JQA APPLICATION NO.: 400-40205 Issue Date : July 1, 2004 Page 1 of 58

EMI TEST REPORT

JQA APPLICATION NO. : 400-40205

Model No. : MDM22

Type of Equipment : Weld Monitor (incorporated with Bluetooth)

Regulations Applied : CFR 47 FCC Rules and Regulations Part 15

FCC ID : R8C-MDM22

Applicant : NADEX CO., LTD.

Address : 1 Omiyamae, Tokushige, Nishiharu-cho,

Nishikasugai-gun, 481-0038 Japan

Manufacturer : NADEX CO., LTD.

Address : 1 Omiyamae, Tokushige, Nishiharu-cho,

Nishikasugai-gun, 481-0038 Japan

Received date of EUT : June 25, 2004

Final Judgment : Passed

Test results in this report are obtained in use of equipment that is traceable to National Institute of Advanced Industrial Science and Technology (AIST) of Japan and National Institute of Information and Communications Technology (NICT) of Japan.

The test results only respond to the tested sample. This report should not be reproduced except in full, without the written approval of JQA EMC Engineering Dept. Testing Div.

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Page 2 of 58

TABLE OF CONTENTS

1	Docu	mentation	Page
	1.1	Test Regulation	4
	1.2	General Information	4
	1.3	Test Condition	5 - 11
	1.4	EUT Modifications / Deviation from Standard	12
	1.5	Test results	13 - 14
	1.6	Summary	15
	1.7	Test Configuration / Operation of EUT	16
	1.8	EUT Arrangement (Drawing)	17
	1.9	Preliminary Test and Test-setup (Drawings)	18 - 26
	1.10	EUT Arrangement (Photographs)	27 - 28

Test instruments List

:CFR 47 FCC Rules Part 15 Page 3 of 58

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

55 - 58

2 Test Data

	2.1	Channel Separation	29
	2.2	Minimum Hopping Channel	30 - 31
	2.3	Occupied Bandwidth	32 - 34
	2.4	Average Time of Occupancy	35 - 37
	2.5	Peak Output Power (Conduction)	38
	2.6	Peak Output Power (Radiation)	39
	2.7	Peak Power Density (Conduction)	40 - 42
	2.8	Peak Power Density (Radiation)	N/A
	2.9	Spurious Emissions (Conduction)	43 - 45
	2.10	Spurious Emissions (Radiation)	46 - 51
	2.11	AC Power Line Conducted Emissions	N/A
	2.12	RF Exposure Compliance	52
			53 - 54
		AC Power Line Conducted Emissions for Receiver	N/A
3	Appe	ndix	

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 4 of 58

1 DOCUMENTATION

1.1 TEST REGULATION

FCC Rules and Regulations Part 15 Subpart B and Subpart C

Test procedure :

The tests were performed with reference to the FCC Public Notice DA 00-705, released March 30, 2000. The test set-up was made in accordance to the general provisions of ANSIC63.4-2001.

1.2 GENERAL INFORMATION

1.2.1 Test facility:

1) Test Facility located at EMC Engineering Dept. Testing Div. :

- No.2 and 3 Anechoic Chambers (3 meters Site).

- Shielded Enclosure.

Expiration date of FCC test facility filing: May 27, 2005

2) EMC Engineering Dept. Testing Div. is recognized under the National Voluntary Laboratory accreditation Program for satisfactory compliance established in title 15, Part 285 Code of Federal Regulations.

NVLAP Lab Code: 200189-0 (Effective through: June 30, 2005)

1.2.2 Description of the Equipment Under Test (EUT) :

1) Type of Equipment : Weld Monitor(incorporated with Bluetooth)

2) Product Type : Pre-production

3) Category : Spread Spectrum Transmitter(FHSS)

4) EUT Authorization : Certification 5) FCC ID : R8C-MDM22

6) Trade Name : Weld Monitor

7) Model No. : MDM22

8) Operating Frequency Range : 2402 MHz - 2480 MHz

9) Highest Frequency Used in the EUT : 2480 MHz
10) RF Output Power : 1 mW (rated)

11) Serial No. : None

12) Date of Manufacture : March, 2004

13) Power Rating : DC 3.7V (Li-ion Rechargeable Battery)

14) EUT Grounding : None

1.2.3 Definitions for symbols used in this test report :

 \underline{x} - indicates that the listed condition, standard or equipment is applicable for this report.

- indicates that the listed condition, standard or equipment is not applicable for this report.

Standard :CFR 47 FCC Rules Part 15 Page 5 of 58

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

1.3 TEST CONDITION

1.3.1 The measurement of Channel Separation

x - was performed.

___ - was not applicable.

Used test instruments:

Type	Number	of	test	instruments
	(Refer	to	Apper	ndix)
Test Receiver	TR07			
Spectrum Analyzer	N/A			
Cable	CA11			
Attenuator	N/A			
Antenna	N/A			

1.3.2 The measurement of Minimum Hopping Channel

 \underline{x} - was performed.

___ - was not applicable.

Used test instruments:

Туре	Number of test instruments
	(Refer to Appendix)
Test Receiver	TR07
Spectrum Analyzer	N/A
Cable	CA11
Attenuator	N/A
Antenna	N/A

1.3.3 The measurement of Occupied Bandwidth

 \underline{x} - was performed.

___ - was not applicable.

Used test instruments:

Туре	Number of test instruments
	(Refer to Appendix)
Test Receiver	TR07
Spectrum Analyzer	N/A
Cable	CA11
Attenuator	N/A
Antenna	N/A

:CFR 47 FCC Rules Part 15 Page 6 of 58 Standard

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

1.3.4 The measurement of Average Time of Occupancy

 \underline{x} - was performed.

___ - was not applicable.

Used test instruments:

Type	Number of test instruments
	(Refer to Appendix)
Test Receiver	TR07
Spectrum Analyzer	N/A
Cable	CA11
Attenuator	N/A
Antenna	N/A

1.3.5 The measurement of Peak Output Power and Density (Conduction)

 \underline{x} - was performed.

___ - was not applicable.

Used test instruments:

Type	Number of test instruments	
	(Refer to Appendix)	
Test Receiver	TR07	
Spectrum Analyzer	N/A	
Cable	CA11	
Attenuator	N/A	
Antenna	N/A	
Power Meter	AU03	
Power Sensor	AU04	
Signal Generator	SG03	

Model No. :MDM22
Standard :CFR 47 FCC Rules Part 15

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 7 of 58

1.3.6 The measurement of Peak Output Power and Density (Radiation)

 \underline{x} - was performed in the following test site.

___ - was not applicable.

Test location :

Safety & EMC Center EMC Engineering Dept. Testing Div. 21-25, Kinuta 1-chome, Setagaya-ku, Tokyo 157-8573, Japan

 \underline{x} - No. 2 site (3 meters)

___ - No. 3 site (3 meters)

Validation of Site Attenuation :

1) Last Confirmed Date : N/A
2) Interval : N/A

Used test instruments:

Type

1720	TOMESON OF CODE TENDOTOME	
	(Refer to Appendix)	
Test Receiver	TR07	
Spectrum Analyzer	N/A	
Cable	CA12, CA13	
Attenuator	N/A	
Antenna	AN10, AN11	

Number of test instruments

Power Meter AU03
Power Sensor AU04
Signal Generator SG03

JQA Application No.:400-40205

Model No. :MDM22

Standard :CFR 47 FCC Rules Part 15

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 8 of 58

	1.3.7	The	measurement	of	Spurious	Emissions	(Conduction
--	-------	-----	-------------	----	----------	-----------	-------------

 \underline{x} - was performed.

____ - was not applicable.

Used test instruments:

Туре	Number of test instruments
	(Refer to Appendix)
Test Receiver	TR07
Spectrum Analyzer	N/A
Cable	CA11
Attenuator	N/A

1.3.8 The measurement of Spurious Emissions (Radiation)(9 kHz - 30 MHz)

x - was performed in the following test site.

___ - was not applicable.

Test location:

Safety & EMC Center EMC Engineering Dept. Testing Div. 21-25, Kinuta 1-chome, Setagaya-ku, Tokyo 157-8573, Japan

x - Anechoic Chamber No. 2 (3 meters)

___ - Anechoic Chamber No. 3 (3 meters)

Validation of Site Attenuation :

1) Last Confirmed Date : N/A
2) Interval : N/A

Used test instruments:

Туре	Number of test instruments
	(Refer to Appendix)
Test Receiver	TR07

Cable CA06
Antenna AN01

:MDMZZ :CFR 47 FCC Rules Part 15 FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 9 of 58

1.3.9	The	measurement	ο£	Spurious	Emissions	(Radiation)) ((30	MHz	_	1000	MHz
-------	-----	-------------	----	----------	-----------	-------------	-----	-----	-----	---	------	-----

 \underline{x} - was performed in the following test site.

