

CFR 47 FCC Part 15.247

TEST REPORT

Product : **Bluetooth Keyboard**

Trade Name : N/A

Model Number : PSK-3152i; ASK-3152i;
PSK-3452i; ASK-3452i; BTKeyMini

FCC ID : RAC3152B01

Prepared for

PRECISION SQUARED TECHNOLOGY CORPORATION

5F-7, NO.2 JIAN BA ROAD, CHUNG HO CITY, TAIPEI HSIENG,
TAIWAN, R.O.C.

TEL. : +886 2 8228 0125

FAX. : +886 2 8228 0105

Prepared by

Interocean EMC Technology Corp.

244 No.5-2, Lin 1, Tin-Fu Tsun, Lin-Kou Hsiang,
Taipei County, Taiwan, R.O.C.

TEL.: +886 2 2600 6861

FAX.: +886 2 2600 6859

Remark :

The test report consists of **42** pages in total. It shall not be reproduced except in full, without the written approval of IETC. This document may be altered or revised by IETC only, and shall be noted in the revision section of the document.

The test results in the report only to the tested sample.

Table of Contents

1 General Information	5
1.1 Description of Equipment Under Test	5
1.2 Table for Carrier Frequencies	6
1.3 Test Facility	7
1.4 Test Equipment	8
1.5 Summary of Measurement	9
1.6 Justification	10
2 20dB Bandwidth test	11
2.1 Limit	11
2.2 Configuration of Measurement	11
2.3 Test Procedure	11
2.4 Test Result	11
3 Carrier Frequency Separation test	14
3.1 Limit	14
3.2 Configuration of Measurement	14
3.3 Test Procedure	14
3.4 Test Result	14
4 Number of hopping frequencies test	16
4.1 Configuration of Measurement	16
4.2 Test Procedure	16
4.3 Test Result	16
5 Time of Occupancy (dwell time) test	18
5.1 Limit	18
5.2 Configuration of Measurement	18
5.3 Test Procedure	18
5.4 Test Result	18
6 Maximum Output Power test	21
6.1 Limit	21
6.2 Configuration of Measurement	21
6.3 Test Procedure	21
6.4 Test Result	21
7 RF Conducted spurious emission	23
7.1 Limit	23
7.2 Configuration of Measurement	23
7.3 Test Procedure	23
7.4 Test Result	23

8 RF Radiated spurious emission test	26
8.1 Limit	26
8.2 Configuration of Measurement	26
8.3 Test Procedure	27
8.4 Test Result	27
9 Emission on the Band Edge test	31
9.1 Limit	31
9.2 Configuration of Measurement	31
9.3 Test Procedure	31
9.4 Test Result	31
10 Photographs of Test	35
10.1 Radiated Emission Measurement	35
11 Photographs of EUT	37

Statement of Compliance

Applicant: PRECISION SQUARED TECHNOLOGY CORPORATION
Manufacturer: UNION ASIAN LIMITED
Product: Bluetooth Keyboard
Model No.: PSK-3152i; ASK-3152i; PSK-3452i; ASK-3452i; BTKeyMini
Tested Power Supply: DC 3V
Date of Final Test: May 25, 2010

Configuration of Measurements and Standards Used :

FCC Rules and Regulations Part 15 Subpart C

I HEREBY CERTIFY THAT: The data shown in this report were made in accordance with the procedures given in ANSI C63.4, and the energy emitted by the device was found to be within the limits applicable. I assume full responsibility for accuracy and completeness of these data.

Note:

1. The result of the testing report relate only to the item tested.
2. The testing report shall not be reproduced except in full, without the written approval of IETC

Report Issued: 2010/06/17

Project Engineer: Victor Chen Approved: Jerry Liu
Victor Chen Jerry Liu

1 General Information

1.1 Description of Equipment Under Test

Product : Bluetooth Keyboard

Model Number : PSK-3152i; ASK-3152i; PSK-3452i; ASK-3452i; BTKeyMini

Applicant : **PRECISION SQUARED TECHNOLOGY CORPORATION**
5F-7, NO.2 JIAN BA ROAD, CHUNG HO CITY, TAIPEI HSIENG,
TAIWAN, R.O.C.

Manufacturer : **UNION ASIAN LIMITED**
San Xing Industry Area, Oin Xi Town, Dong Guan City Guang Dong
Provice China

Power Supply : DC 3V

Operating Frequency : 2402MHz ~ 2480MHz

Channel Number : 79 channels

Type of Modulation : GFSK

Antenna description : This device uses PCB Antenna.
The antenna is integral to the device, thereby meeting the requirement
of FCC 15.203.

Sample Receive date : May 17, 2010

Date of Test : May 17 ~ 25, 2010

Additional Description : 1) The Model Number “**PSK-3152i**” is representative selected in the
test and included in this report.
2) All model included in this report, the difference is for different
market; the rest parts are identical.
3) For more detail specification about EUT, please refer to the user’s
manual.

1.2 Table for Carrier Frequencies

Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402 MHz	30	2432 MHz	60	2462 MHz
1	2403 MHz	31	2433 MHz	61	2463 MHz
2	2404 MHz	32	2434 MHz	62	2464 MHz
3	2405 MHz	33	2435 MHz	63	2465 MHz
4	2406 MHz	34	2436 MHz	64	2466 MHz
5	2407 MHz	35	2437 MHz	65	2467 MHz
6	2408 MHz	36	2438 MHz	66	2468 MHz
7	2409 MHz	37	2439 MHz	67	2469 MHz
8	2410 MHz	38	2440 MHz	68	2470 MHz
9	2411 MHz	39	2441 MHz	69	2471 MHz
10	2412 MHz	40	2442 MHz	70	2472 MHz
11	2413 MHz	41	2443 MHz	71	2473 MHz
12	2414 MHz	42	2444 MHz	72	2474 MHz
13	2415 MHz	43	2445 MHz	73	2475 MHz
14	2416 MHz	44	2446 MHz	74	2476 MHz
15	2417 MHz	45	2447 MHz	75	2477 MHz
16	2418 MHz	46	2448 MHz	76	2478 MHz
17	2419 MHz	47	2449 MHz	77	2479 MHz
18	2420 MHz	48	2450 MHz	78	2480 MHz
19	2421 MHz	49	2451 MHz		
20	2422 MHz	50	2452 MHz		
21	2423 MHz	51	2453 MHz		
22	2424 MHz	52	2454 MHz		
23	2425 MHz	53	2455 MHz		
24	2426 MHz	54	2456 MHz		
25	2427 MHz	55	2457 MHz		
26	2428 MHz	56	2458 MHz		
27	2429 MHz	57	2459 MHz		
28	2430 MHz	58	2460 MHz		
29	2431 MHz	59	2461 MHz		

1.3 Test Facility

Site Description	: <input checked="" type="checkbox"/> RF Test Room <input checked="" type="checkbox"/> OATS 2
Name of Firm	: Intercean EMC Technology Corp.
Company web	: http://www.ietc.com.tw
Site 1, 2 Location	: No.5-2, Lin 1, Tin-Fu Tsun, Lin-Kou Hsiang, Taipei County, Taiwan, R.O.C.
Site 3, 4 Location	: No. 12, Ruei-Shu Valley, Ruei-Ping Tsun, Lin-Kou Hsiang, Taipei County, Taiwan, R.O.C.
Site Filing	: <ul style="list-style-type: none">● Federal Communication Commissions – USA Registration No.: 96399 (OATS 1 & 2) Registration No.: 518958 (OATS 3 & 4) Designation No.: TW1020● Voluntary Control Council for Interference by Information Technology Equipment (VCCI) – Japan Member No.: 1349 Registration No. (Conducted Room): C-1094 Registration No. (Conducted Room): T-1562 Registration No. (OATS 1): R-1040 Registration No. (OATS 2): R-1041● Industry Canada (IC) OUR FILE: 46405-4437 Submission: 130946 Registration No. (OATS 1): 4437A-1 Registration No. (OATS 2): 4437A-2 Registration No. (OATS 3): 4437A-3 Registration No. (OATS 4): 4437A-4
Site Accreditation	: <ul style="list-style-type: none">● Bureau of Standards and Metrology and Inspection (BSMI) – Taiwan, R.O.C. Accreditation No.: SL2-IN-E-0026 for CNS13438 / CISPR22 SL2-R1-E-0026 for CNS13439 / CISPR13 SL2-R2-E-0026 for CNS13439 / CISPR13 SL2-A1-E-0026 for CNS13783-1 / CISPR14-1 SL2-L1-E-0026 for CNS 14115 / CISPR 15● Taiwan Accreditation Foundation (TAF) Accreditation No.: 1113● TÜV NORD Certificate No: TNTW0801R-02

1.4 Test Equipment

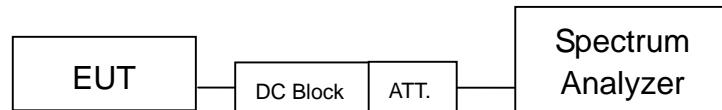
Instrument	Manufacturer	Model	Serial No.	Next Cal. Date
Spectrum Analyzer	R&S	FSP30	100002	2010/12/08
Spectrum Analyzer	R&S	FSP40	100478	2011/04/20
Preamplifier	Agilent	8449B	3008A01434	2011/04/20
Preamplifier	Agilent	83050A	3950A00225	2010/08/10
Preamplifier	SCHAFFNER	CA30100	2	2010/11/03
Horn Antenna	Schwarzbeck	BBHA 9120	9120D-583	2011/02/09
Wide Bandwidth Sensor	Anritsu	MA2491A	728133	2010/11/13
Power Meter	Anritsu	ML2495A	736010	2010/11/13
Temp & Humidity chamber	GIAN FORCE	GTH-150-40-2P-U	MAA0305-012	2011/05/07

Note: The above equipments are within the valid calibration period.

