# **Appendix D - Calibration Certificates**







Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191

Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com

http://www.caict.ac.cn

Client

ATL

**Certificate No:** 

Z22-60251

# **CALIBRATION CERTIFICATE**

Object

D2450V2 - SN: 712

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

June 30, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| 24-Sep-21 (CTTL, No.J21X08326)<br>24-Sep-21 (CTTL, No.J21X08326)<br>20-May-22(SPEAG,No.EX3-3846_May22)<br>12-Jan-22(CTTL-SPEAG,No.Z22-60007) | Sep-22<br>Sep-22<br>May-23<br>Jan-23                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 20-May-22(SPEAG,No.EX3-3846_May22)                                                                                                           | May-23                                                                   |
| - ,                                                                                                                                          | •                                                                        |
| 12-Jan-22(CTTL-SPEAG,No.Z22-60007)                                                                                                           | Jan-23                                                                   |
|                                                                                                                                              |                                                                          |
| Cal Date (Calibrated by, Certificate No.)                                                                                                    | Scheduled Calibration                                                    |
| 30 13-Jan-22 (CTTL, No. J22X00409)                                                                                                           | Jan-23                                                                   |
|                                                                                                                                              | Jan-23                                                                   |
| ļ                                                                                                                                            | 30 13-Jan-22 (CTTL, No. J22X00409)<br>373 14-Jan-22 (CTTL, No.J22X00406) |

Name Function Signature

Calibrated by: Zhao Jing SAR Test Engineer

Reviewed by: Lin Hao SAR Test Engineer

Approved by: Qi Dianyuan SAR Project Leader

Issued: July 5, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z22-60251



Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com http://www.caict.ac.cn

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured

#### Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

c) DASY4/5 System Handbook

# **Methods Applied and Interpretation of Parameters:**

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No. Z22-60251 Page 2 of 6





Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com http://www.caict.ac.cn

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1

| DASY Version                 | DASY52                   | 52.10.4     |
|------------------------------|--------------------------|-------------|
| Extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5.1C |             |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |             |
| Frequency                    | 2450 MHz ± 1 MHz         |             |

# **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 39.6 ± 6 %   | 1.81 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

#### **SAR result with Head TSL**

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL         | Condition          |                          |  |
|------------------------------------------------------|--------------------|--------------------------|--|
| SAR measured                                         | 250 mW input power | 13.2 W/kg                |  |
| SAR for nominal Head TSL parameters                  | normalized to 1W   | 52.8 W/kg ± 18.8 % (k=2  |  |
| SAR averaged over 10 ${\it cm}^3$ (10 g) of Head TSL | Condition          |                          |  |
| SAR measured                                         | 250 mW input power | 6.10 W/kg                |  |
| SAR for nominal Head TSL parameters                  | normalized to 1W   | 24.4 W/kg ± 18.7 % (k=2) |  |

Certificate No: Z22-60251





Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com http://v

http://www.caict.ac.cn

# Appendix (Additional assessments outside the scope of CNAS L0570)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 50.4Ω+ 4.63jΩ |
|--------------------------------------|---------------|
| Return Loss                          | - 26.7dB      |

# **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.070 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG |
|-----------------|-------|

Certificate No: Z22-60251 Page 4 of 6





Date: 2022-06-30

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com http://www.caict.ac.cn

# **DASY5 Validation Report for Head TSL**

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 712

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz;  $\sigma = 1.808$  S/m;  $\varepsilon_r = 39.63$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Right Section

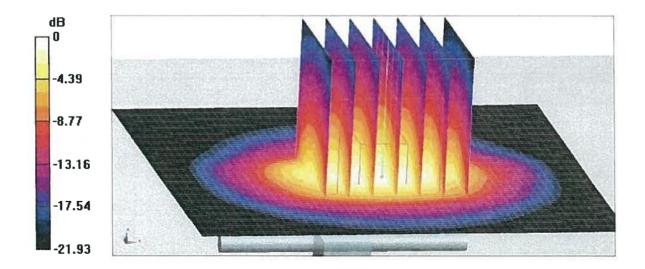
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(7.67, 7.67, 7.67) @ 2450 MHz; Calibrated: 2022-05-20
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP\_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

**Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.76 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.1 W/kg

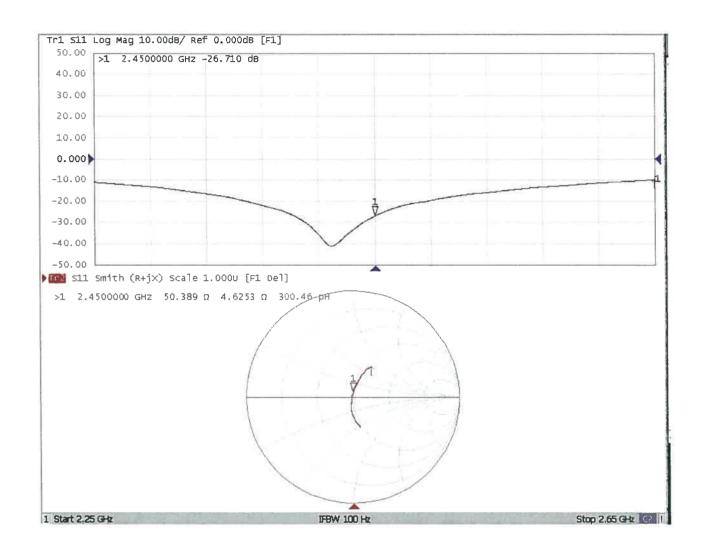
Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 49.1%

Maximum value of SAR (measured) = 21.9 W/kg



0 dB = 21.9 W/kg = 13.40 dBW/kg


Certificate No: Z22-60251 Page 5 of 6



Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com http://www.caict.ac.cn

# Impedance Measurement Plot for Head TSL









Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191

Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com

http://www.caic.ac.cn

Client

ATL

**Certificate No:** 

Z22-60259

# **CALIBRATION CERTIFICATE**

Object D5GHzV2 - SN: 1021

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

June 30, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards       | ID#        | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration |
|-------------------------|------------|-------------------------------------------|-----------------------|
| Power Meter NRP2        | 106277     | 24-Sep-21 (CTTL, No.J21X08326)            | Sep-22                |
| Power sensor NRP8S      | 104291     | 24-Sep-21 (CTTL, No.J21X08326)            | Sep-22                |
| Reference Probe EX3DV4  | SN 3846    | 20-May-22(SPEAG,No.EX3-3846_May22)        | May-23                |
| DAE4                    | SN 1556    | 12-Jan-22(CTTL-SPEAG,No.Z22-60007)        | Jan-23                |
|                         |            |                                           |                       |
| Secondary Standards     | ID#        | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration |
| Signal Generator E4438C | MY49071430 | 13-Jan-22 (CTTL, No. J22X00409)           | Jan-23                |
| Network Analyzer E5071C | MY46110673 | 14-Jan-22 (CTTL, No.J22X00406)            | Jan-23                |
|                         |            |                                           |                       |

