

**FCC Certification Test Report
for
Industrial Design & Mfg. LLC
R9N-SD201**

August 30, 2004

Prepared for:

**Industrial Design & Mfg. LLC
2655 Huntington Road
Apple Grove, West Virginia 25502**

Prepared By:

**Washington Laboratories, Ltd.
7560 Lindbergh Drive
Gaithersburg, Maryland 20879**

FCC Certification Test Program

FCC Certification Test Report for the Industrial Design & Mfg. LLC SD201 Stay Dri Transmitter R9N-SD201

August 30, 2004

WLL JOB# 8212

Prepared by: Brian J. Dettling
Documentation Specialist

Reviewed by: Michael F. Violette
President

Abstract

This report has been prepared on behalf of Industrial Design & Mfg. LLC to support the attached Application for Equipment Authorization. The test report and application are submitted for a Intentional Radiator under Part 15.249 of the FCC Rules and Regulations. This Federal Communication Commission (FCC) Certification Test Report documents the test configuration and test results for an Industrial Design & Mfg. LLC SD201 Stay Dri Transmitter.

Testing was performed on an Open Area Test Site (OATS) of Washington Laboratories, Ltd, 7560 Lindbergh Drive, Gaithersburg, MD 20879. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by NIST NVLAP (NVLAP Lab Code: 200066-0) as an independent FCC test laboratory.

The Industrial Design & Mfg. LLC SD201 Stay Dri Transmitter complies with the limits for an Intentional Radiator device under Part 15.249 of the FCC Rules and Regulations.

Table of Contents

Abstract	ii
1 Introduction	1
1.1 Compliance Statement	1
1.2 Test Scope	1
1.3 Contract Information	1
1.4 Test Dates	1
1.5 Test and Support Personnel	1
1.6 Abbreviations	2
2 Equipment Under Test	3
2.1 EUT Identification & Description	3
2.2 Test Configuration	4
2.3 Testing Algorithm	4
2.4 Test Location	4
2.5 Measurements	4
2.5.1 References	4
2.6 Measurement Uncertainty	5
3 Test Equipment	6
4 Test Results	7
4.1 Duty Cycle Correction	7
4.2 Occupied Bandwidth: (FCC Part §2.1049)	12
4.3 Radiated Emissions: (FCC Part §2.1053)	16
4.3.1 Test Procedure	16
4.4 Conducted Emissions (AC Power Line)	21

List of Tables

Table 1. Device Summary	4
Table 2: Test Equipment List	6
Table 3. Occupied Bandwidth Results	16
Table 4. Radiated Emissions Limits	16
Table 5. Radiated Emissions Test Data, Fundamental	17
Table 6. Radiated Emissions Data, Channel 1 Harmonics	18
Table 7. Radiated Emissions Data, Channel 4 Harmonics	19
Table 8. Radiated Emissions Data, Channel 8 Harmonics	20

List of Figures

Figure 1. Duty Cycle Plot – Worst Case 100ms and Pulse Train	8
Figure 2. Duty Cycle Plot – Pulse Width: Short Pulse	9
Figure 3. Duty Cycle Plot – Pulse Width: Medium Pulse	10
Figure 4. Duty Cycle Plot – Pulse Width: Long Pulse	11
Figure 5. Occupied Bandwidth, Low Channel	13
Figure 6. Occupied Bandwidth, Middle Channel	14
Figure 7. Occupied Bandwidth, High Channel	15

1 Introduction

1.1 Compliance Statement

The Industrial Design & Mfg. LLC SD201 Stay Dri Transmitter complies with the limits for an Intentional Radiator device under Part 15.249 of the FCC Rules and Regulations.

This test report reflects the testing performed for the certification of the SD201. Separate testing was performed for the digital and receiver portion under the DoC process.

1.2 Test Scope

Tests for radiated and conducted emissions were performed. All measurements were performed according to the 2001 version of ANSI C63.4. The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation.

1.3 Contract Information

Customer:	Industrial Design & Mfg. LLC 2655 Huntington Road Apple Grove, West Virginia 25502
Client Purchase Order:	127
WLL Quotation Number:	61657-A

1.4 Test Dates

Testing was performed from June 14 to June 16, 2004.

1.5 Test and Support Personnel

Washington Laboratories, LTD	Ken Gemmell
Client Representative	Chuck Tavares

1.6 Abbreviations

A	Ampere
Ac	alternating current
AM	Amplitude Modulation
Amps	Ampères
b/s	bits per second
BW	Bandwidth
CE	Conducted Emission
cm	centimeter
CW	Continuous Wave
dB	decibel
dc	direct current
EMI	Electromagnetic Interference
EUT	Equipment Under Test
FM	Frequency Modulation
G	giga - prefix for 10^9 multiplier
Hz	Hertz
IF	Intermediate Frequency
k	kilo - prefix for 10^3 multiplier
M	Mega - prefix for 10^6 multiplier
m	Meter
μ	micro - prefix for 10^{-6} multiplier
NB	Narrowband
LISN	Line Impedance Stabilization Network
RE	Radiated Emissions
RF	Radio Frequency
rms	root-mean-square
SN	Serial Number
S/A	Spectrum Analyzer
V	Volt

2 Equipment Under Test

2.1 EUT Identification & Description

This product is a system intended for use in nursing homes to provide a method to notify the staff that a patient has urinated in bed and consists of the three following components:

- Stay Dri Transmitter Model SD-201
- Stay Dri Receiver Model SD-301
- Stay Dri Repeater Model SD-401

The patient's bed will have a pad that measures approximately 3 by 3 feet containing two internal electrodes that connect to 4 snaps. These snaps provide both electrical connection and mounting for an attached Stay Dri Transmitter unit. When the pad becomes wet, the Stay Dri Transmitter detects this condition and transmits three short bursts of data via a 902 MHz radio link either directly to or via a Stay Dri Repeater to the Stay Dri Receiver. The Stay Dri Receiver passes data via an RS232 cable to a PC located at the nurse's station. This data identifies the Stay Dri Transmitters serial number so the patient's name and/or room number can be determined. Under normal conditions, i.e. no alarm, the Stay Dri Transmitter sends a message approximately every 3 minutes indicating that the bed is dry for the purpose of confirming system integrity.

The Industrial Design & Mfg. LLC SD201 Stay Dri Transmitter is contained in a 1x2x3 inch plastic box. It consists of a PIC16F870 micro-controller running at 3.6864 MHz, a Lynx TXM-900-HP3-PPO transmitter module connected to a -1 dBi internal antenna and some additional analog circuitry. The **Stay Dri Transmitter** is powered by two (2) AA alkaline cells via a low power switching regulator. The exact transmitting frequency will be determined during manufacturing by selecting one of 8 predetermined frequencies that the Lynx module supports and will not be user selectable. The TXM-900-HP3-PPO output is nominally 0 dBm (+/- 3 dB).and provisions have been made for a T-pad attenuator, if needed, to comply with the 50mV/m FCC limit.

