



# FCC Part 95 RF TEST REPORT

*Issued to*

Giant Telecom Ltd.

*For*

Walkie-Talkie

Model Name : MG160A/MG163A/MG163TPA/MG167A/  
 MG160TPA  
 Trade Name : Motorola  
 Brand Name : N.A  
 FCC ID : RAQMGAJ  
 Standard : 47 CFR Part 95  
 Test date : January 4, 2013 –January 9, 2013  
 Issue date : January 10, 2013

*by*

Shenzhen MORLAB Communication Technology Co., Ltd

Tested by

Hou yiyang

Hou yiyang  
(Test Engineer)

Date

2013.1.10



Review by

Wang Wei

Wang wei  
(Project Manager)

Date

2013.1.10

CTIA Authorized Test Lab  
LAB CODE 20081223-00

IEEE 1725

OTA

OFTA  
電訊管理局



GCF  
Official Observer of  
Global Certification Forum

Bluetooth  
BQTF

FCC  
Reg. No.  
695796

*The report refers only to the sample tested and does not apply to the bulk. This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen MORLAB Communication Technology Co., Ltd. It may not be reproduced either in its entirety or in part and it may not be used for advertising. The client to whom the report is issued may, however, show or send it, or a certified copy thereof prepared by the Shenzhen MORLAB Telecommunication Co., Ltd to his customer. Supplier or others persons directly concerned. Shenzhen MORLAB Telecommunication Co., Ltd will not, without the consent of the client enter into*

## DIRECTORY

|                                                |          |
|------------------------------------------------|----------|
| <b>1. GENERAL INFORMATION .....</b>            | <b>3</b> |
| 1.1. EUT Description .....                     | 3        |
| 1.2. Test Standards and Results.....           | 4        |
| 1.3. Facilities and Accreditations .....       | 5        |
| <b>2. 47 CFR PART 95 REQUIREMENTS.....</b>     | <b>6</b> |
| 2.1. RF Output Power .....                     | 6        |
| 3.1 Modulation Characteristics .....           | 9        |
| 4.1 Occupied Bandwidth And Emission Mask ..... | 15       |
| 5.1 Spurious Emission.....                     | 18       |
| 6.1 Frequency Stability .....                  | 21       |
| 7.1 RF exposure evaluation.....                | 25       |

| Change History |                  |                   |
|----------------|------------------|-------------------|
| Issue          | Date             | Reason for change |
| 1.0            | January 10, 2013 | First edition     |
|                |                  |                   |

## 1. General Information

### 1.1. EUT Description

EUT Type .....: Walkie-Talkie  
Applicant .....: Giant Telecom Ltd.  
33/F, AIA Kowloon Tower, Landmark East, 100 How Ming Street,  
Kwun Tong , Kowloon  
Manufacturer .....: DONGGUAN WISETRONICS TELECOM EQUIPMENT CO.  
LTD  
Elite Industrial City, Melin District, Dailing Mount Town,  
Dongguan Guangdong, China  
Operating Frequency Range.: 462.5625MHz ~ 462.7125 MHz (GMRS 1~7 channel)  
467.5625 MHz ~ 467.7125 MHz (FRS 8~14 channel)  
462.5500 MHz ~ 462.7250 MHz (GMRS 15~22 channel)  
Modulation Type .....: FM Modulation  
RF Output Power.....: 0.5 W  
Channel Separation.....: 25KHz  
Emission Type.....: F3E

Channel Information.....:

| Channel | Frequency(MHz) | Description | Channel | Frequency(MHz) | Description |
|---------|----------------|-------------|---------|----------------|-------------|
| 1       | 462.5625       | GMRS        | 12      | 467.6625       | FRS         |
| 2       | 462.5875       | GMRS        | 13      | 467.6875       | FRS         |
| 3       | 462.6125       | GMRS        | 14      | 467.7125       | FRS         |
| 4       | 462.6375       | GMRS        | 15      | 462.5500       | GMRS        |
| 5       | 462.6625       | GMRS        | 16      | 462.5750       | GMRS        |
| 6       | 462.6875       | GMRS        | 17      | 462.6000       | GMRS        |
| 7       | 462.7125       | GMRS        | 18      | 462.6250       | GMRS        |
| 8       | 467.5625       | FRS         | 19      | 462.6500       | GMRS        |
| 9       | 467.5875       | FRS         | 20      | 462.6750       | GMRS        |
| 10      | 467.6125       | FRS         | 21      | 462.7000       | GMRS        |
| 11      | 467.6375       | FRS         | 22      | 462.7250       | GMRS        |

Test channel.....: Channel 4 GMRS mode 462.6375MHz

Channel 11 FRS mode 467.6375MHz

Power Supply .....: Battery 3 AAA standard alkaline batteries

High Voltage: 4.5V

Low Voltage: 3.6V

Note 1: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

## 1.2. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 95(Personal RADIO SERVICES) for the EUT FCC ID Certification:

| No. | Identity       | Document Title          |
|-----|----------------|-------------------------|
| 1   | 47 CFR Part 95 | Personal Radio Services |

Test detailed items/section required by FCC rules and results are as below:

| No. | Section in CFR 47      | Description                          | Result |
|-----|------------------------|--------------------------------------|--------|
| 1   | 2.1046, 95.639         | RF Output Power                      | Pass   |
| 2   | 2.1047, 95.637         | Modulation Characteristics           | Pass   |
| 3   | 2.1049, 95.633, 95.635 | Occupied Bandwidth And Emission Mask | Pass   |
| 4   | 2.1051, 95.635         | Radiated Spurious Emission           | Pass   |
| 5   | 2.1055, 95.621, 95.626 | Frequency Stability                  | Pass   |
| 6   | 2.1093                 | RF exposure evaluation               | Pass   |

NOTE:

The tests were performed according to the method of measurements prescribed in TIA- 603 -D.

## 1.3. Facilities and Accreditations

### 1.3.1. Facilities

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at 3/F, Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen, 518055 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22; the FCC registration number is 695796.

### 1.3.2. Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

|                             |         |
|-----------------------------|---------|
| Temperature (°C):           | 15 - 25 |
| Relative Humidity (%):      | 30 -60  |
| Atmospheric Pressure (kPa): | 86-106  |