1.5 Summary of Measurement

Report Clause	Test Parameter	Reference Document CFR47 Part15	Results
2	20dB Bandwidth test	§15.247(a)(1)	Pass
3	Carrier Frequency Separation test	§15.247(a)(1)	Pass
4	Number of hopping frequencies test	§15.247(a)(1)	Pass
5	Time of Occupancy (dwell time) test	§15.247(a)(1)	Pass
6	Maximum Peak output power test	§15.247(b)	Pass
7	RF Conducted spurious emission	§15.247(c)	Pass
8	RF Radiated spurious emission test	§15.205, 15.209	Pass
9	Emission on the Band Edge test	§15.247(d)	Pass
	AC Power Line Conducted Emission test	§15.247(b)	Not Applicable

1.6 Justification


The test of radiated measurements according to FCC Part15 Section 15.33(a) had been conducted and the field strength of the frequency band were all arrive limit requirement, thus we evaluate the EUT pass the specified test.

2 20dB Bandwidth test

2.1 Limit

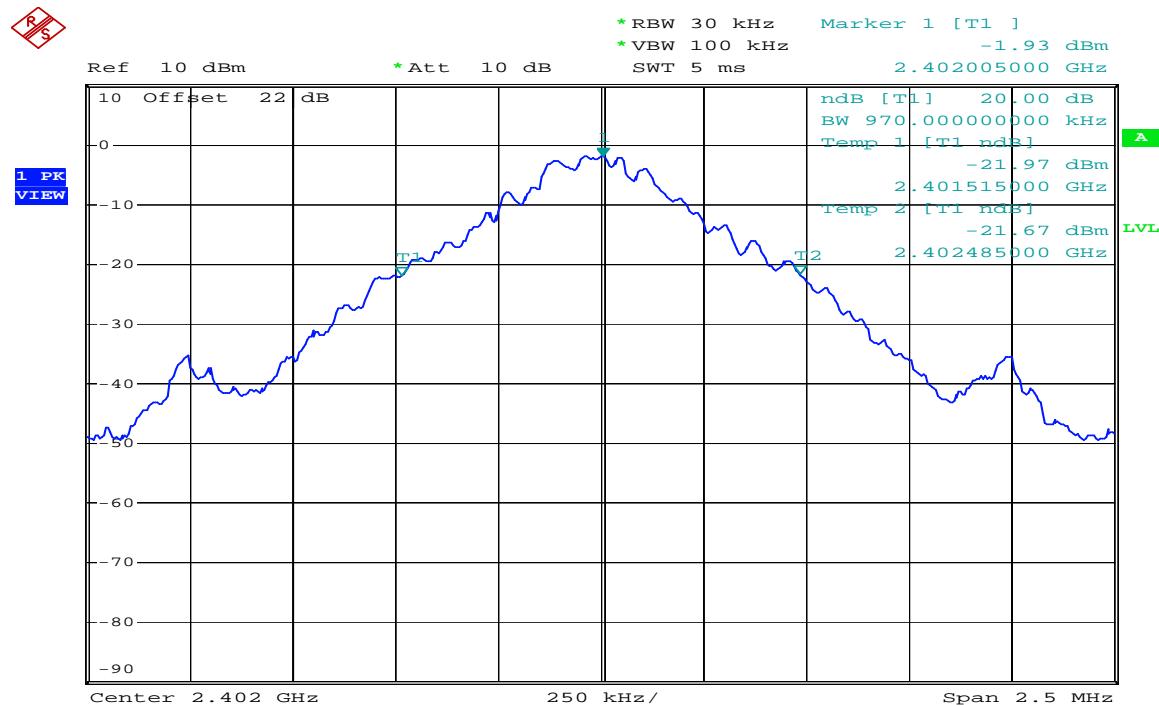
No regulation limit, for reference purpose.

2.2 Configuration of Measurement

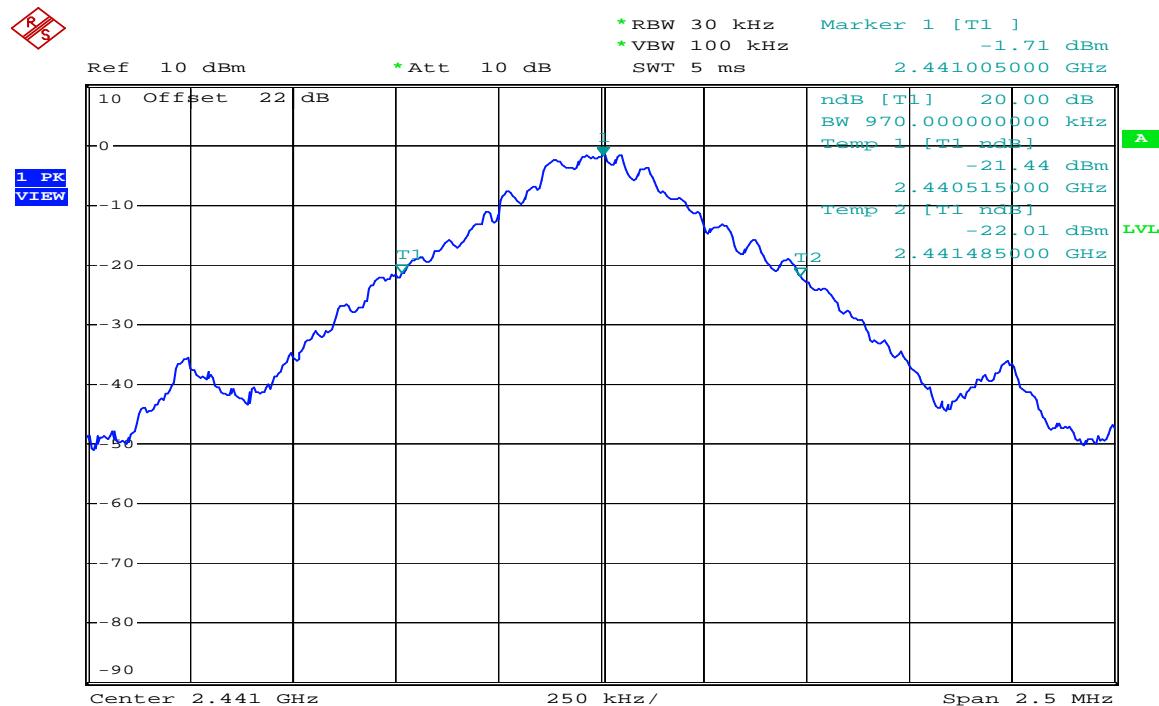
2.3 Test Procedure

The EUT was setup to ANSI C63.4, 2003; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

