DASY5 Validation Report for Head TSL

Date: 21.05.2024

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA13; Type: CLA13; Serial: CLA13 - SN: 1009

Communication System: UID 0 - CW; Frequency: 13 MHz

Medium parameters used: f = 13 MHz; $\sigma = 0.72$ S/m; $\varepsilon_r = 52.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN3877; ConvF(15.33, 15.33, 15.33) @ 13 MHz; Calibrated: 10.01.2024

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 15.01.2024

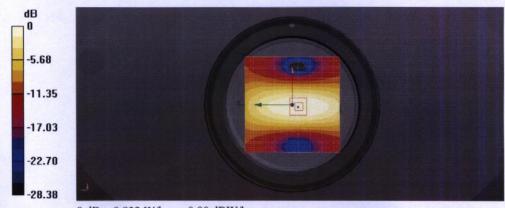
Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2034

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

CLA Calibration for HSL-LF Tissue/CLA-13, touch configuration, Pin=1W/Zoom Scan,

dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 31.57 V/m; Power Drift = -0.00 dB

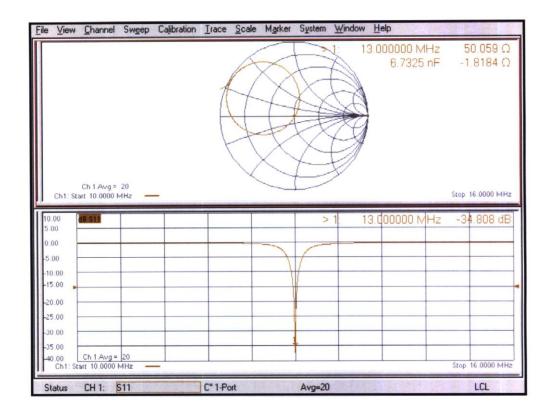

Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.553 W/kg; SAR(10 g) = 0.340 W/kg

Smallest distance from peaks to all points 3 dB below = 16 mm

Ratio of SAR at M2 to SAR at M1 = 77.1%

Maximum value of SAR (measured) = 0.832 W/kg



0 dB = 0.832 W/kg = -0.80 dBW/kg

Certificate No: CLA13-1009_May24

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: CLA13-1009_May24

Page 6 of 6

10 GHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

CTTL Beijing Certificate No. 5G-Veri10-1005_Jan24

CALIBRATION CERTIFICATE 5G Verification Source 10 GHz - SN: 1005 Object **QA CAL-45.v4** Calibration procedure(s) Calibration procedure for sources in air above 6 GHz January 18, 2024 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Certificate No.) Scheduled Calibration ID# Primary Standards 04-Dec-23 (No. EUmm-9374_Dec23) Dec-24 Reference Probe EUmmWV3 SN: 9374 SN: 1215 29-Jun-23 (No. DAE4-1215_Jun23) Jun-24 ID# Check Date (in house) Scheduled Check Secondary Standards 29-Nov-23 (in house check Nov-23) In house check: Nov-24 RF generator R&S SMF100A SN: 100184 Power sensor R&S NRP18S-10 SN: 101258 29-Nov-23 (in house check Nov-23) In house check: Nov-24 SN: MY54504221 31-Oct-19 (in house check Oct-22) In house check: Oct-25 Network Analyzer Keysight E5063A Signature Name Function Calibrated by: Joanna Lleshaj Laboratory Technician Sven Kühn Technical Manager Approved by: Issued: January 19, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 5G-Veri10-1005_Jan24

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Glossary

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

CW

Continuous wave

Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45, Calibration procedure for sources in air above 6 GHz.
- IEC/IEEE 63195-1, "Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)", May 2022

Methods Applied and Interpretation of Parameters

- Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions: (1) 10 GHz: The radiated power is the forward power to the horn
 antenna minus ohmic and mismatch loss. The forward power is measured prior and after
 the measurement with a power sensor. During the measurements, the horn is directly
 connected to the cable and the antenna ohmic and mismatch losses are determined by farfield measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for
 at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize
 reflections.
- Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a
 vectorial E-field probe. The E-field value stated as calibration value represents the E-fieldmaxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the
 horn.
- Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

Calibrated Quantity

 Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the
coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%

Certificate No: 5G-Veri10-1005_Jan24

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module mmWave	V3.2
Phantom	5G Phantom	
Distance Horn Aperture - plane	10 mm	
Number of measured planes	2 (10mm, 10mm + \(\mathcal{N} 4 \)	
Frequency	10 GHz ± 10 MHz	

Calibration Parameters, 10 GHz

Circular Averaging

Circular Averag	Jing					
Distance Horn	Prad1	Max E-field	Uncertainty	Avg Power Density		Uncertainty
Aperture to	(mW)	(V/m)	(k = 2)	Avg (psPDn+, psP		(k = 2)
Measured Plane				(W/	m²)	
				1 cm ²	4 cm ²	
10 mm	93.3	151	1.27 dB	59.4	55.5	1.28 dB

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density psPDn+, psPDtot+, psPDmod+ (W/m²)		Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	93.3	151	1.27 dB	59.2, 59.4, 59.6	55.2, 55.5, 55.7	1.28 dB

Square Averaging

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Avg Power Density Avg (psPDn+, psPDtot+, psPDmod+) (W/m²)		Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	93.3	151	1.27 dB	59.4	55.4	1.28 dB

