

# **Compliance Testing of:**

Omni Smart RFID Reader OS10, OS20, OS30, OS40 and OS45

# **Prepared For:**

Honeywell Access Systems Attn.: Mr. John Reske 135 West Forest Hill Oak Creek, WI 53145

# **Test Report Number:**

304225 (TCB Rev. 2)

# Test Date(s):

June 7<sup>th</sup>, 8<sup>th</sup>, and 9<sup>th</sup>, 2004

All results of this report relate only to the items that were tested. This report may not be reproduced, except in full, without written approval of L.S. Compliance, Inc.

# **Table of Contents**

| Section  | Description                         | Page  |
|----------|-------------------------------------|-------|
| Index    |                                     | 2     |
| 1        | L.S. Compliance in Review           | 3     |
| 2        | A2LA Certificate of Accreditation   | 4     |
| 3        | A2LA Scope of Accreditation         | 5     |
| 4        | Signatures                          | 6     |
| 5        | Product and General Information     | 7     |
| 6        | Product Description                 | 7     |
| 7        | Test Requirements                   | 7     |
| 8        | Summary of Test Report              | 8     |
| 9        | Introduction                        | 8     |
| 10       | Purpose                             | 8     |
| 11       | Radiated Emissions Test             | 9-19  |
| 12       | Conducted Emissions Test (AC Mains) | 20-24 |
| 13       | Frequency Stability                 | 25    |
|          |                                     |       |
| Appendix |                                     |       |
| A        | Test Equipment List                 | 26    |

#### 1. L.S. Compliance in Review

## L.S. Compliance - Accreditations and Listing's

As an EMC Testing Laboratory, our Accreditation and Assessments are recognized through the following:

#### <u>A2LA – American Association for Laboratory Accreditation</u>

Accreditation based on ISO/IEC 17025 : 1999 with Electrical (EMC) Scope of Accreditation

A2LA Certificate Number: 1255.01

#### Federal Communications Commission (FCC) – USA

Listing of 3 Meter Semi-Anechoic Chamber based on Title 47 CFR – Part 2.948

FCC Registration Number: 90756

Listing of 3 and 10 meter OATS based on Title 47CFR – Part 2.948

FCC Registration Number: 90757

#### **Industry Canada**

On file, 3 Meter Semi-Anechoic Chamber based on RSS-212 – Issue 1

File Number: IC 3088-A

On file, 3 and 10 Meter OATS based on RSS-212 - Issue 1

File Number: IC 3088

#### U. S. Conformity Assessment Body (CAB) Validation

Validated by the European Commission as a **U. S. Competent Body** operating under the U. S. /EU, Mutual Recognition Agreement (MRA) operating under the European Union Electromagnetic Compatibility –Council Directive 89/336/EEC, Article 10.2.

Date of Validation: January 16, 2001

Validated by the European Commission as a **U.S. Notified Body** operating under the U.S./EU, Mutual Recognition Agreement (MRA) operating under the European Union Telecommunication Equipment – Council Directive 99/5/EC, Annex V.

Date of Validation: **November 20, 2002**Notified Body Identification Number: **1243** 

## 2. A2LA Certificate



THE AMERICAN
ASSOCIATION
FOR LABORATORY
ACCREDITATION

# **ACCREDITED LABORATORY**

A2LA has accredited

L.S. COMPLIANCE, INC. Cedarburg, WI

for technical competence in the field of

## **Electrical Testing**

The accreditation covers the specific tests and types of tests listed on the agreed scope of accreditation. This laboratory meets the requirements of ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration Laboratories" and any additional program requirements in the identified field of testing. Testing and calibration laboratories that comply with this International Standard also operate in accordance with ISO 9001 or ISO 9002 (1994).

Presented this 26<sup>th</sup> day of March 2003.