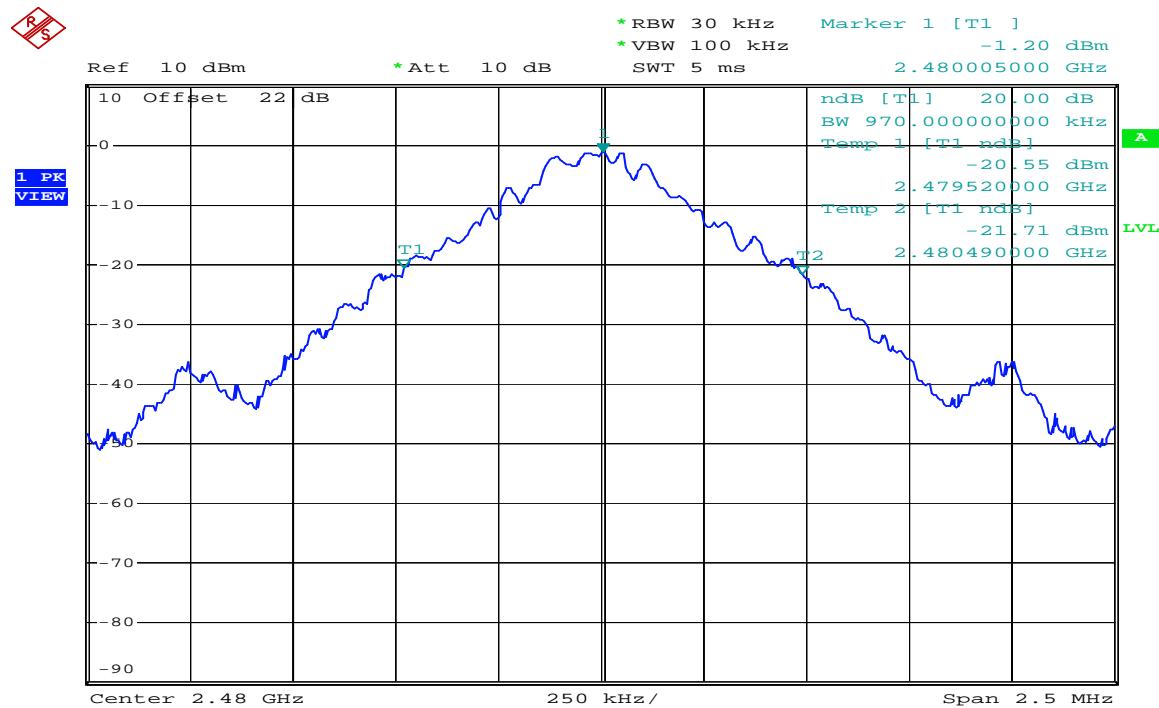
The 20dB bandwidth per FCC §15.247(a)(1) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at 100 kHz, the video bandwidth \geq RBW, and the SPAN may equal to approximately 2 to 3 time the 20dB bandwidth.


2.4 Test Result

PASS.

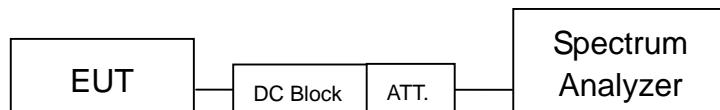

The final test data is shown as following pages.

Test CH		20dB Bandwidth (MHz)	Limit (kHz)
Modulation	Freq. (MHz)		
GFSK	2402	0.97	>500
	2441	0.97	>500
	2480	0.97	>500


2402MHz 20dB BW

2441MHz 20dB BW

2480MHz 20dB BW


3 Carrier Frequency Separation test

3.1 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

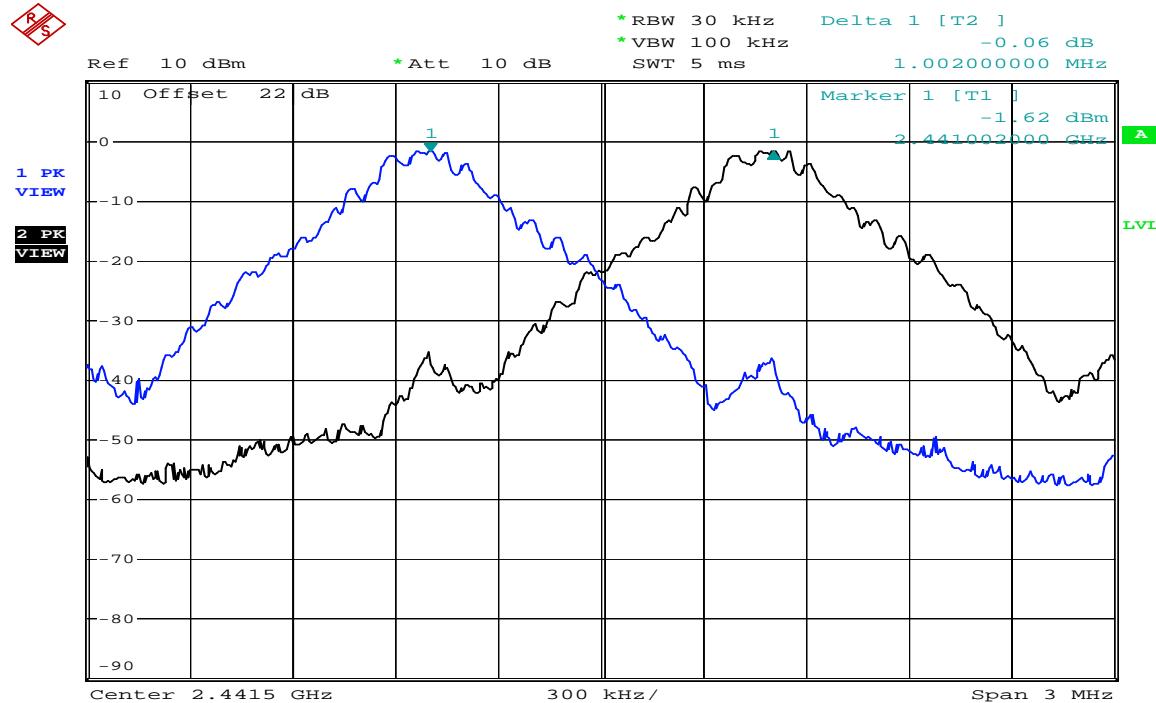
Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

3.2 Configuration of Measurement

3.3 Test Procedure

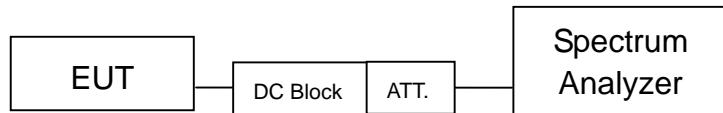
The EUT was setup to ANSI C63.4, 2003; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

The carrier frequency separation per FCC Part15.247(a)(1) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at $\geq 1\%$ of the span, the video bandwidth \geq RBW, and the SPAN was wide enough to capture the peaks of two adjacent channels.


3.4 Test Result

PASS.

The final test data is shown as following pages.


Modulation	Carrier Frequency Separation (kHz)
GFSK	1002

Channel Separation

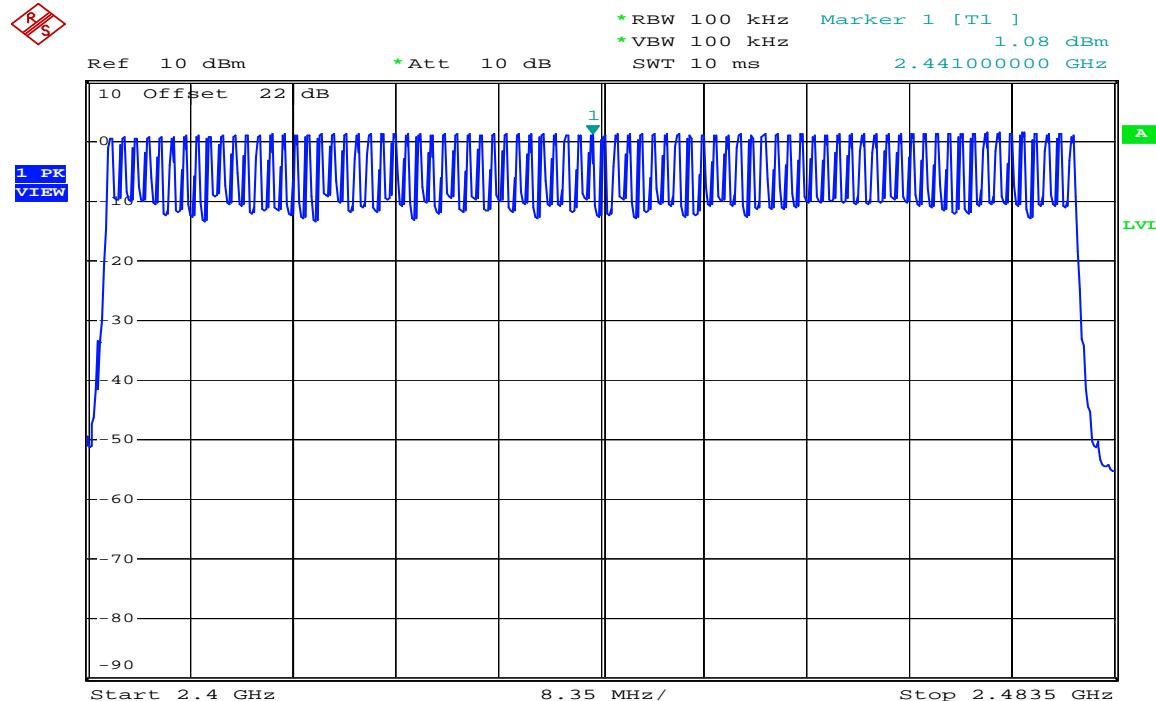
4 Number of hopping frequencies test

4.1 Configuration of Measurement

4.2 Test Procedure

The EUT was setup to ANSI C63.4, 2003; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

The number of hopping frequencies per FCC Part15.247(a)(1) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at $\geq 1\%$ of the span, the video bandwidth \geq RBW, and the SPAN was the frequency band of operation.