Name Function Signature

Calibrated by: Zhao Jing SAR Test Engineer

Reviewed by: Lin Hao SAR Test Engineer

Approved by: Qi Dianyuan SAR Project Leader

Issued: July 5, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z22-60259





Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com http://www.caic.ac.cn

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

# Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

c) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z22-60259 Page 2 of 8





Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com

http://www.caic.ac.cn

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                                                   | 52.10.4                          |
|------------------------------|----------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                   |                                  |
| Phantom                      | Triple Flat Phantom 5.1C                                 |                                  |
| Distance Dipole Center - TSL | 10 mm                                                    | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4 mm, dz = 1.4 mm                               | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5250 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5750 MHz ± 1 MHz |                                  |

# **Head TSL parameters at 5250MHz**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity      | Conductivity     |
|-----------------------------------------|-----------------|-------------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9              | 4.71 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.4 ± 6 %        | 4.68 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         | Mile del cale del |                  |

#### SAR result with Head TSL at 5250MHz

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL   | Condition          |                                   |
|------------------------------------------------|--------------------|-----------------------------------|
| SAR measured                                   | 100 mW input power | 7.83 W/kg                         |
| SAR for nominal Head TSL parameters            | normalized to 1W   | 78.1 W/kg ± 24.4 % ( <i>k</i> =2) |
| SAR averaged over 10 $cm^3$ (10 g) of Head TSL | Condition          |                                   |
| SAR measured                                   | 100 mW input power | 2.22 W/kg                         |
| SAR for nominal Head TSL parameters            | normalized to 1W   | 22.1 W/kg ± 24.2 % (k=2)          |

Certificate No: Z22-60259 Page 3 of 8





Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com http://www.caic.ac.cn

# **Head TSL parameters at 5600MHz**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.5         | 5.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.8 ± 6 %   | 5.06 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

# SAR result with Head TSL at 5600MHz

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL         | Condition          |                                   |
|------------------------------------------------------|--------------------|-----------------------------------|
| SAR measured                                         | 100 mW input power | 8.23 W/kg                         |
| SAR for nominal Head TSL parameters                  | normalized to 1W   | 82.0 W/kg ± 24.4 % ( <i>k</i> =2) |
| SAR averaged over 10 ${\it cm}^3$ (10 g) of Head TSL | Condition          |                                   |
| SAR measured                                         | 100 mW input power | 2.33 W/kg                         |
| SAR for nominal Head TSL parameters                  | normalized to 1W   | 23.2 W/kg ± 24.2 % ( <i>k</i> =2) |

# **Head TSL parameters at 5750MHz**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.4         | 5.22 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.6 ± 6 %   | 5.22 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

#### SAR result with Head TSL at 5750MHz

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL         | Condition          |                                   |
|------------------------------------------------------|--------------------|-----------------------------------|
| SAR measured                                         | 100 mW input power | 7.76 W/kg                         |
| SAR for nominal Head TSL parameters                  | normalized to 1W   | 77.3 W/kg ± 24.4 % ( <i>k</i> =2) |
| SAR averaged over 10 ${\it cm}^3$ (10 g) of Head TSL | Condition          |                                   |
| SAR measured                                         | 100 mW input power | 2.16 W/kg                         |
| SAR for nominal Head TSL parameters                  | normalized to 1W   | 21.5 W/kg ± 24.2 % (k=2)          |

Certificate No: Z22-60259 Page 4 of 8





Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com http://www.caic.ac.cn

# Appendix (Additional assessments outside the scope of CNAS L0570)

#### Antenna Parameters with Head TSL at 5250MHz

| Impedance, transformed to feed point | 51.2Ω- 5.16jΩ |
|--------------------------------------|---------------|
| Return Loss                          | - 25.6dB      |

#### Antenna Parameters with Head TSL at 5600MHz

| Impedance, transformed to feed point | 57.3Ω- 1.46jΩ |
|--------------------------------------|---------------|
| Return Loss                          | - 23.2dB      |

#### Antenna Parameters with Head TSL at 5750MHz

| Impedance, transformed to feed point | 56.5Ω+ 0.48jΩ |
|--------------------------------------|---------------|
| Return Loss                          | - 24.2dB      |

# **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.104 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG |
|-----------------|-------|

Certificate No: Z22-60259 Page 5 of 8



Date: 2022-06-30

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com

http://www.caic.ac.cn

#### **DASY5 Validation Report for Head TSL**

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1021

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz,

Frequency: 5750 MHz Duty Cycle: 1:1

Medium parameters used: f = 5250 MHz;  $\sigma$  = 4.683 S/m;  $\epsilon_r$  = 35.44;  $\rho$  = 1000 kg/m<sup>3</sup> Medium parameters used: f = 5600 MHz;  $\sigma$  = 5.061 S/m;  $\epsilon_r$  = 34.84;  $\rho$  = 1000 kg/m<sup>3</sup> Medium parameters used: f = 5750 MHz;  $\sigma$  = 5.224 S/m;  $\epsilon_r$  = 34.63;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

**DASY5** Configuration:

Probe: EX3DV4 - SN3846; ConvF(5.44, 5.44, 5.44) @ 5250 MHz;
 ConvF(4.75, 4.75, 4.75) @ 5600 MHz; ConvF(5.05, 5.05, 5.05) @ 5750 MHz; Calibrated: 2022-05-20

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP\_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

# Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.44 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 30.7 W/kg

SAR(1 g) = 7.83 W/kg; SAR(10 g) = 2.22 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 66.2%

Maximum value of SAR (measured) = 18.2 W/kg

#### Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.89 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 35.4 W/kg

SAR(1 g) = 8.23 W/kg; SAR(10 g) = 2.33 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 63.1%