### 1.3.3. Measurement Uncertainty

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

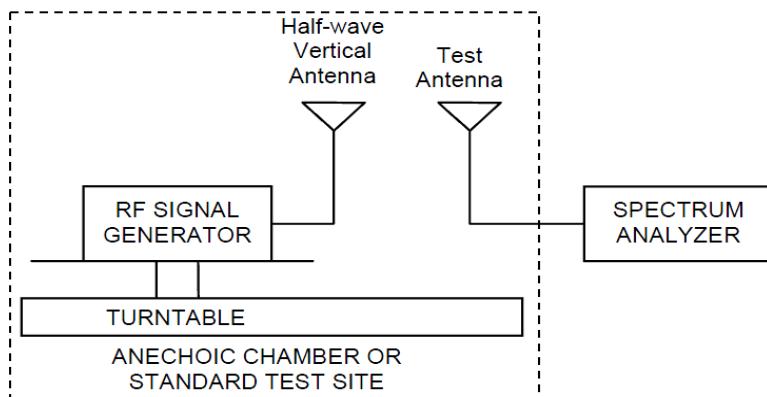
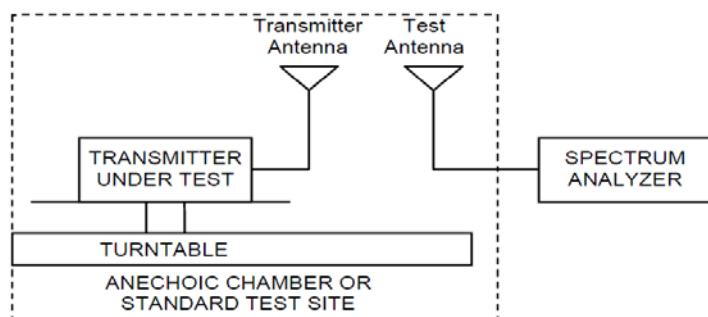
|                                   |        |
|-----------------------------------|--------|
| Uncertainty of Radiated Emission: | ±3.0dB |
|-----------------------------------|--------|

## 2. 47 CFR Part 95 Requirements

### 2.1. RF Output Power

#### 2.1.1. Provisions Applicable

Per FCC §2.1046 and §95.639(d): No FRS unit, under any condition of modulation, shall exceed 0.500 W effective radiated power (ERP).



#### 2.1.2. Test Procedure

1. On a test site, the EUT shall be place at 1.6m height on a wooden turntable, and in the position closest to normal use as declared by the applicant.
2. The test antenna shall be oriented initially for vertical polarization located 3m from EUT to correspond to the frequency of the transmitter.
3. The output of the test antenna shall be connected to the measuring receiver and the quasi-peak detector is used for the measurement.
4. The transmitter shall be switched on , if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
5. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
6. The transmitter shall then the rotated through 360° in the horizontal plane, until a maximum signal level is detected by the measuring receiver.
7. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
8. The maximum signal level detected by the measuring receiver shall be noted.
9. The transmitter shall be replaced by a tuned dipole (substitution antenna).
10. The substitution antenna shall be oriented for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
11. The substitution antenna shall be connected to a calibrated signal generator.
12. If necessary , the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
13. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver
14. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring received, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the

measuring receiver.

15. The input signal to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
16. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
17. The measure of the ERP is the larger of the two levels recorded, at the input to the substitution antenna, corrected the gain of the substitution antenna if necessary.

### 2.1.3 Test Setup Block Diagram



### 2.1.4 Test Instruments

| Name Of Equipment     | Manufacturer | Model     | S/N        | Cal. Due Date |
|-----------------------|--------------|-----------|------------|---------------|
| Test Antenna - Bi-Log | Schaffner    | CBL6112B  | 2529       | 2013.05       |
| Test Antenna - Bi-Log | Schaffner    | Dvulp9118 | 2529       | 2013.05       |
| Receiver              | R&S          | ESU       | 100204     | 2013.04       |
| Semi-Anechoic Chamber | ALBATROSS    | 9m*6m*6m  | 4771011001 | 2013.04       |
| Test Antenna - Horn   | Dahua        | DH610-2   | 0911120001 | 2013.05       |
| Test Antenna - Horn   | Dahua        | DH610-2   | 89010      | 2013.05       |

## 2.1.5 Test Result

| Channel | Channel Description | Frequency (MHz) | Effective Radiated Power |       | Limit | Margin |
|---------|---------------------|-----------------|--------------------------|-------|-------|--------|
|         |                     |                 | In dBm                   | In W  |       |        |
| 1       | GMRS/FRS            | 462.5625        | 22.96                    | 0.198 | 0.500 | 0.302  |
| 2       |                     | 462.5875        | 22.75                    | 0.188 | 0.500 | 0.312  |
| 3       |                     | 462.6125        | 23.11                    | 0.205 | 0.500 | 0.295  |
| 4       |                     | 462.6375        | 23.16                    | 0.207 | 0.500 | 0.293  |
| 5       |                     | 462.6625        | 22.73                    | 0.187 | 0.500 | 0.313  |
| 6       |                     | 462.6875        | 22.10                    | 0.162 | 0.500 | 0.338  |
| 7       |                     | 462.7125        | 23.08                    | 0.203 | 0.500 | 0.297  |
| 8       | FRS                 | 467.5625        | 22.37                    | 0.173 | 0.500 | 0.327  |
| 9       |                     | 467.5875        | 22.12                    | 0.163 | 0.500 | 0.337  |
| 10      |                     | 467.6125        | 22.72                    | 0.187 | 0.500 | 0.313  |
| 11      |                     | 467.6375        | 22.94                    | 0.197 | 0.500 | 0.303  |
| 12      |                     | 467.6625        | 22.20                    | 0.166 | 0.500 | 0.334  |
| 13      |                     | 467.6875        | 22.40                    | 0.174 | 0.500 | 0.326  |
| 14      |                     | 467.7125        | 22.82                    | 0.191 | 0.500 | 0.309  |
| 15      | GMRS                | 462.5500        | 22.08                    | 0.161 | 0.500 | 0.339  |
| 16      |                     | 462.5750        | 22.59                    | 0.182 | 0.500 | 0.318  |
| 17      |                     | 462.6000        | 22.27                    | 0.169 | 0.500 | 0.331  |
| 18      |                     | 462.6250        | 22.64                    | 0.184 | 0.500 | 0.316  |
| 19      |                     | 462.6500        | 22.37                    | 0.173 | 0.500 | 0.327  |
| 20      |                     | 462.6750        | 22.82                    | 0.191 | 0.500 | 0.309  |
| 21      |                     | 462.7000        | 22.61                    | 0.182 | 0.500 | 0.318  |
| 22      |                     | 462.7250        | 22.75                    | 0.188 | 0.500 | 0.312  |

**Test Result: PASS**

## 3.1 Modulation Characteristics

### 3.1.1 Provisions Applicable

Per FCC §2.1047 and §95.637(a): A GMRS transmitter that transmits emission type F3E must not exceed a peak frequency deviation of plus or minus 5 kHz. A FRS unit that transmits emission type F3E must not exceed a peak frequency deviation of plus or minus 2.5 kHz, and the audio frequency response must not exceed 3.125 kHz .

Each GMRS transmitter, except a mobile station transmitter with a power output of 2.5 W or less, must automatically prevent a greater than normal audio level from causing over-modulation. The transmitter also must include audio frequency low pass filtering, unless it complies with the applicable paragraphs of § 95.631 (without filtering.) The filter must be between the modulation limiter and the modulated stage of the transmitter. At any frequency (f in kHz) between 3 and 20 kHz, the filter must have an attenuation of at least  $60 \log 10 (f/3)$  dB greater than the attenuation at 1 kHz. Above 20 kHz, it must have an attenuation of at least 50 dB greater than the attenuation at 1 kHz.

### 3.1.2 Measurement Method

#### 3.1.2.1 Frequency deviation

(1). Configure the EUT as shown in figure 1, adjust the audio input for 60% of rated system deviation at 1 KHz using this level as a reference (0dB) and vary the input level from -20 to +20dB. Record the frequency deviation obtained as a function of the input level.