___ - was not applicable.

Test location:

Safety & EMC Center EMC Engineering Dept. Testing Div. 21-25, Kinuta 1-chome, Setagaya-ku, Tokyo 157-8573, Japan

x - Anechoic Chamber No. 2 (3 meters)

___ - Anechoic Chamber No. 3 (3 meters)

Validation of Site Attenuation :

1) Last Confirmed Date : March, 2004

2) Interval :1 year

Used test instruments:

Type

Number of test instruments
(Refer to Appendix)

Test Receiver

TR05

Cable CA01

Antenna AN06, AN08

RF Amplifier N/A

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Page 10 of 58

1.3.10 The measurement of Spurious Emissions (Radiation) (Above 1000 MHz)

- \underline{x} was performed in the following test site.
- ___ was not applicable.

Test location:

Safety & EMC Center EMC Engineering Dept. Testing Div. 21-25, Kinuta 1-chome, Setagaya-ku, Tokyo 157-8573, Japan

x - No. 2 site (3 meters) ___ - No. 3 site (3 meters)

Validation of Site Attenuation :

1) Last Confirmed Date : March, 2004

2) Interval :1 year

Used test instruments:

Туре	Number of test instruments
	(Refer to Appendix)
Test Receiver	TR07
Spectrum Analyzer	N/A
Cable	CA11, CA12, CA13
Antenna	AN10, AN12
RF Amplifier	AM09
Band Reject Filter	AU16
High Pass Filter	AU17

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

:CFR 47 FCC Rules Part 15 Page 11 of 58

1.3.11 The measurement of AC Power Line Conducted Emissions

 $\underline{}$ - was performed in the following test site. $\underline{}$ - was not applicable.

Test location:

Safety & EMC Center EMC Engineering Dept. Testing Div. 21-25, Kinuta 1-chome, Setagaya-ku, Tokyo 157-8573, Japan

Shielded EnclosureAnechoic Chamber No. 2 (portable Type)

Used test instruments:

Туре	Number of test instruments
	(Refer to Appendix)
Test Receiver	N/A
Spectrum Analyzer	N/A
Cable	N/A
AMN(for EUT)	N/A
AMN(for Peripheral)	N/A
Termination	N/A

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Page 12 of 58

1.4 EUT MODIFICATION / Deviation from Standard

1.4.1 EUT MODIFICATION	ON
------------------------	----

X	No	modific	ations	were	cor	nducte	d k	y JQA	to	ach	nieve	compi	liance	to	Clas	ss B	leve	els.
	To	achieve	compl	iance	to	Class	В	levels	5,	the	follo	owing	change	es 1	were	made	by	JQA
	dur	ring the	compl	iance	tes	st.												

The modifications will be implemented:	in all production models of this equipment.	
Applicant :	Date :	
Typed Name :	Position :	

1.4.2 Deviation from Standard:

x - No deviation	s from the star	dard described	d in clause	1.1.		
The following	deviations were	e employed from	the standa:	rd described i	n clause	1.1:

Issue Date :July 1, 2004

FCC ID :R8C-MDM22

1.5 TEST RESULTS

Channel Separation	<u>x</u> - Applicable	NOT Applicable
[§15.247(a)(1)]	DAGGED	NOW DAGGED
The requirements are Remarks:	x - PASSED	NOT PASSED
Remarks:		
Minimum Hopping Channel	x - Applicable	NOT Applicable
[§15.247(a)(1)(iii)]		
The requirements are	x - PASSED	NOT PASSED
Remarks:		
Occupied Bandwidth	Applicable	$_{ ext{X}}$ - NOT Applicable
The requirements are	PASSED	NOT PASSED
Remarks:		
Average Time of Occupancy	annligable	NOT Appliantle
[§15.247(a)(1)(iii)]	<u>x</u> - Applicable	NOT Applicable
The requirements are	x - PASSED	- NOT PASSED
Remarks:		
1031021221		
Peak Output Power (Conduction)	x - Applicable	- NOT Applicable
[§15.247(b)(1)]		
The requirements are	x - PASSED	- NOT PASSED
Remarks:		
Peak Output Power (Radiation)	\underline{x} - Applicable	NOT Applicable
[§15.247(b)(1)]		
The requirements are	X - PASSED	NOT PASSED
Remarks:		
Peak Power Density (Conduction)	x - Applicable	- NOT Applicable
[§15.247(d)]	<u></u>	
The requirements are	x - PASSED	- NOT PASSED
Remarks:		_
Peak Power Density (Radiation)	Applicable	$_{ ext{ iny X}}$ - NOT Applicable
[§15.247(d)]		
The requirements are	PASSED	NOT PASSED
Remarks:		

JQA Application No.:400-40205 FCC ID :R8
Model No. :MDM22 Issue Date :Ju
Standard :CFR 47 FCC Rules Part 15 Page 14 of 58 FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Spurious Emissions (Conduction) [§15.247(c)]	x - Applicable	NOT Applicable
The requirements are	x - PASSED	- NOT PASSED
Remarks:	<u></u>	
Spurious Emissions (Radiation) [§15.247(c), §15.35(b), §15.209(a)]	_x Applicable	NOT Applicable
The requirements are Remarks:	_x - PASSED	NOT PASSED
AC Power Line Conducted Emissions	Applicable	<u>x</u> - NOT Applicable
<pre>[§15.207(a)] The requirements are Remarks:</pre>	PASSED	NOT PASSED
RF Exposure Compliance	x - Applicable	- NOT Applicable
[§15.247(b)(5)]		
The requirements are Remarks:	<u>x</u> - PASSED	NOT PASSED
Spurious Emissions for Receiver (Radiation)[§15.109(a)]	<u>x</u> - Applicable	NOT Applicable
The requirements are Remarks:	x - PASSED	NOT PASSED
AC Power Line Conducted Emissions	- Applicable	x - NOT Applicable
for Receiver [§15.107(a)]		
The requirements are	PASSED	NOT PASSED
Remarks:		

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Page 15 of 58

1.6 SUMMARY

General Remarks:

The EUT was tested according to the requirements of FCC Rules and Regulations Part 15 Subpart B and Subpart C under the test configuration, as shown in clause 1.7 to 1.10.

The conclusion for the test items which are required by the applied regulation is indicated under the final judgment.

Final Judgment:

The "as received" sample;

 ${\sf x}$ - fulfill the test requirements of the regulation mentioned on clause 1.1.

- fulfill the test requirements of the regulation mentioned on clause 1.1, but with certain qualifications.

- doesn't fulfill the test regulation mentioned on clause 1.1.

Begin of testing: June 25, 2004

End of testing : June 25, 2004

- JAPAN QUALITY ASSURANCE ORGANIZATION -

Approved by:

Issued by:

Masaaki Takahashi Senior Manager

JQA EMC Engineering Dept.

Assistant Manager

JQA EMC Engineering Dept.

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 16 of 58

1.7 TEST CONFIGURATION / OPERATION OF EUT

1.7.1 Test Configuration

The equipment under test (EUT) consists of :

Symbol	Item	Manufacturer	Model No.	FCC ID	Serial No.
А	Weld Monitor	NADEX CO., LTD.	MDM22	R8C-MDM22	ī

The measurement was carried out with the following support equipment connected:

In the test, any support equipment was not connected to the EUT.

Type of Cable :

In the test, any I/F cable was not connected to the EUT.

1.7.2 Operating condition

Power supply Voltage: 3.7 VDC(Li-ion Rechargeable Battery) The tests have been carried out the following mode.

- 1) TX mode (2402 MHz)
- 2) TX mode (2441 MHz)
- 3) TX mode (2480 MHz)
- 4) Hopping ON mode
- 5) Hopping OFF mode
- 6) RX mode

1.7.3 Generating and Operating frequency of EUT

32 MHz and 2402 MHz to 2480 MHz

:CFR 47 FCC Rules Part 15 Page 17 of 58

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

1.8 EUT ARRANGEMENT (DRAWINGS)

A: Weld Monitor (incorporated with Bleutooth) Battery

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 18 of 58

1.9 PRELIMINARY TEST AND TEST-SETUP (DRAWINGS)

1.9.1 Channel Separation

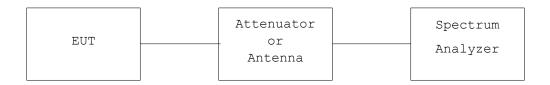
The EUT have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels

span - wide enough to capture the peaks of two adjacent channers

Resolution (or IF) Bandwidth (RBW) \geq 1% of the span


Video (or Average) Bandwidth (VBW) ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

1.9.2 Minimum Hopping Channel

The EUT have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

 $RBW \ge 1\%$ of the span

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. It may prove necessary to break the span up to sections, in order to clearly show all of the hopping frequencies.

Measurement setup is same as sub-clause 1.9.1.

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 19 of 58

1.9.3 Occupied Bandwidth

Use the following spectrum analyzer settings:

 ${\tt Span = approximately \ 2 \ to \ 3 \ times \ the \ 6 \ dB \ or \ 20 \ dB \ bandwidth, \ centered \ on \ a \ channel}$

 $RBW \ge 1\%$ of the 6 dB or 20 dB bandwidth

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6 dB or 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB or 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation.

Measurement setup is same as sub-clause 1.9.1.