Table 1. Device Summary

ITEM	DESCRIPTION
Manufacturer:	Industrial Design & Mfg. LLC
FCC ID Number	R9N-SD201
EUT Name:	Stay Dri Transmitter
Model:	SD201
FCC Rule Parts:	§15.249
Frequency Range:	902 – 928MHz
Maximum Output Power:	0dBm
Modulation:	FM and FSK
Occupied Bandwidth:	
Keying:	Automatic
Type of Information:	Data
Number of Channels:	1 of 8, determined and fixed during manufacture
Power Output Level	Fixed
Antenna Type	External, proprietary connector
Interface Cables:	RS232 interface
Power Source & Voltage:	3 Vdc battery

2.2 Test Configuration

The SD201 was powered by two AA batteries and set for continuous operation.

2.3 Testing Algorithm

The SD201 was operated continuously.

Worst case emission levels are provided in the test results data.

2.4 Test Location

All measurements herein were performed at Washington Laboratories, Ltd. test center in Gaithersburg, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by NIST NVLAP (NVLAP Lab Code: 200066-0) as an independent FCC test laboratory.

2.5 Measurements

2.5.1 References

ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation

ANSI C63.4 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

Land Mobile FM or PM Communications Equipment Measurement and Performance Standards (ANSI/TIA/EIA-603-93)

2.6 Measurement Uncertainty

All results reported herein relate only to the equipment tested. For the purposes of the measurements performed by Washington Laboratories, the measurement uncertainty is ± 2.3 dB. This has been calculated for a *worst-case situation* (radiated emissions measurements performed on an open area test site).

The following measurement uncertainty calculation is provided:

$$\text{Total Uncertainty} = (A^2 + B^2 + C^2)^{1/2}/(n-1)$$

where:

A = Antenna calibration uncertainty, in dB = 2 dB

B = Spectrum Analyzer uncertainty, in dB = 1 dB

C = Site uncertainty, in dB = 4 dB

n = number of factors in uncertainty calculation = 3

Thus, Total Uncertainty = $0.5 (2^2 + 1^2 + 4^2)^{1/2} = \pm 2.3$ dB.

3 Test Equipment

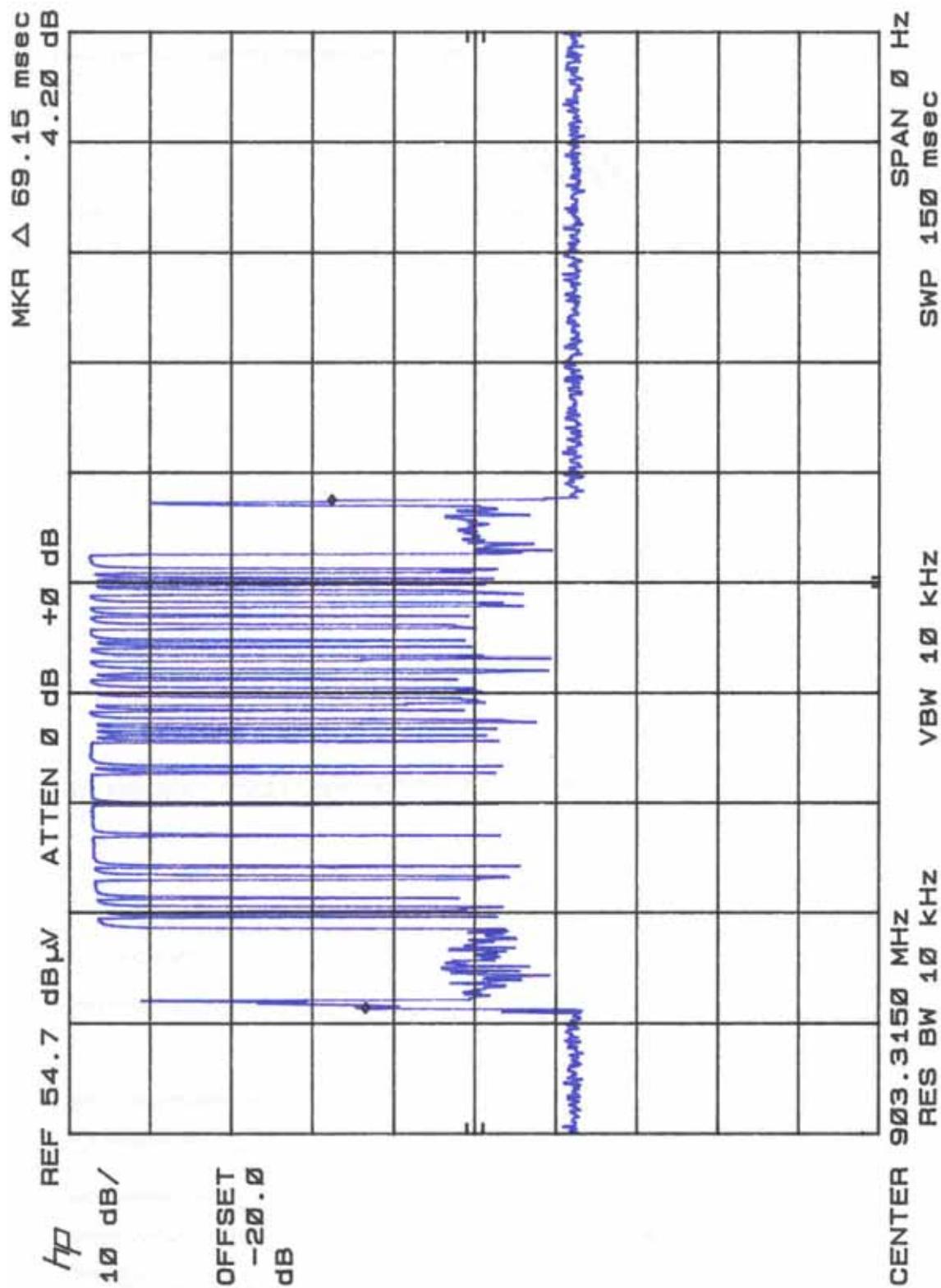
Table 2 shows a list of the test equipment used for measurements along with the calibration information.

