

ONE WORLD ◊ OUR APPROVAL

Test report

231485-2TRFWL

Date of issue: July 5, 2013

Applicant:

Ericsson WiFi Inc.

Product:

AP6401

Model:

KRC 161 393/2

FCC ID:

RAR40025002

IC Registration number:

4674A-40025002

Specifications:

◆ **FCC 47 CFR Part 15 Subpart E, §15.247**

Operation in the 902–928 MHz, 2400–2483.5 MHz, 5725–5850 MHz

◆ **RSS-210, Issue 8, December 2010, Annex 8**

Frequency Hopping and Digital Modulation Systems Operating in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz Bands

www.nemko.com

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada. The tests included in this report are within the scope of this accreditation

FCC 15.247 and RSS-210 A8.docx; Date: May 2013

Test location

Company name:	Nemko Canada Inc.
Address:	303 River Road
City:	Ottawa
Province:	Ontario
Postal code:	K1V 1H2
Country:	Canada
Telephone:	+1 613 737 9680
Facsimile:	+1 613 737 9691
Toll free:	+1 800 563 6336
Website:	www.nemko.com
Site number:	FCC: 176392; IC: 2040A-4 (3 m semi anechoic chamber)

Tested by: Andrey Adelberg, Senior Wireless/EMC Specialist

Reviewed by: Kevin Rose, Wireless/EMC Specialist

Date: July 5, 2013

Signature:

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Table of contents

Table of contents	3
Section 1. Report summary	4
1.1 Applicant and manufacturer	4
1.2 Test specifications	4
1.3 Test methods.....	4
1.4 Statement of compliance	4
1.5 Exclusions.....	4
1.6 Test report revision history	4
Section 2. Summary of test results.....	5
2.1 FCC Part 15 Subpart C, general requirements test results.....	5
2.2 FCC Part 15 Subpart C, intentional radiators test results.....	5
2.3 IC RSS-GEN, Issue 3, test results	5
2.4 IC RSS-210, Issue 8, test results	6
Section 3. Equipment under test (EUT) details	7
3.1 Sample information.....	7
3.2 EUT information	7
3.3 Technical information	7
3.4 Product description and theory of operation	7
3.5 EUT exercise details.....	7
3.6 EUT setup diagram	7
3.7 EUT sub assemblies	8
Section 4. Engineering considerations.....	9
4.1 Modifications incorporated in the EUT.....	9
4.2 Technical judgment	9
4.3 Deviations from laboratory tests procedures	9
Section 5. Test conditions.....	10
5.1 Atmospheric conditions	10
5.2 Power supply range	10
Section 6. Measurement uncertainty.....	11
6.1 Uncertainty of measurement	11
Section 7. Test equipment	12
7.1 Test equipment list.....	12
Section 8. Testing data	13
8.1 FCC 15.207(a) and RSS-Gen 7.2.4 AC power line conducted emissions limits	13
8.2 FCC 15.247(a)(2) and RSS-210 A8.2(a) Minimum 6 dB bandwidth for systems using digital modulation techniques	17
8.3 RSS-Gen 4.6.1 Occupied bandwidth	19
8.4 FCC 15.247(b) and RSS-210 A8.4 (4) Transmitter output power and e.i.r.p. requirements	21
8.5 FCC 15.247(d) and RSS-210 A8.5 Spurious (out-of-band) emissions.....	23
8.6 FCC 15.247(e) and RSS-210 A8.2(b) Power spectral density for digitally modulated devices	40
Section 9. Block diagrams of test set-ups	42
9.1 Radiated emissions set-up.....	42
9.2 Conducted emissions set-up	42

Section 1. Report summary

1.1 Applicant and manufacturer

Company name:	Ericsson WiFi Inc.
Address:	6300 Legacy Drive
City:	Plano
Province/State:	TX
Postal/Zip code:	75024
Country:	USA

1.2 Test specifications

FCC 47 CFR Part 15, Subpart C, Clause 15.247	Operation in the 902–928 MHz, 2400–2483.5 MHz, 5725–5850 MHz
RSS-210, Issue 8, December 2010, Annex 8	Frequency Hopping and Digital Modulation Systems Operating in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz Bands

1.3 Test methods

Guidance for compliance measurements on DTS operating under 15.247	558074 D01 Meas Guidance v03r01 (April 9, 2013)
Emissions testing of transmitters with multiple outputs in the same band (MIMO)	662911 D01 Multiple Transmitter Output v02 (May 28, 2013)
ANSI C64.3 v 2003	American National Standard for Methods of Measurement of Radio- Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Exclusions

None

1.6 Test report revision history

Revision #	Details of changes made to test report
TRF	Original report issued

Section 2. Summary of test results

2.1 FCC Part 15 Subpart C, general requirements test results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31(e)	Variation of power source	Pass ¹
§15.203	Antenna requirement	Pass ²

Notes: ¹ Measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, was performed with the supply voltage varied between 85 % and 115 % of the nominal rated supply voltage. No noticeable output power variation was observed

² The Antennas are located within the enclosure of EUT and not user accessible.

2.2 FCC Part 15 Subpart C, intentional radiators test results

Part	Test description	Verdict
§15.247(a)(1)(i)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
§15.247(a)(1)(ii)	Frequency hopping systems operating in the 5725–5850 MHz band	Not applicable
§15.247(a)(1)(iii)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
§15.247(a)(2)	Minimum 6 dB bandwidth for systems using digital modulation techniques	Pass
§15.247(b)(1)	Maximum peak output power of frequency hopping systems operating in the 2400–2483.5 MHz band and 5725–5850 MHz band	Not applicable
§15.247(b)(2)	Maximum peak output power of Frequency hopping systems operating in the 902–928 MHz band	Not applicable
§15.247(b)(3)	Maximum peak output power of systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands	Pass
§15.247(b)(4)	Maximum peak output power	Pass
§15.247(c)(1)	Fixed point-to-point operation with directional antenna gains greater than 6 dBi	Not applicable
§15.247(c)(2)	Transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams	Not applicable
§15.247(d)	Spurious emissions	Pass
§15.247(e)	Power spectral density for digitally modulated devices	Pass
§15.247(f)	Time of occupancy for hybrid systems	Not applicable

2.3 IC RSS-GEN, Issue 3, test results

Part	Test description	Verdict
4.6.1	Occupied bandwidth	Pass
4.7	Transmitter frequency stability	Not applicable
6.1	Receiver spurious emissions limits (radiated)	Not applicable
6.2	Receiver spurious emissions limits (antenna conducted)	Not applicable
7.2.4	AC power lines conducted emission limits	Pass

Notes: ¹ According to Notice 2012-DRS0126 (from January 2012) section 2.2 of RSS-Gen, Issue 3 has been revised. The EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receiver requirements.

2.4 IC RSS-210, Issue 8, test results

Part	Test description	Verdict
A8.1	Frequency hopping systems	
A8.1 (a)	Bandwidth of a frequency hopping channel	Not applicable
A8.1 (b)	Minimum channel spacing for frequency hopping systems	Not applicable
A8.1 (c)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
A8.1 (d)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
A8.1 (e)	Frequency hopping systems operating in the 5725–5850 MHz band	Not applicable
A8.2	Digital modulation systems	
A8.2 (a)	Minimum 6 dB bandwidth	Pass
A8.2 (b)	Maximum power spectral density	Pass
A8.3	Hybrid systems	
A8.3 (1)	Digital modulation turned off	Not applicable
A8.3 (2)	Frequency hopping turned off	Not applicable
A8.4	Transmitter output power and e.i.r.p. requirements	
A8.4 (1)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
A8.4 (2)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
A8.4 (3)	Frequency hopping systems operating in the 5725–5850 MHz	Not applicable
A8.4 (4)	Systems employing digital modulation techniques	Pass
A8.4 (5)	Point-to-point systems in 2400–2483.5 MHz and 5725–5850 MHz band	Not applicable
A8.4 (6)	Transmitters which operate in the 2400–2483.5 MHz band with multiple directional beams	Not applicable
A8.5	Out-of-band emissions	Pass

Notes: None

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	April 2, 2013
Nemko sample ID number	1

3.2 EUT information

Product name	AP6401
Model	KRC 161 393/2
Serial number	M1531F0159

3.3 Technical information

Operating band	5725–5850 MHz
Operating frequency	5745–5825 MHz (20 MHz channel) and 5755–5815 MHz (40 MHz channel)
Modulation type	802.11a/n
Occupied bandwidth (99 %)	16.83 MHz (802.11a); 17.93 MHz (802.11n HT20); 36.62 MHz (802.11n HT40)
Emission designator	W7D
Power requirements	48 V _{DC}
Antenna information	2 internal 7.2 dBi antennas The EUT uses a unique antenna coupling/ non-detachable antenna to the intentional radiator.

3.4 Product description and theory of operation

The EUT is device designed to operate in the 2.4 GHz band, and 5 GHz 2×2 MIMO ISM and UNII bands. There are two independent radio units. This report covers only the 5 GHz DTS radio.

3.5 EUT exercise details

The EUT was controlled to transmit at desired frequency and modulation from laptop using Art GUI software and telnet session.

3.6 EUT setup diagram

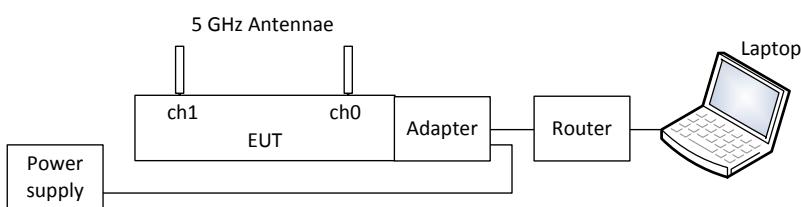


Figure 3.6-1: Setup diagram

3.7 EUT sub assemblies

Table 3.7-1: EUT sub assemblies

Description	Brand name	Model/Part number	Serial number
Laptop	Toshiba	Satellite	Asset number: 441
Switching power supply	Absopulse	PWI 99-P2419	B7481020
Power adapter	BelAir Networks	B2CG164AA-B	M6431G0075
Router	DLink	DGS-1008G	QB2H1B9002679

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	860–1060 mbar

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages $\pm 5\%$, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

Nemko Canada Inc. has calculated measurement uncertainty and is documented in EMC/MUC/001 "Uncertainty in EMC measurements." Measurement uncertainty was calculated using the methods described in CISPR 16-4 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC measurements; as well as described in UKAS LAB34: The expression of Uncertainty in EMC Testing. Measurement uncertainty calculations assume a coverage factor of K=2 with 95% certainty.

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA002047	1 year	Mar. 09/14
Flush mount turntable	Sunol	FM2022	FA002082	—	NCR
Controller	Sunol	SC104V	FA002060	—	NCR
Antenna mast	Sunol	TLT2	FA002061	—	NCR
Power supply	California Inst.	3001I	FA001021	1 year	Feb 08/14
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	May 16/13
Spectrum analyzer	Rohde & Schwarz	FSU	FA001877	1 year	Jan. 16/14
Biconical antenna	Sunol	BC2	FA002078	1 year	Jan. 14/14
Log periodic antenna	Sunol	LP5	FA002077	1 year	Jan. 16/14
Horn antenna #1	EMCO	3115	FA000649	1 year	Mar. 08/14
1–18 GHz pre-amplifier	JCA	JCA118-503	FA002091	1 year	July 03/13
Temperature chamber	Thermotron	SM-16C	FA001030	1 year	NCR
Power meter	Agilent	N1911A	FA001946	1 year	Feb. 13/14
Power sensor	Agilent	N1922A	FA001947	1 year	Feb. 13/14
Horn antenna 18–40 GHz	EMCO	3116	FA001847	1 year	Sept. 06/13
26–40 GHz pre-amplifier	Narda	DBL-2640N610	FA001556	—	VOU
18–26 GHz pre-amplifier	Narda	BBS-1826N612	FA001550	—	VOU

Note: NCR - no calibration required, VOU - verify on use

Section 8. Testing data

8.1 FCC 15.207(a) and RSS-Gen 7.2.4 AC power line conducted emissions limits

8.1.1 Definitions and limits

FCC:

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

IC:

The purpose of this test is to measure unwanted radio frequency currents induced in any AC conductor external to the equipment which could conduct interference to other equipment via the AC electrical network.

Except when the requirements applicable to a given device state otherwise, for any licence-exempt radiocommunication device equipped to operate from the public utility AC power supply, either directly or indirectly, the radio frequency voltage that is conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in Table 2. The tighter limit applies at the frequency range boundaries.

The conducted emissions shall be measured with a 50 Ω /50 μ H line impedance stabilization network (LISN).

Table 8.1-1: Conducted emissions limit

Frequency of emission (MHz)	Quasi-peak	Conducted limit (dB μ V)	Average
0.15–0.5	66 to 56*	56 to 46*	56 to 46*
0.5–5	56	46	46
5–30	60	50	50

Note: * - Decreases with the logarithm of the frequency.