1.9.4 Average Time of Occupancy

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel

RBW ≤ Channel Separation

VBW ≥ RBW

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

If possible, use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation.

Measurement setup is same as sub-clause 1.9.1.

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Page 20 of 58

1.9.5 Peak Output Power (Conduction)

(Step 1) Use the following spectrum analyzer settings:

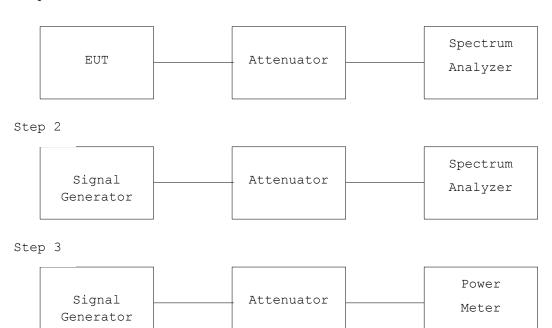
Span = approximately 5 times the 20 dB bandwidth, centered on a channel

RBW > the 20 dB bandwidth of the emission being measured

VBW ≥ RBW

Sweep = auto

Detector function = peak


Trace = max hold

Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Record the reading P1.

(Step 2) Replace the EUT with the signal generator. Adjust the level of the signal generator output until the reading P1.

(Step 3) Replace the spectrum analyzer with the power meter. Record the reading of power meter P2. The peak output power of the EUT is P2.

Step 1

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 21 of 58

1.9.6 Peak Power Density (Conduction)

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a channel

RBW = Specified Value

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.

Measurement setup is same as sub-clause 1.9.1.

1.9.7 Peak Output Power and Peak Power Density (Radiation)

The radiated power output and the field strength of the transmitter radiation were measured at the distance at 3 meters away from the transmitter under test which was placed on a turntable 0.8 meter in height. The receiving antenna was oriented for vertical polarization and raised or lowered through 1 to 4 meters until the maximum signal level was detected on the measuring instrument. The transmitter under test was rotated through 360° until the maximum signal was received. The measurement was repeated with the receiving antenna in the horizontal polarization.

The transmitter was removed and replaced with the antenna. The center of the antenna was placed approximately at the same location as the center of the transmitter. The antenna was fed with a signal generator, and the output level of the signal generator was adjusted to obtain the previously recorded maximum reading at the particular frequency and recorded. This procedure was repeated with the receiving antenna and the antenna in the orthogonal polarization.

The input power into the antenna was measured using the power meter. The level of the emissions in dBm(EIRP) were calculated from the following formula:

Transmitter Power[dBm] (EIRP) = (Meter Reading of Power Meter) + (Antenna Gain[dBi])

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a channel

RBW : Greater then the 20 dB bandwidth of the emission being measured or Specified Value

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Page 22 of 58

1.9.8 Spurious Emission (Conduction)

Band-edge Compliance of RF Conducted Emissions

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation

RBW \geq 1% of the span

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Set the marker on the emission at the bandedge, or on the highest modulation product outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission.

Now, using the same instrument settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

Spurious RF Conducted Emissions

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz

VBW ≥ RBW

Sweep = auto

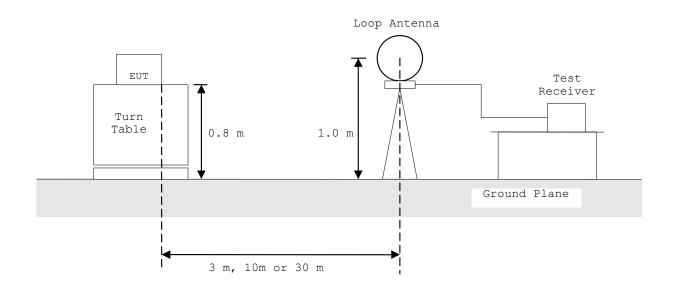
Detector function = peak

Trace = max hold

Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this Section.

Measurement setup is same as sub-clause 1.9.1.

FCC ID :R8C-MDM22
Issue Date :July 1, 2004


Page 23 of 58

1.9.9 Radiated Emission (9 kHz - 30 MHz):

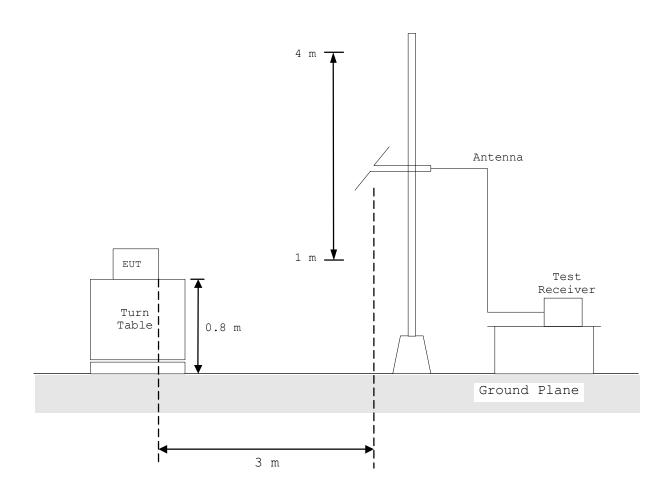
According to description of ANSI C63.4-2001 sec.13.1.4, the preliminary radiated emissions measurement were carried out. The preliminary radiated measurements were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for the final radiated emissions measurements.

- Side View -

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 24 of 58


1.9.10 Radiated Emission (30 MHz - 1000 MHz):

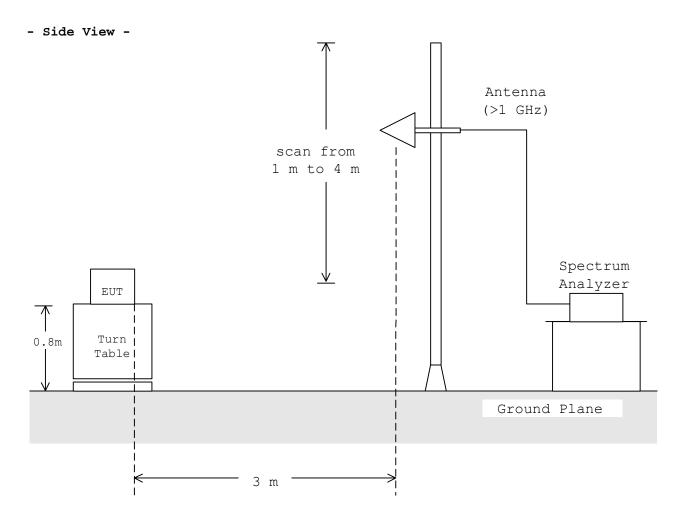
According to description of ANSI C63.4-2001 sec.13.1.4, the preliminary radiated emissions measurement were carried out. The preliminary radiated measurements were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for the final radiated emissions measurements.

Anechoic Chamber

- Side View -

FCC ID :R8C-MDM22
Issue Date :July 1, 2004


Page 25 of 58

1.9.11 Radiated Emission (Above 1 GHz):

According to description of ANSI C63.4-2001 sec.13.1.4, the preliminary radiated emissions measurements were carried out. The preliminary radiated measurements were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for the final radiated emissions measurements.

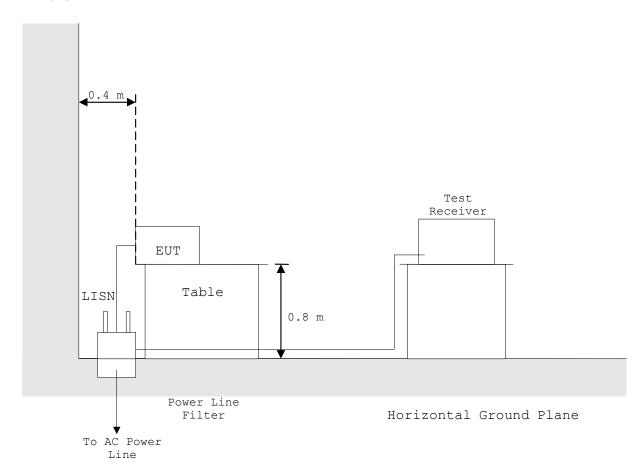
Anechoic Chamber

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 26 of 58

1.9.12 AC Power Line Conducted Emission (150 kHz - 30 MHz) :

According to description of ANSI C63.4-2001 sec.13.1.3, the AC power line preliminary conducted emissions measurements were carried out.


The preliminary conducted measurements were performed using the spectrum analyzer to observe the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for final AC power line conducted emissions measurements.