President

For the Accreditation Council Certificate Number 1255.01

Valid to January 31, 2005

For tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

#### 3. A2LA Scope



# **American Association for Laboratory Accreditation**

#### SCOPE OF ACCREDITATION TO ISO/IEC 17025-1999

L.S. COMPLIANCE, INC. W66 N220 Commerce Court Cedarburg, WI 53012 laha Phone: 262 375 4400

James Blaha

ELECTRICAL (EMC)

Valid to: January 31, 2005

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following tests:

Test Method(s) <u>Test</u>

Emissions

Conducted

Radiated

Continuous/Discontinuous Code of Federal Regulations (CFR) 47,

FCC Method Parts 15, 18 using ANSI C63.4;

Certificate Number: 1255-01

EN: 55011, 55022, 50081-1, 50081-2;

CISPR: 11, 12, 14-1, 22; CNS 13438

Code of Federal Regulations (CFR) 47, FCC Method Parts 15, 18 using ANSI C63.4;

Rayana M. Rabinson

EN: 55011, 55022, 50081-1, 50081-2;

CISPR: 11, 12, 14-1, 22;

CNS 13438

**Current Harmonics** IEC 61000-3-2; EN 61000-3-2

Voltage Fluctuations & Flicker IEC 61000-3-3; EN 61000-3-3

Immunity EN: 50082-1, 50082-2 EN 61000-6-2

CISPR: 14-2, 24

Conducted Immunity

Fast Transients/Burst IEC 61000-4-4; EN 61000-4-4

Surge IEC: 61000-4-5; ENV 50142;

EN 61000-4-5

IEC: 61000-4-6; ENV 50141; RF Fields

EN 61000-4-6

Voltage Dips/Interruptions IEC 61000-4-11;

EN 61000-4-11

(A2LA Cert. No. 1255-01) 05/13/03

5301 Buckeystown Pike, Suite 350 • Frederick, MD 21704-8373 • Phone: 301-644 3248 • Fax: 301-662 2974

# 4. Signatures

|                     | Ienesa a White                                                                                                         |                |
|---------------------|------------------------------------------------------------------------------------------------------------------------|----------------|
| Prepared By:        |                                                                                                                        | August 4, 2004 |
|                     | Teresa A. White, Document Coordinato                                                                                   | -              |
| Tested By:          | altifut                                                                                                                | August 4, 2004 |
|                     | Abtin Spantman, EMC Engineer                                                                                           | Date           |
|                     | Henrik L Souter                                                                                                        |                |
| Tested and Approved | by:                                                                                                                    | August 4, 2004 |
|                     | Kenneth L. Boston, EMC Lab Manager<br>PE # 31926 Licensed Professional Engi<br>Registered in the State of Wisconsin, U |                |

### 5. Product and General Information

| Manufacturer:     | Honeywell Access Systems                                          |  |  |  |  |
|-------------------|-------------------------------------------------------------------|--|--|--|--|
| Date(s) of Test:  | June 7 <sup>th</sup> , 8 <sup>th</sup> and 9 <sup>th</sup> , 2004 |  |  |  |  |
| Test Engineer(s): | Tom Smith $\sqrt{}$ Abtin Spantman $\sqrt{}$ Ken Boston           |  |  |  |  |
| Model #:          | OS10, OS20, OS30, OS40 and OS45                                   |  |  |  |  |
| Serial #:         | Engineering Units                                                 |  |  |  |  |
| Voltage:          | 5-16 VAC as supplied by a 115VAC wall supply                      |  |  |  |  |
| Operation Mode:   | Active Card-Read                                                  |  |  |  |  |

## 6. Product Description

Honeywell Access Systems new entry into the reader family is the OmniSmart series. Honeywell offers the OmniSmart family of readers in five models: OS10, OS20, OS30, OS40 and OS45. This family of readers are Contactless Smart Card Readers that offer superb reliability, consistent read range and low power consumption in an easy to install package.

Each of the five models of the Honeywell Card Reader utilizes the same RF circuitry with five separate loop antennas which provides the end user with selectable form factors per their specific applications. All five sizes of the loop antennas were tested and the highest emission data for each are presented in this report.

OmniSmart Readers are "multi-standard" accepting cards that conform to ISO 14443A, 14443B or 15693 making it the reader of choice and reducing obsolescence.