(2). Repeat step (1) with input frequency changing to 300, 1000, 1500 and 3000Hz in sequence.

#### 3.1.2.2 Modulation Frequency Response

(1). Configure the EUT as shown in figure 1.

(2). Adjust the audio signal generator frequency to the sound pressure level 107dB SPL at the microphone of the EUT.

(3). Vary the Audio frequency from 100 Hz to 5 KHz and record the frequency deviation.

(4). The peak frequency deviation must not exceed  $\pm 2.5$  KHz.

#### 3.1.2.3 Audio Low Pass Filter Response

(1) Connect the equipment in figure 2.

(2) Connect the audio frequency generator as close as possible the input of the post limiter low pass filter within the transmitter under test.

(3) Connect the audio spectrum analyzer to the output of the post limiter low pass filter within the transmitter under test.

- (4) Apply a 1000 Hz tone from the audio frequency generator and adjust the level per manufacturer's specifications.
- (5) Record the dB level of the 1000 Hz spectral line on the audio spectrum analyzer as LEV1 .
- (6) Set the audio frequency generator to the desired test frequency between 3000 Hz and the upper low pass filter limit.
- (7) Record audio spectrum analyzer levels, at the test frequency in step (6).
- (8) Record the dB level on the audio spectrum analyzer as LEV2 . Method of Measurement for Transmitters .

### 3.1.3 Test Setup Block Diagram

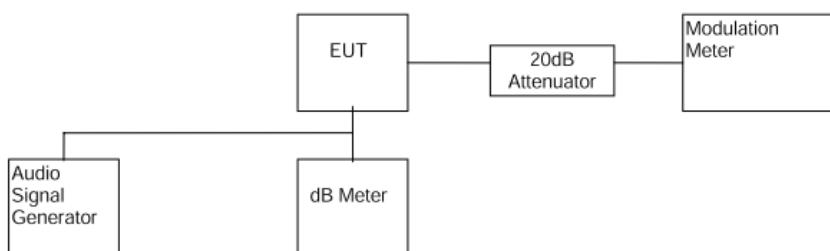



Figure 1

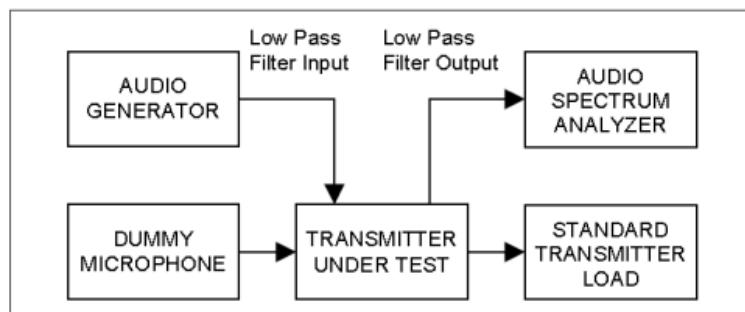
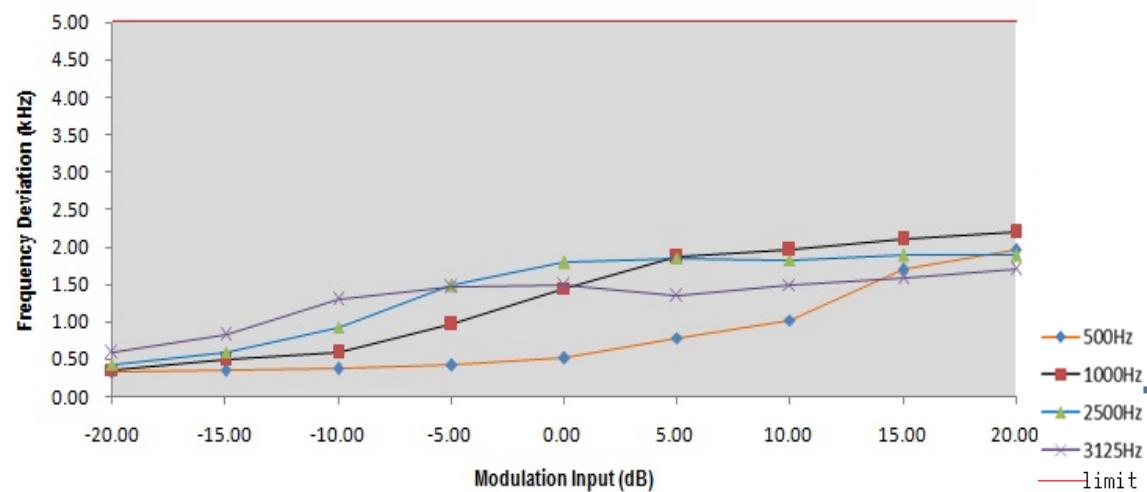
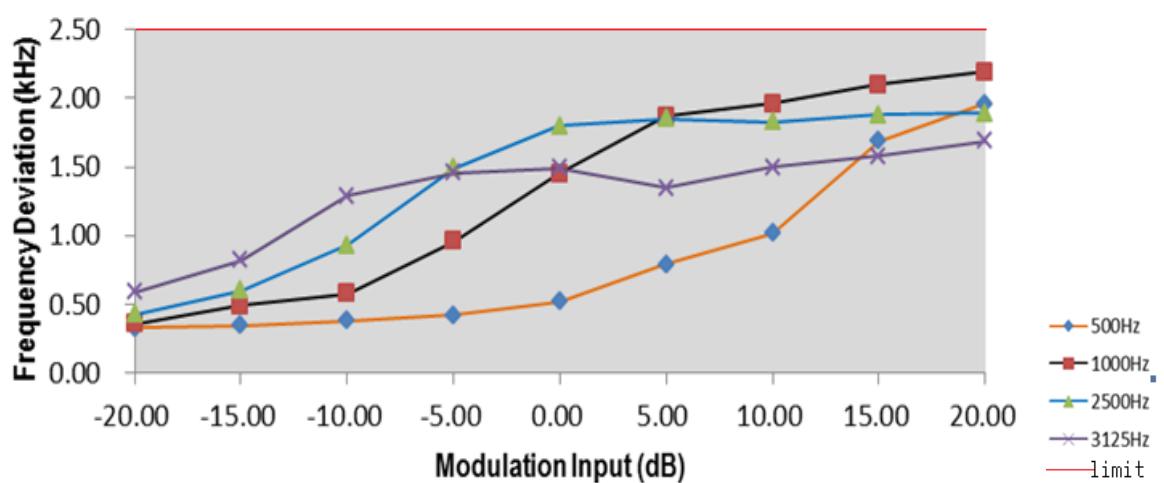



Figure 2


### 3.1.4 Measurement Instruments

| Name Of Equipment      | Manufacturer | Model | S/N        | Cal. Due Date |
|------------------------|--------------|-------|------------|---------------|
| Audio Signal Generator | R&S          | UPV   | 17-253527  | 2013.9.8      |
| Modulation Analyzer    | Agilent      | 8901B | 2920A02186 | 2013.9.8      |
| Attenuator             | SHX          | DC-13 | N.A        | N.A           |