Maximum value of SAR (measured) = 20.0 W/kg

Certificate No: Z22-60259



Tel: +86-10-62304633-2117

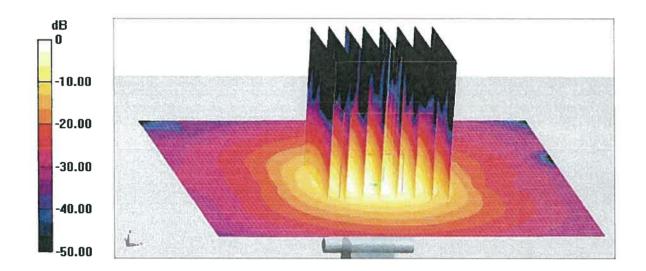
E-mail: cttl@chinattl.com

http://www.caic.ac.cn

# Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 62.55 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 35.6 W/kg

SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.16 W/kg

Smallest distance from peaks to all points 3 dB below = 6.9 mm

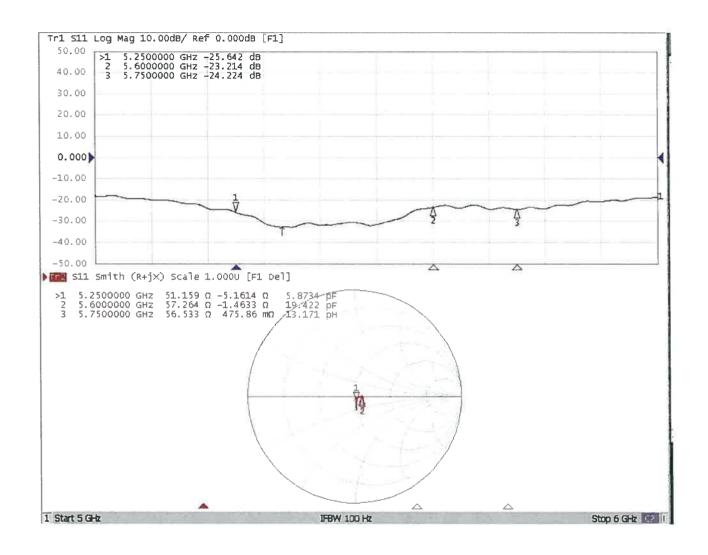
Ratio of SAR at M2 to SAR at M1 = 60.7%

Maximum value of SAR (measured) = 18.6 W/kg



0 dB = 18.6 W/kg = 12.70 dBW/kg

Certificate No: Z22-60259




Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com

http://www.caic.ac.cn

### Impedance Measurement Plot for Head TSL









Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191

Tel: +86-10-62302117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

Client

AUDEN

**Certificate No:** 

Z22-60292

# **CALIBRATION CERTIFICATE**

Object

D5GHzV2 - SN: 1040

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

August 17, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards                           | ID#               | Cal Date (Calibrated by, Certificate No.)                                 | Scheduled Calibration        |
|---------------------------------------------|-------------------|---------------------------------------------------------------------------|------------------------------|
| Power Meter NRP2                            | 106277            | 24-Sep-21 (CTTL, No.J21X08326)                                            | Sep-22                       |
| Power sensor NRP8S                          | 104291            | 24-Sep-21 (CTTL, No.J21X08326)                                            | Sep-22                       |
| Reference Probe EX3DV4                      | SN 7464           | 26-Jan-22(SPEAG,No.EX3-7464_Jan22)                                        | Jan-23                       |
| DAE4                                        | SN 1556           | 12-Jan-22(CTTL-SPEAG,No.Z22-60007)                                        | Jan-23                       |
|                                             |                   |                                                                           |                              |
|                                             |                   |                                                                           |                              |
| Secondary Standards                         | ID#               | Cal Date (Calibrated by, Certificate No.)                                 | Scheduled Calibration        |
| Secondary Standards Signal Generator E4438C | ID#<br>MY49071430 | Cal Date (Calibrated by, Certificate No.) 13-Jan-22 (CTTL, No. J22X00409) | Scheduled Calibration Jan-23 |
| · · · · · · · · · · · · · · · · · · ·       |                   |                                                                           |                              |
| Signal Generator E4438C                     | MY49071430        | 13-Jan-22 (CTTL, No. J22X00409)                                           | Jan-23                       |

Name Function Signature
Calibrated by: Zhao Jing SAR Test Engineer

Reviewed by: Lin Hao SAR Test Engineer

Approved by: Qi Dianyuan SAR Project Leader

Issued: August 23, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z22-60292

Page 1 of 10





Tel: +86-10-62302117

E-mail: emf@caict.ac.cn ht

http://www.caict.ac.cn

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

Certificate No: Z22-60292

c) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.





Tel: +86-10-62302117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1

| DASY Version                 | DASY52                                                                                      | 52.10.4                          |
|------------------------------|---------------------------------------------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                                                      |                                  |
| Phantom                      | Triple Flat Phantom 5.1C                                                                    |                                  |
| Distance Dipole Center - TSL | 10 mm                                                                                       | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4 mm, dz = 1.4 mm                                                                  | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5200 MHz ±1 MHz<br>5300 MHz ±1 MHz<br>5500 MHz ±1 MHz<br>5600 MHz ±1 MHz<br>5800 MHz ±1 MHz |                                  |

# Head TSL parameters at 5200MHz

The following parameters and calculations were applied.

| -                                       | Temperature   | Permittivity | Conductivity    |
|-----------------------------------------|---------------|--------------|-----------------|
| Nominal Head TSL parameters             | 22.0 ℃        | 36.0         | 4.66 mho/m      |
| Measured Head TSL parameters            | (22.0 ±0.2) ℃ | 36.5 ±6 %    | 4.61 mho/m ±6 % |
| Head TSL temperature change during test | <1.0 ℃        |              |                 |

# SAR result with Head TSL at 5200MHz

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL         | Condition          |                                  |
|------------------------------------------------------|--------------------|----------------------------------|
| SAR measured                                         | 250 mW input power | 7.69 W/kg                        |
| SAR for nominal Head TSL parameters                  | normalized to 1W   | 77.1 W/kg ±24.4 % ( <i>k</i> =2) |
| SAR averaged over 10 ${\it cm}^3$ (10 g) of Head TSL | Condition          |                                  |
| SAR measured                                         | 250 mW input power | 2.19 W/kg                        |
| SAR for nominal Head TSL parameters                  | normalized to 1W   | 22.0 W/kg ±24.2 % (k=2)          |