8.1.2 Test summary

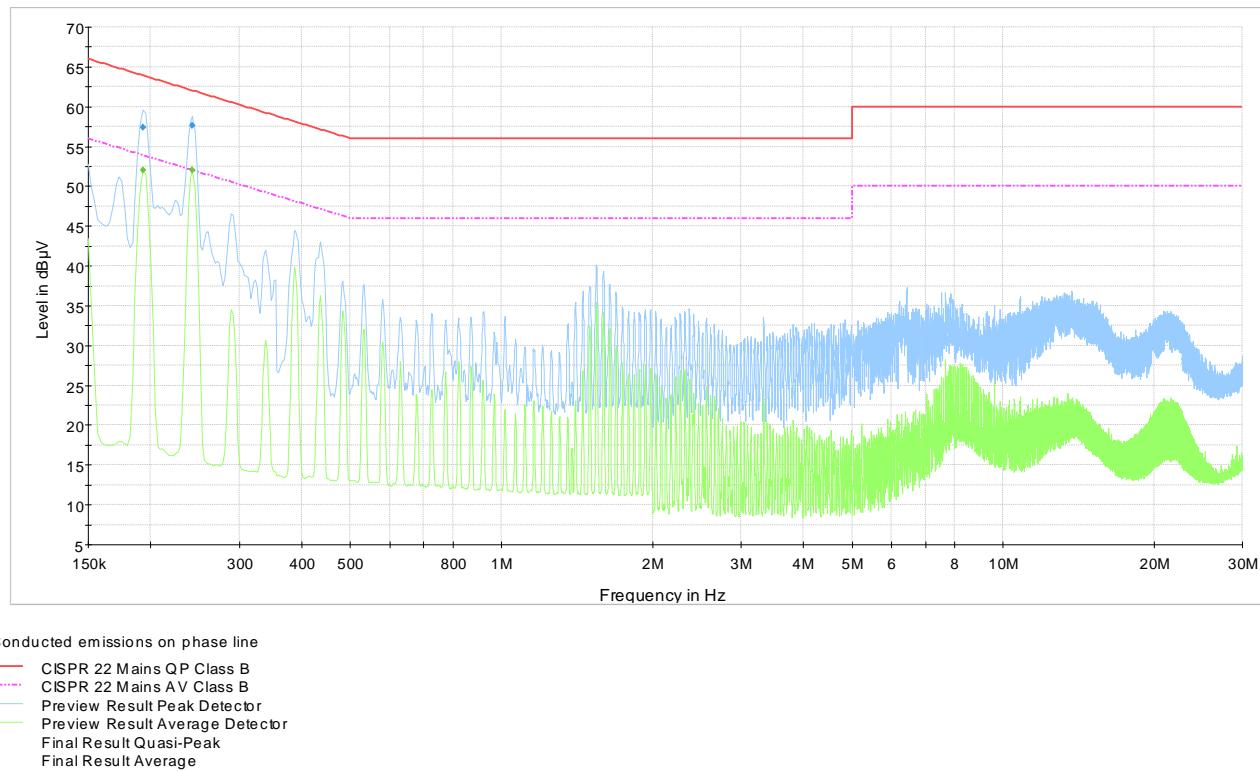
Test date:	April 10, 2013	Temperature:	23 °C
Test engineer:	Andrey Adelberg	Air pressure:	1006 mbar
Verdict:	Pass	Relative humidity:	32 %

8.1.3 Observations, settings and special notes

The EUT was set up as tabletop configuration.

The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance.

A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.


Receiver settings for preview measurements:

Resolution bandwidth:	9 kHz
Video bandwidth:	30 kHz
Detector mode:	Peak and Average
Trace mode:	Max Hold
Measurement time:	100 ms

Receiver settings for final measurements:

Resolution bandwidth:	9 kHz
Video bandwidth:	30 kHz
Detector mode:	Quasi-Peak and Average
Trace mode:	Max Hold
Measurement time:	100 ms

8.1.4 Test data

Plot 8.1-1: Conducted emissions on phase line

Table 8.1-2: Quasi-Peak conducted emissions results on phase line

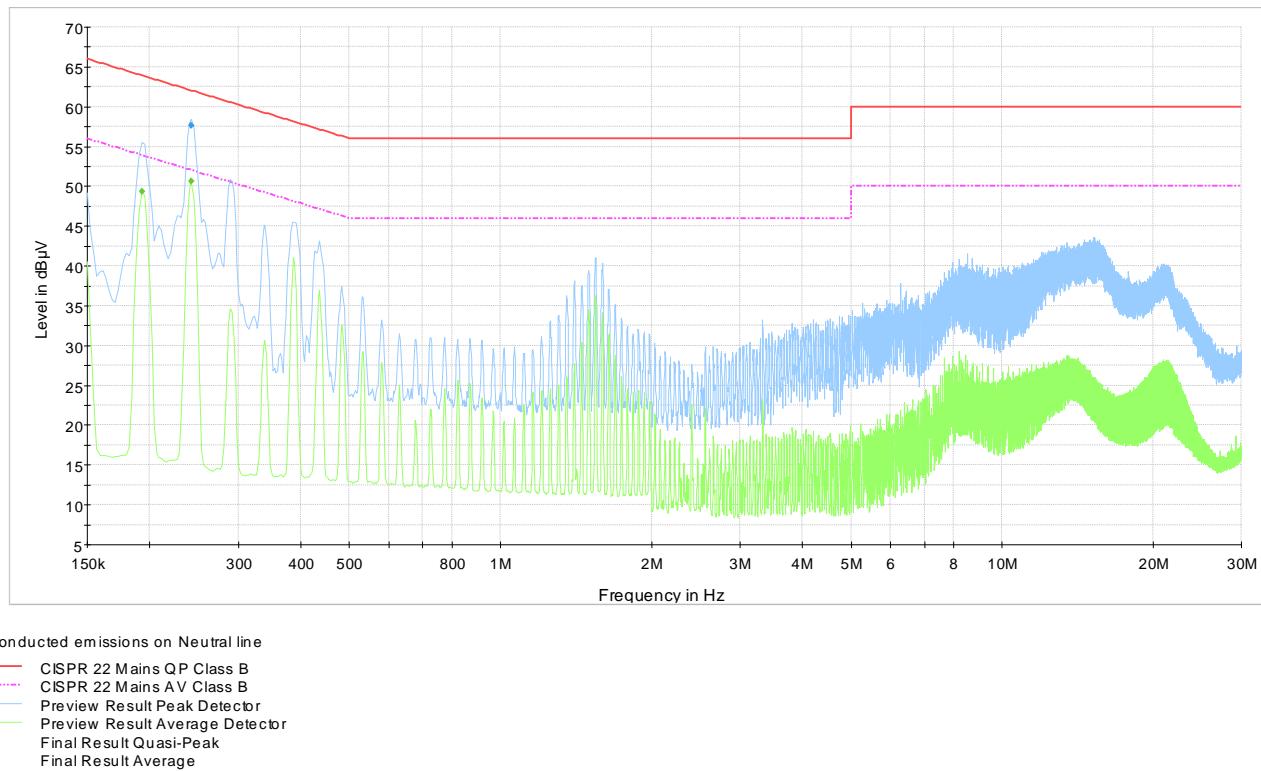
Frequency, MHz	Q-Peak result, dB μ V	Meas. Time, ms	Bandwidth, kHz	Filter	Correction, dB	Margin, dB	Limit, dB μ V
0.192750	57.4	100	9	On	10.0	6.5	63.9
0.242250	57.6	100	9	On	9.7	4.4	62.0

Note: 43.5 dB μ V = 23.2 dB μ V (receiver reading) + 10.1 dB (LISN factor IL) + 0.2 dB (cable loss) + 10 dB (attenuator)

Table 8.1-3: Average conducted emissions results on phase line

Frequency, MHz	Average result, dB μ V	Meas. Time, ms	Bandwidth, kHz	Filter	Correction, dB	Margin, dB	Limit, dB μ V
0.192750	52.1	100	9	On	10.0	1.8	53.9
0.242250	52.0	100	9	On	9.7	0.0	52.0

Sample calculation:


Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB)

Result (dB μ V) = XX dB μ V (reading from receiver) + XX dB (Correction factor)

Example:

43.5 dB μ V = 23.2 dB μ V (receiver reading) + 10.1 dB (LISN factor IL) + 0.2 dB (cable loss) + 10 dB (attenuator)

8.1.4 Test data, continued

Plot 8.1-2: Conducted emissions on neutral line

Table 8.1-4: Quasi-Peak conducted emissions results on neutral line

Frequency, MHz	Q-Peak result, dB μ V	Meas. Time, ms	Bandwidth, kHz	Filter	Correction, dB	Margin, dB	Limit, dB μ V
0.242250	57.7	100	9	On	9.7	4.3	62.0

Note: $43.5 \text{ dB}\mu\text{V} = 23.2 \text{ dB}\mu\text{V} (\text{receiver reading}) + 10.1 \text{ dB} (\text{LISN factor IL}) + 0.2 \text{ dB} (\text{cable loss}) + 10 \text{ dB} (\text{attenuator})$

Table 8.1-5: Average conducted emissions results on neutral line

Frequency, MHz	Average result, dB μ V	Meas. Time, ms	Bandwidth, kHz	Filter	Correction, dB	Margin, dB	Limit, dB μ V
0.192750	49.4	100	9	On	10.0	4.5	53.9
0.242250	50.6	100	9	On	9.7	1.4	52.0

Sample calculation:

Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB)

Result (dB μ V) = XX dB μ V (reading from receiver) + XX dB (Correction factor)

Example:

$43.5 \text{ dB}\mu\text{V} = 23.2 \text{ dB}\mu\text{V} (\text{receiver reading}) + 10.1 \text{ dB} (\text{LISN factor IL}) + 0.2 \text{ dB} (\text{cable loss}) + 10 \text{ dB} (\text{attenuator})$

8.2 FCC 15.247(a)(2) and RSS-210 A8.2(a) Minimum 6 dB bandwidth for systems using digital modulation techniques

8.2.1 Definitions and limits

FCC and IC:

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

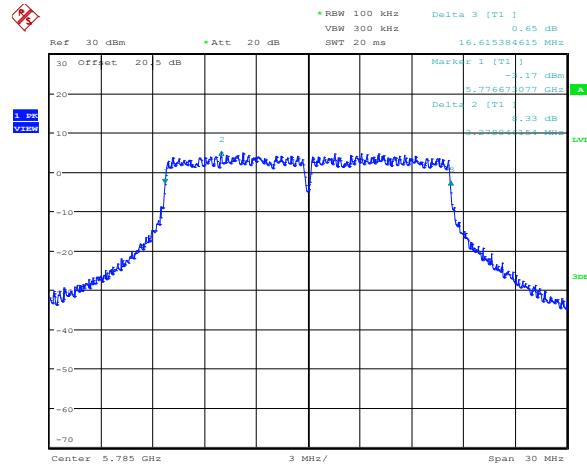
(2) Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

8.2.2 Test summary

Test date:	April 12, 2013	Temperature:	23 °C
Test engineer:	Andrey Adelberg	Air pressure:	1005 mbar
Verdict:	Pass	Relative humidity:	32 %

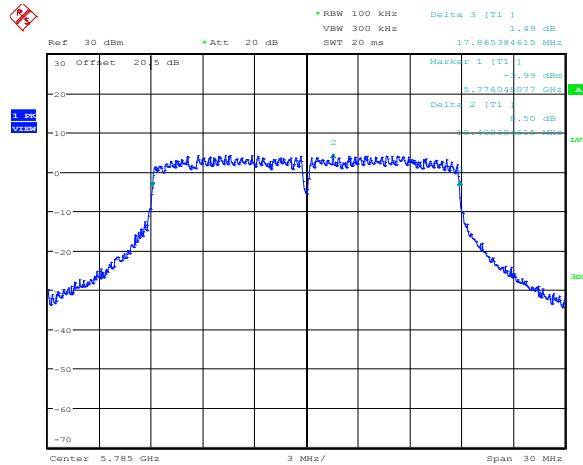
8.2.3 Observations, settings and special notes

Spectrum analyser settings:


Resolution bandwidth:	1–5 % of DTS BW (no wider than 100 kHz)
Video bandwidth:	≥3 × RBW
Frequency span:	30 MHz for 20 MHz channel; 60 MHz for 40 MHz channel
Detector mode:	Peak
Trace mode:	Max Hold

8.2.4 Test data

Table 8.2-1: 6 dB bandwidth results


Antenna chain	Modulation	Frequency, MHz	6 dB bandwidth, MHz	Limit, MHz	Margin, MHz
ch0	802.11a	5745	16.64	0.50	16.14
		5785	16.62	0.50	16.12
		5825	16.65	0.50	16.15
		5745	17.89	0.50	17.39
	802.11n HT20	5785	17.87	0.50	17.37
		5825	17.85	0.50	17.35
		5755	36.76	0.50	36.26
		5785	36.61	0.50	36.11
	802.11n HT40	5815	36.64	0.50	36.14
		5745	16.68	0.50	16.18
		5785	16.63	0.50	16.13
		5825	16.66	0.50	16.16
ch1	802.11a	5745	17.87	0.50	17.37
		5785	17.88	0.50	17.38
		5825	17.84	0.50	17.34
		5755	36.66	0.50	36.16
	802.11n HT20	5785	36.69	0.50	36.19
		5815	36.66	0.50	36.16
		5745	17.87	0.50	17.37
		5785	17.84	0.50	17.34

8.2.4 Test data, continued

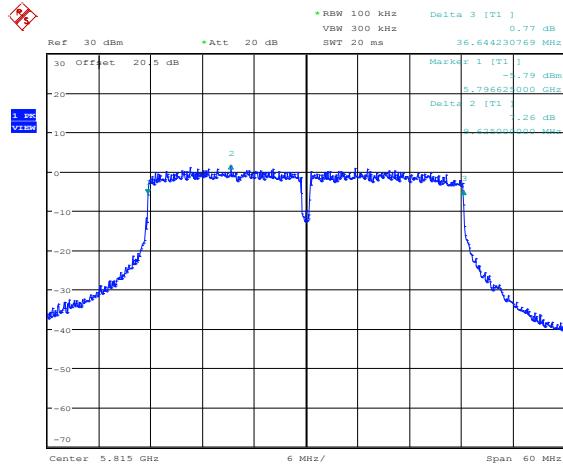

Date: 12.APR.2013 15:19:49

Figure 8.2-1: 6 dB bandwidth on 802.11a, sample plot

Date: 12.APR.2013 15:20:40

Figure 8.2-2: 6 dB bandwidth on 802.11n HT20, sample plot

Date: 12.APR.2013 15:41:38

Figure 8.2-3: 6 dB bandwidth on 802.11n HT40, sample plot

8.3 RSS-Gen 4.6.1 Occupied bandwidth

8.3.1 Definitions and limits

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99 percent emission bandwidth, as calculated or measured.