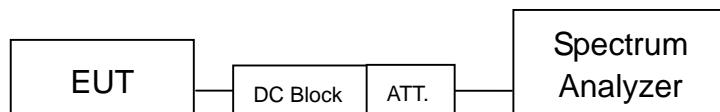

4.3 Test Result

PASS.

The final test data is shown as following pages.

Modulation	No. of Hopping CH.
GFSK	79

Channel Number


5 Time of Occupancy (dwell time) test

5.1 Limit

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

The average time of occupancy on any channel shall not be greater than 0.4 second within a period of 0.4 second multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

5.2 Configuration of Measurement

5.3 Test Procedure

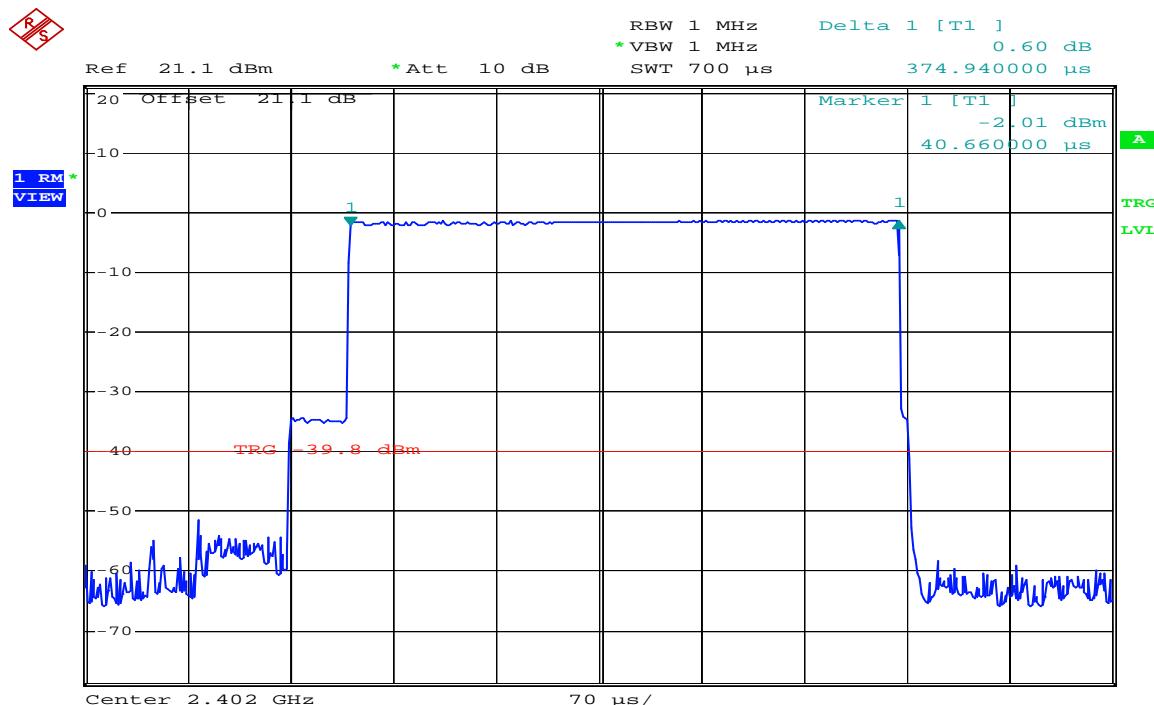
The EUT was setup to ANSI C63.4, 2003; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

According to FCC Part15.247(a)(1) the time of occupancy (dwell time) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at 1MHz, the video bandwidth \geq RBW and the zero span function of spectrum analyzer was enable. The EUT has its hopping function enable.

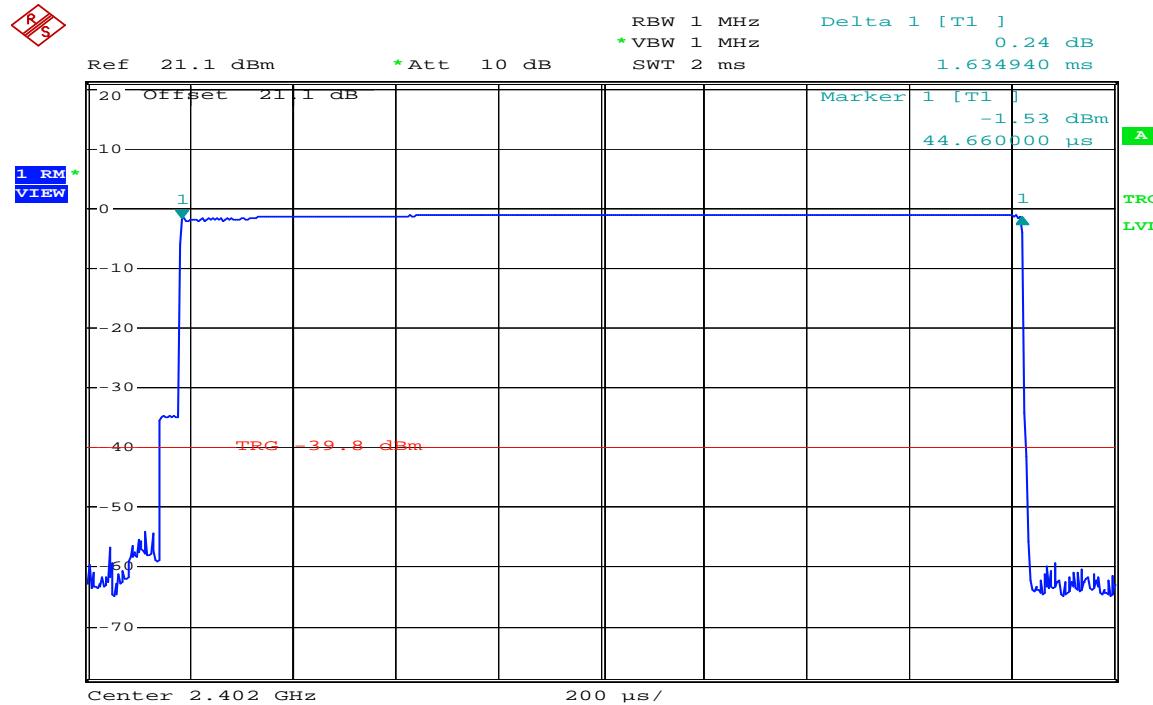
Formula for Dwell time calculation:

$$\text{Dwell time} = \text{time slot} * \text{hop rate} * 1/\text{s} / 79 * 31.6\text{s}$$