### 3.1.5 Test Result

a. Frequency deviation:

| Channel 4: 462.6375MHz GMRS |                                        |                                         |                                         |                                         |             |
|-----------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------|
| Modulation Input(dB)        | Peak Frequency Deviation(KHz) at 500Hz | Peak Frequency Deviation(KHz) at 1000Hz | Peak Frequency Deviation(KHz) at 2500Hz | Peak Frequency Deviation(KHz) at 3125Hz | Limit (KHz) |
| -20.00                      | 0.31                                   | 0.37                                    | 0.45                                    | 0.61                                    | 5.0         |
| -15.00                      | 0.32                                   | 0.44                                    | 0.63                                    | 0.85                                    | 5.0         |
| -10.00                      | 0.35                                   | 0.61                                    | 0.96                                    | 1.32                                    | 5.0         |
| -5.00                       | 0.40                                   | 0.91                                    | 1.52                                    | 1.50                                    | 5.0         |
| 0.00                        | 0.55                                   | 1.50                                    | 1.86                                    | 1.52                                    | 5.0         |
| 5.00                        | 0.75                                   | 1.98                                    | 1.88                                    | 1.50                                    | 5.0         |
| 10.00                       | 1.13                                   | 2.08                                    | 1.86                                    | 1.54                                    | 5.0         |
| 15.00                       | 1.72                                   | 2.15                                    | 1.88                                    | 1.62                                    | 5.0         |
| 20.00                       | 2.09                                   | 2.23                                    | 1.90                                    | 1.73                                    | 5.0         |

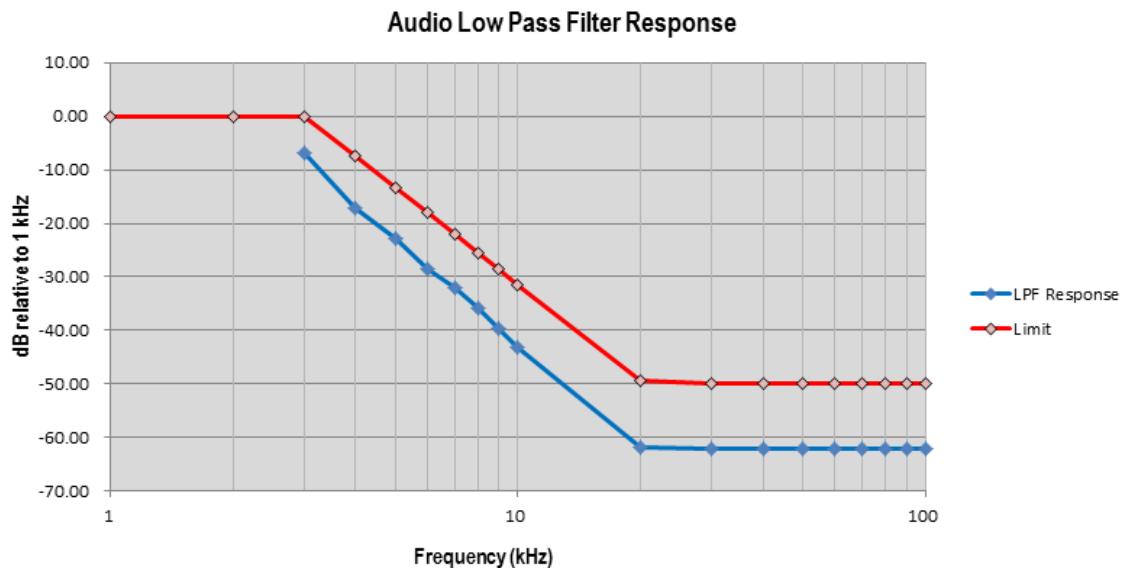



| Channel 11 :467.6375MHz FRS |                                        |                                         |                                         |                                         |             |
|-----------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------|
| Modulation Input(dB)        | Peak Frequency Deviation(KHz) at 500Hz | Peak Frequency Deviation(KHz) at 1000Hz | Peak Frequency Deviation(KHz) at 2500Hz | Peak Frequency Deviation(KHz) at 3125Hz | Limit (kHz) |
| -20.00                      | 0.33                                   | 0.36                                    | 0.43                                    | 0.59                                    | 2.5         |
| -15.00                      | 0.35                                   | 0.49                                    | 0.60                                    | 0.82                                    | 2.5         |
| -10.00                      | 0.38                                   | 0.58                                    | 0.93                                    | 1.29                                    | 2.5         |
| -5.00                       | 0.42                                   | 0.96                                    | 1.49                                    | 1.46                                    | 2.5         |
| 0.00                        | 0.52                                   | 1.45                                    | 1.80                                    | 1.49                                    | 2.5         |
| 5.00                        | 0.79                                   | 1.87                                    | 1.85                                    | 1.35                                    | 2.5         |
| 10.00                       | 1.02                                   | 1.96                                    | 1.83                                    | 1.50                                    | 2.5         |
| 15.00                       | 1.69                                   | 2.10                                    | 1.88                                    | 1.58                                    | 2.5         |
| 20.00                       | 1.96                                   | 2.19                                    | 1.89                                    | 1.69                                    | 2.5         |



## b. Audio Frequency Response

Channel 11 for FRS


| Modulation Frequency(Hz) | Peak Modulation Deviation(KHz) | Limit (KHz) |
|--------------------------|--------------------------------|-------------|
| 100                      | 0.26                           | $\pm 2.5$   |
| 200                      | 0.26                           | $\pm 2.5$   |
| 300                      | 0.26                           | $\pm 2.5$   |
| 400                      | 0.34                           | $\pm 2.5$   |
| 500                      | 0.55                           | $\pm 2.5$   |
| 600                      | 0.50                           | $\pm 2.5$   |
| 700                      | 0.75                           | $\pm 2.5$   |
| 800                      | 0.95                           | $\pm 2.5$   |
| 900                      | 1.17                           | $\pm 2.5$   |
| 1000                     | 1.50                           | $\pm 2.5$   |
| 1250                     | 1.30                           | $\pm 2.5$   |
| 1500                     | 1.61                           | $\pm 2.5$   |
| 1750                     | 1.81                           | $\pm 2.5$   |
| 2000                     | 1.91                           | $\pm 2.5$   |
| 2250                     | 1.92                           | $\pm 2.5$   |
| 2500                     | 1.84                           | $\pm 2.5$   |
| 2750                     | 1.82                           | $\pm 2.5$   |
| 3000                     | 1.63                           | $\pm 2.5$   |
| 3125                     | 1.47                           | $\pm 2.5$   |
| 3250                     | 1.32                           | $\pm 2.5$   |
| 3500                     | 1.06                           | $\pm 2.5$   |
| 4000                     | 0.70                           | $\pm 2.5$   |
| 5000                     | 0.40                           | $\pm 2.5$   |