Table 2: Test Equipment List

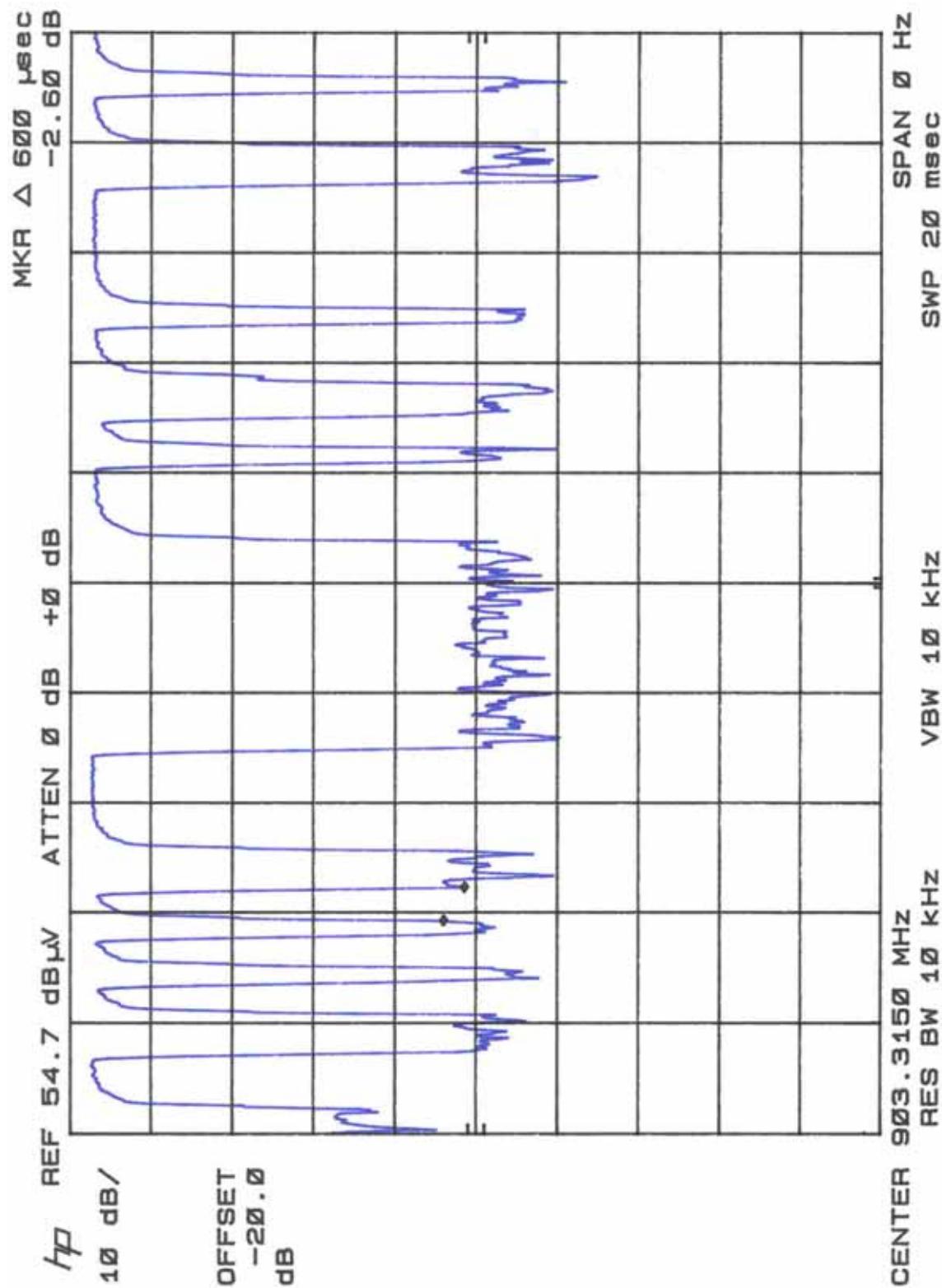
Equipment	Identification	Calibration Due
Sunol JB1 Biconilog Antenna	A090501	10/21/04
ARA DRG118/A Microwave Horn Antenna	1236	4/17/05
Hewlett-Packard 8568B Spectrum Analyzer	2928A04750	7/01/05
Hewlett-Packard 85650A Quasi-Peak Adapter	3303A01786	7/08/04
Hewlett-Packard 85685A RF Preselector	3146A01296	7/06/05
Hewlett-Packard 8593A Spectrum Analyzer	3009A00739	6/25/04
Hewlett-Packard 8449B Microwave Preamp	3008A00385	9/29/05
Solar Electronics LISN 8012-50-R-24-BNC	8379493	9/30/04

4 Test Results

4.1 Duty Cycle Correction


Measurements may be adjusted where pulsed RF is utilized to find the average level associated with a quantity. This calculation is applied to limits for pulsed licensed and unlicensed devices.

On time = $N_1L_1+N_2L_2+\dots+N_{N-1}L_{N-1}+N_NL_N$, where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.


- For Licensed Transmitters basic formula can be stated as $20\log[\text{Duty Cycle}]$
- For Unlicensed Intentional Radiators under 47CFR Part 15, all duty cycle measurements compared to a 100 millisecond period
- i.e. duty cycle = on time/100 milliseconds or period, whichever is less
- Restating the basic formula:
 - Duty cycle = $(N_1L_1+N_2L_2+\dots+N_{N-1}L_{N-1}+N_NL_N)/100$ or T , whichever is less

Where T is the period of the pulse train.

