Description of Test Modes

For U-NII-4

3 channels are provided for 802.11a, 802.11n, 802.11ac, 802.11ax (HE20):

Channel	Frequency	Channel	Frequency	Channel	Frequency
*169	5845 MHz	173	5865 MHz	177	5885 MHz

2 channels are provided for 802.11n, 802.11ac, 802.11ax (HE40):

Channel	Frequency	Channel	Frequency
*167	5835 MHz	175	5875 MHz

1 channel is provided for 802.11n, 802.11ac, 802.11ax (HE80):

Channel	Frequency
*171	5855 MHz

1 channel is provided for 802.11n, 802.11ac, 802.11ax (HE160):

Channel	Frequency
*163	5815 MHz

Note: *U-NII-3 & -4 span channels

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure Mode	Applicable To			Description
	RE \geq 1G	RE $<$ 1G	APCM	
-	✓	✓	✓	-

Where **RE \geq 1G**: Radiated Emission above 1GHz
PLC: Power Line Conducted Emission

RE $<$ 1G: Radiated Emission below 1GHz
APCM: Antenna Port Conducted Measurement

Note: In the original report, the EUT's PIFA antenna had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Z-place**.

Radiated Emission Measurement (Above 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, RU configurations and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate Parameter	RU Configuration
802.11ax (HE80)	171	171	OFDMA	BPSK	MCS0	-

Radiated Emission Measurement (Below 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, RU configurations and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate Parameter
802.11ax (HE80)	171	171	OFDMA	BPSK	MCS0

Antenna Port Conducted Measurement:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, RU configurations and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate Parameter	RU Configuration
802.11ax (HE80)	171	171	OFDMA	BPSK	MCS0	

Test Condition:

Applicable To	Environmental Conditions	Input Power (System)	Tested By
RE \geq 1G	25deg. C, 75%RH	120Vac, 60Hz	Sampson Chen
RE $<$ 1G	22deg. C, 62%RH	120Vac, 60Hz	Sampson Chen
APCM	25deg. C, 60%RH	120Vac, 60Hz	Leon Dai

3.3 Duty Cycle of Test Signal

For Legacy mode:

Duty cycle of test signal is < 98%, duty factor shall be considered.

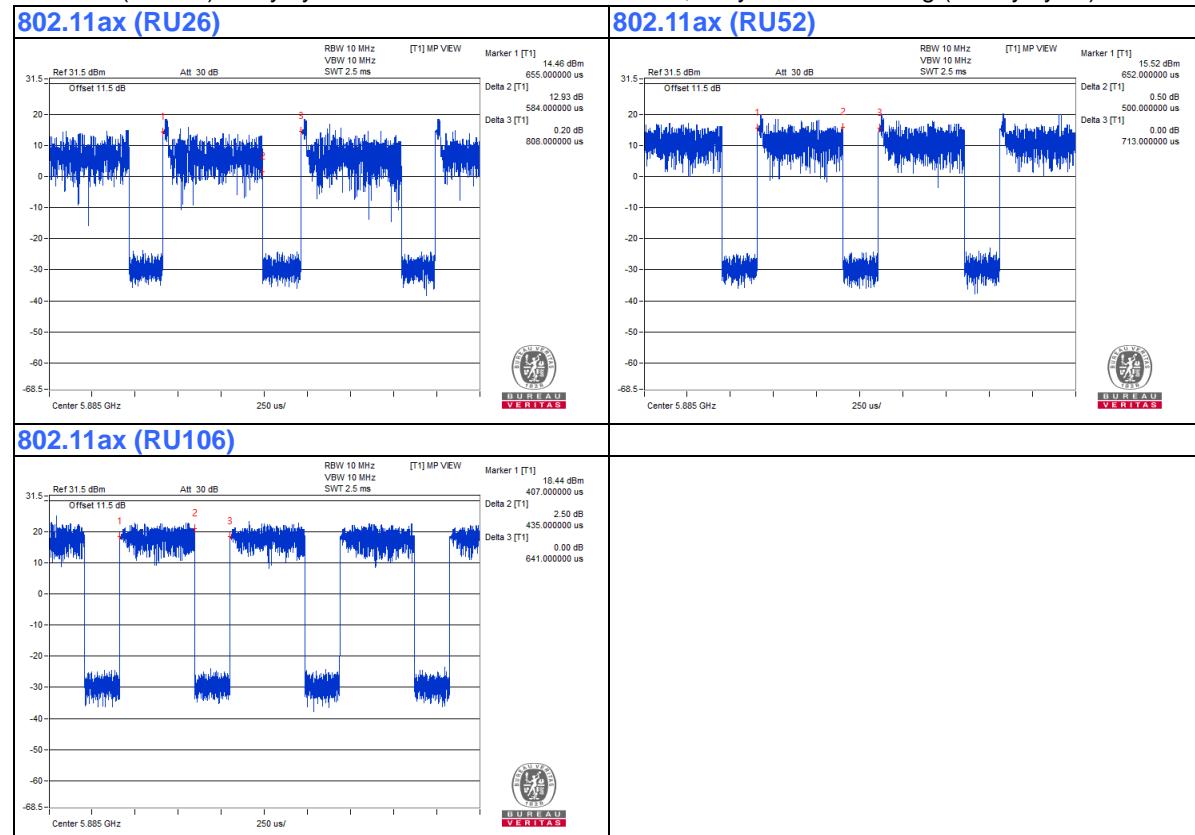
802.11a: Duty cycle = 5.481 ms/5.823 ms = 0.941, Duty factor = $10 * \log(1/\text{Duty cycle}) = 0.26 \text{ dB}$