## c. Audio Low Pass Filter Frequency Response

Channel 4 for GMRS

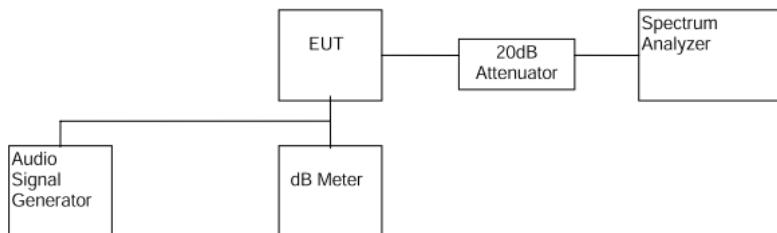
| Frequency(KHz) | Response | Limit  |
|----------------|----------|--------|
| 1              | 0.00     | 0.00   |
| 2              | 0.00     | 0.00   |
| 3              | -6.93    | 0.00   |
| 4              | -17.12   | -8.52  |
| 5              | -22.87   | -13.64 |
| 6              | -28.46   | -18.75 |
| 7              | -32.14   | -22.16 |
| 8              | -35.82   | -25.57 |
| 9              | -39.50   | -28.98 |
| 10             | -43.22   | -32.39 |
| 20             | -61.71   | -49.43 |
| 30             | -62.00   | -50.00 |
| 40             | -62.00   | -50.00 |
| 50             | -62.00   | -50.00 |
| 60             | -62.00   | -50.00 |
| 70             | -62.00   | -50.00 |
| 80             | -62.00   | -50.00 |
| 90             | -62.00   | -50.00 |
| 100            | -62.00   | -50.00 |

**Test Result: PASS**

## 4.1 Occupied Bandwidth And Emission Mask

### 4.1.1 Provisions Applicable

According to §95.633(c) , the authorized bandwidth for emission type F3E or F2D transmitted by a FRS unit is 12.5 kHz. The authorized bandwidth for emission type F1D, G1D, F3E or G3E is 20 kHz.

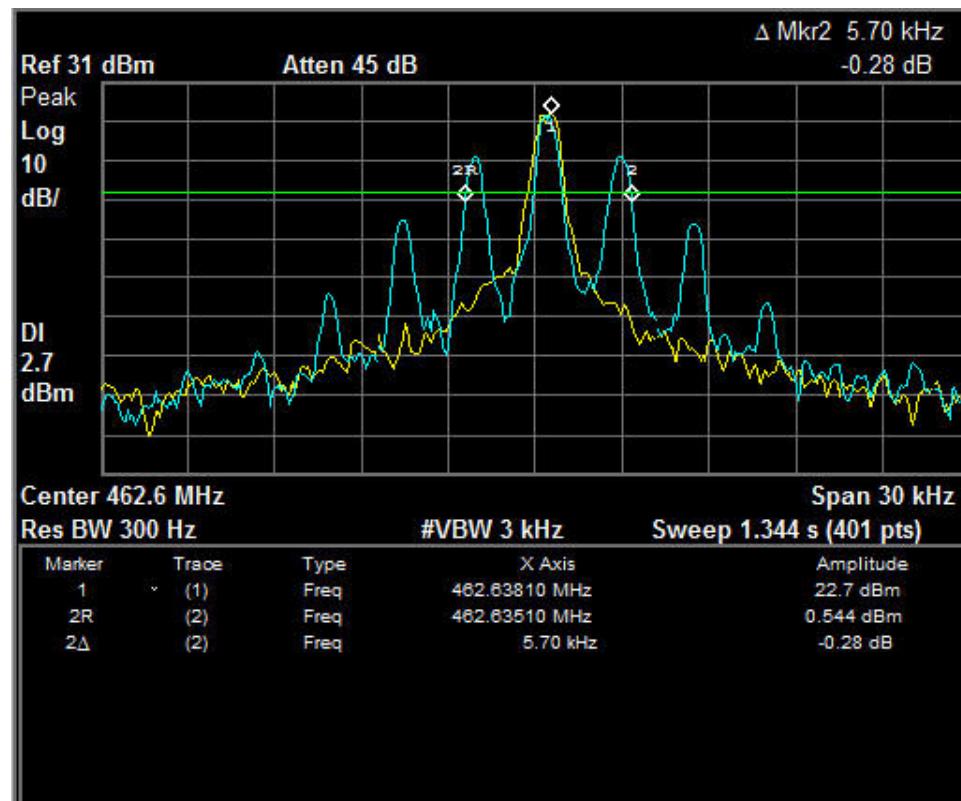

The power of each unwanted emission shall be less than TP as specified in the applicable paragraphs listed in the following :

- 1) At least 25 dB (decibels) on any frequency removed from the center of the authorized bandwidth by more than 50% up to and including 100% of the authorized bandwidth.
- 2) At least 35 dB on any frequency removed from the center of the authorized bandwidth by more than 100% up to and including 250% of the authorized bandwidth.
- 3) At least  $43 + 10 \log_{10} (T)$  dB on any frequency removed from the center of the authorized bandwidth by more than 250%, the calculation formulas and limit result refer **Section 5.1.5** note 2.

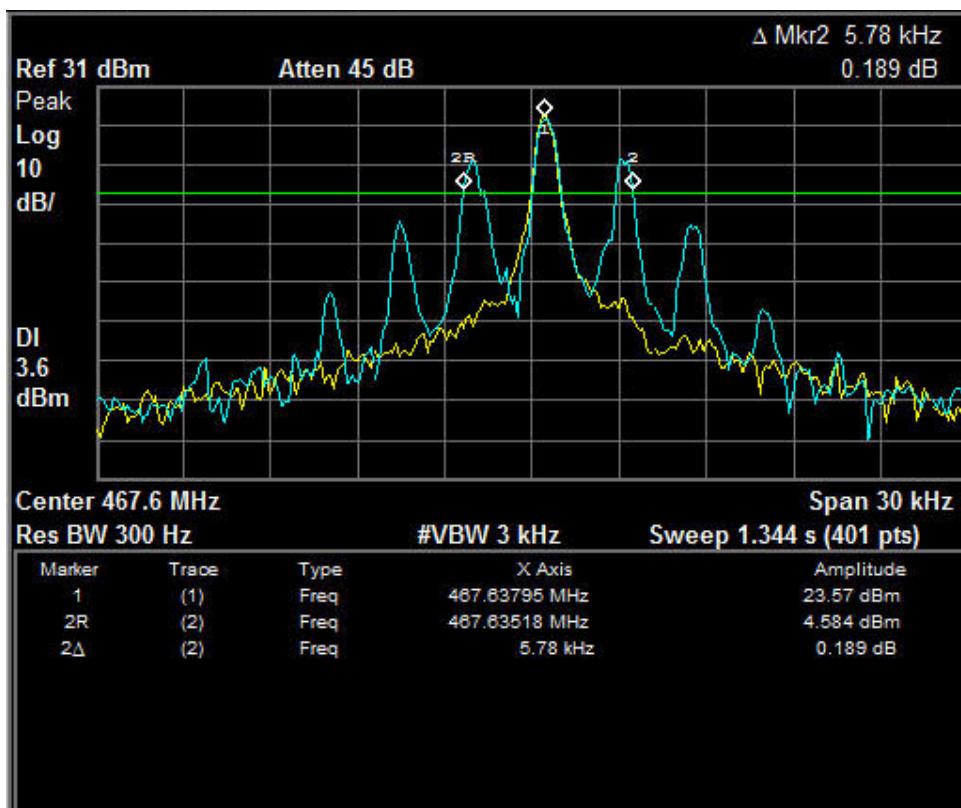
### 4.1.2 Measurement Procedure

- 1). The set-up test equipment in the following configuration:
- 2). Set the level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation.
- 3). Set SPA Center Frequency = fundamental frequency, RBW=VBW= 300 Hz, Span =20 KHz.
- 4). Set SPA Max hold. Mark peak, -20 dB.