Shielded Enclosure

- Side View -

Vertical Ground Plane

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 27 of 58

1.10 TEST ARRANGEMENT (PHOTOGRAPHS)

PHOTOGRAPHS OF EUT CONFIGURATION FOR RADIATED EMISSIONS MEASUREMENT

Photograph present configuration with maximum emission

JQA Application No.:400-40205

Model No. :MDM22

Standard :CFR 47 FCC Rules Part 15

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 28 of 58

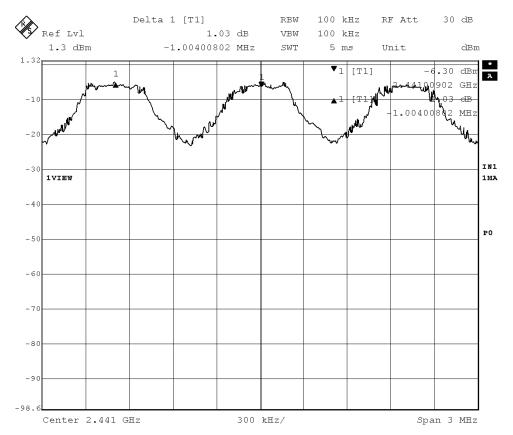
FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 29 of 58

2. TEST DATA

2.1 Channel Separation

Date: June 25, 2004
Temp.: 22 °C Humi.: 54 %


Mode of EUT : Hopping (Max. power setting)
Test Port : Temporary antenna connector

Channel Separation

Limit

(kHz)

1004.008 25 kHz or 20 dB bandwidth of hopping channel

Tested by :

Masanori Takahashi

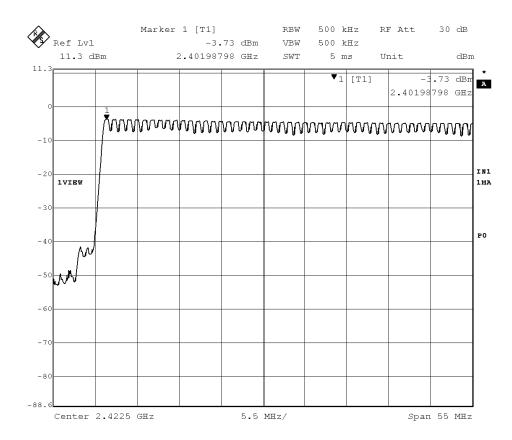
Testing Engineer

Standard

:CFR 47 FCC Rules Part 15

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Page 30 of 58

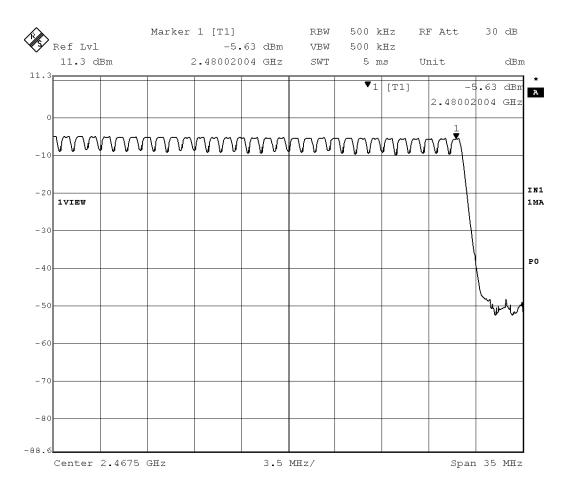

2.2 Minimum Hopping Channel

Date : ____June 25, 2004

Temp.: <u>22 °C</u> Humi.: <u>54 %</u>

Mode of EUT: Hopping (Max. power setting) Test Port : Temporary antenna connector

> Hopping Channel Limit 79 15


JQA Application No.:400-40205

Model No. :MDM22

Standard : CFR 47 FCC Rules Part 15

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

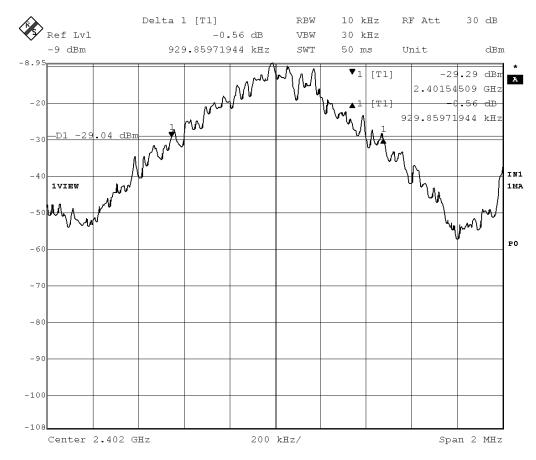
Page 31 of 58

Tested by :

Masanori Takahashi Testing Engineer

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 32 of 58


2.3 Occupied Bandwidth

Temp.: <u>22 °C</u> Humi.: <u>54 %</u>

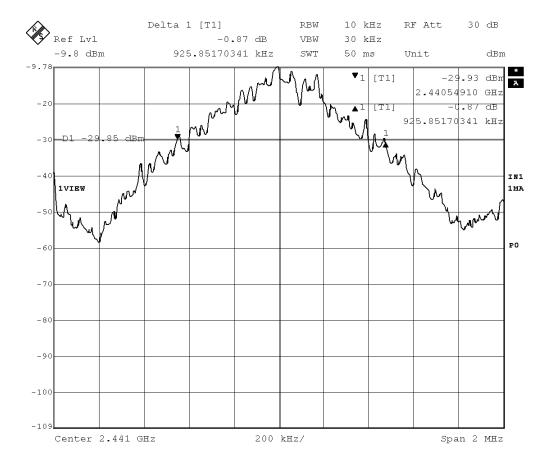
Mode of EUT: TX 2402 MHz (Max. power setting)

Test Port : Temporary antenna connector

Bandwidth Limit (kHz) (kHz) 929.9 N/A

:MDM22
:CFR 47 FCC Rules Part 15

FCC ID :R8C-MDM22

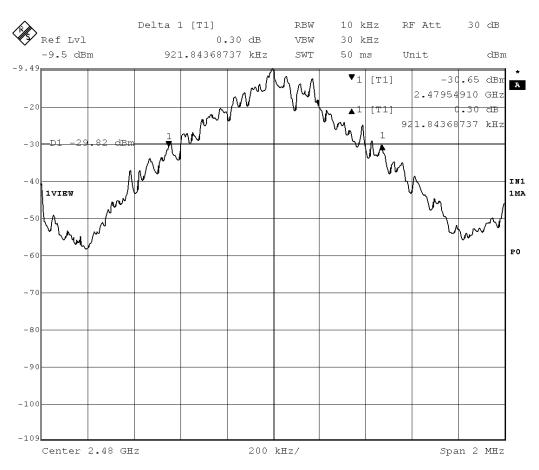

Issue Date :July 1, 2004

Page 33 of 58

Mode of EUT: TX 2441 MHz (Max. power setting)

Test Port : Temporary antenna connector

Bandwidth Limit (kHz) (kHz) 925.9 N/A


FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 34 of 58

Mode of EUT: TX 2480 MHz (Max. power setting)

Test Port : Temporary antenna connector

Bandwidth Limit (kHz) (kHz) 921.8 N/A

Tested by :

Masanori Takahashi Testing Engineer

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Page 35 of 58

2.4 Average Time of Occupancy

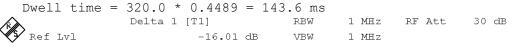
Date : ____ June 25, 2004

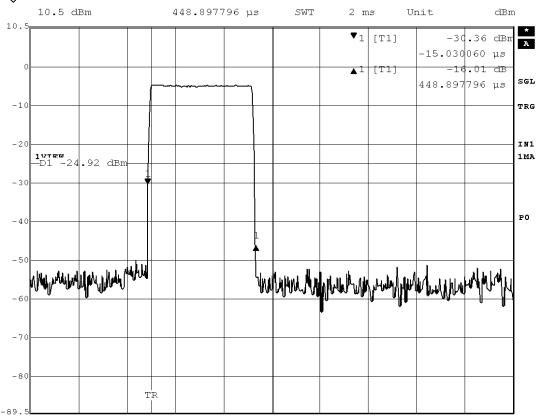
Temp.: 23 °C Humi.: 54 %

Mode of EUT: Hopping (DH1 packet) Max. power setting

Test Port: Temporary antenna connector

Dwell Time Limit


(ms)


Center 2.402 GHz

143.6 400 ms per 31.6 s

Note: The system makes worst case 1600 hops per second or 1 time slot has a length of 625 μs with 79 channels. A DH1 Packet need 1 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 800 hops per second with 79 channels. So the system has each channel 10.1266 times per second and so for 31.6 seconds the system have 320.0 times of appearance.

Each tx-time per appearance is 0.4489 ms.

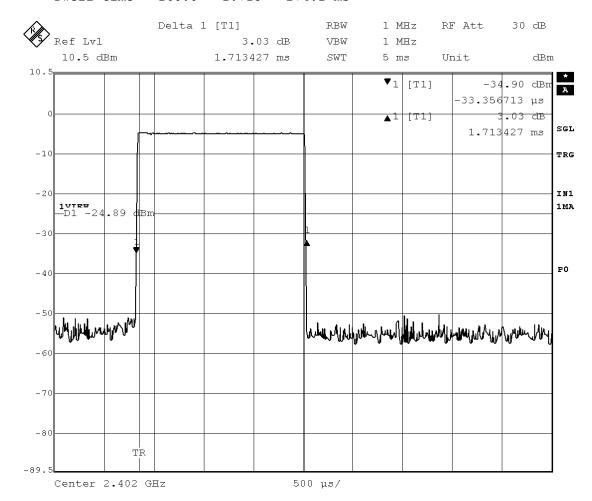
200 µs/

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Page 36 of 58

Mode of EUT: Hopping (DH3 packet) Max. power setting

Test Port : Temporary antenna connector


Dwell Time Limit

(ms)

274.1 400 ms per 31.6 s

Note: A DH3 Packet need 3 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 400 hops per second with 79 channels. So the system have each channel 5.063 times per second and so for 31.6 seconds the system have 160.0 times of appearance.