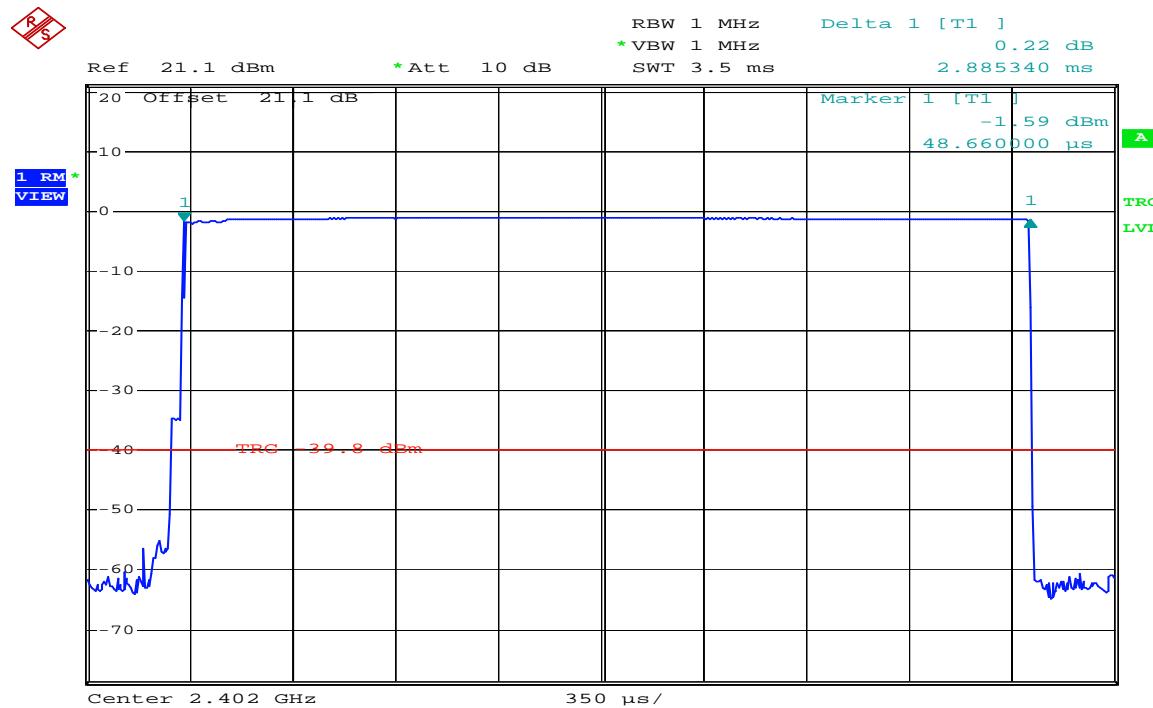
5.4 Test Result


PASS.

The final test data is shown as following pages.

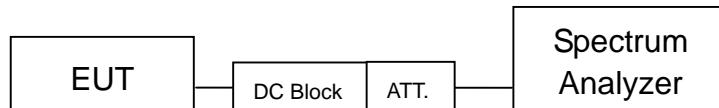

Dwell Time Test

Modulation Type	Packet Type	Time Slot Length (ms)	Hop Rate (Hz)	Dwell Time (s)	Limit (s)	Test Result
GFSK	DH1	0.347	800	0.111	<0.4	Pass
	DH3	1.635	400	0.262	<0.4	Pass
	DH5	2.885	266	0.308	<0.4	Pass


DH1 Dwell time

DH3 Dwell time

DH5 Dwell time


6 Maximum Output Power test

6.1 Limit

For frequency hopping systems operating in the 2400-2483.5MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850MHz band: 1 watt.

For all other frequency hopping systems in the 2400-2483.5MHz band: 0.125 watts.

6.2 Configuration of Measurement

6.3 Test Procedure

The EUT was setup to ANSI C63.4, 2003; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

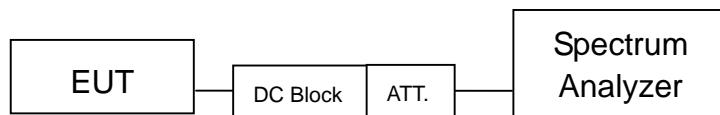
For FCC Part 15.247(b) the power output per was measured on the EUT using a 50 ohm SMA cable connected to peak power meter via power sensor. Peak output power was read directly from power meter. The test was performed at 3 channels (lowest, middle and highest).

6.4 Test Result

PASS.

The final test data is shown as following pages.

CH	Temp. (°C)	Test Voltage (Vdc)	Maximum transmit power (dBm)	Limit (dBm)	Margin (dB)
0	27	3	0.71	30	-29.29
39	27	3	0.28	30	-29.72
78	27	3	-0.34	30	-30.34


7 RF Conducted spurious emission

7.1 Limit

According to FCC Part 15.247(d) requirement :

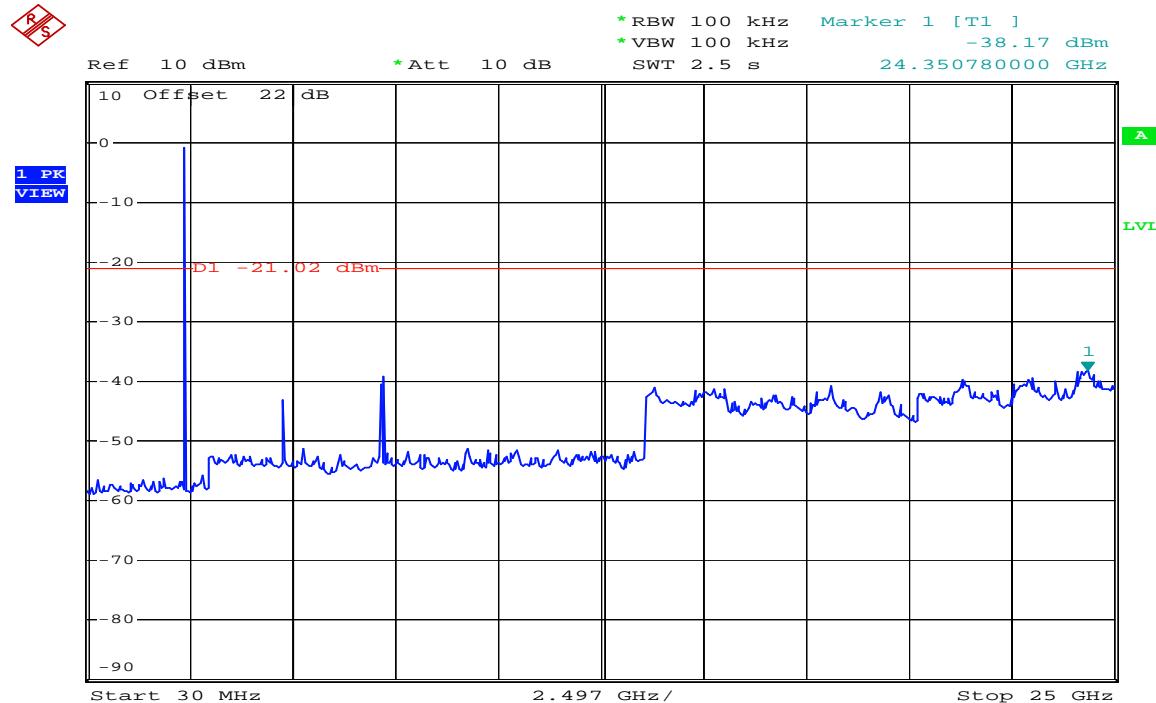
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

7.2 Configuration of Measurement

7.3 Test Procedure

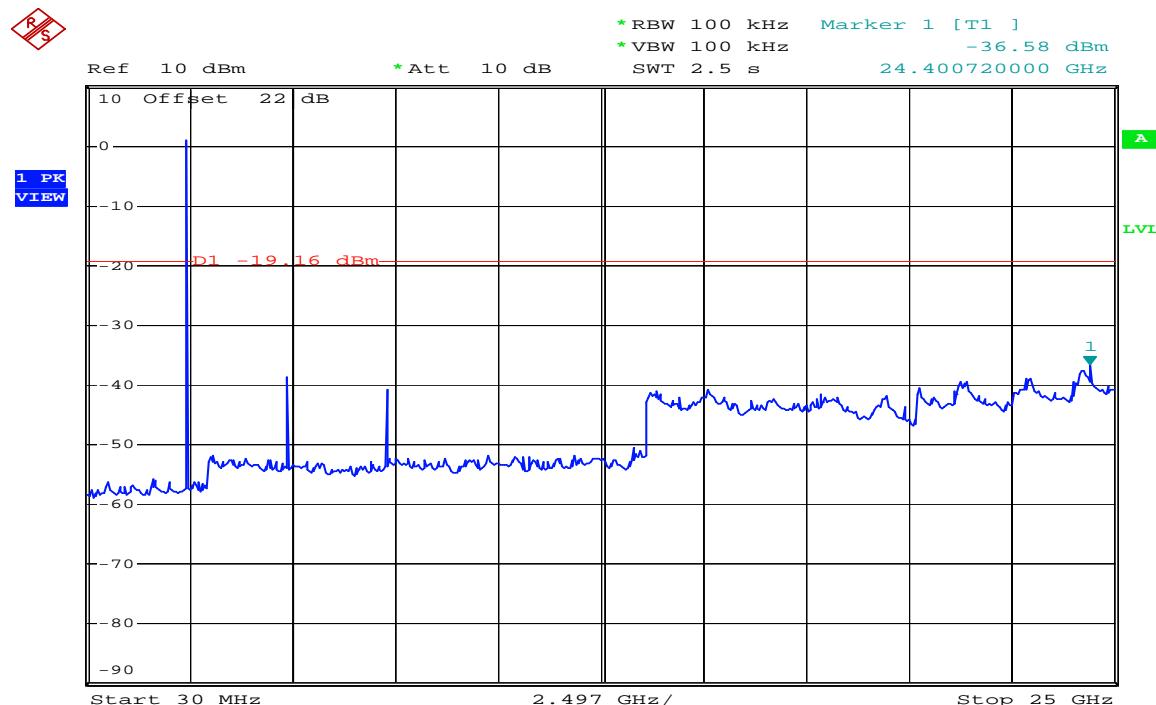
The EUT was setup to ANSI C63.4, 2003; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

RF antenna conducted spurious emissions was measured from the EUT antenna port using a 50ohm spectrum analyzer with the resolution bandwidth set at 100 kHz, and the video bandwidth set at 100 kHz.