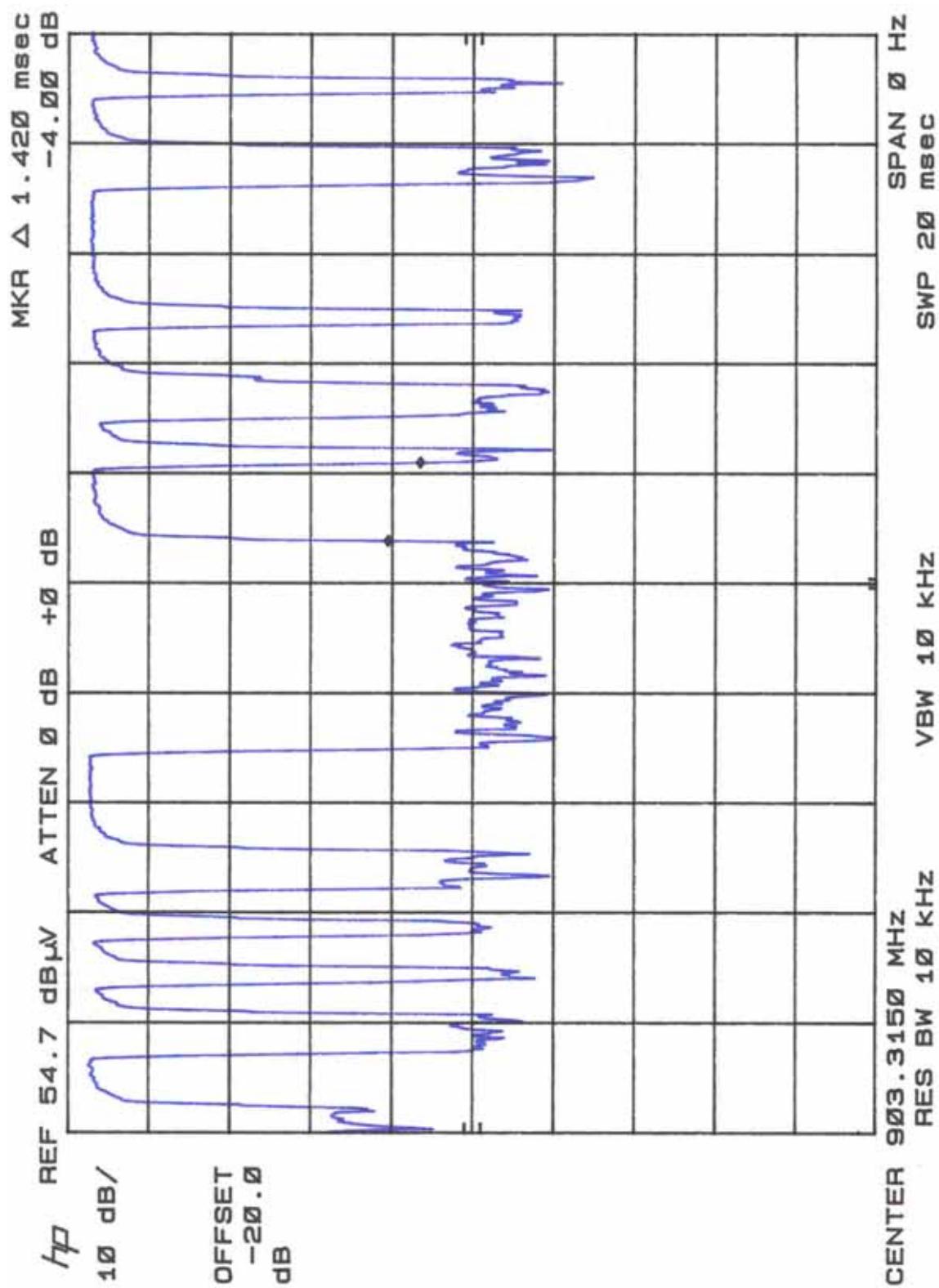

The following Figures show the plots of the modulated carrier. The spectrum analyzer was set to Zero Span and the video triggered to collect the pulse train of the modulation. Calculations of the duty cycle correction factor were obtained from time data provided by the plots.