Each tx-time per appearance is 1.713 ms. Dwell time = 160.0 * 1.713 = 274.1 ms

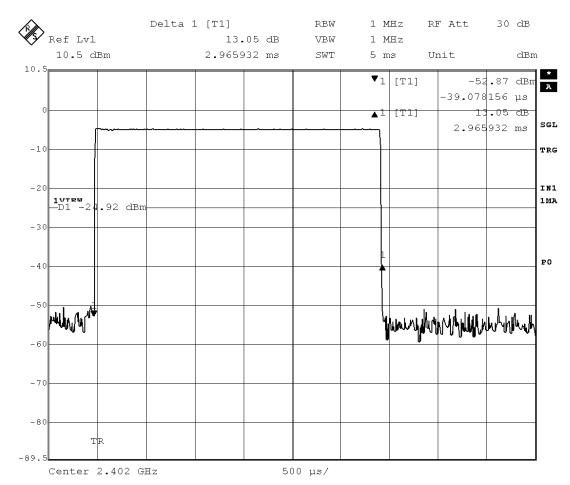
Standard : CFR 47 FCC Rules Part 15

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 37 of 58

Mode of EUT : Hopping(DH5 packet) Max. power setting

Test Port : Temporary antenna connector


Dwell Time Limit

(ms)

316.5 400 ms per 31.6 s

Note: A DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 266.667 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.7 times of appearance.

Each tx-time per appearance is 2.966 ms.Dwell time = $106.7 \times 2.966 = 316.5 \text{ ms}$

Tested by : M. Takahash

Masanori Takahashi Testing Engineer Standard :CFR 47 FCC Rules Part 15

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 38 of 58

2.5 Peak Output Power (Conduction)

Date : ____June 25, 2004

Temp.: <u>22 °C</u> Humi.: <u>54 %</u>

Test Port: Temporary antenna connector (Max. power setting)

Mode of	EUT	Cable Loss	Meter	Peak Power	Limit
		(dB)	Reading	(dBm)	(dBm)
			(dBm)		
TX (2402	MHz)	0.40	-3.77	-3.37	30
TX (2441	MHz)	0.40	-4.82	-4.42	30
TX (2480	MHz)	0.40	-5.57	-5.17	30

Note: 1) Rated Supply Voltage: Flash Battery was used

2) A sample calculation was made at 2402 MHz.

CL + MR = 0.40 + (-3.77) = -3.37 (dBm)

CL : Cable Loss
MR : Meter Reading

3) Measuring Instruments Setting :

Detector Function Resolution Bandwidth
Peak 1 MHz

Tested by : M. Takahoshi

Masanori Takahashi Testing Engineer

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Page 39 of 58

2.6 Peak Output Power (Radiation):EIRP

Date : _____ June 25, 2004 Temp.: <u>22 °C</u> Humi.: <u>54 %</u>

Test Port : Enclosure (Max. power setting)

Mode of EUT	Antenna Gain	Meter Read	ling (dBm)	Peak Powe	er (dBm)	Limit
	(dBi)	Horiz.	Vert.	Horiz.	Vert.	(dBm)
TX (2402 MHz)	9.30	-9.37	-11.06	-0.07	-1.76	30
TX (2441 MHz)	9.46	-13.62	-12.95	-4.16	-3.49	30
TX (2480 MHz)	9.53	-16.62	-18.22	-7.09	-8.69	30

Note: 1) Rated Supply Voltage: Flesh battery was used

2) A sample calculation was made at 2402 MHz.

AG + MR = 9.30 + (-9.37) = -0.07 (dBm)

AG : Antenna Gain MR : Meter Reading

3) Measuring Instruments Setting:

Detector Function Resolution Bandwidth 1 MHz Peak

Masanori Takahashi

Testing Engineer

Standard :CFR 47 FCC Rules Part 15

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 40 of 58

2.7 Peak Power Density (Conduction)

Date : ____ June 25, 2004

Temp.: 22 °C Humi.: 54 %

Mode of EUT: TX (2402 MHz) Max. power setting

Test Port : Temporary antenna connector

 Cable Loss
 Meter Reading
 Peak Power
 Limit

 (dB)
 (dBm)
 (dBm)
 (dBm)

 0.40
 -15.20
 -14.80
 8

Note: 1) A sample calculation was made.

CL + MR = 0.40 + (-15.20) = -14.80 (dBm)

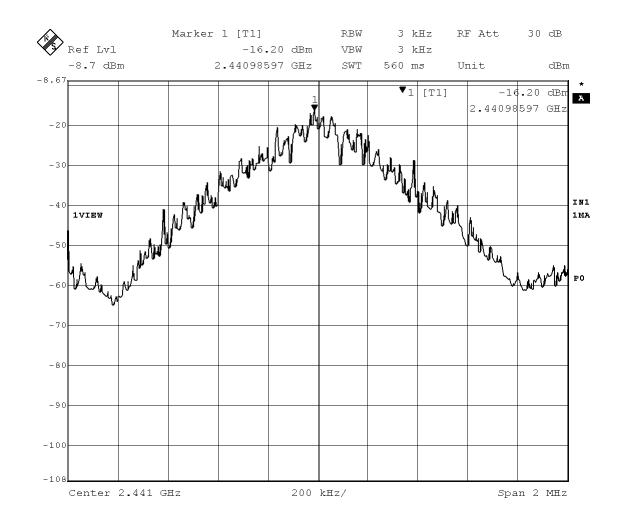
CL : Cable Loss
MR : Meter Reading

2) Measuring Instruments Setting :

Detector Function Resolution Bandwidth

Peak 3 kHz

Marker 1 [T1] RBW 3 kHz RF Att 30 dB Ref Lvl -15.20 dBm VBW 3 kHz 2.40198597 GHz -8.7 dBm SWT 560 ms Unit dBm ▼1 [T1] -15.20 dBm 2.40198597 GHz Variation and the second of th -20 IN1 1VIEW 1MA -80 -90 Center 2.402 GHz 200 kHz/ Span 2 MHz

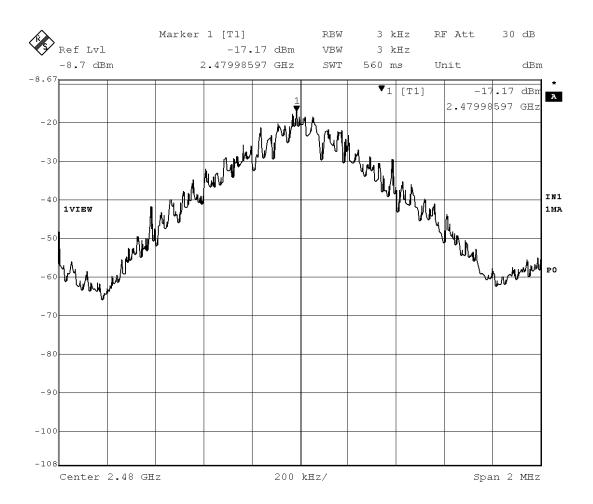

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 41 of 58

Mode of EUT : TX (2441 MHz) Max. power setting

Test Port : Temporary antenna connector

Cable Loss	Meter Reading	Peak Power	Limit
(dB)	(dBm)	(dBm)	(dBm)
0.40	-16.20	-15.80	8


FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 42 of 58

Mode of EUT : TX (2480 MHz) Max. power setting

Test Port : Temporary antenna connector

Cable Loss	Meter Reading	Peak Power	Limit
(dB)	(dBm)	(dBm)	(dBm)
0.40	-17.17	-16.77	8

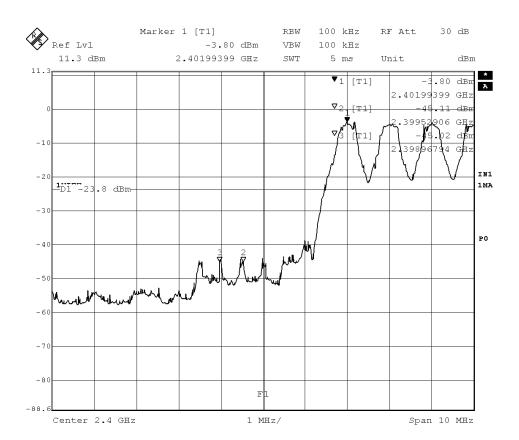
Tested by :

Masanori Takahashi Testing Engineer

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Page 43 of 58

2.8 Peak Power Density (Radiation)

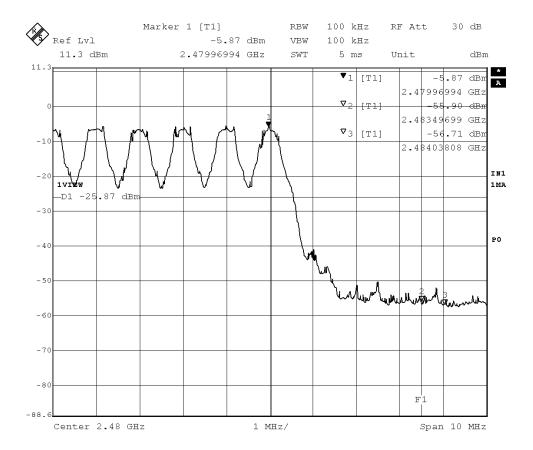

Note: This test was not applicable.