802.11ax (HE20): Duty cycle = 3.875 ms/4.219 ms = 0.918, Duty factor = $10 * \log(1/\text{Duty cycle}) = 0.37 \text{ dB}$

802.11ax (HE40): Duty cycle = 3.787 ms/4.265 ms = 0.888, Duty factor = $10 * \log(1/\text{Duty cycle}) = 0.52 \text{ dB}$

802.11ax (HE80): Duty cycle = 1.842 ms/2.318 ms = 0.795, Duty factor = $10 * \log(1/\text{Duty cycle}) = 1 \text{ dB}$

802.11ax (HE160): Duty cycle = 0.955 ms/1.421 ms = 0.672, Duty factor = $10 * \log(1/\text{Duty cycle}) = 1.73 \text{ dB}$


For RU mode:

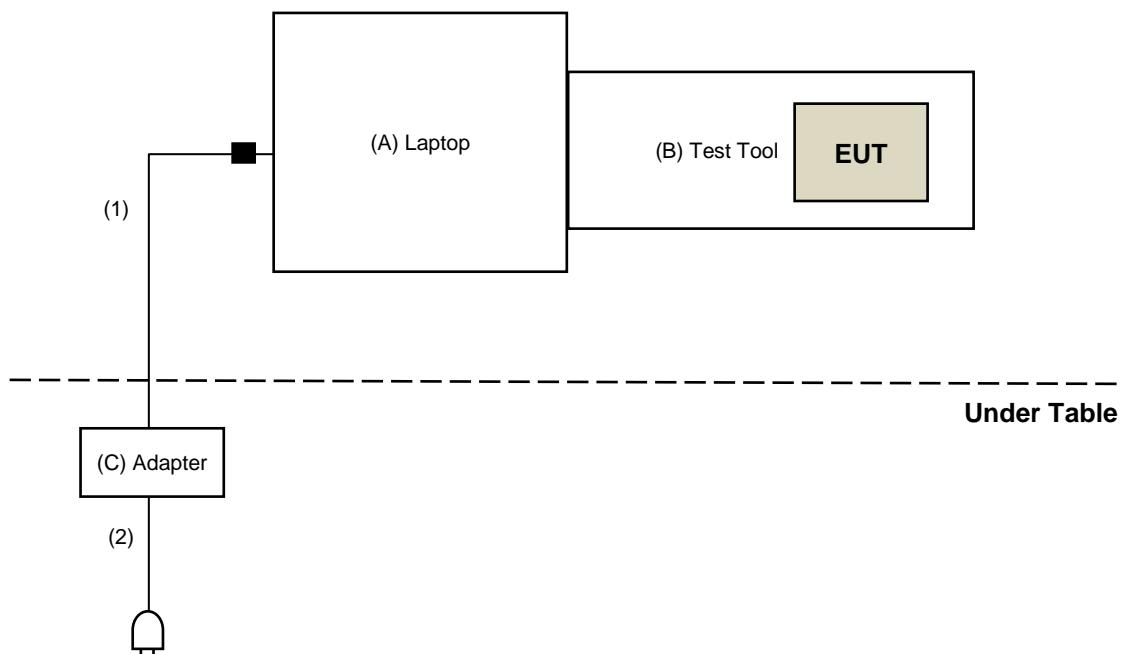
Duty cycle of test signal is < 98%, duty factor shall be considered.