Certificate No: Z22-60292 Page 3 of 10





Tel: +86-10-62302117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

## Head TSL parameters at 5300MHz

The following parameters and calculations were applied.

|                                         | Temperature   | Permittivity | Conductivity    |
|-----------------------------------------|---------------|--------------|-----------------|
| Nominal Head TSL parameters             | 22.0 ℃        | 35.9         | 4.76 mho/m      |
| Measured Head TSL parameters            | (22.0 ±0.2) ℃ | 36.2 ±6 %    | 4.70 mho/m ±6 % |
| Head TSL temperature change during test | <1.0 ℃        |              |                 |

#### SAR result with Head TSL at 5300MHz

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL         | Condition          |                         |
|------------------------------------------------------|--------------------|-------------------------|
| SAR measured                                         | 100 mW input power | 8.01 W/kg               |
| SAR for nominal Head TSL parameters                  | normalized to 1W   | 80.2 W/kg ±24.4 % (k=2) |
| SAR averaged over 10 ${\it cm}^3$ (10 g) of Head TSL | Condition          |                         |
| SAR measured                                         | 100 mW input power | 2.29 W/kg               |
| SAR for nominal Head TSL parameters                  | normalized to 1W   | 22.9 W/kg ±24.2 % (k=2) |

# Head TSL parameters at 5500MHz

The following parameters and calculations were applied.

| :                                       | Temperature   | Permittivity | Conductivity    |
|-----------------------------------------|---------------|--------------|-----------------|
| Nominal Head TSL parameters             | 22.0 ℃        | 35.6         | 4.96 mho/m      |
| Measured Head TSL parameters            | (22.0 ±0.2) ℃ | 35.8 ±6 %    | 4.92 mho/m ±6 % |
| Head TSL temperature change during test | <1.0 ℃        |              |                 |

#### SAR result with Head TSL at 5500MHz

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL       | Condition          |                         |
|----------------------------------------------------|--------------------|-------------------------|
| SAR measured                                       | 100 mW input power | 8.36 W/kg               |
| SAR for nominal Head TSL parameters                | normalized to 1W   | 83.7 W/kg ±24.4 % (k=2) |
| SAR averaged over 10 $\it cm^3$ (10 g) of Head TSL | Condition          |                         |
| SAR measured                                       | 100 mW input power | 2.37 W/kg               |
| SAR for nominal Head TSL parameters                | normalized to 1W   | 23.7 W/kg ±24.2 % (k=2) |





Tel: +86-10-62302117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

## Head TSL parameters at 5600MHz

The following parameters and calculations were applied.

|                                         | Temperature   | Permittivity | Conductivity    |
|-----------------------------------------|---------------|--------------|-----------------|
| Nominal Head TSL parameters             | 22.0 ℃        | 35.5         | 5.07 mho/m      |
| Measured Head TSL parameters            | (22.0 ±0.2) ℃ | 35.2 ±6 %    | 5.01 mho/m ±6 % |
| Head TSL temperature change during test | <1.0 ℃        |              |                 |

#### SAR result with Head TSL at 5600MHz

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL   | Condition          |                         |
|------------------------------------------------|--------------------|-------------------------|
| SAR measured                                   | 100 mW input power | 8.10 W/kg               |
| SAR for nominal Head TSL parameters            | normalized to 1W   | 80.8 W/kg ±24.4 % (k=2) |
| SAR averaged over 10 $cm^3$ (10 g) of Head TSL | Condition          |                         |
| SAR measured                                   | 100 mW input power | 2.31 W/kg               |
| SAR for nominal Head TSL parameters            | normalized to 1W   | 23.0 W/kg ±24.2 % (k=2) |

# Head TSL parameters at 5800MHz

The following parameters and calculations were applied.

|                                         | Temperature   | Permittivity | Conductivity    |
|-----------------------------------------|---------------|--------------|-----------------|
| Nominal Head TSL parameters             | 22.0 ℃        | 35.3         | 5.27 mho/m      |
| Measured Head TSL parameters            | (22.0 ±0.2) ℃ | 34.9 ±6 %    | 5.21 mho/m ±6 % |
| Head TSL temperature change during test | <1.0 ℃        |              |                 |

# SAR result with Head TSL at 5800MHz

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL         | Condition          |                                  |
|------------------------------------------------------|--------------------|----------------------------------|
| SAR measured                                         | 100 mW input power | 7.92 W/kg                        |
| SAR for nominal Head TSL parameters                  | normalized to 1W   | 79.0 W/kg ±24.4 % ( <i>k</i> =2) |
| SAR averaged over 10 ${\it cm}^3$ (10 g) of Head TSL | Condition          |                                  |
| SAR measured                                         | 100 mW input power | 2.23 W/kg                        |
| SAR for nominal Head TSL parameters                  | normalized to 1W   | 22.2 W/kg ±24.2 % (k=2)          |

Certificate No: Z22-60292 Page 5 of 10





Tel: +86-10-62302117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

# Appendix (Additional assessments outside the scope of CNAS L0570)

#### Antenna Parameters with Head TSL at 5200MHz

| Impedance, transformed to feed point | 51.0Ω- 6.24jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 24.1dB      |  |

# Antenna Parameters with Head TSL at 5300MHz

| Impedance, transformed to feed point | 47.8Ω- 2.72jΩ | 30-31 |
|--------------------------------------|---------------|-------|
| Return Loss                          | - 29.0dB      |       |

# Antenna Parameters with Head TSL at 5500MHz

| Impedance, transformed to feed point | 50.8Ω- 4.51jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 26.9dB      |  |

#### Antenna Parameters with Head TSL at 5600MHz

| Impedance, transformed to feed point | 57.2Ω- 1.42jΩ |
|--------------------------------------|---------------|
| Return Loss                          | - 23.3dB      |

#### Antenna Parameters with Head TSL at 5800MHz

| Impedance, transformed to feed point | 55.0Ω- 0.79jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 26.3dB      |  |

Certificate No: Z22-60292 Page 6 of 10





Tel: +86-10-62302117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

## **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.107 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |

Certificate No: Z22-60292 Page 7 of 10





Date: 2022-08-17

Add: No.52 Hua Yuan Bei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62302117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