2.9 Spurious Emissions (Conduction)

Date : ___ June 25, 2004 Temp.: <u>22 °C</u> Humi.: 54 %

2.9.1 Band Edge Compliance

Mode of EUT : Hopping (Max. power setting) Test Port : Temporary antenna connector



Standard :CFR 47 FCC Rules Part 15

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 44 of 58

Mode of EUT : Hopping (Max. power setting)
Test Port : Temporary antenna connector

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Page 45 of 58

2.9.2 Other Spurious Emissions

Mode of EUT: TX (2402 MHz) Max. power setting

Test Port : Temporary antenna connector

Cable Loss Att. Loss Meter Reading Emission Reference Limit Frequency (MHz) (dBm) Level(*1) (dB) (dB) Levels (dBm) (dBm) (dBm)

-5.16 -25.16

No spurious emissions in the range 20 dB below the limit.

Mode of EUT: TX (2441 MHz) Max. power setting

Test Port: Temporary antenna connector

Cable Loss Att. Loss Meter Reading Emission Reference Frequency Limit (MHz) (dB) (dB) (dBm) Levels Level(*1) (dBm) (dBm) (dBm) -5.16 -25.16

No spurious emissions in the range 20 dB below the limit.

Mode of EUT: TX (2480 MHz) Max. power setting

Test Port : Temporary antenna connector

Cable Loss Att. Loss Meter Reading Emission Reference Frequency Limit (MHz) (dB) (dB) (dBm) Levels Level(*1) (dBm) (dBm) (dBm) -5.16 -25.16

No spurious emissions in the range 20 dB below the limit.

Note: 1) Reference level is minimum value of all channels.

2) Measuring Instruments Setting:

Detector Function Resolution Bandwidth Peak 100 kHz

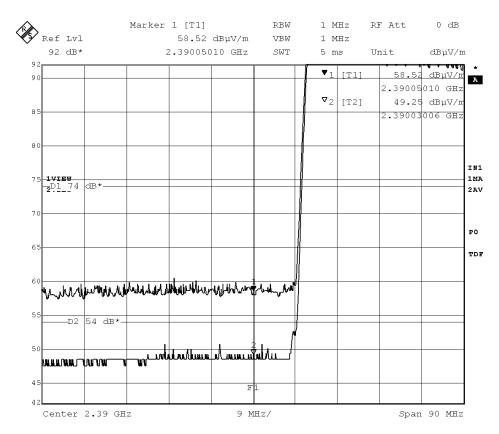
Masanori Takahashi

Standard :CFR 47 FCC Rules Part 15

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 46 of 58

2.10 Spurious Emissions (Radiation)


Temp.: 22 °C Humi.: 54 %

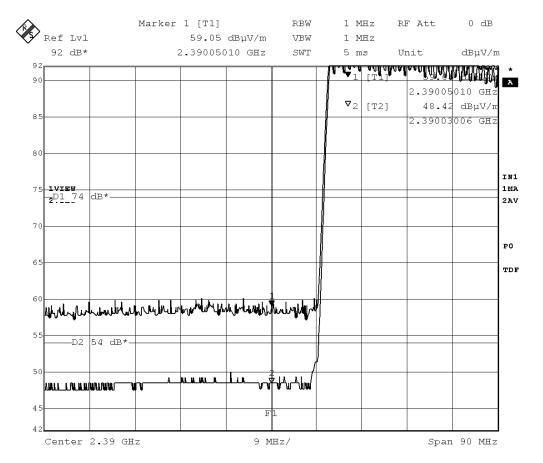
2.10.1 Band Edge Compliance

Mode of EUT : Hopping (Max. power setting)

Test Port : Enclosure

Antenna Polarization : Horizontal

JQA Application No.:400-40205

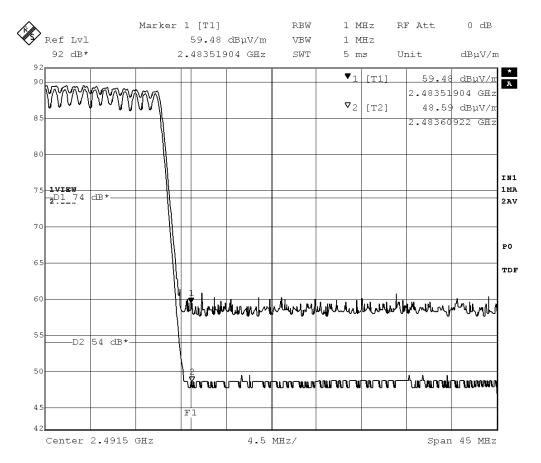

:MDM22

Standard :CFR 47 FCC Rules Part 15 FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Page 47 of 58

Mode of EUT : Hopping (Max. power setting)

Antenna Polarization : Vertical

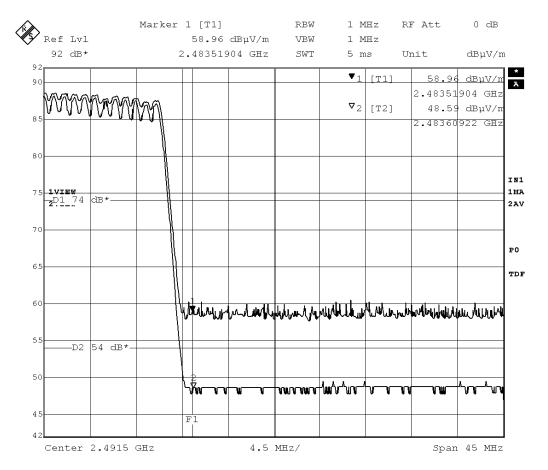


FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Page 48 of 58

Mode of EUT : Hopping (Max. power setting)

Antenna Polarization : Horizontal



FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Page 49 of 58

Mode of EUT : Hopping (Max. power setting)

Antenna Polarization : Vertical

:CFR 47 FCC Rules Part 15 Page 50 of 58

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

2.10.2 Other Spurious Emissions

Test Port : Enclosure

Spurious Emissions in the frequency range from 9 kHz to 30 MHz Mode of EUT: TX Hopping OFF(2402 MHz/ 2441 MHz/ 2480 MHz Setting) (Max. power setting)

No spurious emissions in the range 20 dB below the limit.

Spurious Emissions in the frequency range from 30 MHz to 1000 MHz Mode of EUT : TX Hopping OFF(Worst Case) (Max. power setting)

Frequency	Antenna Meter Reading		eading	Limits	Emissio	n Levels	Margins		
	Factor	(/			(dBu	ıV/m)	(dB)		
(MHz)	(dB)	Horiz.	Vert.	(dBuV/m)	Horiz.	Vert.	Horiz.	Vert.	
398.1	19.0	3.7	6.4	46.0	22.7	25.4	23.3	20.6	

- Notes: 1) The spectrum was checked from 30 MHz to 1000 MHz.
 - 2) The cable loss is included in the antenna factor.
 - 3) The symbol of "<"means "or less".
 - 4) The symbol of ">"means "or greater".
 - 5) A sample calculation was made at 398.1 (MHz).

Af + Mr = 19 + 6.4 = 25.4 (dBuV/m)

Af = Antenna Factor Mr = Meter Reading

Standard :CFR 47 FCC Rules Part 15 FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Page 51 of 58

Spurious Emissions in the frequency above 1000 MHz

Mode of EUT: TX Hopping OFF(2402 MHz Setting) Max. power setting											
Frequency	P-A	Correction	rrection Polari-		Meter Reading		nits	Emission Levels		Margins	
Factor		Factor	zation	(dBuV)		(dBuV/m)		(dBuV/m)		(dB)	
(GHz)	(dB)	(dB)		AV	Peak	AV	Peak	AV	Peak	AV	Peak
1.0617	0.0	-6.1	Н	34.4	41.5	54.0	74.0	28.3	35.4	25.7	38.6
1.0912	0.0	-5.8	H	34.5	41.7	54.0	74.0	28.7	35.9	25.3	38.1
1.2015	0.0	-4.8	Н	42.6	48.2	54.0	74.0	37.8	43.4	16.2	30.6
4.8040	0.0	8.9	Н	27.5	39.9	54.0	74.0	36.4	48.8	17.6	25.2