The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1 percent of the selected span as is possible without being below 1 percent. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold, may produce a wider bandwidth than actual.

The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 percent of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded.

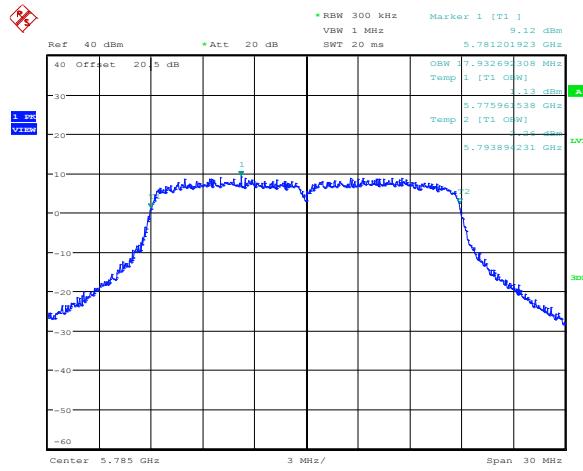
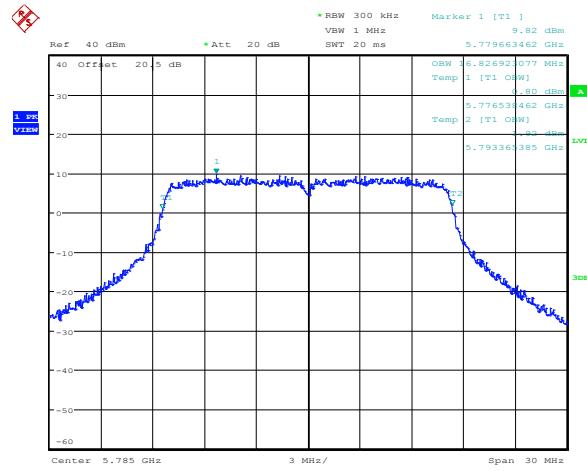
The span between the two recorded frequencies is the occupied bandwidth.

8.3.2 Test summary

Test date:	April 12, 2013	Temperature:	23 °C
Test engineer:	Andrey Adelberg	Air pressure:	1005 mbar
Verdict:	Pass	Relative humidity:	33 %

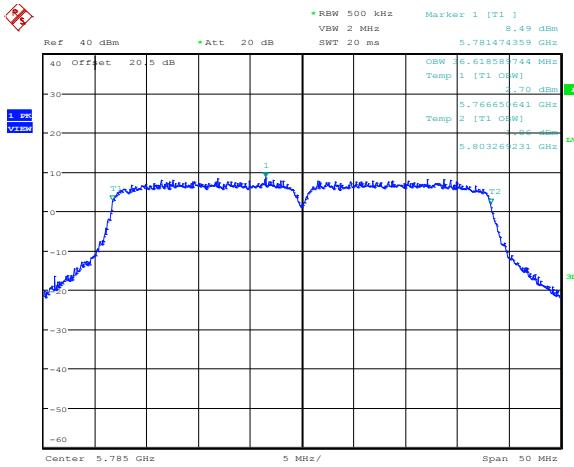
8.3.3 Observations, settings and special notes

Spectrum analyser settings:



Resolution bandwidth:	≥1 % of span
Video bandwidth:	≥3 × RBW
Frequency span:	30 MHz for 20 MHz channel; 50 MHz for 40 MHz channel
Detector mode:	Peak
Trace mode:	Max Hold

8.3.4 Test data

Table 8.3-1: 99 % bandwidth results


Modulation	99 % bandwidth, MHz
802.11a	16.83
802.11n HT20	17.93
802.11n HT40	36.62

8.3.4 Test data, continued

Figure 8.3-1: 99 % bandwidth on 802.11a, sample plot

Figure 8.3-2: 99 % bandwidth on 802.11n HT20, sample plot

Figure 8.3-3: 99 % bandwidth on 802.11n HT40, sample plot

8.4 FCC 15.247(b) and RSS-210 A8.4 (4) Transmitter output power and e.i.r.p. requirements

8.4.1 Definitions and limits

FCC:

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:

- (3) For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
- (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Fixed, point-to-point operation, as used in paragraphs (b)(3)(i) and (b)(3)(ii) of this section, excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

(c) Operation with directional antenna gains greater than 6 dBi.

- (2) In addition to the provisions in paragraphs (b)(1), (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:
 - (i) Different information must be transmitted to each receiver.
 - (ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:
 - (A) The directional gain shall be calculated as the sum of $10 \log$ (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

IC:

A8.4 (4) Transmitter Output Power and e.i.r.p. Requirements for systems employing digital modulation techniques operating in the bands 902–928 MHz, 2400–2483.5 MHz and 5725–5850 MHz bands

For systems employing digital modulation techniques operating in the bands 902–928 MHz, 2400–2483.5 MHz and 5725–5850 MHz, the maximum peak conducted output power shall not exceed 1 W. Except as provided in Section A8.4(5), the e.i.r.p. shall not exceed 4 W.

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power (see RSS-Gen).

8.4.2 Test summary

Test date:	April 16, 2013	Temperature:	22 °C
Test engineer:	Andrey Adelberg	Air pressure:	1005 mbar
Verdict:	Pass	Relative humidity:	32 %

8.4.3 Observations/special notes

The test was performed according to 558074 DTS Meas Guidelines v03r01 section 9.2.3 AVGPM: maximum conducted (average) output power using RF average power meter with a thermocouple detector.

Combined average output power for MIMO 2 × 2 application was calculated as follows: $P_{combined} = 10 \times \log_{10} \left((10^{P_{ch0}/10}) + (10^{P_{ch1}/10}) \right)$

Directional gain for MIMO cross-polarized 2 × 2 is 7.2 dBi. No summation of gain is needed for cross-polarized antennas as per manufacturer's definition of the cross-polarized MIMO type.

Output power limit was calculated as follows: $30 - (7.2 - 6) = 28.8 \text{ dBm}$

8.4.4 Test data

Table 8.4-1: Output power measurements and EIRP calculations results

Modulation	Frequency, MHz	Measured average power, dBm			Output power limit, dBm	Output power margin, dB	Antenna gain, dBi	EIRP, dBm	EIRP limit, dBm	EIRP margin, dB
		On ch0	On ch1	Combined						
802.11a	5745	25.22	25.50	28.37	28.80	0.43	7.20	35.57	36.00	0.43
	5785	25.44	25.78	28.62	28.80	0.18	7.20	35.82	36.00	0.18
	5825	25.38	25.67	28.54	28.80	0.26	7.20	35.74	36.00	0.26
802.11n HT20	5745	25.26	25.36	28.32	28.80	0.48	7.20	35.52	36.00	0.48
	5785	25.33	25.76	28.56	28.80	0.24	7.20	35.76	36.00	0.24
	5825	25.50	25.59	28.56	28.80	0.24	7.20	35.76	36.00	0.24
802.11n HT40	5755	25.24	24.31	27.81	28.80	0.99	7.20	35.01	36.00	0.99
	5785	25.36	24.84	28.12	28.80	0.68	7.20	35.32	36.00	0.68
	5815	25.55	24.94	28.27	28.80	0.53	7.20	35.47	36.00	0.53

8.5 FCC 15.247(d) and RSS-210 A8.5 Spurious (out-of-band) emissions

8.5.1 Definitions and limits

FCC:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

IC:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under Section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required.

Table 8.5-1: FCC §15.209 and RSS-Gen – Radiated emission limits

Frequency, MHz	Field strength of emissions		Measurement distance, m
	µV/m	dBµV/m	
0.009–0.490*	2400/F	67.6 – 20 × log ₁₀ (F)	300
0.490–1.705*	24000/F	87.6 – 20 × log ₁₀ (F)	30
1.705–30.0*	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Notes: Applicable only to FCC requirements

In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

Table 8.5-2: IC restricted frequency bands

MHz	MHz	MHz	GHz
0.090–0.110	12.51975–12.52025	399.9–410	5.35–5.46
2.1735–2.1905	12.57675–12.57725	608–614	7.25–7.75
3.020–3.026	13.36–13.41	960–1427	8.025–8.5
4.125–4.128	16.42–16.423	1435–1626.5	9.0–9.2
4.17725–4.17775	16.69475–16.69525	1645.5–1646.5	9.3–9.5
4.20725–4.20775	16.80425–16.80475	1660–1710	10.6–12.7
5.677–5.683	25.5–25.67	1718.8–1722.2	13.25–13.4
6.215–6.218	37.5–38.25	2200–2300	14.47–14.5
6.26775–6.26825	73–74.6	2310–2390	15.35–16.2
6.31175–6.31225	74.8–75.2	2655–2900	17.7–21.4
8.291–8.294	108–138	3260–3267	22.01–23.12
8.362–8.366	156.52475–156.52525	3332–3339	23.6–24.0
8.37625–8.38675	156.7–156.9	3345.8–3358	31.2–31.8
8.41425–8.41475	240–285	3500–4400	36.43–36.5
12.29–12.293	322–335.4	4500–5150	Above 38.6

Note: Certain frequency bands listed in Table 8.5-2 and above 38.6 GHz are designated for low-power licence-exempt applications. These frequency bands and the requirements that apply to the devices are set out in this Standard

8.5.1 Definitions and limits, continued

Table 8.5-3: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090–0.110	16.42–16.423	399.9–410	4.5–5.15
0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725–4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362–8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625–8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322–335.4	3600–4400	Above 38.6
13.36–13.41			

8.5.2 Test summary

Test date:	April 16, 2013	Temperature:	22 °C
Test engineer:	Andrey Adelberg	Air pressure:	1006 mbar
Verdict:	Pass	Relative humidity:	33 %

8.5.3 Observations/special notes

The spectrum was searched from 30 MHz to the 10th harmonic.

EUT was set to transmit with 100 % duty cycle.

Radiated measurements were performed at a distance of 3 m, the EUT was transmitting on both MIMO chains simultaneously.

Since fundamental power was tested using average method, the spurious emissions limit is –30 dBc/100 kHz

Spectrum analyser settings for radiated measurements within restricted bands below 1 GHz:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyser settings for peak radiated measurements within restricted bands above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyser settings for average radiated measurements within restricted bands above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	10 Hz
Detector mode:	Peak
Trace mode:	Max Hold

8.5.3 Observations/special notes, continued

Spectrum analyser settings for conducted spurious emissions measurements:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

In the Figures from 8.5-1 to 8.5-18 the average limit line above 1 GHz (54 dB μ V/m) was corrected with the direct total antenna gain (7.2 dBi) and double-antenna-port correction factor ($10 \times \log_{10}(2) = 3$ dB). The limit was calculated as follows: $54 \text{ dB}\mu\text{V/m} - 95.23 \text{ dB} - 3 \text{ dB} - 7.2 \text{ dBi} = -51.43 \text{ dBm}$.

Below 1 GHz an additional ground reflection factor of -4.7 dB was added to the calculation.

8.5.4 Test data

Figure 8.5-1: Conducted peak spurious emissions within restricted bands for 802.11a, cho, low channel

Figure 8.5-2: Conducted peak spurious emissions within restricted bands for 802.11n HT20, cho, low channel

Figure 8.5-3: Conducted peak spurious emissions within restricted bands for 802.11n HT40, cho, low channel

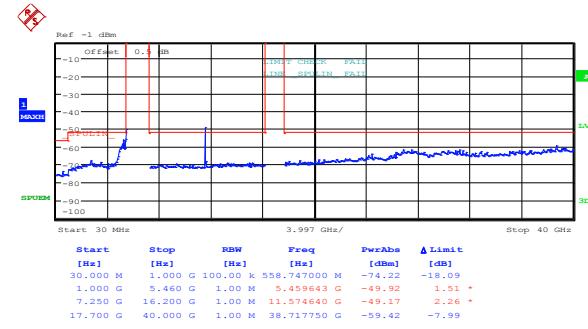


Figure 8.5-4: Conducted peak spurious emissions within restricted bands for 802.11a, cho, mid channel

Note: In the above plots there are two traces present; the red trace indicates the average limit as defined within the specification, the blue trace is a peak detector measurement of the spurious emissions from the EUT. Peak emissions meeting the average limit are deemed to satisfy both the peak and average limits. Tabular measurements above indicate the highest measured peak levels within defined ranges. Any peak measurements exceeding the average limit are re-measured using an average detector; the average measurement results are then compared to the average limit. Please refer to Figures from 8.5-19 to 8.5-33 for formal peak and average measurements.