## **DASY5 Validation Report for Head TSL**

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1040

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz,

Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz, Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz;  $\sigma$  = 4.608 S/m;  $\epsilon_r$  = 36.53;  $\rho$  = 1000 kg/m³ Medium parameters used: f = 5300 MHz;  $\sigma$  = 4.699 S/m;  $\epsilon_r$  = 36.21;  $\rho$  = 1000 kg/m³ Medium parameters used: f = 5500 MHz;  $\sigma$  = 4.92 S/m;  $\epsilon_r$  = 35.79;  $\rho$  = 1000 kg/m³ Medium parameters used: f = 5600 MHz;  $\sigma$  = 5.006 S/m;  $\epsilon_r$  = 35.17;  $\rho$  = 1000 kg/m³ Medium parameters used: f = 5800 MHz;  $\sigma$  = 5.212 S/m;  $\epsilon_r$  = 34.89;  $\rho$  = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(5.6, 5.6, 5.6) @ 5200 MHz; ConvF(5.32, 5.32, 5.32) @ 5300 MHz; ConvF(5.11, 5.11, 5.11) @ 5500 MHz; ConvF(4.91, 4.91, 4.91) @ 5600 MHz; ConvF(5, 5, 5) @ 5800 MHz; Calibrated: 2022-01-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP\_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration /Pin=100mW, d=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.43 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 30.3 W/kg

SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.19 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 66%

Maximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.28 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 8.01 W/kg; SAR(10 g) = 2.29 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 65%

Maximum value of SAR (measured) = 18.9 W/kg

Certificate No: Z22-60292 Page 8 of 10





Tel: +86-10-62302117

E-mail: emf@caict.ac.cn http

http://www.caict.ac.cn

## Dipole Calibration /Pin=100mW, d=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.01 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 35.8 W/kg

# SAR(1 g) = 8.36 W/kg; SAR(10 g) = 2.37 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 63.2%

Maximum value of SAR (measured) = 20.2 W/kg

# Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.14 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 34.4 W/kg

# SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.31 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

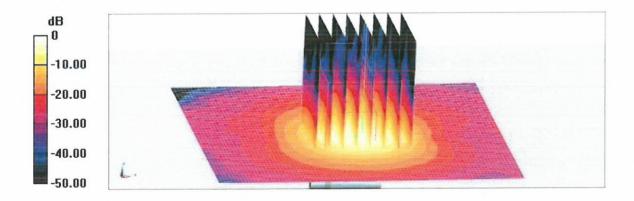
Ratio of SAR at M2 to SAR at M1 = 63.4%

Maximum value of SAR (measured) = 19.4 W/kg

# Dipole Calibration /Pin=100mW, d=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.94 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 36.0 W/kg

#### SAR(1 g) = 7.92 W/kg; SAR(10 g) = 2.23 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 61.2%

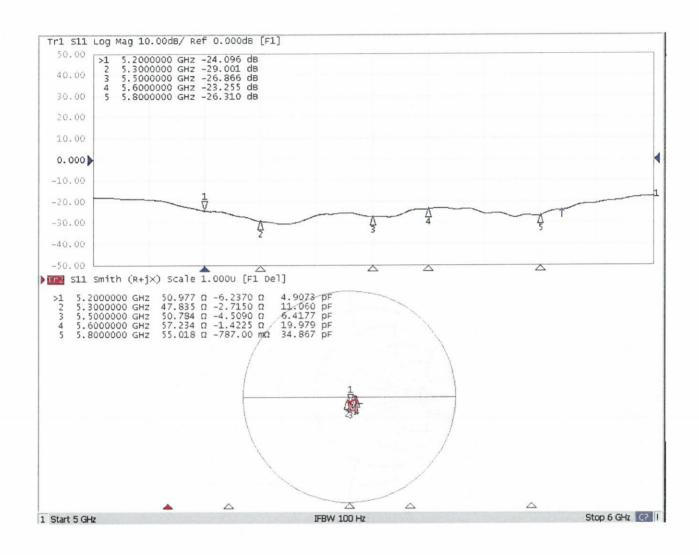
Maximum value of SAR (measured) = 19.5 W/kg



0 dB = 19.5 W/kg = 12.90 dBW/kg

Certificate No: Z22-60292 Page 9 of 10






Tel: +86-10-62302117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

## Impedance Measurement Plot for Head TSL



# Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**Eurofins E&E Wireless Taiwan** 

Certificate No: D6.5GHzV2-1016\_Aug22

Accreditation No.: SCS 0108

# **CALIBRATION CERTIFICATE**

Object D6.5GHzV2 - SN:1016

Calibration procedure(s) QA CAL-22.v6

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date: August 23, 2022

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID#              | Cal Date (Certificate No.)     | Scheduled Calibration |
|----------------------------|------------------|--------------------------------|-----------------------|
| Power sensor R&S NRP33T    | SN: 100967       | 01-Apr-22 (No. 217-03526)      | Apr-23                |
| Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527)      | Apr-23                |
| Mismatch combination       | SN: 84224 / 360D | 26-Apr-21 (No. 217-03353)      | Apr-24                |
| Reference Probe EX3DV4     | SN: 7405         | 02-Jun-22 (No. EX3-7405_Jun22) | Jun-23                |
| DAE4                       | SN: 908          | 27-Jun-22 (No. DAE4-908_Jun22) | Jun-23                |

| Secondary Standards              | ID#           | Check Date (in house)             | Scheduled Check        |
|----------------------------------|---------------|-----------------------------------|------------------------|
| RF generator Anapico APSIN20G    | SN: 827       | 18-Dec-18 (in house check Dec-21) | In house check: Dec-23 |
| Network Analyzer Keysight E5063A | SN:MY54504221 | 31-Oct-19 (in house check Oct-19) | In house check: Oct-22 |

Name Function Signature

Calibrated by: Leif Klysner Laboratory Technician

Approved by: Sven Kühn Technical Manager

Issued: August 28, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D6.5GHzV2-1016\_Aug22

Page 1 of 6

# Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020.