Mode of	EUT :	TX Hoppi	ng OFF(2441 M	Hz Sett	cing)	Max.	power s	etting		
Frequency	P-A	Correction Polari-		Meter Reading		Lir	mits	Emission Levels		Margins	
	Factor	Factor	zation	(dE	BuV)	(dE	BuV/m)	(dBu	ıV/m)	(c	dB)
(GHz)	(dB)	(dB)		AV	Peak	AV	Peak	AV	Peak	AV	Peak
1.0617	0.0	-6.1	Н	34.4	41.5	54.0	74.0	28.3	35.4	25.7	38.6
1.0912	0.0	-5.8	Н	34.5	41.7	54.0	74.0	28.7	35.9	25.3	38.1
1.2205	0.0	-4.7	Н	43.2	48.1	54.0	74.0	38.5	43.4	15.5	30.6
4.8820	0.0	9.0	Н	28.1	40.1	54.0	74.0	37.1	49.1	16.9	24.9

Mode of Frequency		TX Hoppi	-	2480 M Meter 1		٠.	Max. mits	-	setting n Levels	Mar	gins
Factor		Factor	zation	(dBuV)		(dBuV/m)		(dBuV/m)		(dB)	
(GHz)	(dB)	(dB)		AV	Peak	AV	Peak	AV	Peak	AV	Peak
1.0617	0.0	-6.1	Н	34.4	41.5	54.0	74.0	28.3	35.4	25.7	38.6
1.0912	0.0	-5.8	H	34.5	41.7	54.0	74.0	28.7	35.9	25.3	38.1
1.2405	0.0	-4.5	Н	43.5	48.0	54.0	74.0	39.0	43.5	15.0	30.5
4.9600	0.0	9.1	Н	26.8	39.4	54.0	74.0	35.9	48.5	18.1	25.5

Notes : 1) The spectrum was checked from 1.0 GHz to 26.5 GHz.

- 2) The cable loss, amp. gain and antenna factor are included in the correction factor.
- 3) The symbol of "<"means "or less".
- 4) The symbol of ">"means "or greater".
- 5) A sample calculation(Peak) was made at 1.06171 (GHz).

PA + Cf + Mr = 0 + -6.1 + 41.5 = 35.4 (dBuV/m)

PA = Peak to Average Factor(P-A Factor)

Cf = Correction Factor Mr = Meter Reading

6) Measuring Instrument Setting :

<u>Detector function</u> <u>Resolution Bandwidth</u> <u>Video Bandwidth</u> Average(AV) 1 MHz

Peak 1 MHz 1 MHz

Tested by : /

Masanori Takahashi Testing Engineer

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

2.11 AC Power Line Conducted Emissions

This test is not applicable.

2.12RF Exposure Compliance

Maximum output power (radiated): -0.07dBm(refer to page 39) Then -0.07 dBm = 0.98 mW EUT is operating from $2402-2480 \, \mathrm{MHz}$, so the middle frequency is $2.441 \, \mathrm{GHz}$. The low threshold power is 60 / 2.441 = 24.6 mW. EUT output power is less than 24.6mw so SAR evaluation is not required.

FCC ID :R8C-MDM22
Issue Date :July 1, 2004

Page 53 of 58

2.13 Spurious Emissions for Receiver (Radiation)

Date : _____ June 25, 2004

Temp.: <u>22 °C</u> Humi.: 54 %

Mode of EUT : RX(Worst Case)

Test Port : Enclosure

Spurious Emissions in the frequency range from 30 MHz to 1000 MHz

Mode of EUT : RX Hopping OFF (Worst Case)

Frequency	Antenna	Meter Re	eading	Limits	Emissio	Emission Levels		gins
	Factor	(dBuV)			(dBuV/m)		(d	lB)
(MHz)	(dB)	Horiz.	Vert.	(dBuV/m)	Horiz.	Vert.	Horiz.	Vert.
398.1	19.0	3.7	6.4	46.0	22.7	25.4	23.3	20.6

Notes :

- 1) The spectrum was checked from 30 MHz to 1000 MHz.
- 2) The cable loss is included in the antenna factor.
- 3) The symbol of "<"means "or less".
- 4) The symbol of ">"means "or greater".
- 5) A sample calculation was made at 398.1 (MHz).

Af + Mr = 19 + 6.4 = 25.4 (dBuV/m)

Af = Antenna Factor Mr = Meter Reading Standard :CFR 47 FCC Rules Part 15 Page 54 of 58

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Spurious Emissions in the frequency above 1000 MHz

Mode of EUT: RX Hopping OFF(2402 MHz Setting)

Frequency	P-A	Correction	Correction Polari-		Meter Reading		mits	Emission Levels (dBuV/m)		Mar	gins
	Factor	Factor	zation	(dBuV)		(dBuV/m)				(dB)	
(GHz)	(dB)	(dB)		AV	Peak	AV	Peak	AV	Peak	AV	Peak
1.0617	0.0	-6.2	Н	34.4	41.5	54.0	74.0	28.2	35.3	25.8	38.7
1.0912	0.0	-5.9	Н	34.5	41.7	54.0	74.0	28.6	35.8	25.4	38.2
1.2003	0.0	-4.8	Н	45.8	48.4	54.0	74.0	41.0	43.6	13.0	30.4
2.4005	0.0	2.2	Н	46.3	48.9	54.0	74.0	48.5	51.1	5.5	22.9

Mode of EUT : RX Hopping OFF(2441 MHz Setting)

Frequency	P-A	Correction Polari-		Meter Reading		Limits		Emission Levels		Margins	
	Factor	Factor	zation	(dBuV)		(dBuV/m)		(dBuV/m)		(dB)	
(GHz)	(dB)	(dB)		AV	Peak	AV	Peak	AV	Peak	AV	Peak
1.0617	0.0	-6.2	Н	34.4	41.5	54.0	74.0	28.2	35.3	25.8	38.7
1.0912	0.0	-5.9	Н	34.5	41.7	54.0	74.0	28.6	35.8	25.4	38.2
1.2198	0.0	-4.6	Н	47.5	49.7	54.0	74.0	42.9	45.1	11.1	28.9
2.4395	0.0	2.3	H	44.1	47.3	54.0	74.0	46.4	49.6	7.6	24.4

Mode of EUT: RX Hopping OFF(2480 MHz Setting)

Frequency	P-A	Correction	orrection Polari-		Meter Reading		mits	Emission Levels (dBuV/m)		Mar	gins
	Factor	Factor	zation	(dBuV)		(dBuV/m)				(dB)	
(GHz)	(dB)	(dB)		AV	Peak	AV	Peak	AV	Peak	AV	Peak
1.0617	0.0	-6.2	Н	34.4	41.5	54.0	74.0	28.2	35.3	25.8	38.7
1.0912	0.0	-5.9	Н	34.5	41.7	54.0	74.0	28.6	35.8	25.4	38.2
1.2393	0.0	-4.5	Н	47.7	50.0	54.0	74.0	43.2	45.5	10.8	28.5
2.4785	0.0	2.3	Н	41.5	45.4	54.0	74.0	43.8	47.7	10.2	26.3

Masanori Takahashi

Testing Engineer

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Appendix

Test Instruments List

:CFR 47 FCC Rules Part 15 Page 56 of 58 Standard

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Test Receivers

No.	Type	Model	Manufacturer	Serial	ID	Last	Cal.	Interval
TR01	Test Receiver	ESH2	Rohde & Schwarz	880370/016	119-01-503E0	May	2004	1 Year
TR02	Test Receiver	ESH3	Rohde & Schwarz	881460/030	119-01-023E0	May	2004	1 Year
TR03	Test Receiver	ESHS10	Rohde & Schwarz	835871/004	119-01-505E0	May	2004	1 Year
TR04	Test Receiver	ESV	Rohde & Schwarz	872148/039	119-03-008E0	May	2004	1 Year
TR05	Test Receiver	ESVS10	Rohde & Schwarz	826148/002	119-03-504E0	May	2004	1 Year
TR06	Test Receiver	ESVS10	Rohde & Schwarz	832699/001	119-03-506E0	May	2004	1 Year
TR07	Test Receiver	ESI26	Rohde & Schwarz	100043	119-04-511E0	Aug.	2003	1 Year

Spectrum Analyzers

No.	Type	Model	Manufacturer	Serial	ID	Last Cal.	Interval
SA01	Spectrum Analyzer	8560E	Hewlett Packard	3240A00189	122-02-504E0	Oct. 2003	1 Year
SA02	Spectrum Analyzer	8566B	Hewlett Packard	2140A01091	122-02-501E0	Oct. 2003	1 Year
SA03	RF Pre-selector	85685A	Hewlett Packard	2648A00522	122-02-503E0	Oct. 2003	1 Year
SA04	Spectrum Analyzer	8566B	Hewlett Packard	2747A05855	122-02-517E0	Apr. 2004	1 Year
SA05	RF Pre-selector	85685A	Hewlett Packard	2901A00933	122-02-519E0	Apr. 2004	1 Year
SA06	Spectrum Analyzer	R3132	ADVANTEST	120500072	122-02-520E0	Sep. 2003	1 Year
SA07	Spectrum Analyzer	R3182	ADVANTEST	120600581	122-02-521E0	Mar. 2004	1 Year