8.5.4 Test data, continued

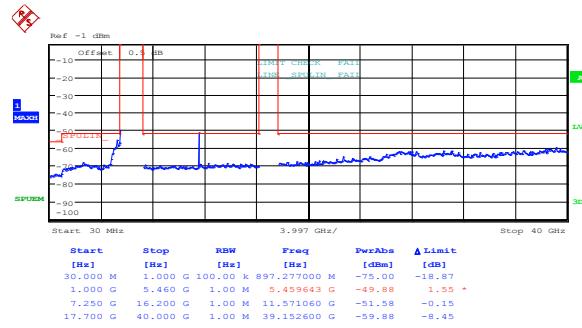


Figure 8.5-5: Conducted peak spurious emissions within restricted bands for 802.11n HT20, cho, mid channel

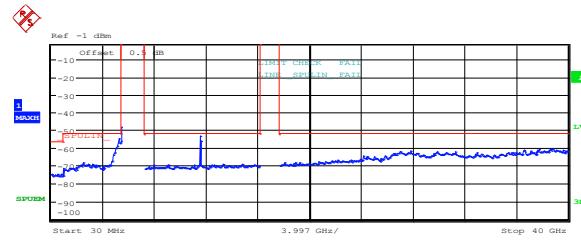


Figure 8.5-6: Conducted peak spurious emissions within restricted bands for 802.11n HT40, cho, mid channel

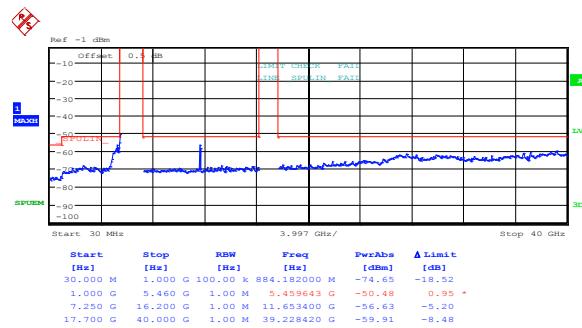


Figure 8.5-7: Conducted peak spurious emissions within restricted bands for 802.11a, cho, high channel

Figure 8.5-8: Conducted peak spurious emissions within restricted bands for 802.11n HT20, cho, high channel

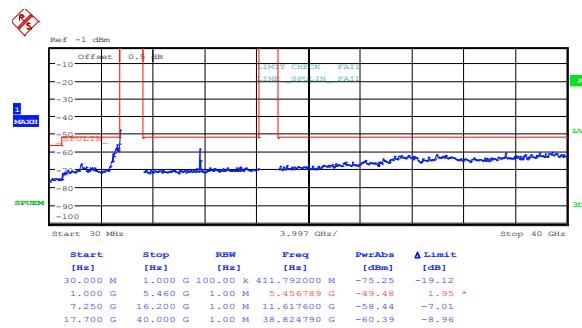


Figure 8.5-9: Conducted peak spurious emissions within restricted bands for 802.11n HT40, cho, high channel

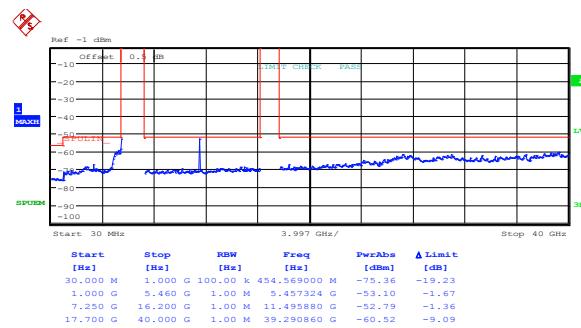


Figure 8.5-10: Conducted peak spurious emissions within restricted bands for 802.11a, ch1, low channel

Note: In the above plots there are two traces present; the red trace indicates the average limit as defined within the specification, the blue trace is a peak detector measurement of the spurious emissions from the EUT. Peak emissions meeting the average limit are deemed to satisfy both the peak and average limits. Tabular measurements above indicate the highest measured peak levels within defined ranges. Any peak measurements exceeding the average limit are re-measured using an average detector; the average measurement results are then compared to the average limit. Please refer to Figures from 8.5-19 to 8.5-33 for formal peak and average measurements.

8.5.4 Test data, continued

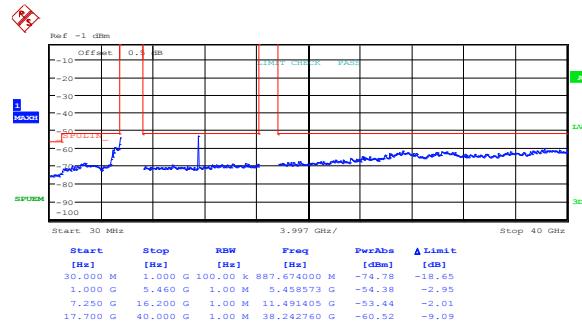


Figure 8.5-11: Conducted peak spurious emissions within restricted bands for 802.11n HT20, ch1, low channel

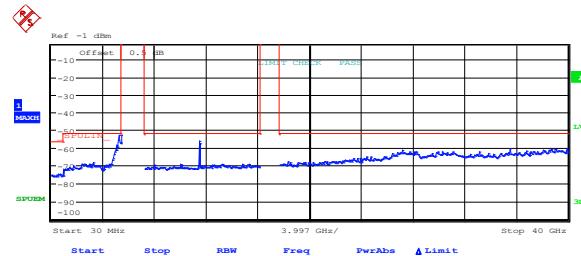


Figure 8.5-12: Conducted peak spurious emissions within restricted bands for 802.11n HT40, ch1, low channel

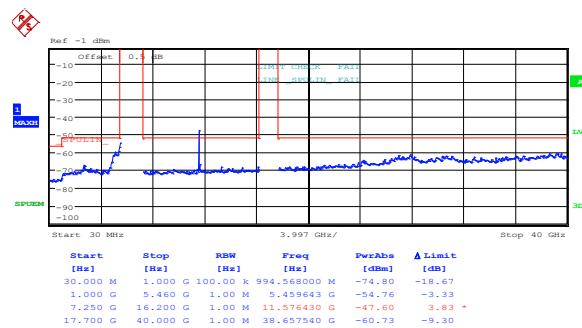


Figure 8.5-13: Conducted peak spurious emissions within restricted bands for 802.11a, ch1, mid channel

Figure 8.5-14: Conducted peak spurious emissions within restricted bands for 802.11n HT20, ch1, mid channel

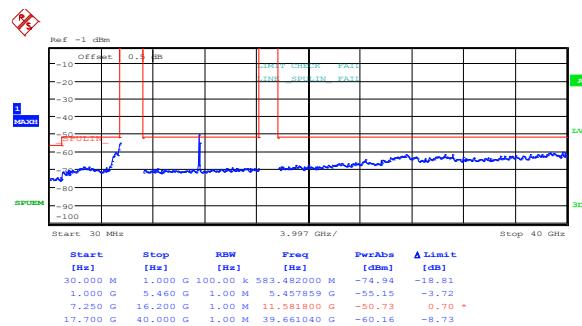


Figure 8.5-15: Conducted peak spurious emissions within restricted bands for 802.11n HT40, ch1, mid channel

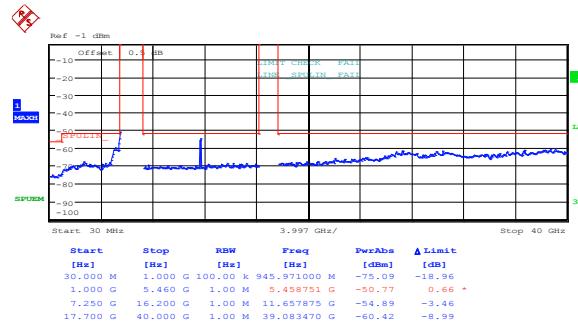
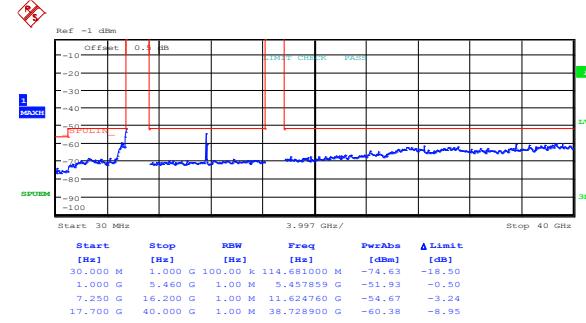



Figure 8.5-16: Conducted peak spurious emissions within restricted bands for 802.11a, ch1, high channel


Note: In the above plots there are two traces present; the red trace indicates the average limit as defined within the specification, the blue trace is a peak detector measurement of the spurious emissions from the EUT. Peak emissions meeting the average limit are deemed to satisfy both the peak and average limits. Tabular measurements above indicate the highest measured peak levels within defined ranges. Any peak measurements exceeding the average limit are re-measured using an average detector; the average measurement results are then compared to the average limit. Please refer to Figures from 8.5-19 to 8.5-33 for formal peak and average measurements.

8.5.4 Test data, continued

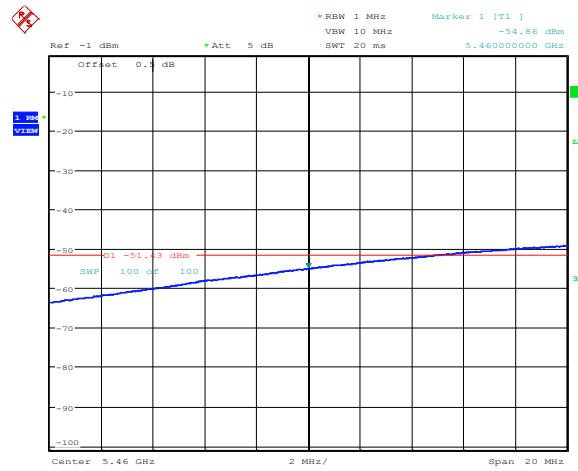


Figure 8.5-17: Conducted peak spurious emissions within restricted bands for 802.11n HT20, ch1, high channel

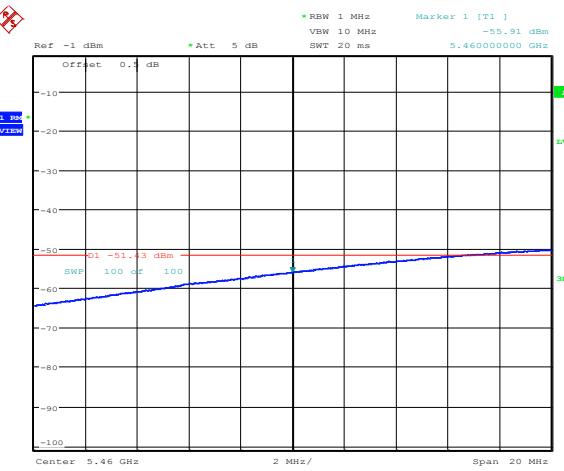

Note: In the above plots there are two traces present; the red trace indicates the average limit as defined within the specification, the blue trace is a peak detector measurement of the spurious emissions from the EUT. Peak emissions meeting the average limit are deemed to satisfy both the peak and average limits. Tabular measurements above indicate the highest measured peak levels within defined ranges. Any peak measurements exceeding the average limit are re-measured using an average detector; the average measurement results are then compared to the average limit. Please refer to Figures from 8.5–19 to 8.5–33 for formal peak and average measurements.