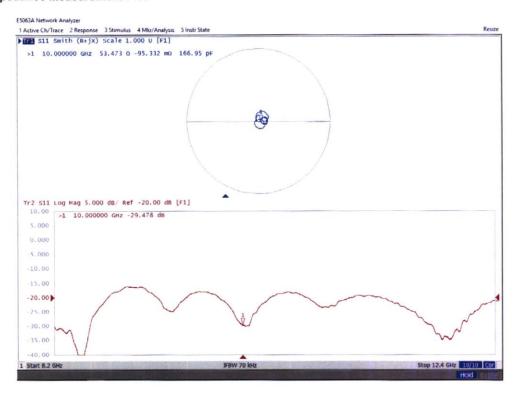
Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density psPDn+, psPDtot+, psPDmod+ (W/m²)		Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	93.3	151	1.27 dB	59.1, 59.4, 59.6	55.1, 55.4, 55.7	1.28 dB

Max Power Density

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Max Power Density Sn, Stot, Stot (W/m²)	Uncertainty (k = 2)
10 mm	93.3	151	1.27 dB	60.5, 60.7, 60.9	1.28 dB

Certificate No: 5G-Veri10-1005_Jan24

Page 3 of 8


 $^{^{\}rm l}$ Assessed ohmic and mismatch loss plus numerical offset: 0.30 dB

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Impedance, transformed to feed point	53.5 Ω - 0.1 jΩ	
Return Loss	- 29.5 dB	

Impedance Measurement Plot

Certificate No: 5G-Veri10-1005_Jan24

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 1005	-

Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	cw	10000.0, 10000	1.0

Hardware Setup

marattare setup			
Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374_F1-55GHz,	DAE4 Sn1215,
		2023-12-04	2023-06-29

Scan Setup

Scan Setup		Measurement Results	
•	5G Scan		5G Scan
Sensor Surface [mm]	10.0	Date	2024-01-18, 15:51
MAIA	MAIA not used	Avg. Area [cm²]	1.00
		Avg. Type	Circular Averaging
		psPDn+ [W/m²]	59.2
		psPDtot+ [W/m ²]	59.4
		psPDmod+ [W/m²]	59.6
		Max(Sn) [W/m ²]	60.5
		Max(Stot) [W/m ²]	60.7
		Max(Stot) [W/m²]	60.9
		E _{max} [V/m]	151
		Power Drift [dB]	-0.01

Certificate No: 5G-Veri10-1005_Jan24

Page 5 of 8

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100 0 x 100 0 x 172 0	SN: 1005	

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	cw	10000.0, 10000	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374_F1-55GHz,	DAE4 Sn1215,
		2023-12-04	2023-06-29

Scan Setup

	5G Scan		5G Scan
Sensor Surface [mm]	10.0	Date	2024-01-18, 15:51
MAIA	MAIA not used	Avg. Area [cm²]	4.00
		Avg. Type	Circular Averaging
		psPDn+ [W/m²]	55.2
		psPDtot+ [W/m ²]	55.5
		psPDmod+ [W/m ²]	55.7
		Max(Sn) [W/m ²]	60.5
		Max(Stot) [W/m ²]	60.7
		Max(Stot) [W/m ²]	60.9
		E _{max} [V/m]	151
		Power Drift [dB]	-0.01

Measurement Results

Certificate No: 5G-Veri10-1005_Jan24

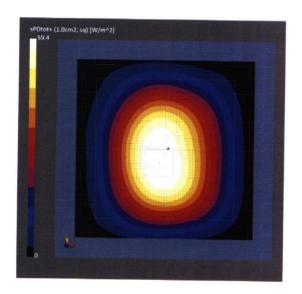
Page 6 of 8

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0		DOT Type
30 Vernication Source 10 GHz	100.0 x 100 0 x 177 0	SN- 1005	

Exposure Conditions


Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	cw	10000.0,	1.0

Hardware Setup

Phantom mmWave Phantom - 1002	Medium Air	Probe, Calibration Date EUmmWV3 - SN9374_F1-55GHz, 2023-12-04	DAE, Calibration Date DAE4 Sn1215, 2023-06-29
		2023-12-04	2023-06-29

Scan Setup

Scan Setup		Measurement Results	
Sensor Surface [mm] MAIA	5G Scan 10.0 MAIA not used	Date Avg. Area [cm²] Avg. Type psPDh+[W/m²] psPDtot+ [W/m²] psPDmod+ [W/m²] Max(Sn) [W/m²] Max(Stot) [W/m²] Max[Stot]) [W/m²] E _{max} [V/m] Power Drift [dB]	5G Scan 2024-01-18, 15:51 1.00 Square Averaging 59:1 59:4 59:6 60.5 60.7 60.9 151

Certificate No: 5G-Veri10-1005_Jan24

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100 0 x 100 0 x 172 0	SN: 1005	11=1

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	cw	10000.0, 10000	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374_F1-55GHz,	DAE4 Sn1215,
		2023-12-04	2023-06-29

can Setup		Measurement Results	
	5G Scan		5G Scan
Sensor Surface [mm]	10.0	Date	2024-01-18, 15:51
MAIA	MAIA not used	Avg. Area [cm ²]	4.00
		Avg. Type	Square Averaging
		psPDn+ [W/m²]	55.1
		psPDtot+ [W/m²]	55.4
		psPDmod+ [W/m ²]	55.7
		Max(Sn) [W/m ²]	60.5
		Max(Stot) [W/m ²]	60.7
		Max(Stot) [W/m ²]	60.9
		E _{max} [V/m]	151
		Power Drift [dB]	-0.01

Certificate No: 5G-Veri10-1005_Jan24

Page 8 of 8

ANNEX I Accreditation Certificate

Accredited Laboratory

A2LA has accredited

TELECOMMUNICATION TECHNOLOGY LABS, CAICT

Beijing, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 23rd day of July 2024.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 7049,01 Valid to July 31, 2026

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.