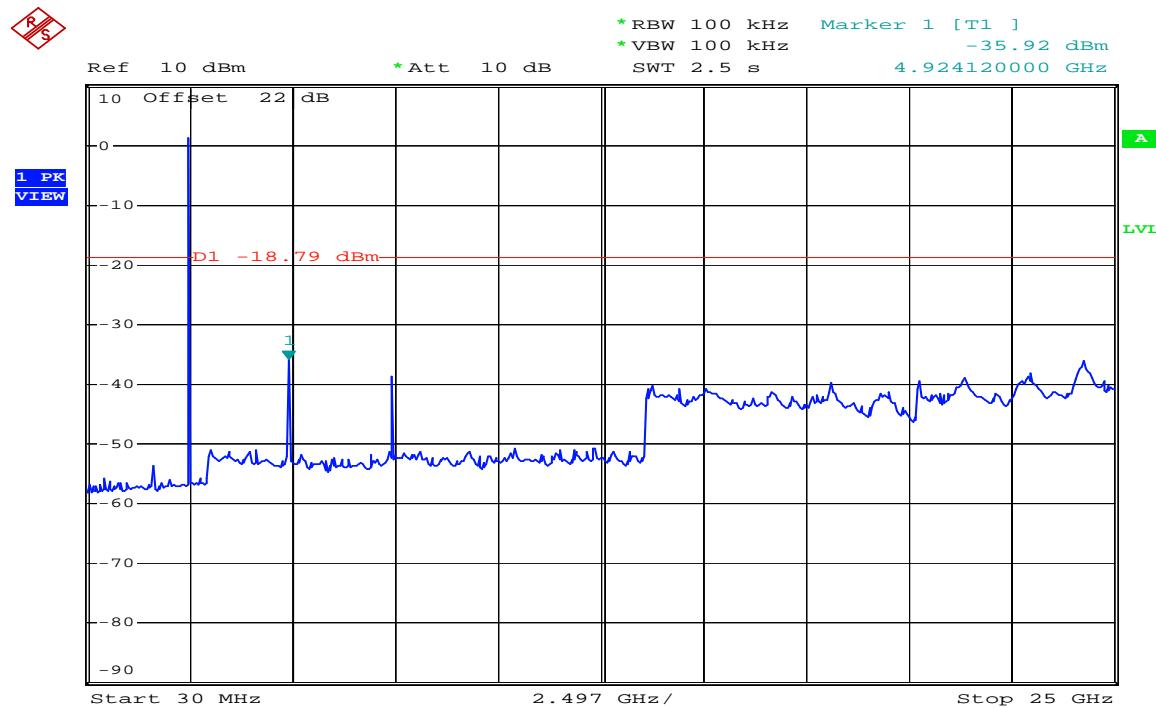

The measurements were performed from 30MHz to 25GHz.

7.4 Test Result

PASS.


The final test data is shown as following pages.

2402MHz Conducted spurious



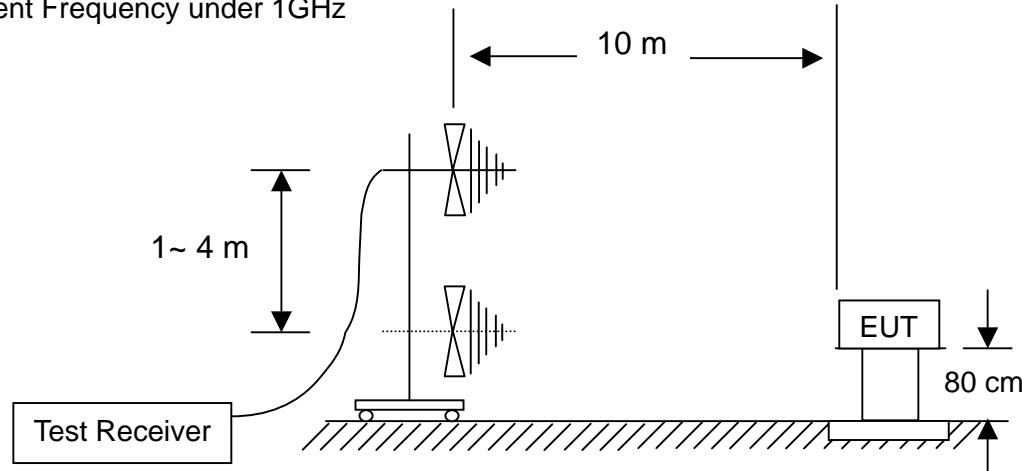
S

2441MHz Conducted spurious

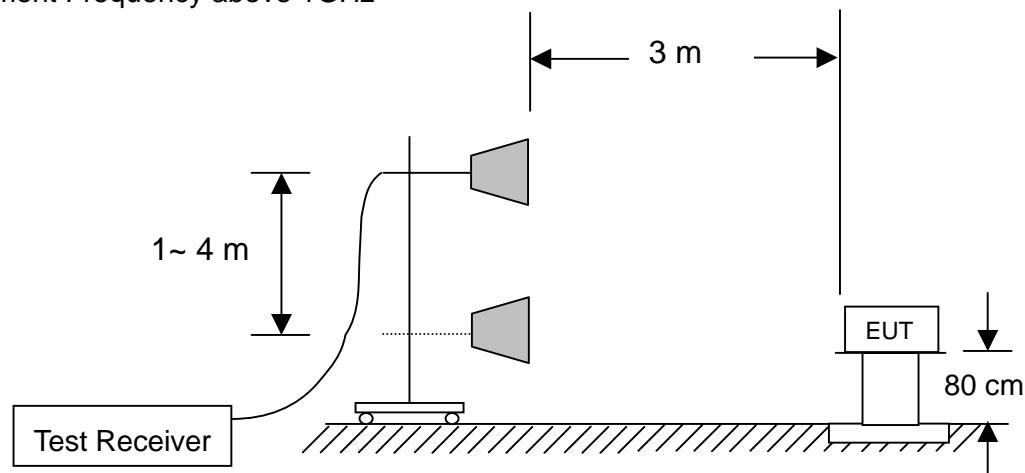
2480MHz Conducted spurious

8 RF Radiated spurious emission test

8.1 Limit


For intentional radiator, the radiated emission shall comply with FCC Part 15.209(a).

For intentional radiators, according to FCC Part 15.247 (a), operation under this provision is limited to frequency hopping and direct sequence spread spectrum, and the out band emission shall be comply with FCC Part 15.247 (c)


Frequency (MHz)	Field strength dB(μ V/m)	Measurement distance (meters)
1.705~30.0	29.5	30
30 ~ 88	40	3
88~216	43.5	3
216~960	46	3
Above 960	54	3

8.2 Configuration of Measurement

Measurement Frequency under 1GHz

Measurement Frequency above 1GHz

8.3 Test Procedure

The EUT was setup to ANSI C63.4, 2003; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

Radiated emission measurements were performed from 30MHz to 25GHz. Spectrum Analyzer set as below: For frequency range from 30MHz to 1GHz: RBW=100kHz or greater. For frequencies above 1GHz: set RBW=VBW=1MHz for peak detector and RBW=1MHz, VBW=10Hz for average detector.

The EUT for testing is arranged on a wooden turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and whole system. During the test, all cables were arranged to present worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meter and down to 1 meter.

8.4 Test Result

PASS.

The final test data is shown as following pages.