802.11ax (RU26): Duty cycle = 0.584 ms/0.808 ms = 0.723, Duty factor = $10 * \log (1/\text{Duty cycle}) = 1.41 \text{ dB}$

802.11ax (RU52): Duty cycle = 0.5 ms/0.713 ms = 0.701, Duty factor = $10 * \log (1/\text{Duty cycle}) = 1.54 \text{ dB}$

802.11ax (RU106): Duty cycle = 0.435 ms/0.641 ms = 0.679, Duty factor = $10 * \log (1/\text{Duty cycle}) = 1.68 \text{ dB}$

3.4 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	Laptop	DELL	E5430	HYV4VY1	DoC	Provided by Lab
B.	Test Tool	Mediatek	MTK1849	NA	NA	Supplied by Applicant
C.	Adapter	Dell	LA65NS2-01	NA	NA	Provided by Lab

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC Cable	1	1.8	No	1	Provided by Lab
2.	AC Cable	1	1.8	No	0	Provided by Lab

Note: The core is originally attached to the cable.

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard:

FCC Part 15, Subpart E (15.407)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 291074 D02 EMC Measurement v01

KDB 789033 D02 General UNII Test Procedure New Rules v02r01

KDB 662911 D01 Multiple Transmitter Output v02r01

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

- (i) For an indoor access point or subordinate device, all emissions at or above 5.895 GHz shall not exceed an e.i.r.p. of 15 dBm/MHz and shall decrease linearly to an e.i.r.p. of -7 dBm/MHz at or above 5.925 GHz.
- (ii) For a client device, all emissions at or above 5.895 GHz shall not exceed an e.i.r.p. of -5 dBm/MHz and shall decrease linearly to an e.i.r.p. of -27 dBm/MHz at or above 5.925 GHz.
- (iii) For a client device or indoor access point or subordinate device, all emissions below 5.725 GHz shall not exceed an e.i.r.p. of -27 dBm/MHz at 5.65 GHz increasing linearly to 10 dBm/MHz at 5.7 GHz, and from 5.7 GHz increasing linearly to a level of 15.6 dBm/MHz at 5.72 GHz, and from 5.72 GHz increasing linearly to a level of 27 dBm/MHz at 5.725 GHz.

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \quad \mu\text{V/m, where P is the eirp (Watts).}$$

4.1.2 Test Instruments

For Radiated Emission & Bandedge test:

Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Test Receiver Agilent	N9038A	MY51210202	2021/11/19	2022/11/18
Software	ADT_Radiated_V8 7.08	NA	NA	NA
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	NA	NA
Pre_Amplifier EMCI	EMC001340	980142	2021/5/24	2022/5/23
Loop Antenna TESEQ	HLA 6121	45745	2021/7/21	2022/7/20
RF Coaxial Cable JYEBO	5D-FB	LOOPCAB-001	2022/1/6	2023/1/5
RF Coaxial Cable JYEBO	5D-FB	LOOPCAB-002	2022/1/6	2023/1/5
Pre_Amplifier EMCI	EMC330N	980701	2022/3/8	2023/3/7
Trilog Broadband Antenna Schwarzbeck	VULB 9168	9168-406	2021/10/27	2022/10/26
RF Coaxial Cable COMMATE/PEWC	8D	966-4-1	2022/3/8	2023/3/7
RF Coaxial Cable COMMATE/PEWC	8D	966-4-2	2022/3/8	2023/3/7
RF Coaxial Cable COMMATE/PEWC	8D	966-4-3	2022/3/8	2023/3/7
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-ATT5-03	2022/1/10	2023/1/9
Horn Antenna Schwarzbeck	BBHA 9120D	9120D-783	2021/11/14	2022/11/13
Pre_Amplifier EMCI	EMC 12630 SE	980638	2021/4/7	2022/4/6
RF Cable-Frequency Range : 1-26.5GHz EMCI	EMC104-SM-SM- 1200	160922	2021/12/24	2022/12/23
RF Coaxial Cable EMCI	EMC104-SM-SM- 2000	180502	2021/4/26	2022/4/25
RF Coaxial Cable EMCI	EMC104-SM-SM- 6000	210704	2021/11/9	2022/11/8
Pre_Amplifier EMCI	EMC184045SE	980387	2022/1/10	2023/1/9
Horn Antenna Schwarzbeck	BBHA 9170	9170-739	2021/11/14	2022/11/13
RF Cable-Frequency range: 1-40GHz EMCI	EMC102-KM-KM- 1200	160924	2022/1/10	2023/1/9
RF Coaxial Cable EMCI	EMC-KM-KM-4000	200214	2022/3/8	2023/3/7