Figure 8.5-18: Conducted peak spurious emissions within restricted bands for 802.11n HT40, ch1, high channel

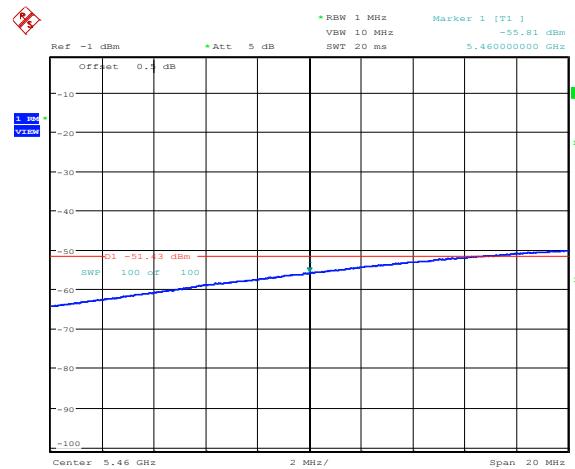
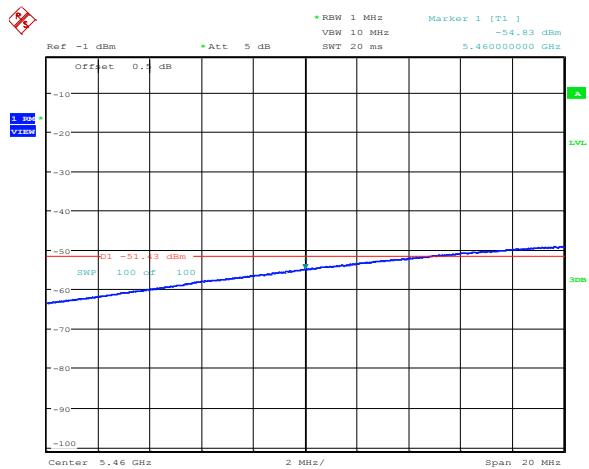
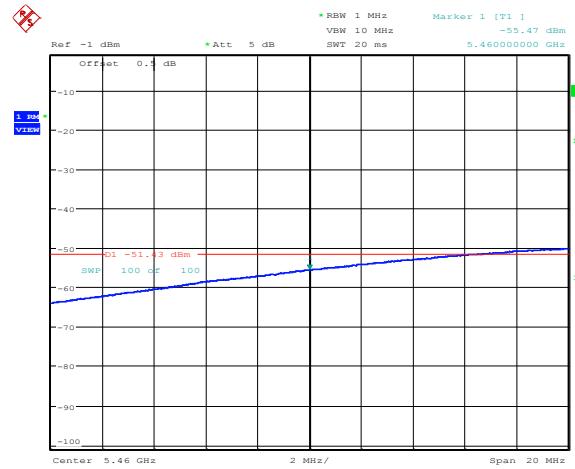
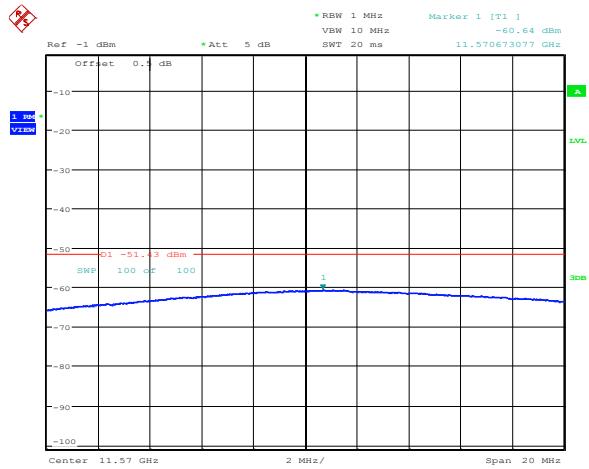





Figure 8.5-19: Conducted average spurious emission at 5.46 GHz for 802.11a, ch0, low channel

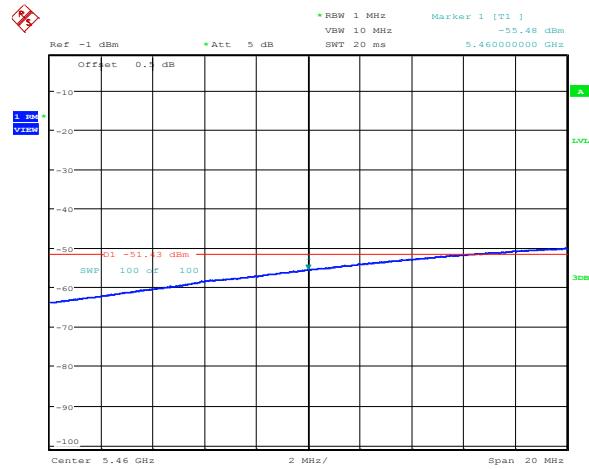
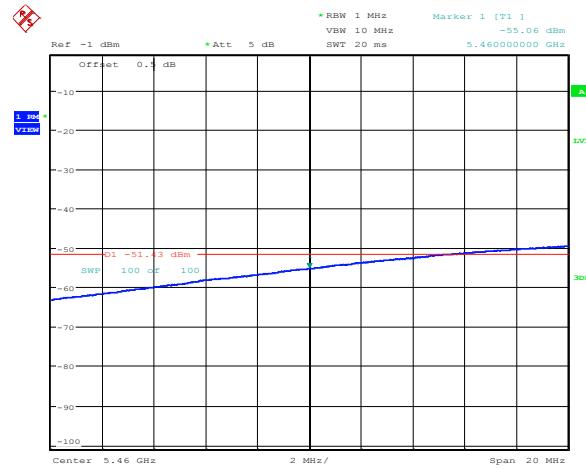


Figure 8.5-20: Conducted average spurious emission at 5.46 GHz for 802.11a, ch0, mid channel

8.5.4 Test data, continued



8.5.4 Test data, continued

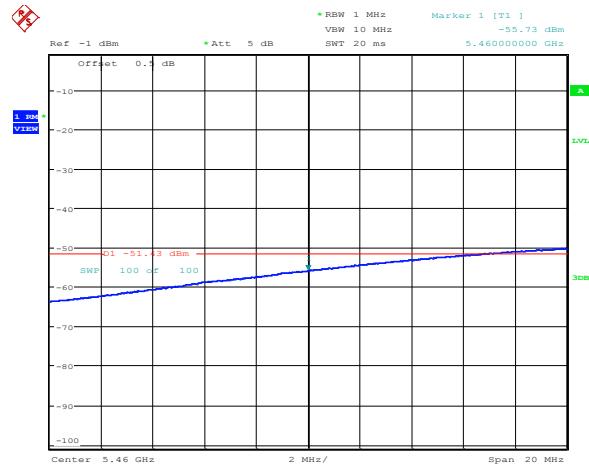

Date: 19.APR.2013 14:45:17

Figure 8.5-25: Conducted average spurious emission at 5.46 GHz for 802.11n HT20, cho, high channel

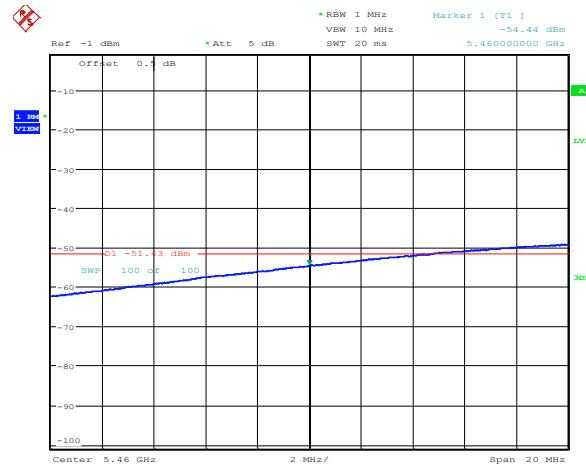
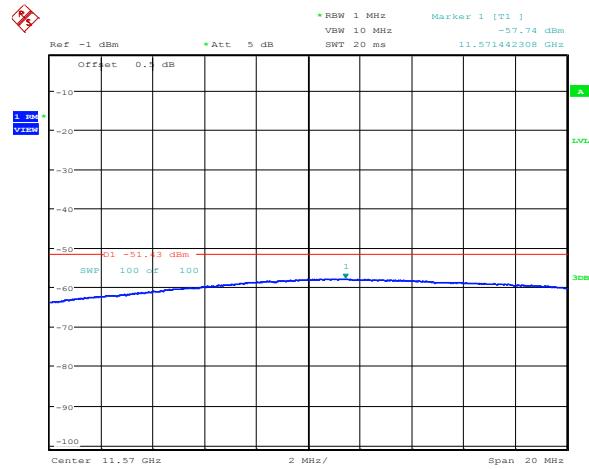
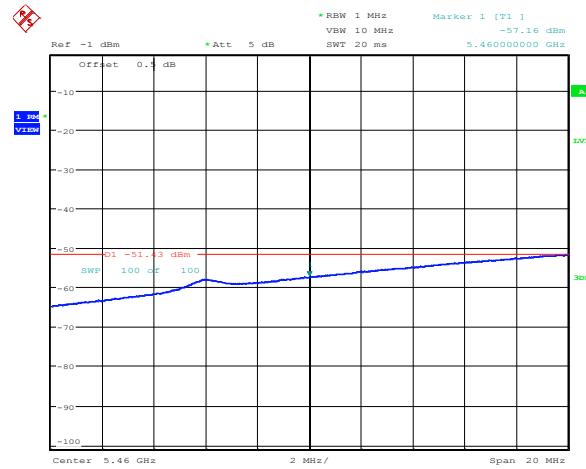

Date: 19.APR.2013 14:40:36

Figure 8.5-26: Conducted average spurious emission at 5.46 GHz for 802.11n HT40, cho, low channel

Date: 19.APR.2013 14:39:33


Figure 8.5-27: Conducted average spurious emission at 5.46 GHz for 802.11n HT40, cho, mid channel

Date: 19.APR.2013 14:41:02


Figure 8.5-28: Conducted average spurious emission at 5.46 GHz for 802.11n HT40, cho, high channel

8.5.4 Test data, continued

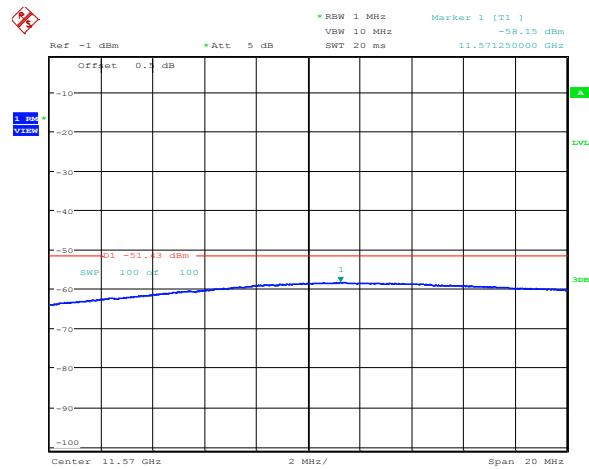

Date: 19.APR.2013 14:57:38

Figure 8.5-29: Conducted average spurious emission at 11.57 GHz for 802.11a, ch1, mid channel

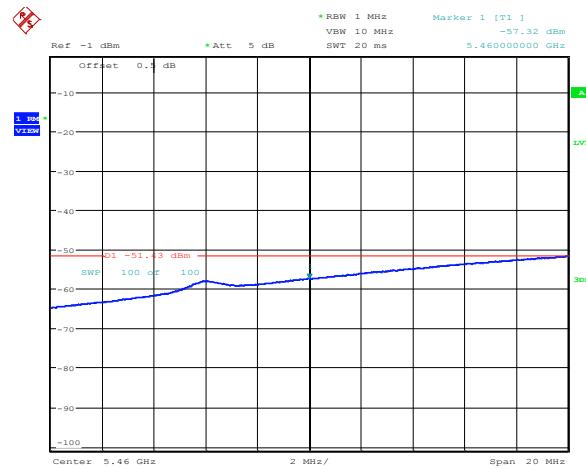
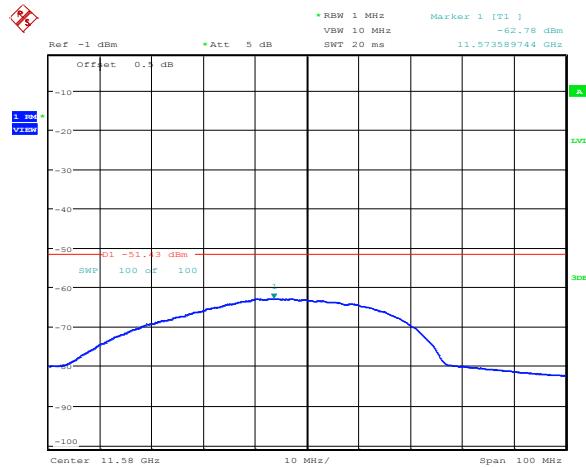
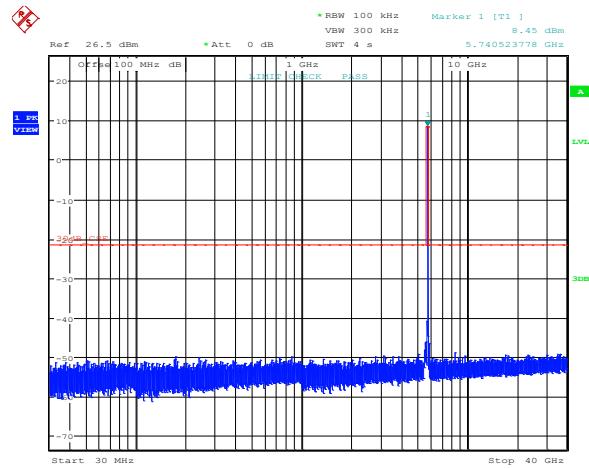

Date: 19.APR.2013 14:58:40

Figure 8.5-30: Conducted average spurious emission at 5.46 GHz for 802.11a, ch1, high channel

Date: 19.APR.2013 14:57:10


Figure 8.5-31: Conducted average spurious emission at 11.57 GHz for 802.11n HT20, ch1, mid channel

Date: 19.APR.2013 14:59:08


Figure 8.5-32: Conducted average spurious emission at 5.46 GHz for 802.11n HT20, ch1, mid channel