Radiated Emission below 1GHz

Frequency (MHz)	Antenna Polarization	Reading (dB μ V)	Preamp (dB)	Correction Factor (dB/m)	Corrected Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Det. Mode
122.360	H	31.69	13.36	14.46	32.79	43.50	-10.71	QP
316.150	H	32.58	13.24	16.02	35.36	46.00	-10.64	QP
340.400	H	35.47	12.98	16.68	39.17	46.00	-6.83	QP
354.651	H	33.40	12.89	17.27	37.78	46.00	-8.22	QP
122.154	V	35.49	13.36	14.14	36.27	43.50	-7.23	QP
328.290	V	32.47	13.14	16.69	36.02	46.00	-9.98	QP
352.550	V	33.69	12.89	17.04	37.84	46.00	-8.16	QP
478.600	V	25.47	12.57	25.74	38.64	46.00	-7.36	QP

Remark : Corrected Level = Reading + Correction Factor – Preamp

Correction Factor = Antenna Factor + Cable Loss

Radiated Emission above 1GHz

2402MHz								
Frequency (MHz)	Antenna Polarization	Reading (dB μ V)	Preamp (dB)	Correction Factor (dB/m)	Corrected Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Det. Mode
4804	H	49.83	36.30	37.47	51.00	54	-3.00	PK
7206	H	42.82	36.54	42.87	49.15	54	-4.85	PK
*9608	H	41.33	36.92	46.00	50.41	54	-3.59	PK
4804	V	51.82	36.30	37.47	52.99	54	-1.01	PK
7206	V	48.11	36.54	42.87	54.44	74	-19.56	PK
7206	V	45.12	36.54	42.87	51.45	54	-2.55	AV
*9608	V	43.25	36.92	46.00	52.33	54	-1.67	PK

2441MHz								
Frequency (MHz)	Antenna Polarization	Reading (dB μ V)	Preamp (dB)	Correction Factor (dB/m)	Corrected Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Det. Mode
4882	H	55.26	36.30	37.59	56.55	74	-17.45	PK
4882	H	52.19	36.30	37.59	53.48	54	-0.52	AV
7323	H	50.78	36.56	43.14	57.36	74	-16.64	PK
7323	H	45.12	36.56	43.14	51.70	54	-2.30	AV
*9764	H	42.16	36.95	46.17	51.38	54	-2.62	PK
4882	V	52.23	36.30	37.59	53.52	74	-20.48	PK
4882	V	47.38	36.30	37.59	48.67	54	-5.33	AV
7323	V	50.78	36.56	43.14	57.36	74	-16.64	PK
7323	V	44.37	36.56	43.14	50.95	54	-3.05	AV
*9764	V	41.71	36.95	46.17	50.93	54	-3.07	PK

Remark : Corrected Level = Reading + Correction Factor – Preamp

Correction Factor = Antenna Factor + Cable Loss

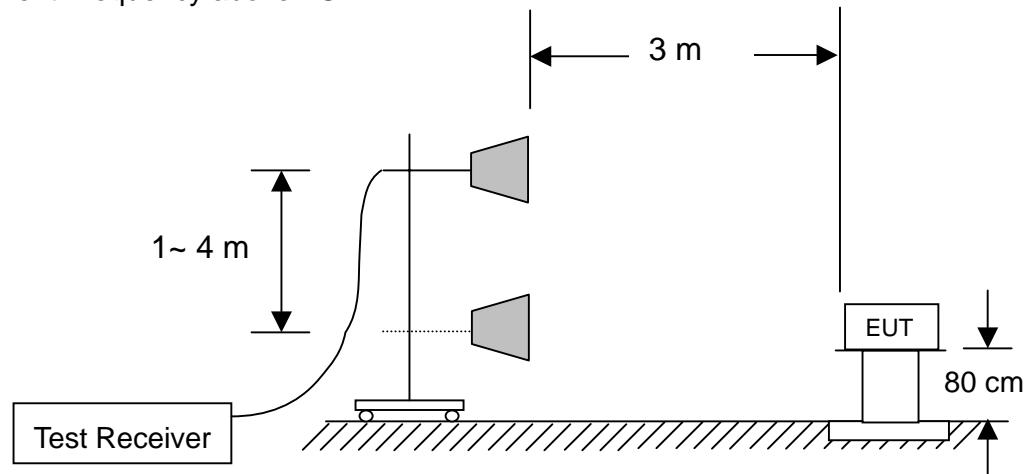
* Mark indicated background noise level.

2480MHz								
Frequency (MHz)	Antenna Polarization	Reading (dB μ V)	Preamp (dB)	Correction Factor (dB/m)	Corrected Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Det. Mode
4960	H	46.08	36.30	37.72	47.50	54	-6.50	PK
7440	H	41.78	36.59	43.42	48.61	54	-5.39	PK
*9920	H	41.47	36.98	46.34	50.83	54	-3.17	PK
4960	V	50.66	36.30	37.72	52.08	54	-1.92	PK
7440	V	45.98	36.59	43.42	52.81	54	-1.19	PK
*9920	V	42.19	36.98	46.34	51.55	54	-2.45	PK

Remark : Corrected Level = Reading + Correction Factor – Preamp

Correction Factor = Antenna Factor + Cable Loss

* Mark indicated background noise level.


9 Emission on the Band Edge test

9.1 Limit

In any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

9.2 Configuration of Measurement

Measurement Frequency above 1GHz

9.3 Test Procedure

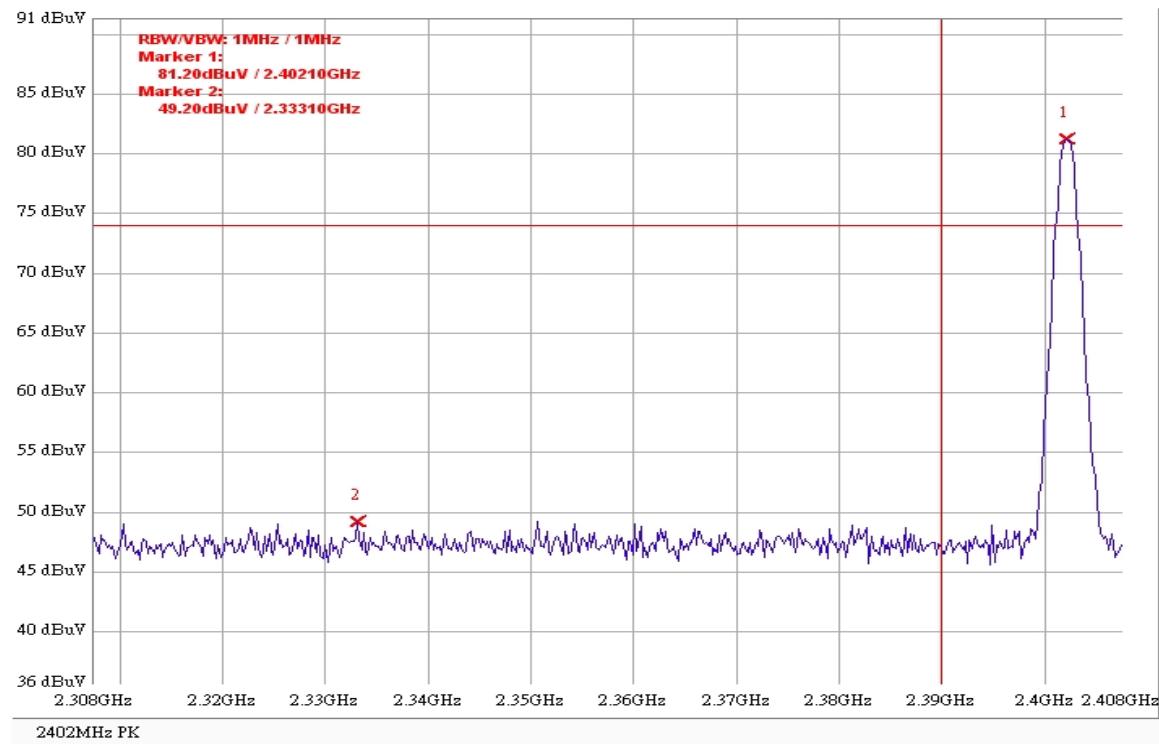
The EUT was setup to ANSI C63.4, 2003; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

Radiated emission measurements were performed from 30MHz to 25GHz. Spectrum Analyzer set as below: For frequency range from 30MHz to 1GHz: RBW=100kHz or greater. For frequencies above 1GHz: set RBW=VBW=1MHz for peak detector and RBW=1MHz, VBW=10Hz for average detector.