Figure 1. Duty Cycle Plot – Worst Case 100ms and Pulse Train

Figure 2. Duty Cycle Plot – Pulse Width: Short Pulse

Figure 3. Duty Cycle Plot – Pulse Width: Medium Pulse

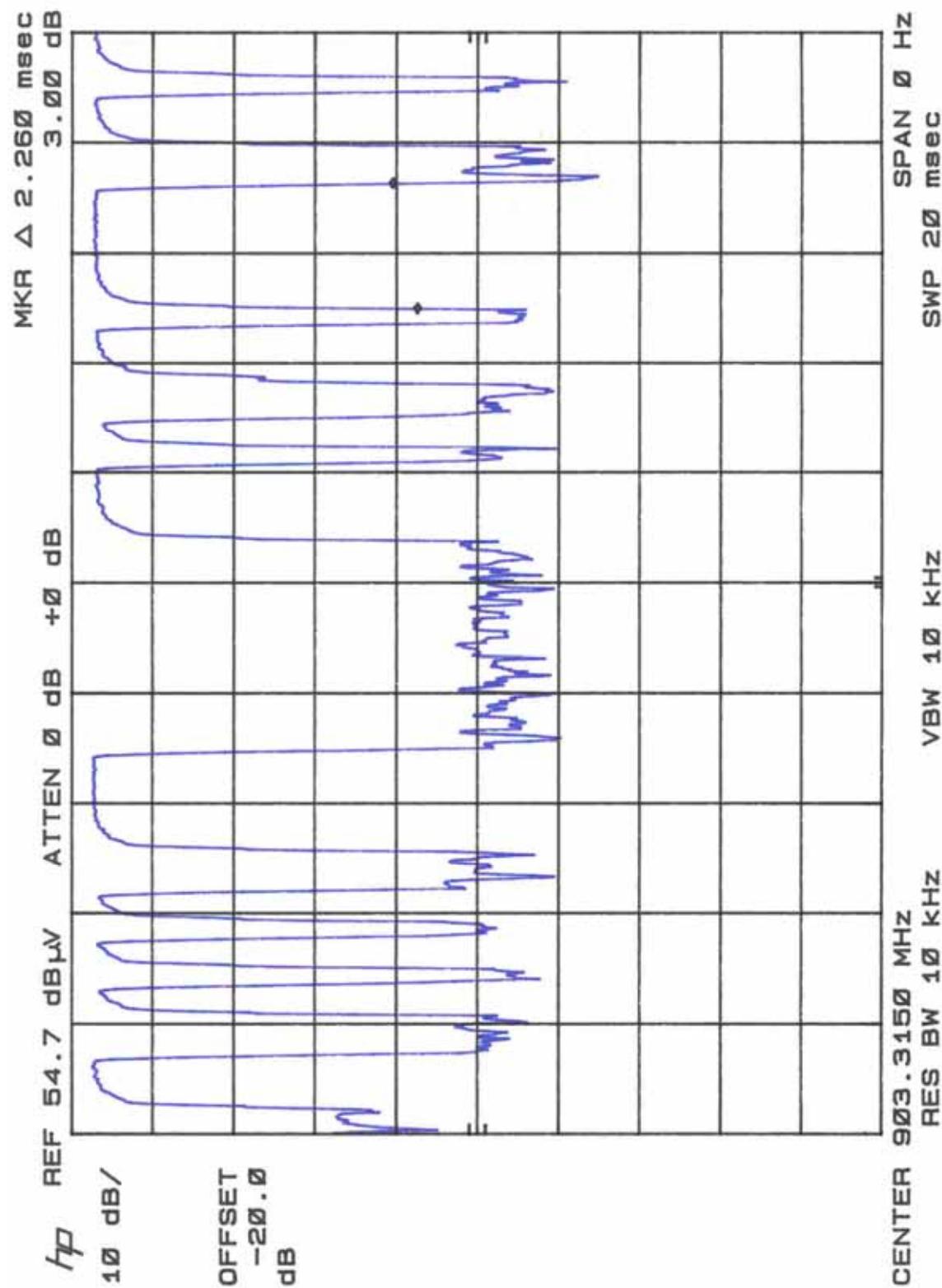


Figure 4. Duty Cycle Plot – Pulse Width: Long Pulse

Duty Cycle Data Sheet

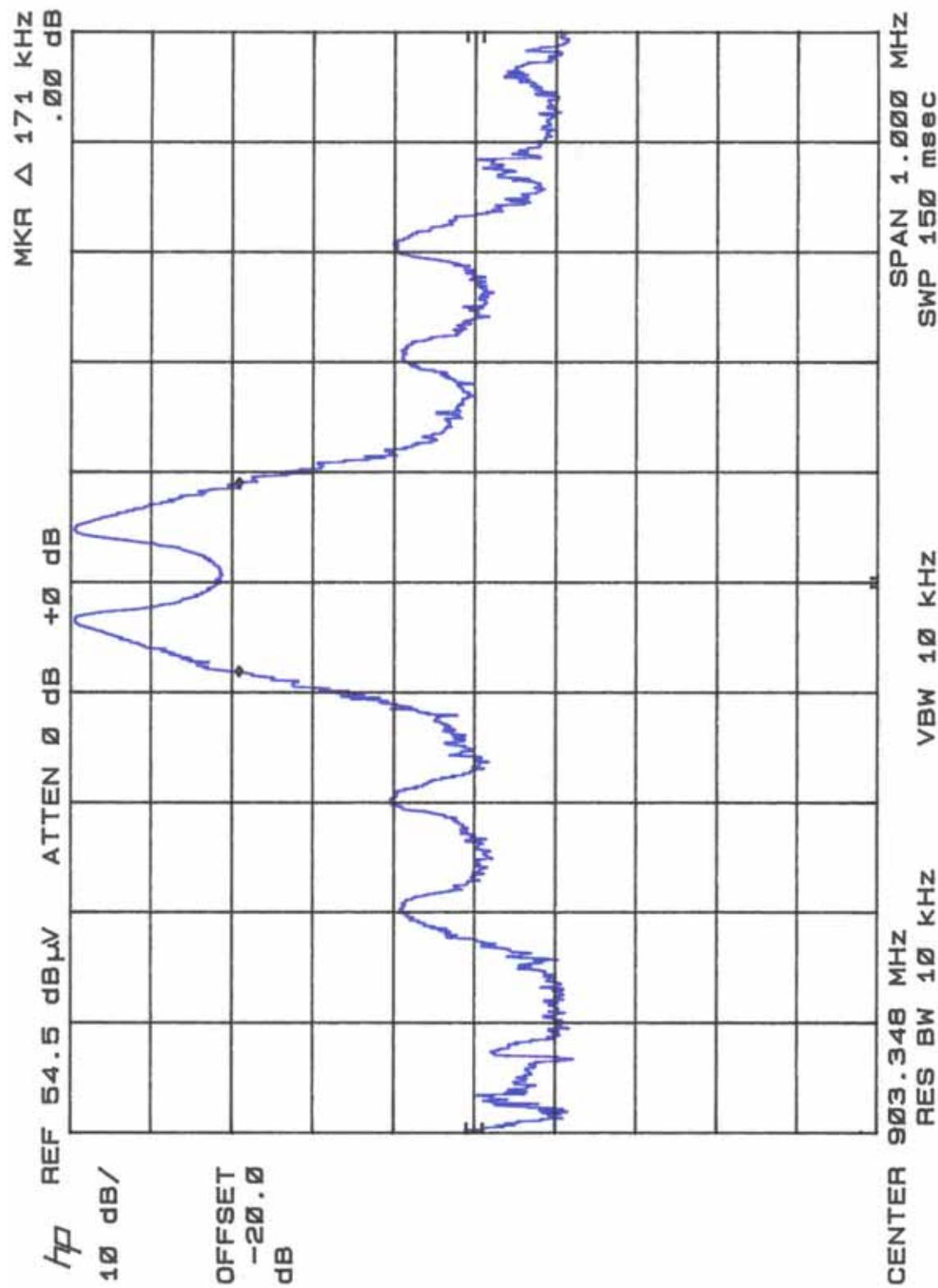
CLIENT:	IDM	DATE:	6/14/2004
TESTER:	Ken Gemmell	JOB #:	8212

EUT Information:

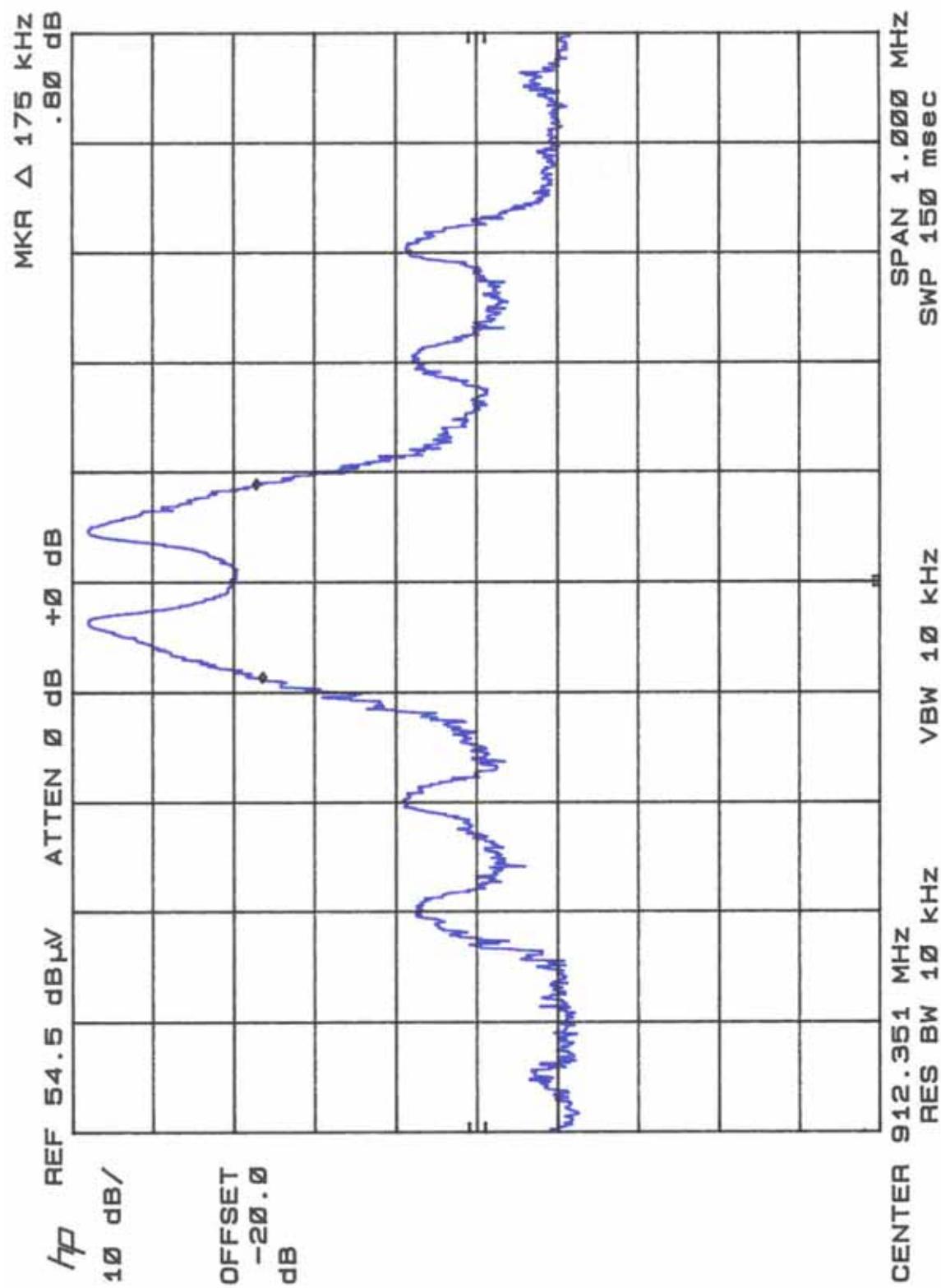
EUT:	Stay Dri Transmitter	S/N:
------	----------------------	------