#### 7. Test Requirements

The EUT was tested for Conducted and Radiated Emissions to establish compliance with the limits set forth in Title 47 CFR, Parts 15.207, 15.209 and 15.225, for a low power transmitter.

#### 8. Summary of Test Report

# **DECLARATION OF CONFORMITY**

The OmniSmart Reader was found to **MEET** the requirements as described within the specification of Title 47, CFR FCC, Parts 15.207, 15.209 and 15.225 for a low power transmitter, and Industry Canada RSS-210, Section 6.2.2(e) for an intentional radiator.

The enclosed test results pertain to the sample(s) of the test item listed, and only for the tests performed per the data sheets. Any subsequent modification or changes to the test item could invalidate the data contained herein, and could therefore invalidate the findings of this report.

#### 9. Introduction

All tests were performed at L.S. Compliance, in Cedarburg, Wisconsin, unless otherwise noted.

On June 2<sup>nd</sup>, 3<sup>rd</sup> and 4<sup>th</sup>, 2004 a series of Conducted and Radiated Emission tests were performed on 5 samples of the OmniSmart Reader, Model Numbers OS10, OS20, OS30, OS40 and OS45, here forth referred to as the "*Equipment Under Test*" or "*EUT*". These tests were performed using the procedures outlined in ANSI C63.4-2001 for intentional radiators, and in accordance with the limits set forth in FCC Parts 15.207, 15.209 and 15.225, as well as Industry Canada RSS-210, Section 6.2.2(e) for a low power transmitter.

The tests were performed by Kenneth L. Boston, EMC Laboratory Lab Manager, and Abtin Spantman, EMC Engineer of L.S. Compliance, and witnessed by John Reske of Honeywell Access Systems.

#### 10. Purpose

The above-mentioned tests were performed in order to determine the compliance of the equipment under test (EUT) with limits contained in Title 47 CFR, FCC Parts 15.207, 15.209 and 15.225. All Radiated Emission tests were performed to measure the emissions in the frequency bands described in this report, and to determine whether said emissions are below the limits established by the above sections.

The tests were performed in accordance with the procedure described in the American National Standard for methods of measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz (ANSI C63.4-2001). Another document used a reference for the EMI Receiver specification is the Comite International Special des Perturbations Radioelectriques (CISPR) Number 16-1, 2002.

#### 11. Radiated Emissions Test

#### **Test Setup**

The test setup was assembled in accordance with Title 47 CFR, FCC Part 15 and ANSI C63.4-2001. The EUT was placed on an 80 cm high non-conductive wooden table centered on a flush mounted 2 meter diameter turntable, inside a 3 meter Semi-Anechoic, FCC listed Chamber. The EUT was operated in an active card-read mode, using DC power of 5 volts, supplied by a wall supply. This mode insures that the card readers are transmitting a continuous carrier on 13.560 MHz. Whenever a tag (passive) is brought to within approximately 5 cm of the reader, the 13.56 carrier powers up the tag, which then performs a backscatter modulation to the card reader. This envelope modulation then is picked up by the card reader and de-coded. The limits are extrapolated by a factor of 20 dB/decade, for a reading at 3 meters, taken in the Semi-Anechoic Chamber. The calculations determining these limits are detailed in the following pages of this report. Measurement of the fundamental frequency and the lower harmonics was performed at a distance of 10 meters, using extrapolated limits.

#### **Test Procedure**

Final radiation measurements were performed on the EUT in a 3 meter Semi-Anechoic Chamber. A frequency range from 30 MHz to 1000 MHz was scanned, and levels were manually noted at various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive wooden table in a 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the test object. The readers were mounted on a vertical fixture, in the orientation that they are to be used during installation.

A Biconical Antenna was used to measure emissions from 30 MHz to 300 MHz, a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz. The maximum radiated emissions were found by raising and lowering the antenna between 1 and 4 meters in height, using both horizontal and vertical antenna polarities. An active loop antenna was used for measurements below 30 MHz.