8.5.4 Test data, continued

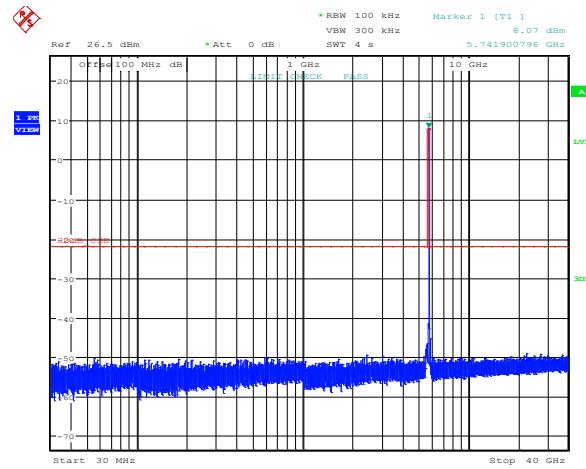
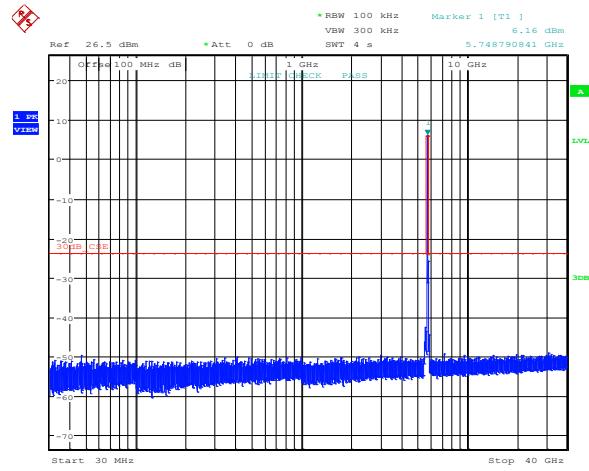
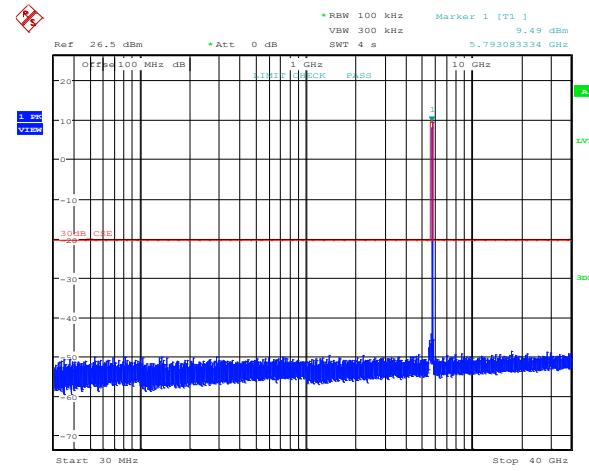

Date: 19.APR.2013 15:00:20

Figure 8.5-33: Conducted average spurious emission at 11.58 GHz for 802.11n HT40, ch1, mid channel

Date: 16.APR.2013 12:43:26


Figure 8.5-34: Conducted spurious emissions outside restricted bands for 802.11a, ch0, low channel

Date: 16.APR.2013 12:44:38


Figure 8.5-35: Conducted spurious emissions outside restricted bands for 802.11n HT20, ch0, low channel

8.5.4 Test data, continued

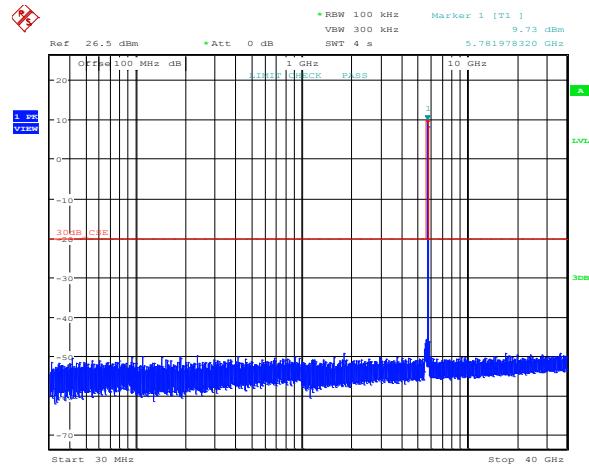

Date: 16.APR.2013 12:46:10

Figure 8.5-36: Conducted spurious emissions outside restricted bands for 802.11n HT40, ch0, low channel

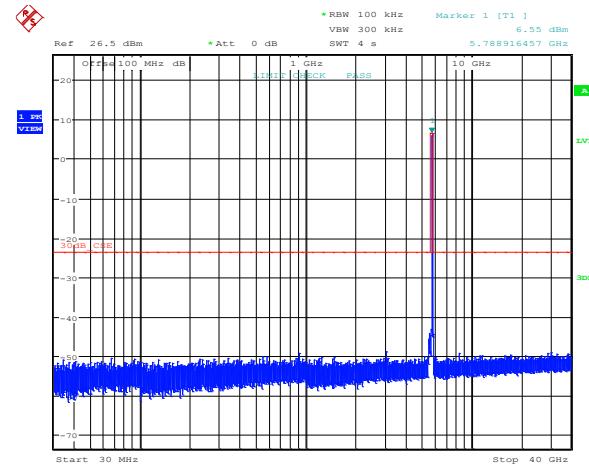
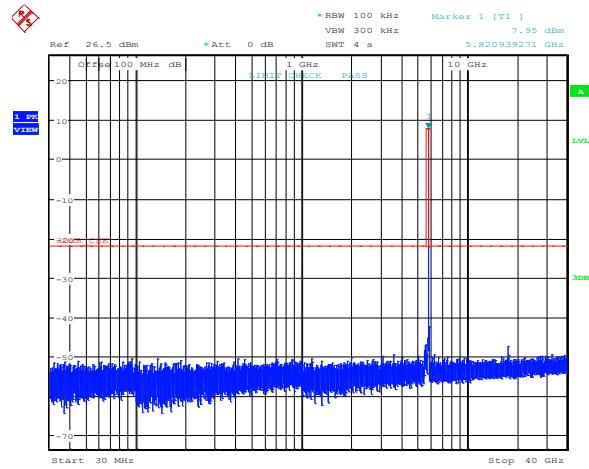
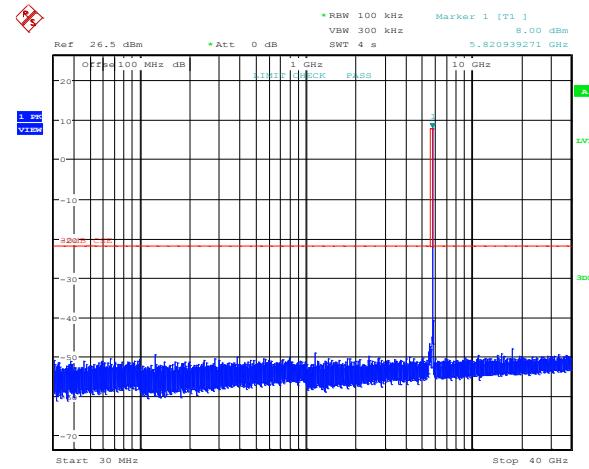

Date: 16.APR.2013 12:40:58

Figure 8.5-37: Conducted spurious emissions outside restricted bands for 802.11a, ch0, mid channel

Date: 16.APR.2013 12:39:23


Figure 8.5-38: Conducted spurious emissions outside restricted bands for 802.11n HT20, ch0, mid channel

Date: 16.APR.2013 12:42:05


Figure 8.5-39: Conducted spurious emissions outside restricted bands for 802.11n HT40, ch0, mid channel

8.5.4 Test data, continued

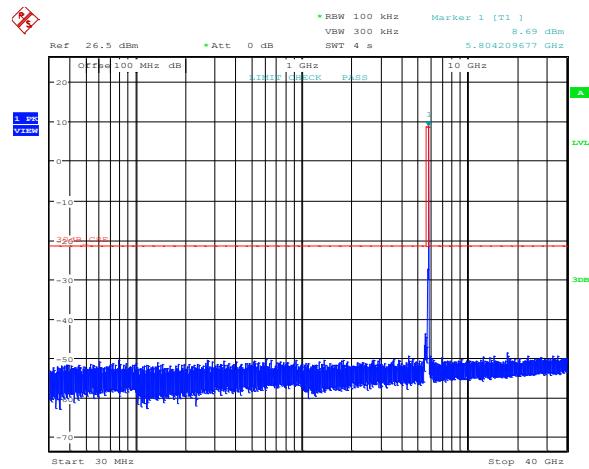
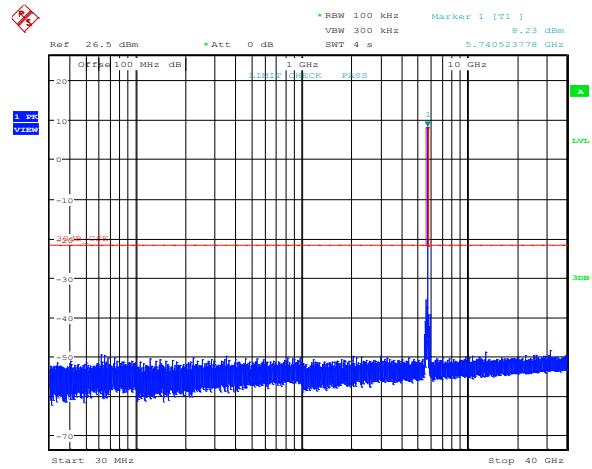

Date: 16.APR.2013 12:37:26

Figure 8.5-40: Conducted spurious emissions outside restricted bands for 802.11a, cho, high channel

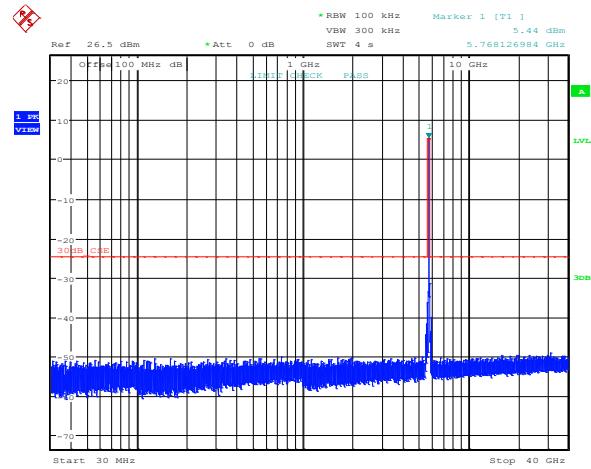

Date: 16.APR.2013 12:38:14

Figure 8.5-41: Conducted spurious emissions outside restricted bands for 802.11n HT20, cho, high channel

Date: 16.APR.2013 12:36:28


Figure 8.5-42: Conducted spurious emissions outside restricted bands for 802.11n HT40, ch0, high channel

Date: 16.APR.2013 11:56:55


Figure 8.5-43: Conducted spurious emissions outside restricted bands for 802.11a, ch1, low channel

8.5.4 Test data, continued

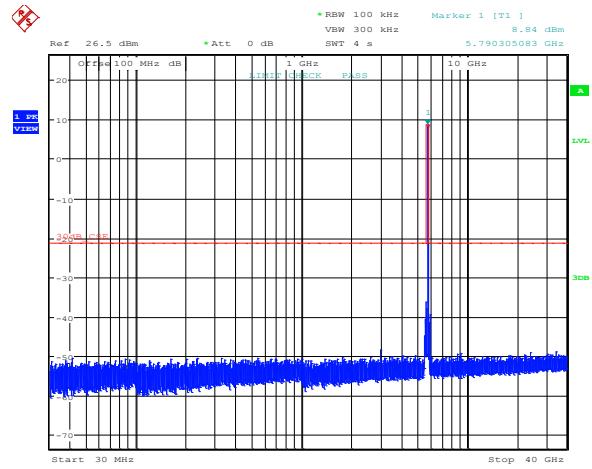

Date: 16.APR.2013 11:58:09

Figure 8.5-44: Conducted spurious emissions outside restricted bands for 802.11n HT20, ch1, low channel