	Pulse 1	Pulse 2	Pulse 3	Pulse 4	Pulse 5	Pulse 6
Number	4	4	23	0	0	0
Pulse Width (microseconds)	2260	1420	600	0	0	0
Total Time in (microseconds)	9040	5680	13800	0	0	0
Total Time in (ms)	9.04	5.68	13.8	0	0	0

Total time for both types Pulses			28.52
----------------------------------	--	--	-------


Worst Case Percent of 100 ms			28.52%
------------------------------	--	--	--------

Duty Cycle Correction Factor	-10.89701 dB
------------------------------	--------------


4.2 Occupied Bandwidth: (FCC Part §2.1049)

Occupied bandwidth was performed by coupling the output of the EUT to the input of a spectrum analyzer.

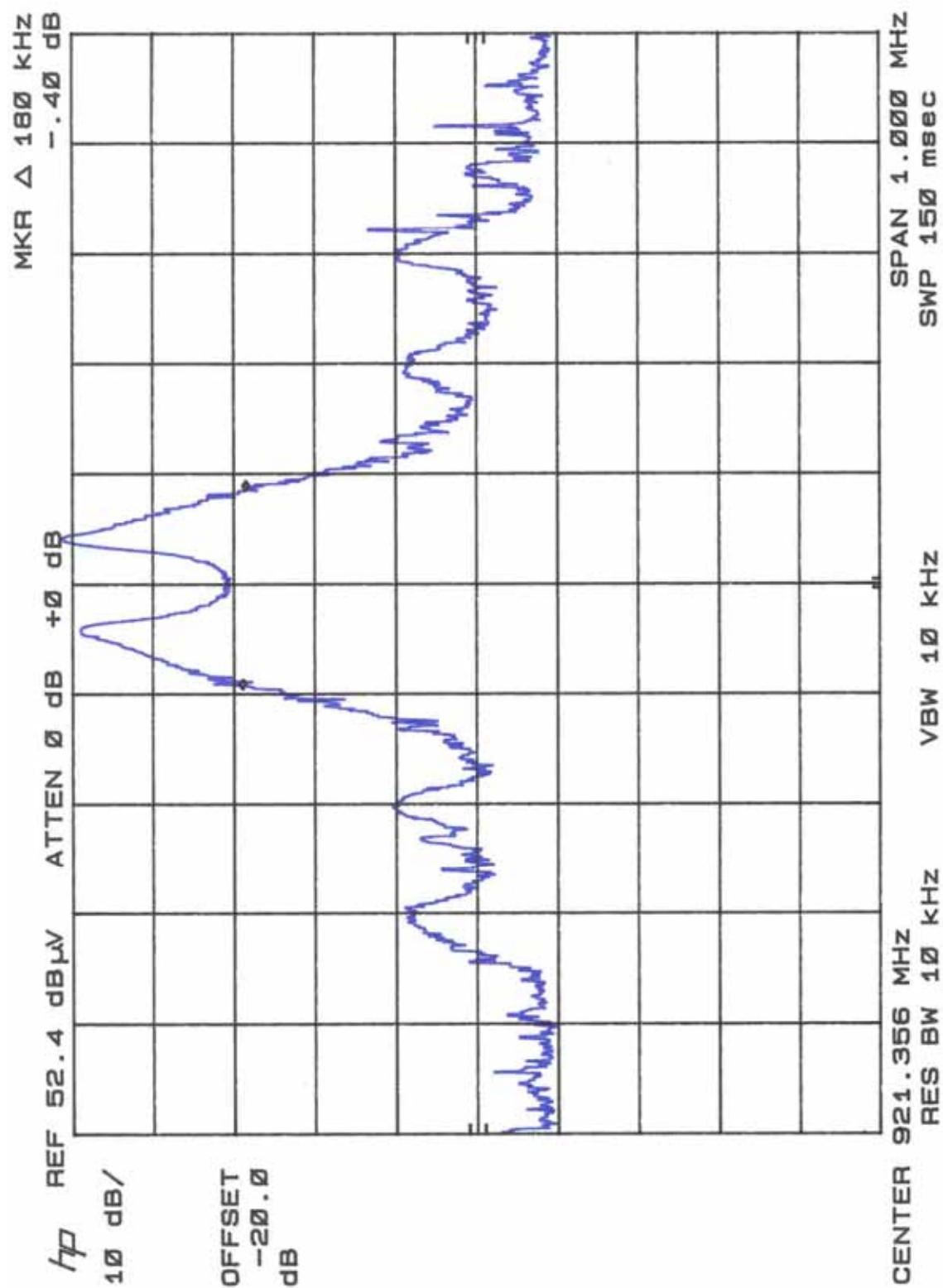

At full modulation, the occupied bandwidth was measured as shown:

Figure 5. Occupied Bandwidth, Low Channel

Figure 6. Occupied Bandwidth, Middle Channel

Figure 7. Occupied Bandwidth, High Channel

Table 3 provides a summary of the Occupied Bandwidth Results.