#### Additional Documentation:

b) DASY System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
  exactly below the center marking of the flat phantom section, with the arms oriented parallel to the
  body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D6.5GHzV2-1016\_Aug22 Page 2 of 6

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY6                          | V16.0                            |
|------------------------------|--------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation         |                                  |
| Phantom                      | Modular Flat Phantom           |                                  |
| Distance Dipole Center - TSL | 5 mm                           | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 3.4  mm, dz = 1.4  mm | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 6500 MHz ± 1 MHz               |                                  |

**Head TSL parameters**The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 34.5         | 6.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.5 ± 6 %   | 6.19 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL

| SAR averaged over 1 cm³ (1 g) of Head TSL | Condition          |                         |
|-------------------------------------------|--------------------|-------------------------|
| SAR measured                              | 100 mW input power | 29.1 W/kg               |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 291 W/kg ± 24.7 % (k=2) |

| SAR averaged over 8 cm³ (8 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 6.55 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 65.5 W/kg ± 24.4 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Head TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 5.37 W/kg                |
| SAR for nominal Head TSL parameters         | normalized to 1W   | 53.7 W/kg ± 24.4 % (k=2) |

## **Appendix**

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 54.3 Ω - 6.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.2 dB       |

# **APD (Absorbed Power Density)**

| APD averaged over 1 cm <sup>2</sup> | Condition          |                          |
|-------------------------------------|--------------------|--------------------------|
| APD measured                        | 100 mW input power | 290 W/m²                 |
| APD measured                        | normalized to 1W   | 2900 W/m² ± 29.2 % (k=2) |

| APD averaged over 4 cm <sup>2</sup> | condition          |                                      |
|-------------------------------------|--------------------|--------------------------------------|
| APD measured                        | 100 mW input power | 131 W/m²                             |
| APD measured                        | normalized to 1W   | 1310 W/m <sup>2</sup> ± 28.9 % (k=2) |

<sup>\*</sup>The reported APD values have been derived using psSAR8g.

# **General Antenna Parameters and Design**

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| NA £ 4 1 l      | CDEAC |
|-----------------|-------|
| Manufactured by | SPEAG |
|                 |       |

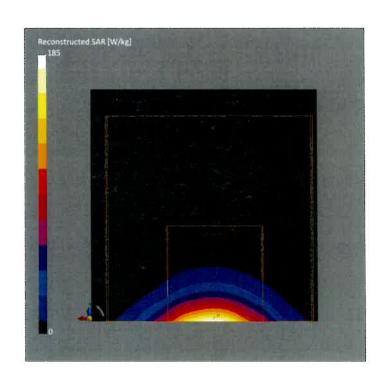
# **DASY6 Validation Report for Head TSL**

Measurement Report for D6.5GHz-1016, UID 0 -, Channel 6500 (6500.0MHz)

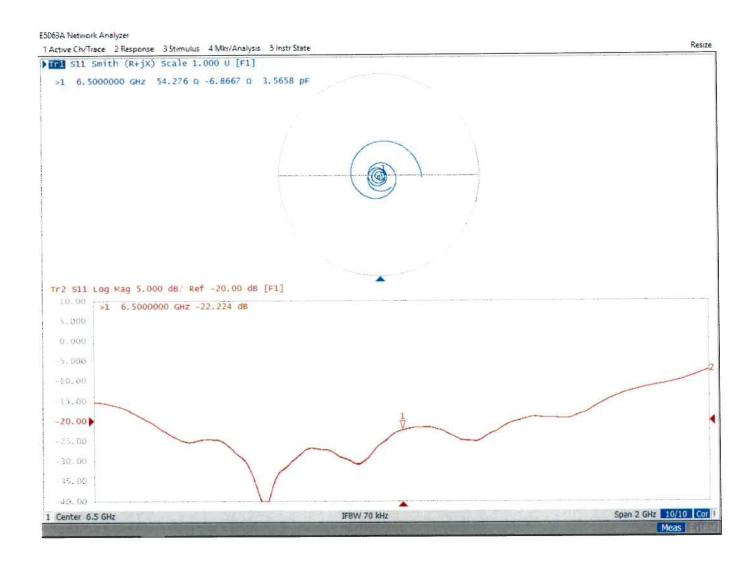
| Device i | under | Test | Pro | perties |
|----------|-------|------|-----|---------|
|----------|-------|------|-----|---------|

|                    | 41.04              |          |          |
|--------------------|--------------------|----------|----------|
| Name, Manufacturer | Dimensions [mm]    | IMEI     | DUT Type |
| D6.5GHz            | 16.0 x 6.0 x 300.0 | SN: 1016 | -        |

#### **Exposure Conditions**


| Phant<br>Section |     | Position, Test<br>Distance<br>[mm] | Band | Group,<br>UID | Frequency<br>[MHz] | Conversion<br>Factor | TSL Cond.<br>[S/m] | TSL<br>Permittivity |
|------------------|-----|------------------------------------|------|---------------|--------------------|----------------------|--------------------|---------------------|
| Flat, F          | ISL | 5.00                               | Band | CW,           | 6500               | 5.50                 | 6.19               | 34.5                |

#### **Hardware Setup**


| Phantom                | TSL             | <b>Probe, Calibration Date</b> | DAE, Calibration Date  |
|------------------------|-----------------|--------------------------------|------------------------|
| MFP V8.0 Center - 1182 | HBBL600-10000V6 | EX3DV4 - SN7405, 2022-06-02    | DAE4 Sn908, 2022-06-27 |

# Scan Setup

| Scan Setup          |                             | Measurement Results |                   |
|---------------------|-----------------------------|---------------------|-------------------|
|                     | Zoom Scan                   |                     | Zoom Scan         |
| Grid Extents [mm]   | 22.0 x 22.0 x 22.0          | Date                | 2022-08-23, 10:11 |
| Grid Steps [mm]     | $3.4 \times 3.4 \times 1.4$ | psSAR1g [W/Kg]      | 29.1              |
| Sensor Surface [mm] | 1.4                         | psSAR8g [W/Kg]      | 6.55              |
| Graded Grid         | Yes                         | psSAR10g [W/Kg]     | 5.37              |
| Grading Ratio       | 1.4                         | Power Drift [dB]    | 0.02              |
| MAIA                | N/A                         | Power Scaling       | Disabled          |
| Surface Detection   | VMS + 6p                    | Scaling Factor [dB] |                   |
| Scan Method         | Measured                    | TSL Correction      | No correction     |
|                     |                             | M2/M1 [%]           | 51.2              |
|                     |                             | Dist 3dB Peak [mm]  | 4.8               |
|                     |                             |                     |                   |



# Impedance Measurement Plot for Head TSL



# **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

ATL (Auden)