Note: 1. The test was performed in 966 Chamber No. 4.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: 2022/3/21 ~ 2022/3/28

For other test items:

Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Spectrum Analyzer R&S	FSV40	100964	2021/5/31	2022/5/30
Attenuator WOKEN	MDCS18N-10	MDCS18N-10-01	2021/4/13	2022/4/12
Software	ADT_RF Test Software V6.6.5.4	NA	NA	NA
Power Meter Anritsu	ML2495A	1529002	2021/6/21	2022/6/20
Pulse Power Sensor Anritsu	MA2411B	1339443	2021/5/31	2022/5/30

Note: 1. The test was performed in Oven room 2.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: 2022/3/24

4.1.3 Test Procedure

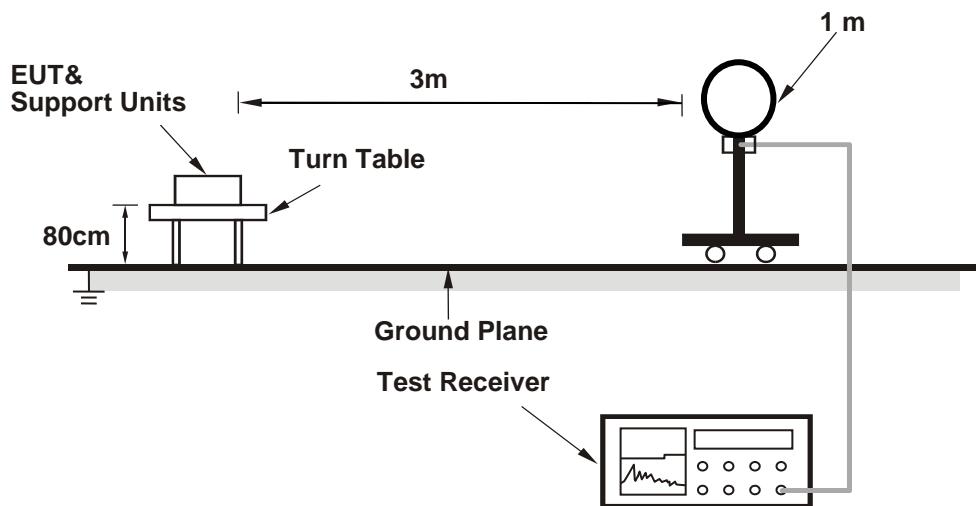
For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

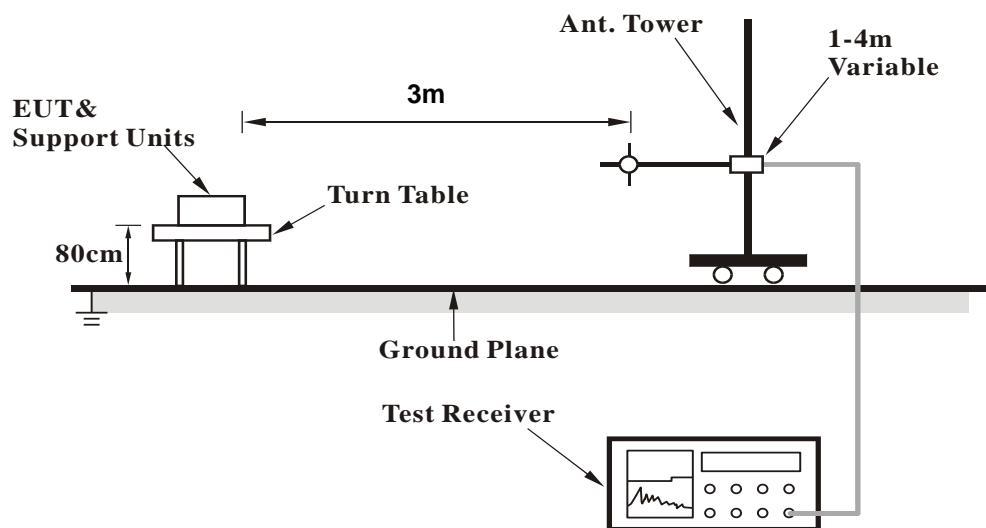
NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