Antennas

No.	Туре	Model	Manufacturer	Serial	ID	Last Cal.	Interval
AN01	Loop Antenna	HFH2-Z2	Rohde & Schwarz	881058/61	119-05-036E0	May. 2004	1 Year
AN02	Dipole Antenna	KBA-511	Kyoritsu	0-170-1	119-05-506E0	Nov. 2003	1 Year
AN03	Dipole Antenna	KBA-511A	Kyoritsu	0-201-13	119-05-504E0	Nov. 2003	1 Year
AN04	Dipole Antenna	KBA-611	Kyoritsu	0-147-14	119-05-507E0	Nov. 2003	1 Year
AN05	Dipole Antenna	KBA-611	Kyoritsu	0-210-5	119-05-505E0	Nov. 2003	1 Year
AN06	Biconical Antenna	BBA9106	Schwarzbeck	VHA91031150	119-05-111E0	Nov. 2003	1 Year
AN07	Biconical Antenna	BBA9106	Schwarzbeck	-	119-05-078E0	Nov. 2003	1 Year
AN08	Log-peri. Antenna	UHALP9107	Schwarzbeck	_	119-05-079E0	Nov. 2003	1 Year
AN09	Log-peri. Antenna	UHALP9107	Schwarzbeck	-	119-05-110E0	Nov. 2003	1 Year
AN10	Log-peri. Antenna	HL025	Rohde & Schwarz	340182/015	119-05-100E0	Jan. 2004	1 Year
AN11	Horn Antenna	3115	EMC Test Systems	6442	119-05-514E0	Jan. 2004	1 Year
AN12	Horn Antenna	3116	EMC Test Systems	2547	119-05-515E0	May 2003	2 Year

Standard :CFR 47 FCC Rules Part 15 Page 57 of 58

FCC ID :R8C-MDM22 Issue Date :July 1, 2004

Networks

No.	Type	Model	Manufacturer	Serial	ID	Last Cal.	Interval
NE01	LISN	KNW-407	Kyoritsu	8-833-6	149-04-052E0	Apr. 2004	1 Year
NE02	LISN	KNW-407	Kyoritsu	8-855-2	149-04-055E0	Apr. 2004	1 Year
NE03	LISN	KNW-407	Kyoritsu	8-1130-6	149-04-062E0	Apr. 2004	1 Year
NE04	LISN	KNW-242C	Kyoritsu	8-837-13	149-04-054E0	Apr. 2004	1 Year
NE05	Absorbing Clamp	MDS21	Luthi	03293	119-06-506E0	Sep. 2003	1 Year

Cables

No.	Туре	Model	Manufacturer	Serial	ID	Last Cal.	Interval
CA01	RF Cable	5D-2W	Fujikura	-	155-21-001E0	Feb. 2004	1 Year
CA02	RF Cable	5D-2W	Fujikura	-	155-21-002E0	Feb. 2004	1 Year
CA03	RF Cable	3D-2W	Fujikura	-	155-21-005E0	Apr. 2004	1 Year
CA04	RF Cable	3D-2W	Fujikura	-	155-21-006E0	Apr. 2004	1 Year
CA05	RF Cable	3D-2W	Fujikura	-	155-21-007E0	Apr. 2004	1 Year
CA06	RF Cable	RG213/U	Rohde & Schwarz	-	155-21-010E0	Apr. 2004	1 Year
CA07	RF Cable(10m)	S 04272B	Suhner	-	155-21-011E0	May 2004	1 Year
CA08	RF Cable(2m 18GHz) SUCOFLEX 104	Suhner	-	155-21-012E0	May 2004	1 Year
CA09	RF Cable(1m 18GHz) SUCOFLEX 104	Suhner	-	155-21-013E0	May 2004	1 Year
CA10	RF Cable(1m N)	S 04272B	Suhner	-	155-21-015E0	May 2004	1 Year
CA11	RF Cable(1m 26GHz) SUCOFLEX 104	Suhner	182811/4	155-21-016E0	Dec. 2003	1 Year
CA12	RF Cable(4m 26GHz) SUCOFLEX 104	Suhner	190630	155-21-017E0	Dec. 2003	1 Year
CA13	RF Cable(10m)	F130-S1S1-394	MEGA PHASE	10510	155-21-018E0	Dec. 2003	1 Year
CA14	RF Cable(7m)	3D-2W	Fujikura	-	155-21-009E0	Apr. 2004	1 Year
CA15	RF Cable(7m)	RG223/U	Suhner	_	155-21-021E0	May 2004	1 Year

Amplifiers

No.	Туре	Model	Manufacturer	Serial	ID	Last Cal.	Interval
AM01	AF Amplifier	P-500L	Accuphase	BOY806	127-01-501E0	Feb. 2004	1 Year
AM02	RF Amplifier	8447D	Hewlett Packard	1937A02168	127-01-065E0	May 2004	1 Year
AM03	RF Amplifier	8447D	Hewlett Packard	2944A07289	127-01-509E0	May 2004	1 Year
AM05	RF Amplifier	DBP-0102N533	DBS Microwave	012	127-02-504E0	Jun. 2004	1 Year
AM06	RF Amplifier	WJ-6882-814	Watkins-Johnson	0414	127-04-017E0	Jun. 2004	1 Year
AM07	RF Amplifier	WJ-5315-556	Watkins-Johnson	106	127-04-006E0	Jun. 2004	1 Year
80MA	RF Amplifier	WJ-5320-307	Watkins-Johnson	645	127-04-005E0	Jun. 2004	1 Year
AM09	RF Amplifier	JS4-00102600 -28-5A	MITEQ	669167	127-04-502E0	Apr. 2004	1 Year

FCC ID :R8C-MDM22 Issue Date :July 1, 2004 :CFR 47 FCC Rules Part 15 Page 58 of 58

Signal Generators

No.	Type	Model	Manufacturer	Serial	ID	Last Cal.	Interval
SG01	Function Generator	3325B	Hewlett Packard	2847A03284	118-08-124E0	Jul. 2003	1 Year
SG02	Function Generator	VP-7422A	Matsushita Communication	050351E122	118-08-503E0	Jul. 2003	1 Year
SG03	Signal Generator	8664A	Hewlett Packard	3035A00140	118-03-014E0	Jun. 2004	1 Year
SG04	Signal Generator	8664A	Hewlett Packard	3438A00756	118-04-502E0	Jun. 2004	1 Year
SG05	Signal Generator	6061A	Gigatronics	5130593	118-04-024E0	Mar. 2004	1 Year

Auxiliary Equipment

37 -	m	26-3-1		g 1		T C - 1	T
No.	Type	Model	Manufacturer	Serial	ID	Last Cal.	Interval
AU01	Termination(50)	_	Suhner	-	154-06-501E0	Jan. 2004	1 Year
AU02	Termination(50)	_	Suhner	-	154-06-502E0	Jan. 2004	1 Year
AU03	Power Meter	436A	Hewlett Packard	1725A01930	100-02-501E0	Apr. 2004	1 Year
AU04	Power Sensor	8482A	Hewlett Packard	1551A01013	100-02-501E0	Apr. 2004	1 Year
AU05	Power Sensor	8485A	Hewlett Packard	2942A08969	100-04-021E0	Apr. 2004	1 Year
AU06	FM Linear Detector	MS61A	Anritsu	M77486	123-02-008E0	Oct. 2003	1 Year
AU07	Level Meter	ML422C	Anritsu	M87571	114-02-501E0	Jun. 2003	1 Year
AU08	Measuring Amplifier	2636	B & K	1614851	082-01-502E0	Jul. 2003	1 Year
AU09	Microphone	4134	B & K	1269477	147-01-503E0	May 2004	1 Year
AU10	Preamplifier	2639	B & K	1268763	127-01-504E0	May 2004	1 Year
AU11	Pistonphone	4220	B & K	1165008	147-02-501E0	Mar. 2004	1 Year
AU12	Artificial Mouth	4227	B & K	1274869	-	N/A	N/A
AU13	Frequency Counter	53131A	Hewlett Packard	3546A11807	102-02-075E0	May 2004	1 Year
AU14	Oven	_	Ohnishi	-	023-02-018E0	May 2004	1 Year
AU15	DC Power Supply	6628A	Hewlett Packard	3224A00284	072-05-503E0	Jun. 2004	1 Year
AU16	Band Reject Filter	BRM12294	Micro-tronics	003	149-01-501E0	Jan. 2004	1 Year
AU17	High Pass Filter	F-100-4000 -5-R	RLC Electronics	0149	149-01-502E0	Feb. 2004	1 Year
AU18	Attenuator	43KC-10	Anritsu	-	148-03-506E0	Feb. 2004	1 Year
AU19	Attenuator	43KC-20	Anritsu	-	148-03-507E0	Feb. 2004	1 Year
AU20	Attenuator	355D	Hewlett Packard	219-10782	148-03-065E0	Apr. 2004	1 Year
AU21	FFT Analyzer	R9211C	Advantest	02020253	122-02-506E0	Jun. 2003	1 Year
AU22	Noise Meter	MN-446	Meguro	53030478	082-01-144E0	Apr. 2004	1 Year