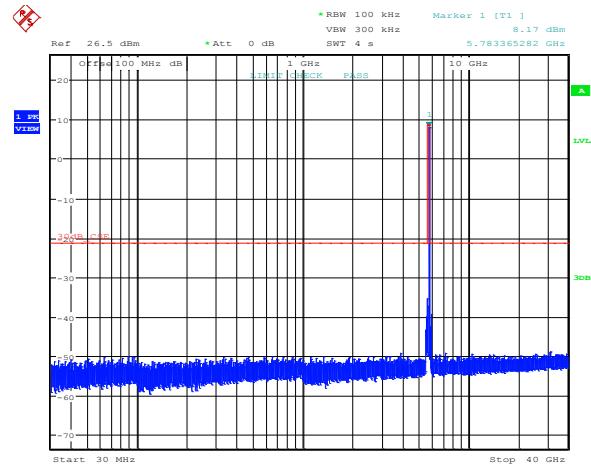
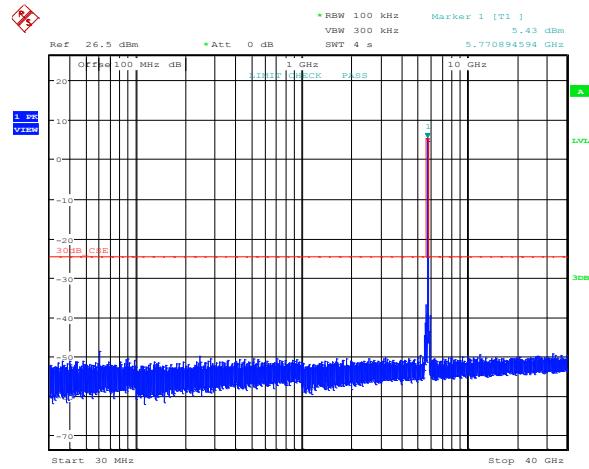
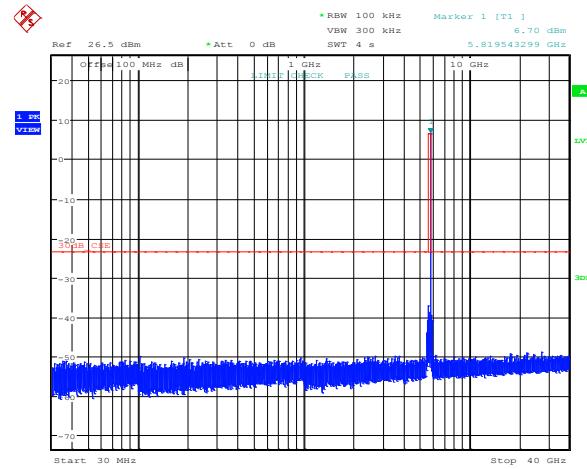

Date: 16.APR.2013 11:59:29

Figure 8.5-45: Conducted spurious emissions outside restricted bands for 802.11n HT40, ch1, low channel

Date: 16.APR.2013 12:00:53


Figure 8.5-46: Conducted spurious emissions outside restricted bands for 802.11a, ch1, mid channel

Date: 16.APR.2013 12:02:15


Figure 8.5-47: Conducted spurious emissions outside restricted bands for 802.11n HT20, ch1, mid channel

8.5.4 Test data, continued

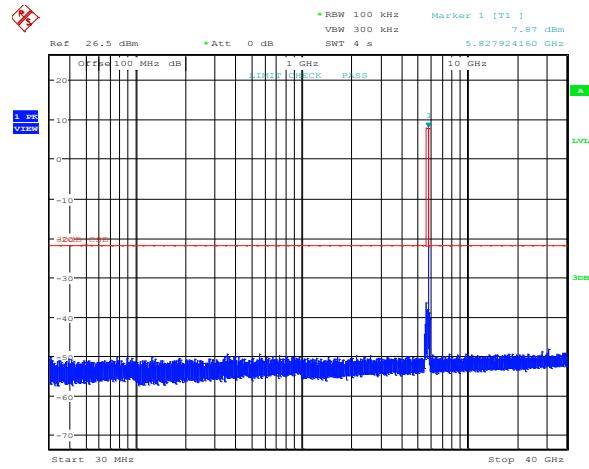

Date: 16.APR.2013 12:04:13

Figure 8.5-48: Conducted spurious emissions outside restricted bands for 802.11n HT40, ch1, mid channel

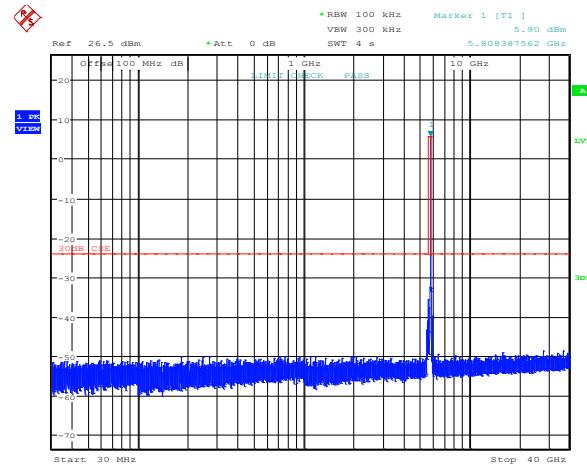
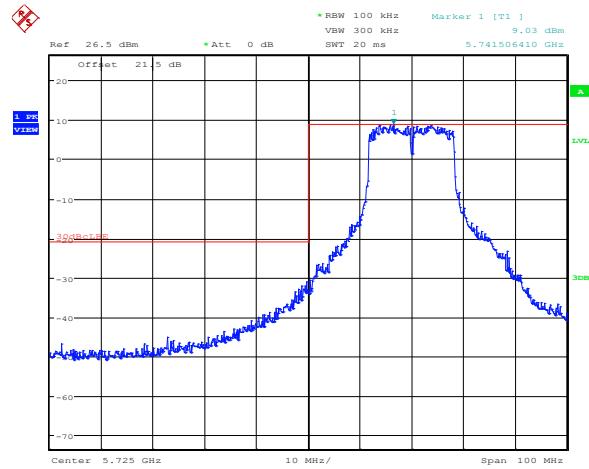

Date: 16.APR.2013 12:30:25

Figure 8.5-49: Conducted spurious emissions outside restricted bands for 802.11a, ch1, high channel

Date: 16.APR.2013 12:33:15


Figure 8.5-50: Conducted spurious emissions outside restricted bands for 802.11n HT20, ch1, high channel

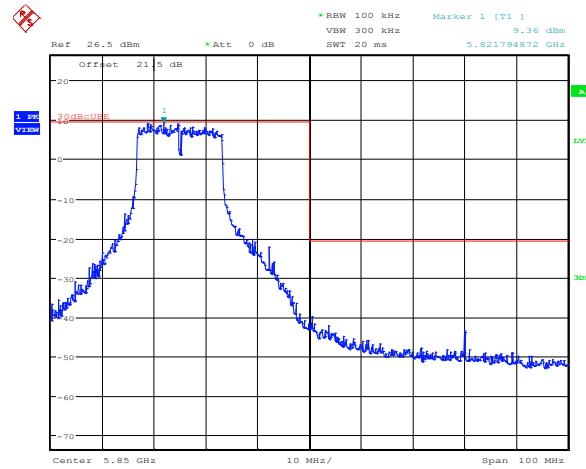
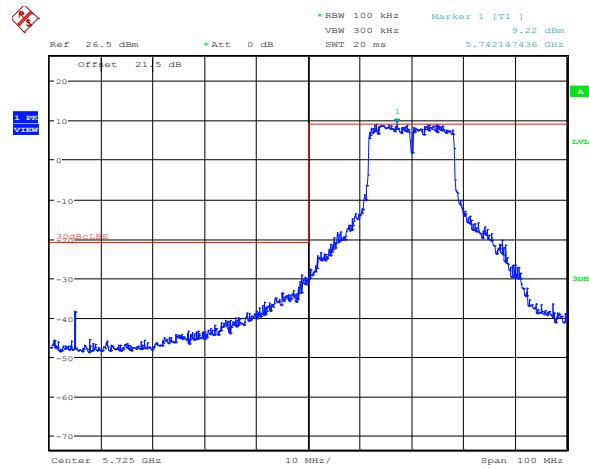

Date: 16.APR.2013 12:34:39

Figure 8.5-51: Conducted spurious emissions outside restricted bands for 802.11n HT40, ch1, high channel


8.5.4 Test data, continued

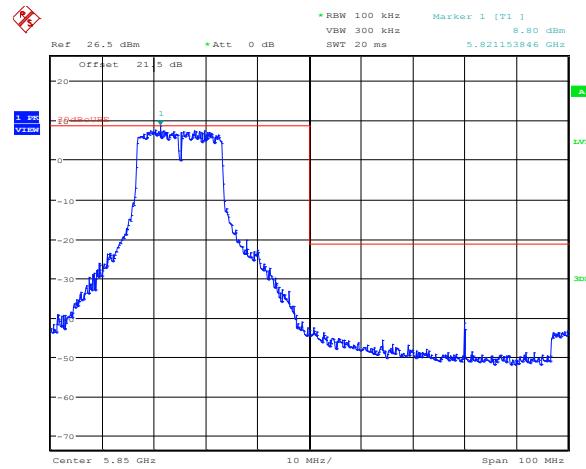

Figure 8.5-52: Lower band edge for 802.11a, lower channel, ch0

Figure 8.5-53: Upper band edge for 802.11a, upper channel, ch0

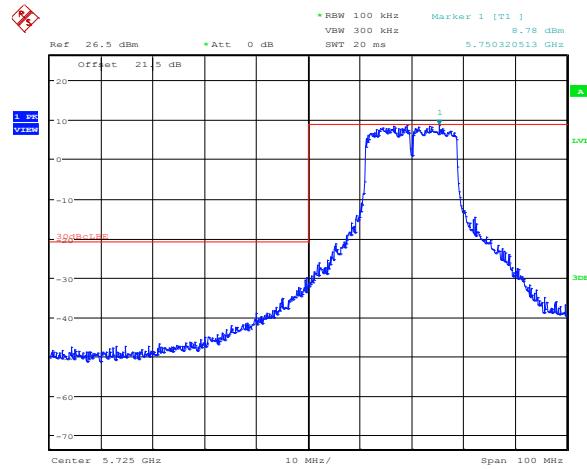


Figure 8.5-54: Lower band edge for 802.11a, lower channel, ch1

Figure 8.5-55: Lower band edge for 802.11a, upper channel, ch1

8.5.4 Test data, continued

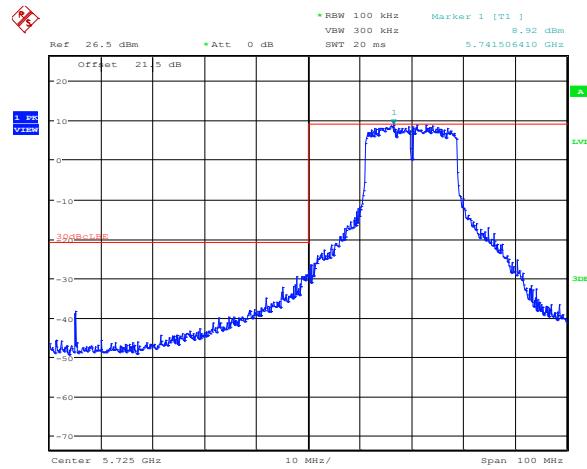

Date: 16.APR.2013 11:18:03

Figure 8.5-56: Lower band edge for 802.11n HT20, lower channel, ch0

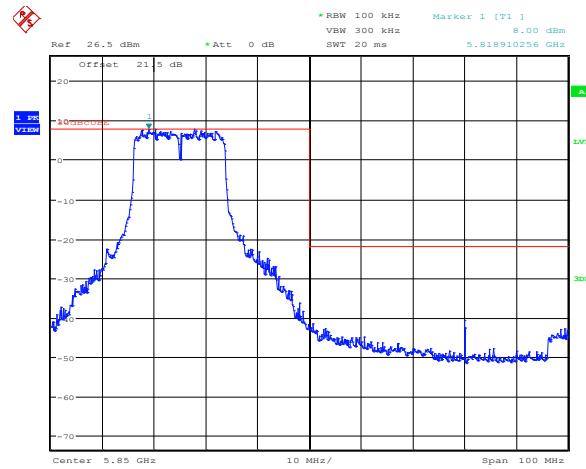
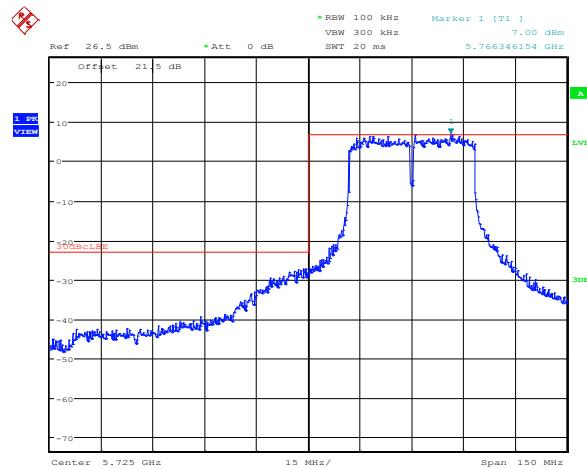
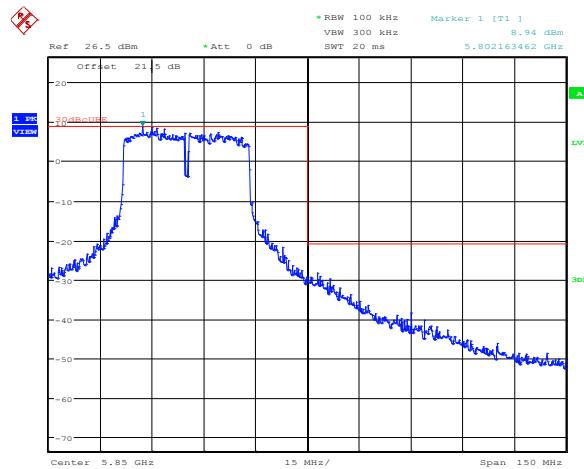