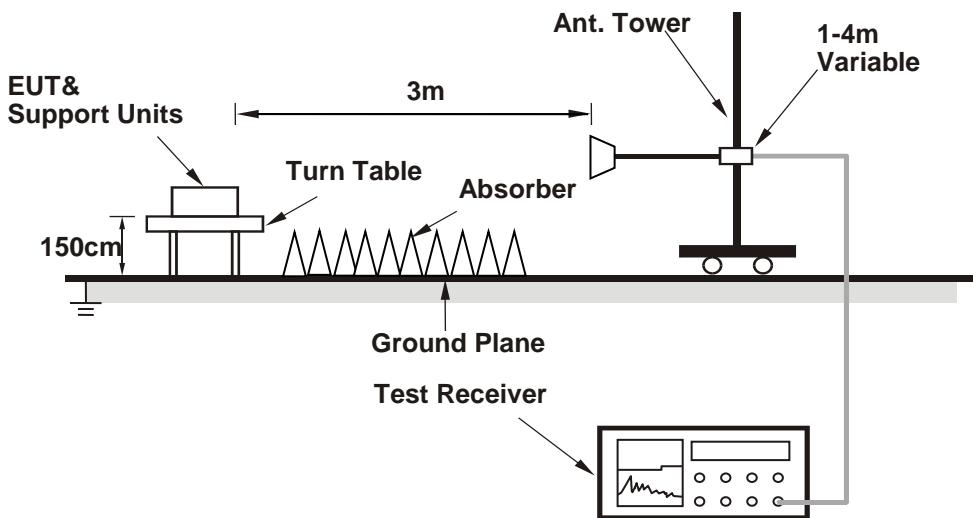
For Radiated emission above 30MHz


- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the RMS detector is unnecessary.

Note:


1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
3. The detection is peak and the resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is $\geq 1/T$ (Duty cycle $< 98\%$) or 10Hz (Duty cycle $\geq 98\%$) for Average measurement (AV) at frequency above 1GHz.
4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Test Setup


For Radiated emission below 30MHz

For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

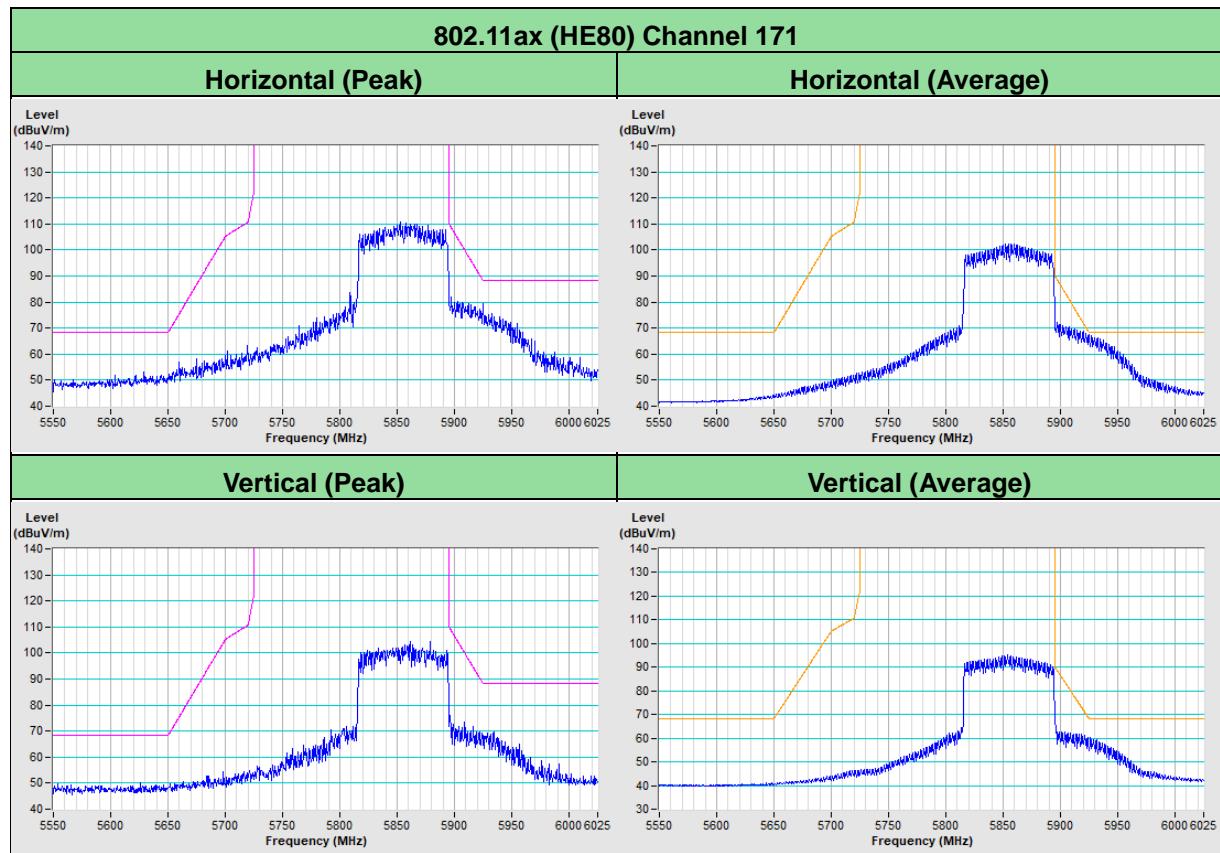
For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.5 EUT Operating Condition