The EUT was operated in an active card-read mode during the test. For the fundamental frequency, measurements were repeated on an FCC listed 10 meter Open Area Test Site (OATS). The EUT was scanned for emissions at 13.56 MHz to establish compliance in accordance with FCC Part 15.225 (I.C. RSS-210). A Loop Antenna was used as the sensing antenna. The EUT was positioned on an 80 cm high wooden table, in the center of a flush-mounted 2 meter diameter turntable. The EUT was rotated, and the loop antenna was oriented to obtain a maximum signal level.

## **Test Equipment Utilized**

A complete list of test equipment (including antennas) utilized can be found in Appendix A. The list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All antenna calibrations were performed at a N.I.S.T. traceable site.

The connecting cables were measured for losses, using a calibrated Signal Generator and an EMI Receiver. The resulting correction and cable loss factors from these calibrations were entered into the EMI Receiver database. As a result, the data taken from the EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The EMI Receiver was operated with a bandwidth of 120 kHz for measurements between 30 MHz and 1000 MHz, and a bandwidth of 9 kHz was used below 30 MHz.

The Quasi-Peak detector function was utilized.

#### **Test Results**

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Parts 15.209 and 15.225 for an unintentional radiator (I.C. RSS-210). The frequencies with significant signals were recorded and plotted as shown in the data charts and graphs in this report.

## **CALCULATION OF RADIATED EMISSIONS LIMITS**

The following table depicts the general spurious limits for an low power device. These limits are obtained from Title 47 CFR, Part 15.209(a), for radiated emissions measurements, and were used for spurious signal measurements, in the 3 meter Chamber.

| Frequency<br>(MHz) | 3 m Limit<br>(μV/m) | 3 m Limit<br>(dBμV/m) |
|--------------------|---------------------|-----------------------|
| 30-88              | 100                 | 40.0                  |
| 88-216             | 150                 | 43.5                  |
| 216-960            | 200                 | 46.0                  |
| 960-10,000         | 500                 | 54.0                  |

## Sample conversion from field strength µV/m to dBµV/m:

 $dB\mu V/m = 20 \ log_{10} \ (3m \ limit)$  from 30-88 MHz for example:  $dB\mu V/m = 20 \ log_{10} \ (100)$   $40.0 \ dB\mu V/m = 20 \ log_{10} \ (100)$ 

Note: Limits are rounded to the nearest tenth of a dB.

## **CALCULATION OF RADIATED EMISSIONS LIMITS** (continued)

Calculation of Radiated Emissions limits for FCC Part 15.209; general limits for intentional radiators, plus limits for a 15.225 transmitter.

## Field Strength of Transmitter Spurious and Harmonic Frequencies:

For the frequency range of **1705 kHz to 30 MHz**, the spurious signal limit (at 10 meters) is found by:

LIMIT ( $dB\mu V/m$ ) = 20 log (30) + 19.08 (except for Table 2 below)

Above 30 MHz, the limits on the previous page apply, at 3 meters.

Where the measurement distance was specified to be 30 meters, a correction factor was applied in order to permit measurement to be performed at a separation distance of 10 meters. In accordance with FCC Part 15.31 (f)(2), the scaling factor used was the 40 dB per decade that is presented in the part.

From 30 meters down to 10 meters: FACTOR (dB) = 40 log (30/10) = 19.08 dB

Table 1: Limits for Readings Taken at 10 Meters; spurious signals

| Frequency  | FCC Limit (µV/m) | FCC Limit | Scaling Factor | Adjusted Limit |
|------------|------------------|-----------|----------------|----------------|
| (MHz)      | 15.209           | (dBµV/m)  |                | (dBµV/m)       |
| 1.705-30.0 | 30.00 @ 30 m     | 29.54     | 19.08          | 48.6           |

Table 2: Limits for Readings Taken at 10 Meters; 15.225 (a,b,c) emission mask

| Frequency<br>(MHz) | FCC Limit (µV/m)<br>15.225 | FCC Limit<br>(dBµV/m) | Scaling Factor | Adjusted Limit<br>(dBµV/m) |
|--------------------|----------------------------|-----------------------|----------------|----------------------------|
| 13.553 - 13.567    | 15,848 @ 30                | 84.00                 | 19.08          | 103.1                      |
| 13.410 - 13.553    | 339 @ 30                   | 50.47                 | 19.08          | 69.6                       |
| 13.567 - 13.710    |                            |                       |                |                            |
| 13.110 – 13.410    | 106 @ 30                   | 40.5                  | 19.08          | 59.6                       |
| 13.710 – 14.010    |                            |                       |                |                            |

Note: Limits are rounded to the nearest tenth of a dB.