### 4.1.3 Test Setup Block Diagram

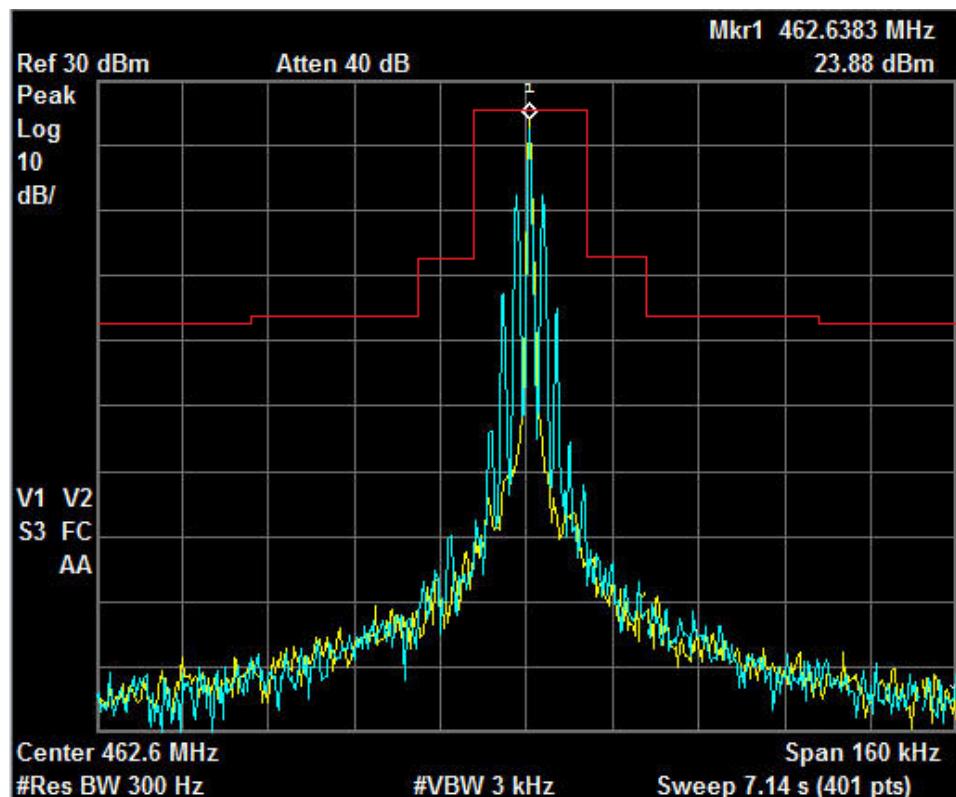



### 4.1.4 Test Instruments

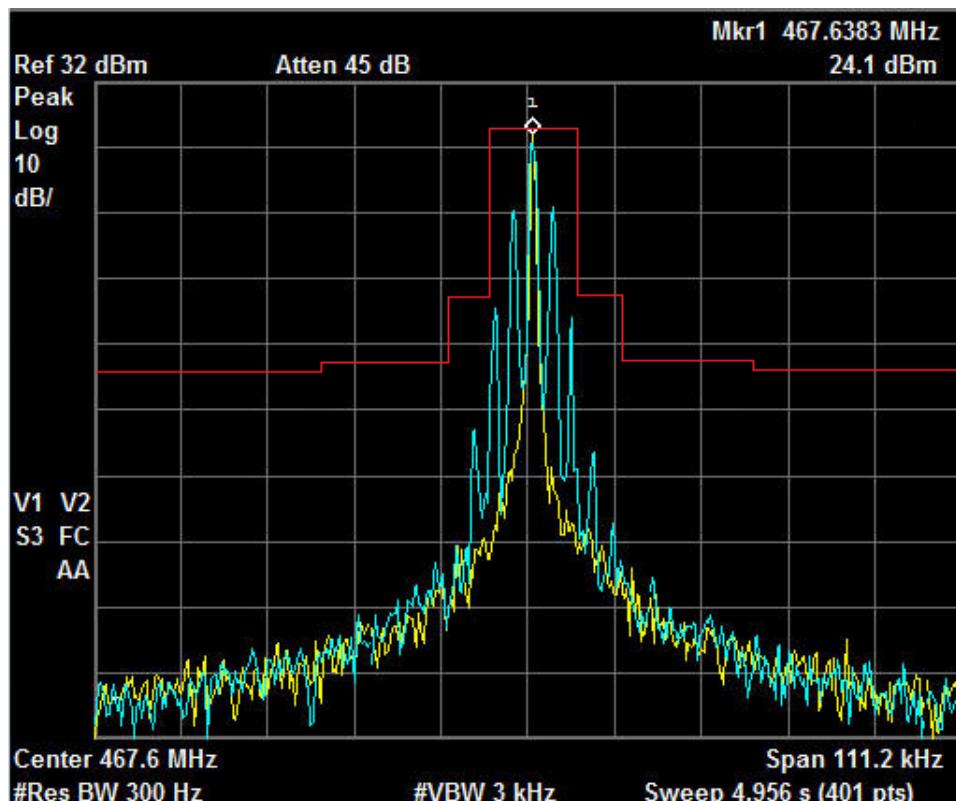

| Name Of Equipment      | Manufacturer | Model | S/N        | Cal. Due Date |
|------------------------|--------------|-------|------------|---------------|
| Spectrum Analyzer      | R&S          | FSU-8 | 200034     | 2013.6.2      |
| Modulation Analyzer    | Agilent      | 8901B | 2920A02186 | 2013.9.8      |
| Audio Signal Generator | R&S          | UPV   | 17-253527  | 2013.9.8      |
| Attenuator             | SHX          | DC-13 | N.A        | N.A           |

#### 4.1.5 Test Result

The occupied Bandwidth is measured to be 5.7 KHz for GMRS and 5.78 KHz for FRS




Channel 4 462.6375MHz GMRS




Channel 11 467.6375Mhz FRS

Emission Mask:



Channel 4 :462.6375MHz GMRS



Channel 11:467.6375MHz FRS

**Test Result: PASS**

## 5.1 Spurious Emission

### 5.1.1 Provisions Applicable

According to FCC section 95.635(b7).the unwanted emission should be attenuated below TP by at least  $43+10\log(\text{Transmit Power})\text{dB}$  .

### 5.1.2 Measurement Procedure

(1)On a test site, the EUT shall be placed on a turntable and in the position closest to the normal use as declared by the user.

(2)The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the transmitter.

(3)The output of the antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.

(4)The transmitter shall be switched on; if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.

(5)The test antenna shall be raised and lowered through the specified range of height until the measuring receiver detects a maximum signal level.

(6)The transmitter shall than be rotated through 360°in the horizontal plane, until the maximum signal level is detected by the measuring receiver.

(7)The test antenna shall be raised and lowered again through the specified range of height until the measuring receiver detects a maximum signal level.

(8)The maximum signal level detected by the measuring receiver shall be noted.

(9)The measurement shall be repeated with the test antenna set to horizontal polarization.