Certificate No: 5G-Veri10-2003 Feb22 **CALIBRATION CERTIFICATE** 5G Verification Source 10 GHz - SN: 2003 Object QA CAL-45.v3 Calibration procedure(s) Calibration procedure for sources in air above 6 GHz Calibration date: February 28, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Reference Probe EUmmWV3 SN: 9374 2021-12-21(No. EUmmWV3-9374\_Dec21) Dec-22 DAE4ip SN: 1602 2021-06-25 (No. DAE4ip-1602\_Jun21) Jun-22 ID# Secondary Standards Check Date (in house) Scheduled Check Name Function Signature Calibrated by: Leif Klysner Laboratory Technician Approved by: Niels Kuster Quality Manager Issued: March 1, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 5G-Veri10-2003\_Feb22

Page 1 of 7

# Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

CW

Continuous wave

# Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45-5Gsources
- IEC TR 63170 ED1, "Measurement procedure for the evaluation of power density related to human exposure to radio frequency fields from wireless communication devices operating between 6 GHz and 100 GHz", January 2018

## **Methods Applied and Interpretation of Parameters**

- Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions: (1) 10 GHz: The radiated power is the forward power to the horn antenna minus ohmic and mismatch loss. The forward power is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by far-field measurements. (2) 30, 45, 60 and 90 GHz. The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a vectorial E-field probe. The E-field value stated as calibration value represents the E-field-maxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the horn.
- Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

#### **Calibrated Quantity**

 Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: 5G-Veri10-2003\_Feb22 Page 2 of 7

# **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                   | cDASY6 Module mmWave | V2.4 |
|--------------------------------|----------------------|------|
| Phantom                        | 5G Phantom           |      |
| Distance Horn Aperture - plane | 10 mm                |      |
| XY Scan Resolution             | dx, dy = 7.5 mm      |      |
| Number of measured planes      | 2 (10mm, 10mm + λ/4) |      |
| Frequency                      | 10 GHz ± 10 MHz      |      |

# Calibration Parameters, 10 GHz

**Circular Averaging** 

| 33                     |       |             |             |                   |                                |             |
|------------------------|-------|-------------|-------------|-------------------|--------------------------------|-------------|
| Distance Horn Aperture | Prad1 | Max E-field | Uncertainty | Avg Powe          | er Density                     | Uncertainty |
| to Measured Plane      | (mW)  | (V/m)       | (k = 2)     | psPD              | n+, psPDtot+,<br>mod+)<br>/m²) | (k = 2)     |
|                        |       |             |             | 1 cm <sup>2</sup> | 4 cm <sup>2</sup>              |             |
| 10 mm                  | 124   | 270         | 1.27 dB     | 191               | 154                            | 1.28 dB     |

# **Square Averaging**

| Distance Horn Aperture | Prad1 | Max E-field | Uncertainty | Avg Powe          | er Density               | Uncertainty |
|------------------------|-------|-------------|-------------|-------------------|--------------------------|-------------|
| to Measured Plane      | (mW)  | (V/m)       | (k = 2)     | Avg (psPD         | n+, psPDtot+,            | (k = 2)     |
|                        |       |             |             | •                 | <sup>mod+)</sup><br>/m²) |             |
|                        |       |             |             | 1 cm <sup>2</sup> | 4 cm <sup>2</sup>        |             |
| 10 mm                  | 124   | 270         | 1.27 dB     | 192               | 153                      | 1.28 dB     |

Certificate No: 5G-Veri10-2003\_Feb22

 $<sup>^{\</sup>rm 1}$  Assessed ohmic and mismatch loss plus numerical offset: 0.95 dB

#### Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

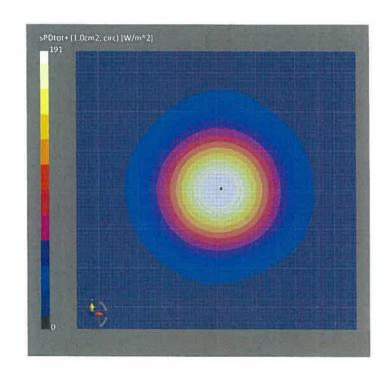
#### **Device under Test Properties**

Name, ManufacturerDimensions [mm]IMEIDUT Type5G Verification Source 10 GHz100.0 x 100.0 x 100.0SN: 2003-

#### **Exposure Conditions**

Phantom Section Position, Test Distance [mm] Group, Frequency [MHz], Conversion Factor Channel Number

5G - 10.0 mm Validation band CW 10000.0, 10000


#### **Hardware Setup**

PhantomMediumProbe, Calibration DateDAE, Calibration DatemmWave Phantom - 1002AirEUmmWV3 - SN9374\_F1-55GHz,<br/>2021-12-21DAE4ip Sn1602,<br/>2021-06-25

#### Scan Setup

|                     | 5G Scan       |                        | 5G Scan           |
|---------------------|---------------|------------------------|-------------------|
| Grid Extents [mm]   | 120.0 x 120.0 | Date                   | 2022-02-28, 17:18 |
| Grid Steps [lambda] | 0.25 x 0.25   | Avg. Area [cm²]        | 1.00              |
| Sensor Surface [mm] | 10.0          | psPDn+ [W/m²]          | 191               |
| MAIA                | MAIA not used | psPDtot+ [W/m²]        | 191               |
|                     |               | psPDmod+ [W/m²]        | 192               |
|                     |               | E <sub>max</sub> [V/m] | 270               |
|                     |               | Power Drift [dB]       | 0.02              |

**Measurement Results** 



#### Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

#### **Device under Test Properties**

Name, Manufacturer

5G Verification Source 10 GHz

Dimensions [mm] 100.0 x 100.0 x 100.0

IME SN: 2003 **DUT Type** 

**Exposure Conditions** 

**Phantom Section** 

Position, Test Distance

Band

Group,

Frequency [MHz],

**Conversion Factor** 

[mm]

10.0 mm

Validation band

CW

**Channel Number** 10000.0,

5G Scan

10.0

120.0 x 120.0

MAIA not used

0.25 x 0.25

10000

**Hardware Setup** 

**Phantom** 

5G -

mmWave Phantom - 1002

Medium

Air

Probe, Calibration Date

EUmmWV3 - SN9374\_F1-55GHz,

2021-12-21

DAE, Calibration Date

1.0

DAE4ip Sn1602, 2021-06-25

Scan Setup

Grid Extents [mm] Grid Steps [lambda] Sensor Surface [mm]

MAIA

**Measurement Results** 

Date Avg. Area [cm<sup>2</sup>] psPDn+ [W/m<sup>2</sup>]

psPDtot+ [W/m<sup>2</sup>] psPDmod+ [W/m<sup>2</sup>]

5G Scan 2022-02-28, 17:18 4.00 153 153 156

270

0.02

E<sub>max</sub> [V/m] Power Drift [dB]

#### Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

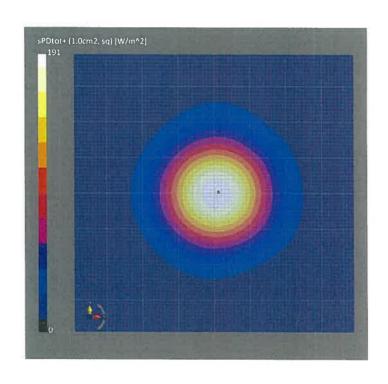
#### **Device under Test Properties**

Name, ManufacturerDimensions [mm]IMEIDUT Type5G Verification Source 10 GHz100.0 x 100.0 x 100.0SN: 2003

#### **Exposure Conditions**

Phantom Section Position, Test Distance [mm] Frequency [MHz], Conversion Factor Channel Number

5G - 10.0 mm Validation band CW 10000.0, 10000


#### **Hardware Setup**

PhantomMediumProbe, Calibration DateDAE, Calibration DatemmWave Phantom - 1002AirEUmmWV3 - SN9374\_F1-55GHz,<br/>2021-12-21DAE4ip Sn1602,<br/>2021-06-25

#### Scan Setup

5G Scan 5G Scan Grid Extents [mm] 120.0 x 120.0 2022-02-28, 17:18 Date Grid Steps [lambda] 0.25 x 0.25 Avg. Area [cm<sup>2</sup>] 1.00 Sensor Surface [mm] 10.0 psPDn+ [W/m²] 191 psPDtot+ [W/m<sup>2</sup>] MAIA MAIA not used 191 psPDmod+ [W/m<sup>2</sup>] 193 E<sub>max</sub> [V/m] 270 Power Drift [dB] 0.02

**Measurement Results** 



#### Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

#### **Device under Test Properties**

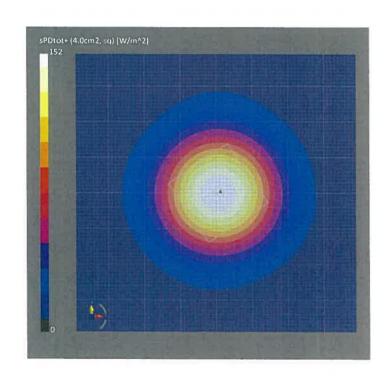
 Name, Manufacturer
 Dimensions [mm]
 IMEI
 DUT Type

 5G Verification Source 10 GHz
 100.0 x 100.0 x 100.0
 SN: 2003

#### **Exposure Conditions**

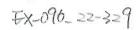
Phantom Section Position, Test Distance [mm] Frequency [MHz], Conversion Factor Channel Number

5G - 10.0 mm Validation band CW 10000.0, 10000


#### **Hardware Setup**

Phantom Medium Probe, Calibration Date DAE, Calibration Date
mmWave Phantom - 1002 Air EUmmWV3 - SN9374\_F1-55GHz, 2021-06-25

#### Scan Setup


5G Scan 5G Scan **Grid Extents [mm]** 120.0 x 120.0 Date 2022-02-28, 17:18 Grid Steps [lambda] 0.25 x 0.25 Avg. Area [cm<sup>2</sup>] 4.00 Sensor Surface [mm] psPDn+ [W/m<sup>2</sup>] 10.0 152 MAIA psPDtot+ [W/m<sup>2</sup>] MAIA not used 152 psPDmod+ [W/m<sup>2</sup>] 156 E<sub>max</sub> [V/m] 270 Power Drift [dB] 0.02

**Measurement Results** 



#### Calibration Laboratory of

Schmid & Partner Engineering AG



Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Eurofins E&E Wireless Taiwan

Certificate No

EUmm-9639\_Aug22

## **CALIBRATION CERTIFICATE**

Object

EUmmWV4 - SN:9639

Calibration procedure(s)

QA CAL-02.v9, QA CAL-25.v7, QA CAL-42.v2

Calibration procedure for E-field probes optimized for close near field

evaluations in air

Calibration date

August 24, 2022

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) ℃ and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards       | ID         | Cal Date (Certificate No.)         | Scheduled Calibration |
|-------------------------|------------|------------------------------------|-----------------------|
| Power sensor NRP110T    | SN: 101244 | 14-Mar-22 (No. 20A1037915)         | Mar-23                |
| Spectrum analyzer FSV40 | SN: 101832 | 25-Jan-22 (No. 4030-315003399)     | Jan-25                |
| Ref. Probe EUmmWV3      | SN: 9374   | 21-Dec-21 (No. EUmmWV3-9374_Dec21) | Dec-22                |
| DAE4                    | SN: 789    | 24-Dec-21 (No. DAE4-789_Dec21)     | Dec-22                |

| Secondary Standards      | ID             | Check Date (in house)             | Scheduled Check        |
|--------------------------|----------------|-----------------------------------|------------------------|
| Generator APSIN26G       | SN: 669        | 28-Mar-17 (in house check May-22) | In house check: May-23 |
| Generator Agilent E8251A | SN: US41140111 | 28-Mar-17 (in house check May-22) | In house check: May-23 |

Name Function Signature

Calibrated by Leif Klysner Laboratory Technician Seaf Allyway

Approved by Sven Kühn Technical Manager

Issued: August 24, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

# Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatori

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary

NORMx,y sensitivity in free space DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization  $\varphi$   $\varphi$  rotation around probe axis

Polarization  $\vartheta$  or rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e.,  $\vartheta = 0$  is

normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Sensor Angles sensor deviation from the probe axis, used to calculate the field orientation and polarization

 $\vec{k}$  is the wave propagation direction

#### Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005

#### Methods Applied and Interpretation of Parameters:

- NORMx,y: Assessed for E-field polarization 

   0 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). For frequencies > 6 GHz, the far field in front of waveguide horn antennas is measured for a set of frequencies in various waveguide bands up to 110 GHz.
- DCPx,y: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- The frequency sensor model parameters are determined prior to calibration based on a frequency sweep (sensor model involving resistors R, R<sub>p</sub>, inductance L and capacitors C, C<sub>p</sub>).
- Ax,y; Bx,y; Cx,y; Dx,y; VRx,y: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).
- Equivalent Sensor Angle: The two probe sensors are mounted in the same plane at different angles. The angles are assessed using the information gained by determining the NORMx (no uncertainty required).
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide / horn setup.