# **Measurement of Electromagnetic Radiated Emissions**

Upon a 10 meter FCC listed Site and in the 3 meter FCC listed Chamber Test Standard: Title 47 CFR, FCC Parts 15.209 and 15.225 Frequency Range Inspected: 30 MHz to 1000 MHz

|                   | <u> </u>                                        |             |       |           |   |           |  |
|-------------------|-------------------------------------------------|-------------|-------|-----------|---|-----------|--|
| Manufacturer:     | Honeywell Access Systems                        |             |       |           |   |           |  |
| Date(s) of Test:  | June 3 <sup>rd</sup> and 4 <sup>th</sup> , 2004 |             |       |           |   |           |  |
| Test Engineer(s): | Tom Smith                                       | Abtin       | Span  | tman √    | K | en Boston |  |
| Model #:          | OS10, OS20, OS30, OS4                           | 10 and OS   | 345   |           |   |           |  |
| Serial #:         | Engineering units                               |             |       |           |   |           |  |
| Voltage:          | 5 VDC, supplied by a wa                         | ll supply a | t 115 | VAC       |   |           |  |
| Operation Mode:   | Active Card-Read                                |             |       |           |   |           |  |
| Distance:         | √ 3 Meters                                      |             |       | 10 Meters |   |           |  |
| Configuration:    | 0.8 m height                                    |             |       |           |   |           |  |
| Detectors Used:   | Peak                                            | 1           | Quas  | i-Peak    |   | Average   |  |

#### **Environmental Conditions in the Lab:**

Temperature: 20 – 25°C Relative Humidity: 30 – 60 %

#### **Test Equipment Used:**

EMI Measurement Instrument: HP8546A and Agilent E4407B

Log Periodic Antenna: EMCO #93146 Biconical Antenna: EMCO #3115 Loop Antenna: EMCO 6502

OATS: Level of significant radiated emissions found at 10 meters, frequencies below 30 MHz

| Frequency<br>(MHz) | Antenna<br>Polarity | Model | Height<br>(meters) | Azimuth<br>(0° - 360°) | EMI Meter Reading<br>(dBµV/m) | 15.209;<br>15.225<br>Limit<br>(dBµV/m) | Margin<br>(dB) |
|--------------------|---------------------|-------|--------------------|------------------------|-------------------------------|----------------------------------------|----------------|
| 13.56              | Note 2              | OS10  | 1.0                | -                      | 43.0                          | 103.1                                  | 60.1           |
| 13.56              | Note 2              | OS20  | 1.0                | -                      | 49.4                          | 103.1                                  | 53.7           |
| 13.56              | Note 2              | OS30  | 1.0                | -                      | 50.4                          | 103.1                                  | 52.7           |
| 13.56              | Note 2              | OS40  | 1.0                | -                      | 55.7                          | 103.1                                  | 47.4           |
| 13.56              | Note 2              | OS45  | 1.0                | -                      | 53.1                          | 103.1                                  | 50.0           |
| 27.12              | Note 2              | OS40  | 1.0                | -                      | 20.3                          | 48.6                                   | 28.3           |