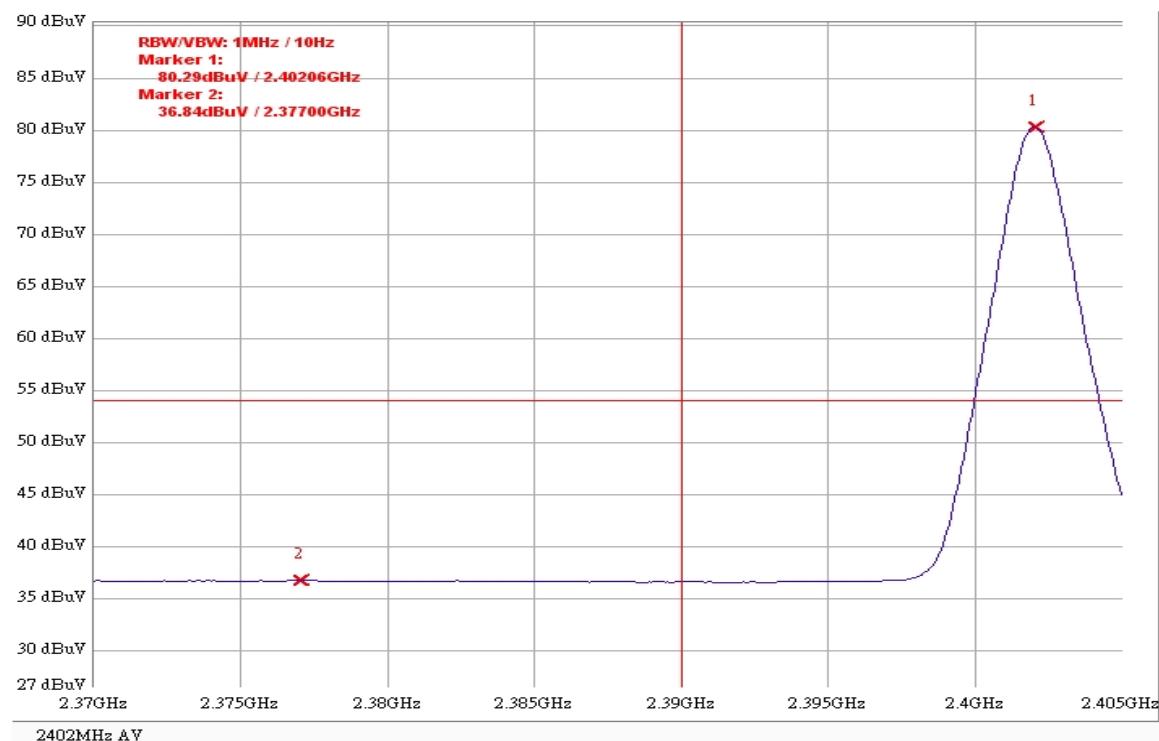
The EUT for testing is arranged on a wooden turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and whole system. During the test, all cables were arranged to present worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meter and down to 1 meter.

9.4 Test Result

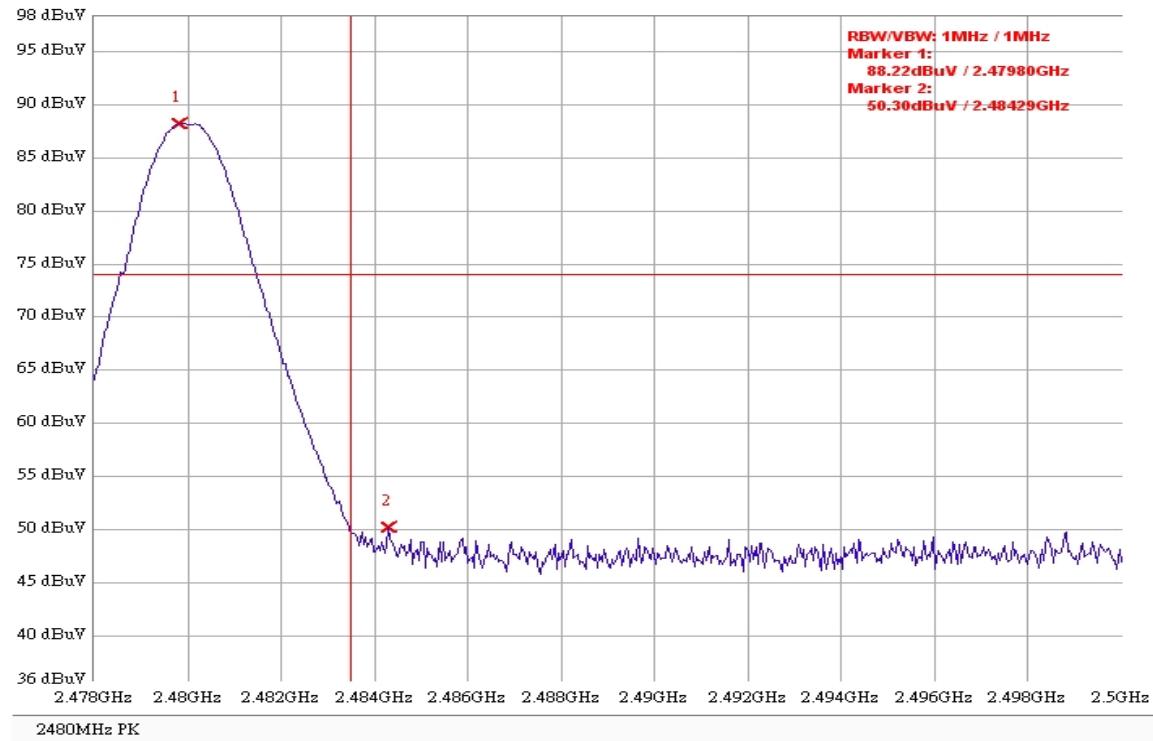
PASS.

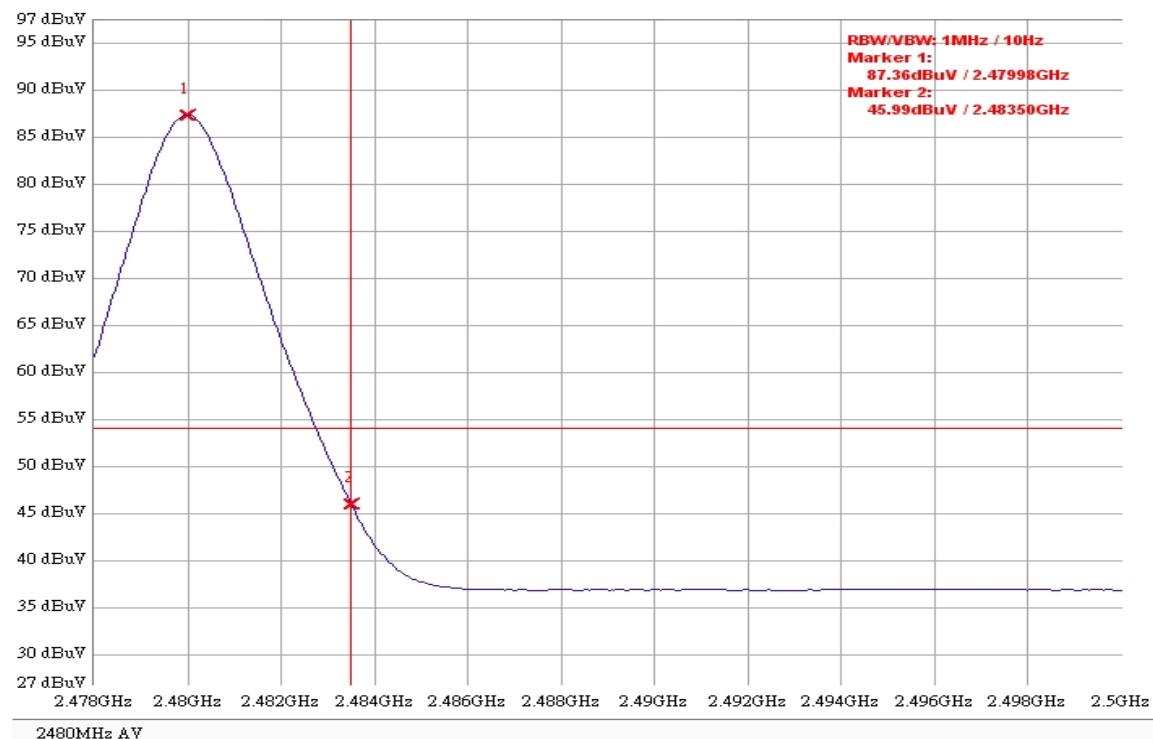

The final test data is shown as following pages.

CH	Restrict Freq. Band (MHz)	Detector Mode	Reading (dBuV)	Limit (dBm)	Magin (dB)
0	2310~2390	PK	49.20	74	-24.80
		AV	36.84	54	-17.16
78	2483.5~2500	PK	50.30	74	-23.70
		AV	45.99	54	-8.01


Remark : Correction Level = Reading + Correction Factor

Correction Factor = Cable loss + Ant. Factor - Amp Gain


CH0 PK


CH0 AV

CH78 PK

CH78 AV