Date: 16.APR.2013 11:19:28

Figure 8.5-57: Upper band edge for 802.11n HT20, upper channel, ch0

Date: 16.APR.2013 11:26:03


Figure 8.5-58: Lower band edge for 802.11n HT20, lower channel, ch1

Date: 16.APR.2013 11:24:58


Figure 8.5-59: Upper band edge for 802.11n HT20, upper channel, ch1

8.5.4 Test data, continued

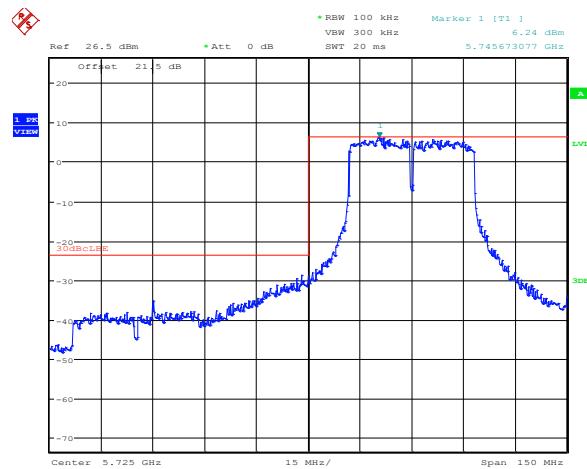

Date: 16.APR.2013 11:22:10

Figure 8.5-60: Lower band edge for 802.11n HT40, lower channel, cho

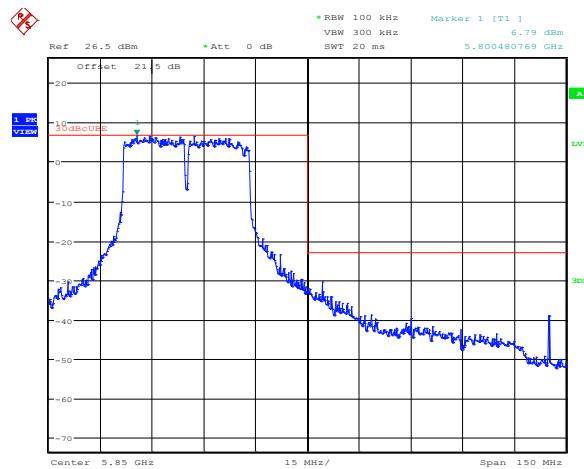

Date: 16.APR.2013 11:21:09

Figure 8.5-61: Upper band edge for 802.11n HT40, upper channel, cho

Date: 16.APR.2013 11:22:56

Figure 8.5-62: Lower band edge for 802.11n HT40, lower channel, ch1

Date: 16.APR.2013 11:23:37

Figure 8.5-63: Upper band edge for 802.11n HT40, upper channel, ch1

Table 8.5-4: Radiated field strength measurement results

Frequency, MHz	Peak Field strength, dB μ V/m	Limit, dB μ V/m	Margin, dB
128.47	32.93	43.50	10.57
169.48	33.42	43.50	10.08
250.02	33.79	47.50	13.71

Notes: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable. The spectrum was swept from 30 MHz to 40 GHz. There were no spurious emissions detected originating from the RF module except for those listed in the table above.

8.6 FCC 15.247(e) and RSS-210 A8.2(b) Power spectral density for digitally modulated devices

8.6.1 Definitions and limits

FCC:

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

IC:

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0-second duration. This power spectral density shall be determined in accordance with the provisions of Section A8.4(4); (i.e. the power spectral density shall be determined using the same method for determining the conducted output power).

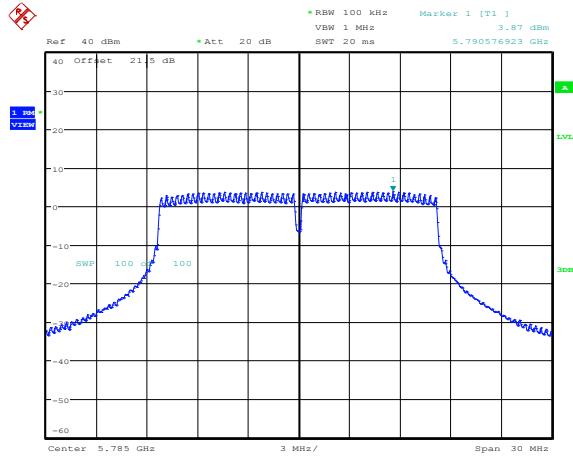
8.6.2 Test summary

Test date:	April 16, 2013	Temperature:	22 °C
Test engineer:	Andrey Adelberg	Air pressure:	1005 mbar
Verdict:	Pass	Relative humidity:	32 %

8.6.3 Observations/special notes

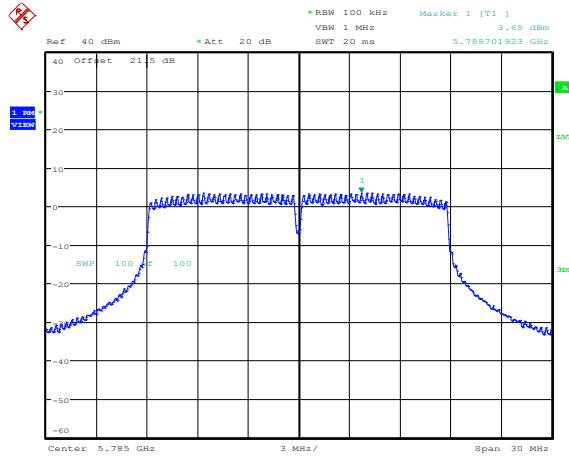
The test was performed using method described in section 10.3 of the 558074 D01 DTS Meas Guidance v03r01.
Spectrum analyser settings:

Resolution bandwidth:	100 kHz
Video bandwidth:	1 MHz
Frequency span:	30 MHz (1.5 × DTS channel BW for 802.11g and 802.11n HT20) and to 56 MHz (1.5 × DTS channel BW for 802.11n HT40)
Detector mode:	RMS
Trace mode:	Power average
Averaging sweeps number:	100


Combined PSD was calculated as follows: $PSD_{combined} = 10 \times \log_{10} \left((10^{PSD_{ch0}/10}) + (10^{PSD_{ch1}/10}) \right)$

8.6.4 Test data

Table 8.6-1: PSD measurements results


Modulation	Frequency, MHz	Measured power spectral density, dBm/100 kHz			PSD limit, dBm/3 kHz	Margin, dB
		On ch0	On ch1	Combined		
802.11a	5745	3.84	3.22	6.55	8.00	1.45
	5785	3.87	3.85	6.87	8.00	1.13
	5825	3.95	3.75	6.86	8.00	1.14
802.11n HT20	5745	3.62	2.86	6.27	8.00	1.73
	5785	3.65	3.51	6.59	8.00	1.41
	5825	3.83	3.45	6.65	8.00	1.35
802.11n HT40	5755	0.60	0.16	3.40	8.00	4.60
	5785	0.65	0.85	3.76	8.00	4.24
	5815	1.03	1.02	4.04	8.00	3.96

8.6.4 Test data, continued

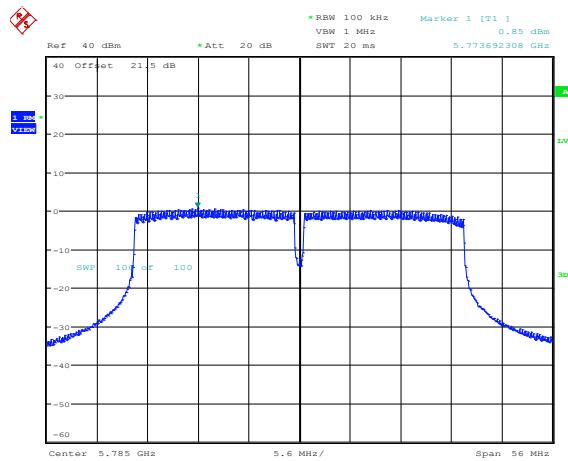
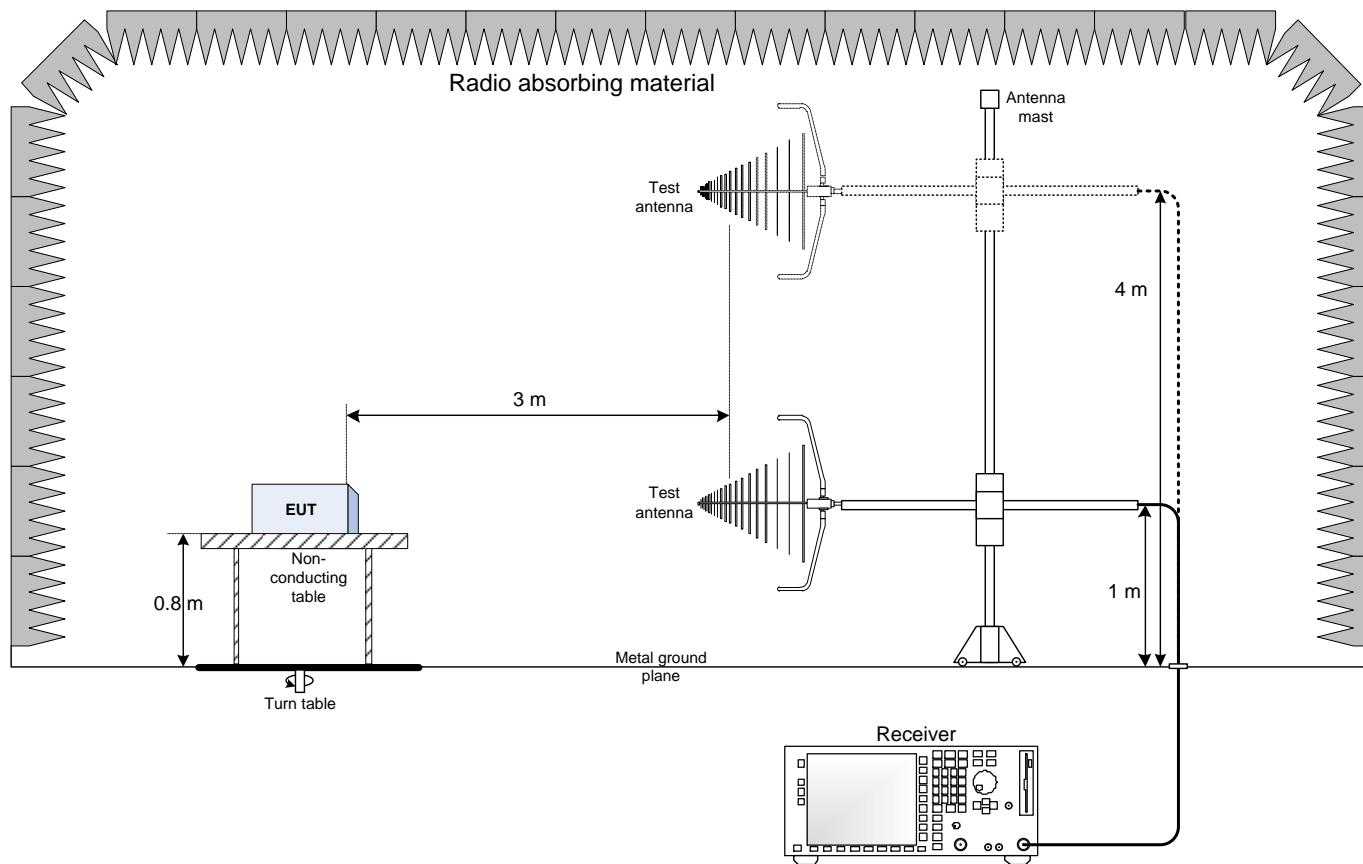

Date: 16.APR.2013 09:27:36

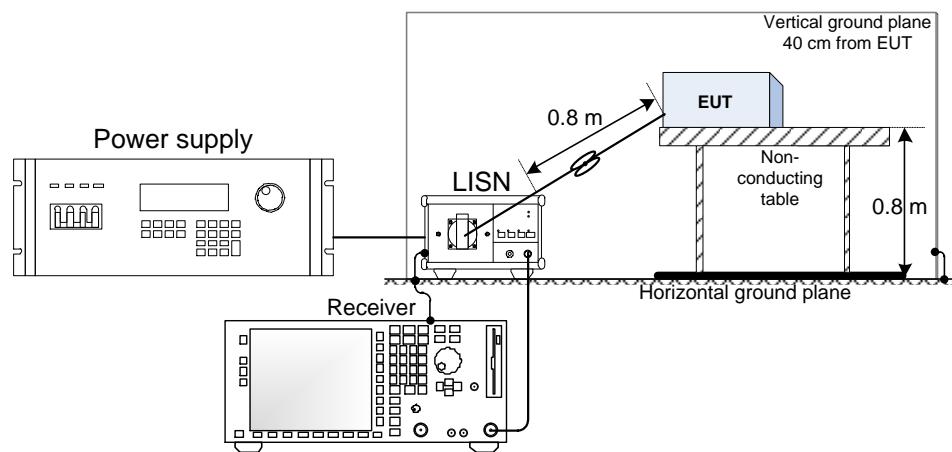
Figure 8.6-1: PSD sample plot on 802.11a

Date: 16.APR.2013 09:27:58

Figure 8.6-2: PSD sample plot on 802.11n HT20



Date: 16.APR.2013 09:23:16


Figure 8.6-3: PSD sample plot on 802.11n HT40

Section 9. Block diagrams of test set-ups

9.1 Radiated emissions set-up

9.2 Conducted emissions set-up