Chamber: Level of significant radiated emissions found at 3 meters, frequencies above 30 MHz

| Frequency<br>(MHz) | Antenna<br>Polarity | Model | Height<br>(meters) | Azimuth<br>(0° - 360°) | EMI Meter Reading (dBµV/m) | 15.209<br>Limit<br>(dBµV/m) | Margin<br>(dB) |
|--------------------|---------------------|-------|--------------------|------------------------|----------------------------|-----------------------------|----------------|
| 40.7               | V                   | OS20  | 1.0                | 50                     | 37.0 (Note 3)              | 40.0                        | 3.0            |
| 40.7               | V                   | OS40  | 1.0                | 90                     | 36.1                       | 40.0                        | 3.9            |
| 67.8               | V                   | OS30  | 1.0                | 15                     | 35.7                       | 40.0                        | 4.3            |
| 67.8               | V                   | OS45  | 1.0                | 30                     | 36.0                       | 40.0                        | 4.0            |
| 217.0              | V                   | OS40  | 1.9                | 320                    | 34.5                       | 43.5                        | 9.0            |

Note: A Quasi-peak Detector was used in measurements below 1 GHz. All other emissions seen, other than

the noise floor, were greater than 20 dB below the limits.

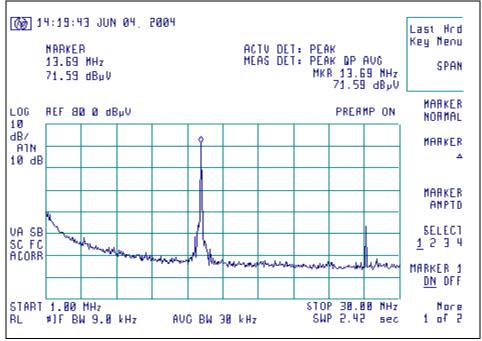
**Note 2:** Readings taken with Loop Antenna oriented for maximum readings.

Note 3: Reading scaled to a 3 meter reading, from a reading taken with the Biconical antenna at

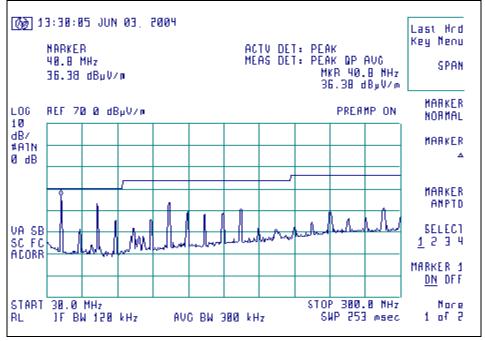
10 meters.

Note 4: Signal levels in the 15.225 b & c emission mask bands were greater than 20 dB below those limits.

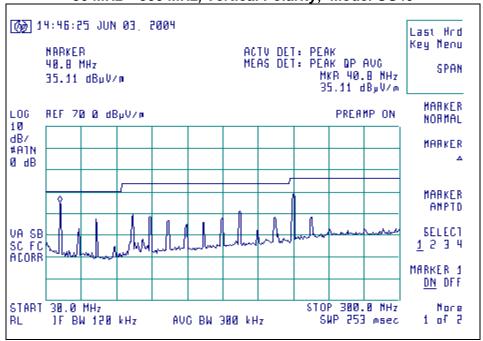
# Photo(s) of Setup for Radiated Emissions Test



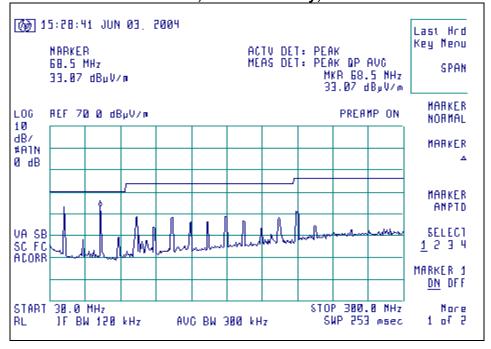




Views of the EUT during Radiated Emissions testing on the 10 Meter FCC listed OATS.

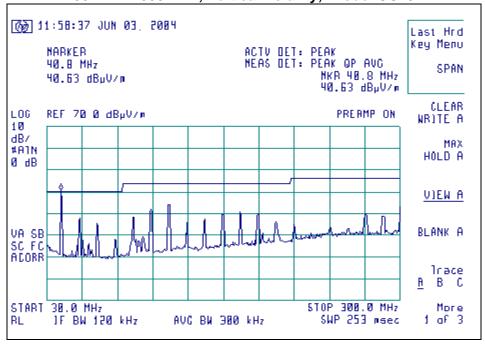
## **Graphs made during Radiated Emissions Testing**


Signature Scan of Radiated Emissions at 3 meters
1.0 MHz – 30.0 MHz; Model OS40; Fundamental seen to be narrowband.