Table 3. Occupied Bandwidth Results

Frequency MHz	Bandwidth kHz
903.34	171
912.35	175
921.35	180

4.3 Radiated Emissions: (FCC Part §2.1053)

The EUT must comply with the radiated emission limits of 15.249(a). The limits are as shown in the following table.

Table 4. Radiated Emissions Limits

Fundamental Frequency	Field Strength of Fundamental (μ V/m)	Field Strength of Harmonics (μ V/m)
902 – 928 MHz	50,000	500
2400 – 2483.5 MHz	50,000	500
5725 – 5875 MHz	50,000	500
24.00 – 24.25 GHz	250,000	2500

4.3.1 Test Procedure

The EUT was placed on motorized turntable for radiated testing on a 3-meter open field test site. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Receiving antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The peripherals were placed on the table in accordance with ANSI C63.4-2001. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured.

The emissions were measured using the following resolution bandwidths:

Frequency Range	Resolution Bandwidth	Video Bandwidth
-----------------	----------------------	-----------------

30MHz-1000 MHz	100kHz	>100kHz
>1000 MHz	1 MHz	1MHz (peak)

Emissions were measured to the 10th harmonic of the transmit frequency. Worst case emission levels are reported.

The following is a sample calculation used in the data tables for calculating the final field strength of spurious emissions and comparing these levels to the specified limits.

Sample Calculation:

Spectrum Analyzer Voltage (SA Level): V dB μ V

Antenna Factor (Ant Corr): AFdB/m

Cable Loss Correction (Cable Corr): CCdB

Duty Cycle Correction (Average) DCCdB

Amplifier Gain: GdB

Electric Field (Corr Level): $EdB\mu V/m = VdB\mu V + AFdB/m + CCdB + DCCdB - GdB$

Table 5. Radiated Emissions Test Data, Fundamental

CLIENT:	IDM	DATE:	6/14/2004
TESTER:	Ken Gemmell	JOB #:	8212
EUT Information:			
EUT:	SD201	TEST STANDARD:	FCC Part 15
CLASS:	B	DISTANCE:	3m
Test Equipment/Limit:			
ANTENNA:	A_00382	LIMIT:	LFCC_3m_Class_B
CABLE:	CSITE1_3m	AMPLIFIER (dB)	None

Frequency (MHz)	Polarity H/V	Az Deg	Ant. Hght (m)	SA Level (QP) (dB μ V)	Ant. Corr. (dB/m)	Cable Corr. (dB)	Corr. Level (dB μ V/m)	Corr. Level (μ V/m)	Limit (μ V/m)	Margin dB	Notes
903.41	V	90.0	1.0	55.9	22.2	3.8	81.9	12424.1	50000.0	-12.1	X
903.41	H	45.0	1.0	62.7	22.2	3.8	88.7	27118.5	50000.0	-5.3	X
912.32	V	180.0	1.0	53.7	22.4	3.9	80.0	9974.1	50000.0	-14.0	X
912.32	H	0.0	1.0	59.1	22.4	3.9	85.4	18572.6	50000.0	-8.6	X
921.37	V	315.0	1.0	54.1	22.9	3.9	80.9	11036.4	50000.0	-13.1	X
921.37	H	0.0	1.0	59.5	22.9	3.9	86.3	20550.7	50000.0	-7.7	X

Table 6. Radiated Emissions Data, Channel 1 Harmonics

CLIENT:	IDM	DATE:	6/14/2004
TESTER:	Ken Gemmell	JOB #:	8212
EUT Information:			
EUT:	SD201	TEST STANDARD:	FCC Part 15
DISTANCE:	3m	CLASS:	B
Test Equipment/Limit:			
ANTENNA:	A_00004	LIMIT:	LFCC_3m_Class_B
CABLE:	CSITE1_HF	AMPLIFIER (dB)	A_00312

Frequency (MHz)	Polarity H/V	Az Deg	Ant. Hght (m)	SA Level (QP) (dB μ V)	Ant. Corr. (dB/m)	Cable Corr. (dB)	Duty Cycle Corr. (dB)	Amp Gain (dB)	Corr. Level (dB μ V/m)	Corr. Level (μ V/m)	Limit (μ V/m)	Margin dB
1806.82	V	90.0	1.0	50.1	27.5	2.4	-10.9	34.1	35.1	56.6	500.0	-18.9
2710.23	V	0.0	1.0	51.1	29.5	3.2	-10.9	34.4	38.4	83.2	500.0	-15.6
3613.64	V	45.0	1.0	49.9	30.7	3.7	-10.9	34.6	38.8	87.0	500.0	-15.2
4517.05	V	45.0	1.0	44.9	32.0	4.0	-10.9	34.5	35.5	59.5	500.0	-18.5
5420.46	V	0.0	1.0	42.4	33.5	4.2	-10.9	34.5	34.8	54.7	500.0	-19.2 a
6323.87	V	0.0	1.0	41.1	35.3	4.6	-10.9	34.6	35.6	60.0	500.0	-18.4 a
7227.28	V	0.0	1.0	41.2	37.1	5.0	-10.9	34.8	37.6	75.9	500.0	-16.4 a
8130.69	V	0.0	1.0	41.2	37.4	5.3	-10.9	34.3	38.7	86.0	500.0	-15.3 a
9034.10	V	0.0	1.0	41.2	38.0	5.5	-10.9	33.0	40.8	109.7	500.0	-13.2 a
1806.82	H	90.0	1.0	51.4	27.5	2.4	-10.9	34.1	36.3	65.5	500.0	-17.7
2710.23	H	90.0	1.0	46.7	29.5	3.2	-10.9	34.4	34.0	50.2	500.0	-20.0
3613.64	H	45.0	1.0	49.7	30.7	3.7	-10.9	34.6	38.6	85.6	500.0	-15.3
4517.05	H	180.0	1.0	42.8	32.0	4.0	-10.9	34.5	33.4	46.6	500.0	-20.6
5420.46	H	0.0	1.0	41.4	33.5	4.2	-10.9	34.5	33.8	48.8	500.0	-20.2 a
6323.87	H	0.0	1.0	41.0	35.3	4.6	-10.9	34.6	35.4	59.1	500.0	-18.6 a
7227.28	H	0.0	1.0	40.5	37.1	5.0	-10.9	34.8	36.8	69.5	500.0	-17.1 a
8130.69	H	0.0	1.0	41.6	37.4	5.3	-10.9	34.3	39.0	89.3	500.0	-15.0 a
9034.10	H	0.0	1.0	40.7	38.0	5.5	-10.9	33.0	40.4	104.5	500.0	-13.6 a

a = ambient reading

Table 7. Radiated Emissions Data, Channel 4 Harmonics

CLIENT:	IDM	DATE:	6/14/2004
TESTER:	Ken Gemmell	JOB #:	8212
EUT Information:			
EUT:	SD201	TEST STANDARD:	FCC Part 15
DISTANCE:	3m	CLASS:	B
Test Equipment/Limit:			
ANTENNA:	A_00004	LIMIT:	LFCC_3m_Class_B
CABLE:	CSITE1_HF	AMPLIFIER (dB)	A_00312