- Placed the EUT on the testing table.
- Controlling software (MT7922 QA 0.0.2.55) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

4.1.6 Test Results

Above 1GHz Data:


RF Mode	TX 802.11ax (HE80)	Channel	CH 171 : 5855 MHz
Frequency Range	1 GHz ~ 40 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 1 kHz
Input Power (System)	120Vac, 60Hz	Environmental Conditions	25 °C, 75 % RH
Tested By	Vic Huang		

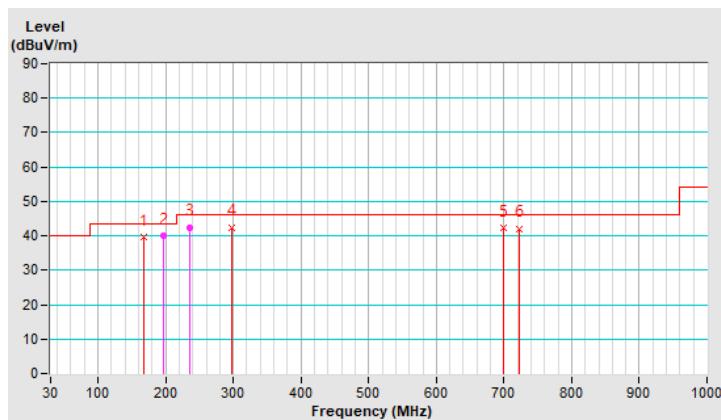
Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	#5629.84	52.7 PK	68.2	-15.5	3.16 H	78	46.8	5.9
2	*5855.00	109.4 PK			3.16 H	78	103.5	5.9
3	*5855.00	102.2 AV			3.16 H	78	96.3	5.9
4	#5924.30	79.4 PK	88.2	-8.8	3.16 H	78	73.5	5.9
5	#5924.30	67.6 AV	68.2	-0.6	3.16 H	78	61.7	5.9
6	11710.00	50.5 PK	74.0	-23.5	2.13 H	125	42.1	8.4
7	11710.00	39.0 AV	54.0	-15.0	2.13 H	125	30.6	8.4
8	#17565.00	52.6 PK	88.2	-35.6	1.89 H	255	60.1	-7.5
Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	#5626.57	49.7 PK	68.2	-18.5	1.43 V	29	43.8	5.9
2	*5855.00	105.7 PK			1.43 V	29	99.8	5.9
3	*5855.00	94.9 AV			1.43 V	29	89.0	5.9
4	#5926.57	68.5 PK	88.2	-19.7	1.43 V	29	62.6	5.9
5	#5926.57	59.9 AV	68.2	-8.3	1.43 V	29	54.0	5.9
6	11710.00	52.7 PK	74.0	-21.3	3.88 V	70	44.3	8.4
7	11710.00	40.8 AV	54.0	-13.2	3.88 V	70	32.4	8.4
8	#17565.00	52.8 PK	88.2	-35.4	1.89 V	105	60.3	-7.5

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency.
6. " # ": The radiated frequency is out of the restricted band.

