Antenna Gain test report

FCC ID: R9C-OP24264

Equipment: Mobile Phone

Brand Name: OPPO

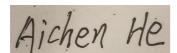
Model Name: CPH2699

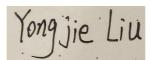
Software: ColorOS 15.0

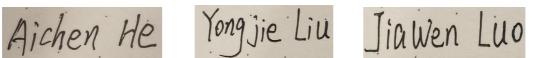
Manufacturer:

Guangdong OPPO Mobile Telecommunications Corp., Ltd.

NO.18 Haibin Road, Wusha Village, Chang'an Town, Dongguan


City, Guangdong, China


Issue Date: December 18, 2024


Project Engineer: Aichen He Date: December 18, 2024

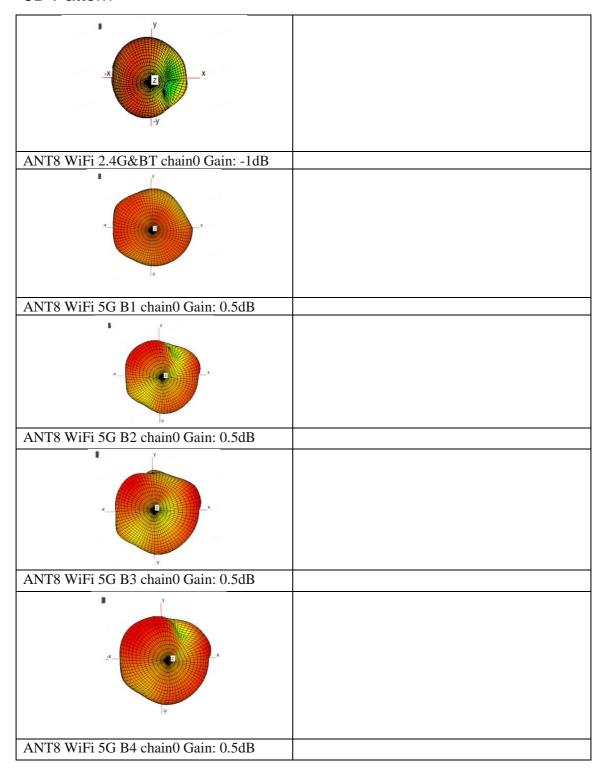
Checked by: Yongjie Liu Date: December 18, 2024

Approved by: Jiawen Luo Date: December 18, 2024

Antenna Location&dimension:

Refer to Antenna Location&dimension

Fig 1 Antenna location&dimension


Antenna Gain and Antenna Type specification:

Antenna Cam and Antenna Type Specimoation.										
			Ant 8			Antenna Type	Antenna model name	Manufacture r		
2.4G WiFi	2400~2483.5MH z	/	-1	/	/	IFA(Inverted F Antenna)	AC217	ОРРО		
5G Wifi	5150~5250 MHz	/	0.5	/	/	IFA(Inverted F Antenna)	AC217	ОРРО		
	5250~5350 MHz	/	0.5	/	/	IFA(Inverted F Antenna)	AC217	ОРРО		
	5470~5725 MHz	/	0.5	/	/	IFA(Inverted F Antenna)	AC217	ОРРО		
	5725~5850 MHz	/	0.5	/	/	IFA(Inverted F Antenna)	AC217	ОРРО		
вт	2400~2483.5MH z	/	-1	/	/	IFA(Inverted F Antenna)	AC217	ОРРО		
NFC	13.56MHz	Demision: 54mm*35mm			mm	FPC(Flexible Printed Circuit)	AC217	ОРРО		

Note: Antenna gain was measured in the anechoic chamber, 3D scan was exercised, and the highest numbers are reported in this document.

According to Test standard: IEEE Std 149-2021, we measure antenna gain.

3D Pattern

List of Test and Measurement Instruments

TEST EQUIPMENT

NO.	Equipment	Manufacturer	Model No.	Cal.date	Cal.due
1	GTS RayZone-2800	General Test	SN636692864	2024/06/14	2025/06/14
2	Network Analyzer E5071C	Keysight	MY4690575	2024/06/14	2025/06/14
3.	MaxSign Libra Test softwave	General Test	Version-1.1.16	NA	NA

Fig 2 dipole model 3126-2500 frequency 2500 MHz

Fig 3 model 3126-5500 frequency 5500 MHz

I. Measurement Setup:

A. Reflection Coefficient Measurement:

Instrument: Network Analyzer (Kesight E5071C).

Setup:

- 1. Calibrate the Network Analyzer by one port calibration using Kesight 85093C Electronic calibration module .
- 2. Connect the antenna under test to the Network Analyzer.
- 3. Measure the S11(reflection coefficient), Return Loss....

B. Pattern Measurement:

A Fully Anechoic Chamber is used to simulate free-space conditions.

A Fully Anechoic Chamber is a shielded room lined with RF/microwave absorber on all walls, ceiling, and floor.

RF/microwave absorber reduces reflections from the inner walls of the shield.

Absorber performance depends on the depth and design of the absorber and the angle of incidence of the field.

Normal incidence is best, shallower angles are worse.

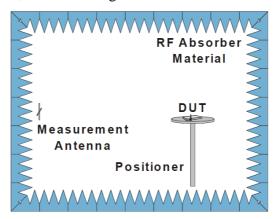


Fig. 4. The fully anechoic chamber

Refer to Antenna Location&dimension

Fig.5. The DUT in the fully anechoic chamber