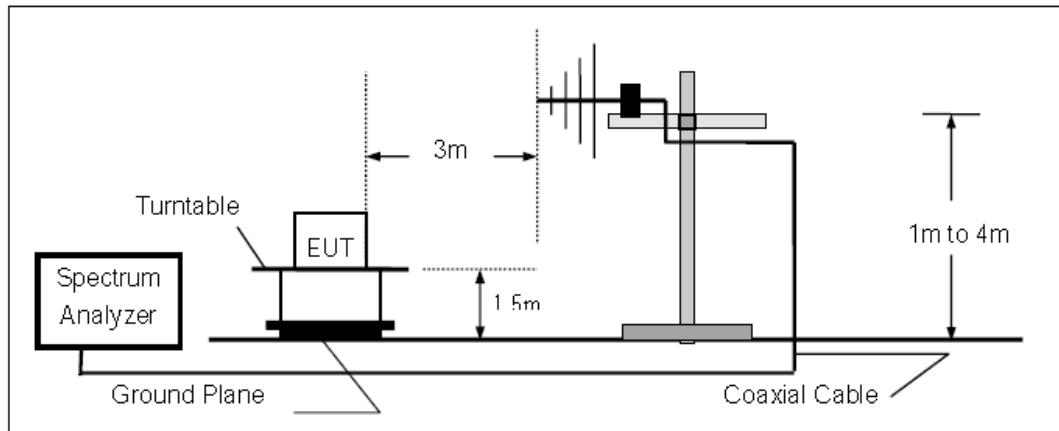
(10) Replace the antenna with a proper Antenna (substitution antenna).

(11)The substitution antenna shall be oriented for vertical polarization and, if necessary, the length of the substitution antenna shall be adjusted to correspond to the frequency of transmitting.

(12)The substitution antenna shall be connected to a calibrated signal generator.

(13)If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.

(14)The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.


(15)The input signal to substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated

power was measured, corrected for the change of input attenuation setting of the measuring receiver.

(16) The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.

(17) The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.

### 5.1.3 Test Setup Block Diagram



### 5.1.4 Measurement Instruments

| Name Of Equipment     | Manufacturer | Model     | S/N        | Cal. Due Date |
|-----------------------|--------------|-----------|------------|---------------|
| Test Antenna - Bi-Log | Schaffner    | CBL6112B  | 2529       | 2013.05       |
| Test Antenna - Bi-Log | Schaffner    | Dvulp9118 | 2529       | 2013.05       |
| Receiver              | R&S          | ESU       | 100204     | 2013.04       |
| Semi-Anechoic Chamber | ALBATROSS    | 9m*6m*6m  | 4771011001 | 2013.04       |
| Test Antenna - Horn   | Dahua        | DH610-2   | 0911120001 | 2013.05       |
| Test Antenna - Horn   | Dahua        | DH610-2   | 89010      | 2013.05       |

## 5.1.5 Test Result

| Test mode 1: GMRS mode continue transmitting |       |                |                    |                      |                   |        |
|----------------------------------------------|-------|----------------|--------------------|----------------------|-------------------|--------|
| Channel 4; Frequency= 462.6375MHz;           |       |                |                    |                      |                   |        |
| Frequency                                    | Polar | Absolute lever | Channel Max. Power | Spurious Attenuation | FCC Part 95 Limit | Margin |
| MHz                                          | H / V | dBm            | dBm                | dBc                  | dBc               | dB     |
| 925.012                                      | H     | -52.90         | 23.16              | 76.06                | 36.16             | 39.90  |
| 1628.429                                     | H     | -53.16         |                    | 76.32                | 36.16             | 40.16  |
| 2830.424                                     | H     | -48.48         |                    | 71.64                | 36.16             | 35.48  |
| 925.012                                      | V     | -52.98         |                    | 76.14                | 36.16             | 39.98  |
| 1384.040                                     | V     | -52.06         |                    | 75.22                | 36.16             | 39.06  |
| 2805.486                                     | V     | -48.61         |                    | 71.77                | 36.16             | 35.61  |

| Test mode 2: FRS mode continue transmitting |       |                |                    |                      |                   |        |
|---------------------------------------------|-------|----------------|--------------------|----------------------|-------------------|--------|
| Channel 11; Frequency= 467.6375MHz;         |       |                |                    |                      |                   |        |
| Frequency                                   | Polar | Absolute lever | Channel Max. Power | Spurious Attenuation | FCC Part 95 Limit | Margin |
| MHz                                         | H / V | dBm            | dBm                | dBc                  | dBc               | dB     |
| 934.688                                     | H     | -54.33         | 22.94              | 77.27                | 35.94             | 41.33  |
| 1443.890                                    | H     | -52.43         |                    | 75.37                | 35.94             | 39.43  |
| 2825.436                                    | H     | -48.12         |                    | 71.06                | 35.94             | 35.12  |
| 934.688                                     | V     | -54.64         |                    | 77.58                | 35.94             | 41.64  |
| 1369.077                                    | V     | -52.43         |                    | 75.37                | 35.94             | 39.43  |
| 2610.973                                    | V     | -48.54         |                    | 71.48                | 35.94             | 35.54  |

Note:

1. Spurious Attenuation= Channel Max. Power - Absolute lever
2. Limit=  $43+10 \log$  (Channel Max. Power in Watts)  
The limit for channel 4= $43+10\log (0.207) =36.16$  dB  
The limit for channel 11= $43+10\log (0.197) =35.94$  dB
3. Margin= Spurious Attenuation- limit

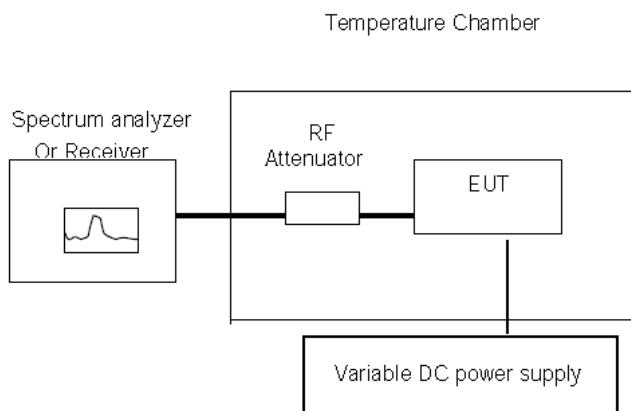
**Test Result: PASS**

## 6.1 Frequency Stability

### 6.1.1 Provisions Applicable

According to FCC Section 95.627, the frequency stability shall be measured with variation of ambient temperature from  $-30^{\circ}\text{C}$  to  $+50^{\circ}\text{C}$  centigrade. Each FRS unit must be maintained within a frequency tolerance of 0.00025%.

### 6.1.2 Measurement Procedure


#### 6.1.2.1 Frequency stability versus environmental temperature

1. Setup the configuration per figure 1 for frequencies measurement inside an environment chamber, Install new battery in the EUT.
2. Turn on EUT and set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1KHz and Video Resolution Bandwidth to 1KHz and Frequency Span to 50KHz. Record this frequency as reference frequency.
3. Set the temperature of chamber to  $50^{\circ}\text{C}$ . Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
4. Repeat step 2 with a  $10^{\circ}\text{C}$  decreased per stage until the lowest temperature  $-30^{\circ}\text{C}$  is measured, record all measured frequencies on each temperature step.