Plot of Band Edge

Below 1GHz Data:

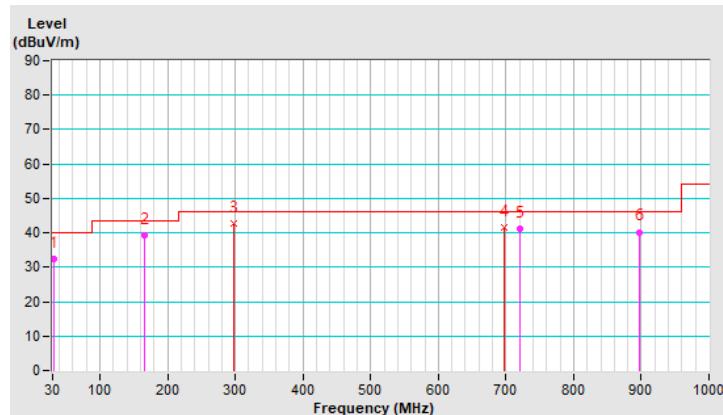

RF Mode	TX 802.11ax (HE80)	Channel	CH 171 : 5855 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)
Input Power (System)	120Vac, 60Hz	Environmental Conditions	22 °C, 62 % RH
Tested By	Sampson Chen		

Antenna Polarity & Test Distance : Horizontal at 3 m

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	167.01	39.7 QP	43.5	-3.8	1.00 H	244	51.8	-12.1
2	196.99	40.1 QP	43.5	-3.4	1.00 H	101	54.7	-14.6
3	234.98	42.5 QP	46.0	-3.5	1.00 H	354	55.9	-13.4
4	297.41	42.5 QP	46.0	-3.5	1.50 H	67	53.0	-10.5
5	699.08	42.2 QP	46.0	-3.8	1.50 H	245	42.5	-0.3
6	721.96	42.1 QP	46.0	-3.9	1.50 H	101	42.1	0.0

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



RF Mode	TX 802.11ax (HE80)	Channel	CH 171 : 5855 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)
Input Power (System)	120Vac, 60Hz	Environmental Conditions	22 °C, 62 % RH
Tested By	Sampson Chen		

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	32.23	32.5 QP	40.0	-7.5	1.00 V	147	45.9	-13.4
2	166.50	39.4 QP	43.5	-4.1	1.50 V	204	51.4	-12.0
3	297.96	42.7 QP	46.0	-3.3	1.50 V	222	53.2	-10.5
4	698.07	41.5 QP	46.0	-4.5	1.00 V	333	41.8	-0.3
5	719.81	41.2 QP	46.0	-4.8	1.00 V	175	41.4	-0.2
6	896.22	40.2 QP	46.0	-5.8	1.00 V	229	36.6	3.6

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

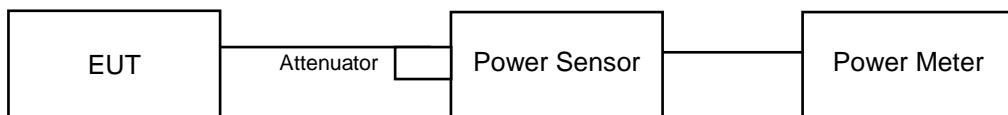
4.2 Transmit Power Measurement

4.2.1 Limits of Transmit Power Measurement

Device Category		Limit (Max Average Power)
<input type="checkbox"/>	Indoor access point	EIRP 36 dBm
<input type="checkbox"/>	Subordinate device	EIRP 36 dBm
<input checked="" type="checkbox"/>	Client device	EIRP 30 dBm

Note: For all U-NII-4 and U-NII-3 & -4 span channels shall met above EIRP values.

Per KDB 662911 Method of conducted output power measurement on IEEE 802.11 devices,


Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \leq 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT} ;

Array Gain = $5 \log(N_{ANT}/N_{SS})$ dB or 3 dB, whichever is less for 20-MHz channel widths with $N_{ANT} \geq 5$.

For power measurements on all other devices: Array Gain = $10 \log(N_{ANT}/N_{SS})$ dB.

4.2.2 Test Setup

4.2.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.2.4 Test Procedure

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.2.5 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.2.6 Test Result

802.11ax (HE80)

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Power (mW)	Total Power (dBm)	Maximum Gain (dBi)	EIRP (mW)	EIRP (dBm)	EIRP Limit (dBm)	Test Result
		Chain 0	Chain 1							
171	5855	18.94	18.91	156.147	21.94	4.92	485.289	26.86	30	Pass

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565
Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232
Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com

Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---