Frequency (MHz)	Polarity H/V	Az Deg	Ant. Hght (m)	SA Level (QP) (dB μ V)	Ant. Corr. (dB/m)	Cable Corr. (dB)	Duty Cycle Corr. (dB)	Amp Gain (dB)	Corr. Level (dB μ V/m)	Corr. Level (μ V/m)	Limit (μ V/m)	Margin dB
1824.60	V	45.0	1.0	49.4	27.5	2.4	-10.9	34.1	34.4	52.4	500.0	-19.6
2736.90	V	0.0	1.0	51.3	29.5	3.2	-10.9	34.4	38.7	85.9	500.0	-15.3
3649.20	V	90.0	1.0	49.6	30.7	3.7	-10.9	34.6	38.6	85.0	500.0	-15.4
4561.50	V	135.0	1.0	45.7	32.1	4.0	-10.9	34.5	36.4	65.9	500.0	-17.6
5473.80	V	0.0	1.0	42.8	33.6	4.2	-10.9	34.5	35.3	57.9	500.0	-18.7 a
6386.10	V	0.0	1.0	41.0	35.5	4.7	-10.9	34.6	35.7	60.7	500.0	-18.3 a
7298.40	V	0.0	1.0	40.4	37.1	5.0	-10.9	34.8	36.9	69.8	500.0	-17.1 a
8210.70	V	0.0	1.0	42.3	37.5	5.3	-10.9	34.2	39.9	99.3	500.0	-14.0 a
9123.00	V	0.0	1.0	41.4	38.1	5.5	-10.9	33.0	41.2	114.3	500.0	-12.8 a
1824.60	H	0.0	1.0	52.2	27.5	2.4	-10.9	34.1	37.2	72.2	500.0	-16.8
2736.90	H	45.0	1.0	47.6	29.5	3.2	-10.9	34.4	35.0	56.1	500.0	-19.0
3649.20	H	90.0	1.0	50.2	30.7	3.7	-10.9	34.6	39.2	91.5	500.0	-14.8
4561.50	H	180.0	1.0	44.2	32.1	4.0	-10.9	34.5	34.8	55.0	500.0	-19.2
5473.80	H	0.0	1.0	42.3	33.6	4.2	-10.9	34.5	34.8	54.7	500.0	-19.2 a
6386.10	H	0.0	1.0	42.8	35.5	4.7	-10.9	34.6	37.5	74.7	500.0	-16.5 a
7298.40	H	0.0	1.0	41.2	37.1	5.0	-10.9	34.8	37.6	76.1	500.0	-16.4 a
8210.70	H	0.0	1.0	42.1	37.5	5.3	-10.9	34.2	39.7	96.9	500.0	-14.2 a
9123.00	H	0.0	1.0	41.1	38.1	5.5	-10.9	33.0	40.8	110.1	500.0	-13.1 a

a = ambient reading

Table 8. Radiated Emissions Data, Channel 8 Harmonics

CLIENT:	IDM	DATE:	6/14/2004
TESTER:	Ken Gemmell	JOB #:	8212
EUT Information:			
EUT:	SD201	TEST STANDARD:	FCC Part 15
DISTANCE:	3m	CLASS:	B
Test Equipment/Limit:			
ANTENNA:	A_00004	LIMIT:	LFCC_3m_Class_B
CABLE:	CSITE1_HF	AMPLIFIER (dB)	A_00312

Frequency (MHz)	Polarity H/V	Az Deg	Ant. Hght (m)	SA Level (QP) (dB μ V)	Ant. Corr. (dB/m)	Cable Corr. (dB)	Duty Cycle Corr. (dB)	Amp Gain (dB)	Corr. Level (dB μ V/m)	Corr. Level (μ V/m)	Limit (μ V/m)	Margin dB
1842.74	V	90.0	1.0	51.5	27.6	2.4	-10.9	34.0	36.6	67.6	500.0	-17.4
2764.11	V	180.0	1.0	53.1	29.6	3.2	-10.9	34.4	40.5	106.0	500.0	-13.5
3685.48	V	135.0	1.0	51.5	30.8	3.7	-10.9	34.6	40.6	106.6	500.0	-13.4
4606.85	V	180.0	1.0	45.2	32.2	4.0	-10.9	34.5	35.9	62.3	500.0	-18.1
5528.22	V	0.0	1.0	42.7	33.7	4.3	-10.9	34.4	35.3	58.2	500.0	-18.7 a
6449.59	V	0.0	1.0	42.5	35.6	4.7	-10.9	34.6	37.3	73.2	500.0	-16.7 a
7370.96	V	0.0	1.0	41.7	37.1	5.0	-10.9	34.8	38.2	81.4	500.0	-15.8 a
8292.33	V	0.0	1.0	42.7	37.5	5.3	-10.9	34.1	40.5	106.2	500.0	-13.5 a
9213.70	V	0.0	1.0	41.7	38.2	5.6	-10.9	33.0	41.5	118.7	500.0	-12.5 a
1833.74	H	180.0	1.0	52.1	27.6	2.4	-10.9	34.1	37.2	72.3	500.0	-16.8
2746.11	H	180.0	1.0	50.9	29.6	3.2	-10.9	34.4	38.3	82.4	500.0	-15.7
3658.48	H	90.0	1.0	51.8	30.8	3.7	-10.9	34.6	40.8	109.4	500.0	-13.2
4570.85	H	180.0	1.0	45.1	32.1	4.0	-10.9	34.5	35.7	61.2	500.0	-18.2
5483.22	H	0.0	1.0	42.7	33.6	4.2	-10.9	34.4	35.2	57.5	500.0	-18.8 a
6395.59	H	0.0	1.0	41.9	35.5	4.7	-10.9	34.6	36.5	66.9	500.0	-17.5 a
7307.96	H	0.0	1.0	42.0	37.1	5.0	-10.9	34.8	38.4	83.5	500.0	-15.5 a
8220.33	H	0.0	1.0	41.4	37.5	5.3	-10.9	34.2	39.1	89.8	500.0	-14.9 a
9132.70	H	0.0	1.0	40.5	38.1	5.5	-10.9	33.0	40.3	102.9	500.0	-13.7 a

a = ambient reading

4.4 Conducted Emissions (AC Power Line)

Conducted Emissions testing was not performed, as the unit is battery powered.