#### 6.1.2.2 Frequency stability versus input voltage

1. Setup the configuration per figure 1 for frequencies measured at temperature if it is within  $15^{\circ}\text{C}$  to  $25^{\circ}\text{C}$ . Otherwise, an environment chamber set for a temperature of  $20^{\circ}\text{C}$  shall be used. The EUT shall be powered by DC 4.5 V
2. Set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1 KHz and Video Resolution Bandwidth to 1KHz. Record this frequency as reference frequency.
3. Supply the EUT primary voltage at the operating end point which is specified by manufacturer and record the frequency.

### 6.1.3 Test Setup Block Diagram



### 6.1.4 Measurement Instruments

| Name Of Equipment | Manufacturer | Model  | S/N            | Cal. Due Date |
|-------------------|--------------|--------|----------------|---------------|
| Spectrum Analyzer | R&S          | FSU-8  | 200034         | 2013.6.2      |
| Power Supply      | Agilent      | 66319D | MY43000556     | 2013.6.2      |
| Climate Chamber   | Votsch       | VT4002 | 58566087750080 | 2014.1.8      |

### 6.1.5 Test result

| Frequency Tolerance |                |               |              |
|---------------------|----------------|---------------|--------------|
| Channel             | Frequency(MHz) | Measured(MHz) | Tolerance(%) |
| 1                   | 462.5625       | 462.5633      | 0.000173     |
| 2                   | 462.5875       | 462.5881      | 0.000130     |
| 3                   | 462.6125       | 462.6130      | 0.000108     |
| 4                   | 462.6375       | 462.6384      | 0.000195     |
| 5                   | 462.6625       | 462.6633      | 0.000173     |
| 6                   | 462.6875       | 462.6879      | 0.000086     |
| 7                   | 462.7125       | 462.7133      | 0.000173     |
| 8                   | 467.5625       | 467.5630      | 0.000107     |
| 9                   | 467.5875       | 467.5880      | 0.000107     |
| 10                  | 467.6125       | 467.6131      | 0.000128     |
| 11                  | 467.6375       | 467.6381      | 0.000128     |
| 12                  | 467.6625       | 467.6630      | 0.000107     |
| 13                  | 467.6875       | 467.6881      | 0.000128     |
| 14                  | 467.7125       | 467.7130      | 0.000107     |
| 15                  | 462.5500       | 462.5504      | 0.000086     |
| 16                  | 462.5750       | 462.5754      | 0.000086     |
| 17                  | 462.6000       | 462.6005      | 0.000108     |
| 18                  | 462.6250       | 462.6254      | 0.000086     |

|    |          |          |          |
|----|----------|----------|----------|
| 19 | 462.6500 | 462.6505 | 0.000108 |
| 20 | 462.6750 | 462.6755 | 0.000108 |
| 21 | 462.7000 | 462.7006 | 0.000130 |
| 22 | 462.7250 | 462.7254 | 0.000086 |

| Frequency Deviation With Temperature Variation          |                         |                         |               |                          |
|---------------------------------------------------------|-------------------------|-------------------------|---------------|--------------------------|
| Channel                                                 | 4                       |                         |               |                          |
| Temperature(°C)                                         | Assigned Frequency(MHz) | Measured Frequency(MHz) | Deviation (%) | Frequency Tolerance(ppm) |
| -30                                                     | 462.6375                | 462.6379                | 0.000086      | -1.0808                  |
| -20                                                     | 462.6375                | 462.6381                | 0.000130      | -0.6485                  |
| -10                                                     | 462.6375                | 462.6381                | 0.000130      | -0.6485                  |
| 0                                                       | 462.6375                | 462.6380                | 0.000108      | -0.8646                  |
| 10                                                      | 462.6375                | 462.6379                | 0.000086      | -1.0808                  |
| 20                                                      | 462.6375                | 462.6384                | 0.000195      | 0.0000                   |
| 30                                                      | 462.6375                | 462.6380                | 0.000108      | -0.8646                  |
| 40                                                      | 462.6375                | 462.6378                | 0.000065      | -1.2969                  |
| 50                                                      | 462.6375                | 462.6376                | 0.000022      | -1.7292                  |
| Channel                                                 | 11                      |                         |               |                          |
| Temperature(°C)                                         | Assigned Frequency(MHz) | Measured Frequency(MHz) | Deviation (%) | Frequency Tolerance(ppm) |
| -30                                                     | 467.6375                | 467.6379                | 0.000086      | -0.4277                  |
| -20                                                     | 467.6375                | 467.6381                | 0.000128      | 0.0000                   |
| -10                                                     | 467.6375                | 467.6379                | 0.000086      | -0.4277                  |
| 0                                                       | 467.6375                | 467.6379                | 0.000086      | -0.4277                  |
| 10                                                      | 467.6375                | 467.6380                | 0.000107      | -0.2138                  |
| 20                                                      | 467.6375                | 467.6381                | 0.000128      | 0.0000                   |
| 30                                                      | 467.6375                | 467.6380                | 0.000107      | -0.2138                  |
| 40                                                      | 467.6375                | 467.6379                | 0.000086      | -0.4277                  |
| 50                                                      | 467.6375                | 467.6376                | 0.000021      | -1.0692                  |
| Frequency Tolerance with reference to its value at 20°C |                         |                         |               |                          |

| Frequency Deviation With Voltage Variation |                |            |               |              |
|--------------------------------------------|----------------|------------|---------------|--------------|
| Channel                                    | Frequency(MHz) | Voltage(V) | Measured(MHz) | Tolerance(%) |
| 4                                          | 462.6375       | 3.6        | 462.6383      | 0.000173     |
|                                            |                | 3.7        | 462.6380      | 0.000108     |
|                                            |                | 3.8        | 462.6380      | 0.000108     |
|                                            |                | 3.9        | 462.6379      | 0.000086     |
|                                            |                | 4.1        | 462.6379      | 0.000086     |
|                                            |                | 4.2        | 462.6381      | 0.000130     |
|                                            |                | 4.3        | 462.6379      | 0.000086     |
|                                            |                | 4.4        | 462.6379      | 0.000086     |
|                                            |                | 4.5        | 462.6381      | 0.000130     |
| 11                                         | 467.6375       | 3.6        | 467.6380      | 0.000107     |
|                                            |                | 3.7        | 467.6380      | 0.000107     |
|                                            |                | 3.8        | 467.6380      | 0.000107     |
|                                            |                | 3.9        | 467.6380      | 0.000107     |
|                                            |                | 4.1        | 467.6380      | 0.000107     |
|                                            |                | 4.2        | 467.6379      | 0.000086     |
|                                            |                | 4.3        | 467.6379      | 0.000086     |
|                                            |                | 4.4        | 467.6379      | 0.000086     |
|                                            |                | 4.5        | 467.6379      | 0.000086     |

**Test Result: PASS**

## 7.1 RF exposure evaluation

### 7.1.1 Test result

This is a portable device which compliance with part 2.1093, please refer to SAR test report.

\*\* END OF REPORT \*\*