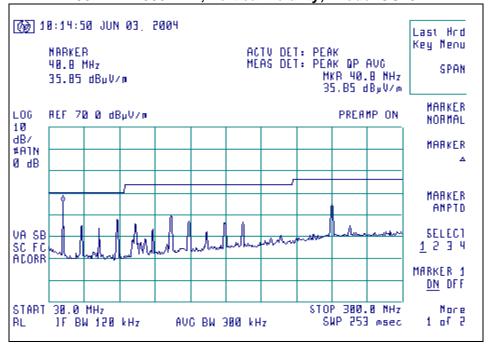



Signature Scan of Radiated Emissions at 3 meters 30 MHz – 300 MHz, Vertical Polarity; Model OS30

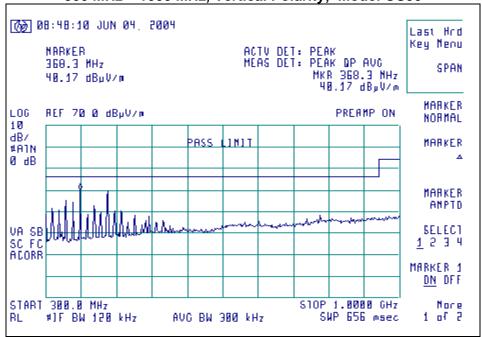



## Signature Scan of Radiated Emissions 30 MHz – 300 MHz, Vertical Polarity; Model OS40

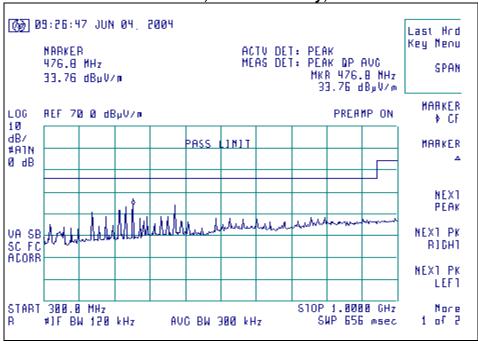



## Signature Scan of Radiated Emissions 30 MHz – 30 MHz, Vertical Polarity; Model OS45

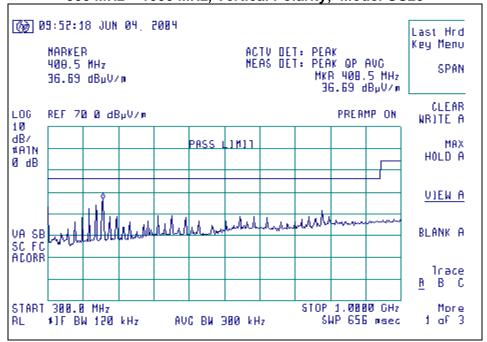



## Signature Scan of Radiated Emissions 30 MHz - 300 MHz, Vertical Polarity; Model OS20




## Signature Scan of Radiated Emissions 30 MHz – 300 MHz, Vertical Polarity; Model OS10




# Signature Scan of Radiated Emissions at 3 meters 300 MHz – 1000 MHz, Vertical Polarity; Model OS30



# Signature Scan of Radiated Emissions at 3 meters 300 MHz – 1000 MHz, Vertical Polarity; Model OS10



## Signature Scan of Radiated Emissions 300 MHz – 1000 MHz, Vertical Polarity; Model OS20



## 12. Conducted Emissions Test (at AC Mains)

## **Test Setup**

The Conducted Emissions tests were performed within a Shielded Room. The EUT was placed on a non-conductive wooden table, with a height of 80 cm above the reference ground plane. The EUT wall type transformer power supply was plugged into a  $50\Omega$  (ohm),  $50/250~\mu H$  Line Impedance Stabilization Network (LISN). The test area and setup are in accordance with ANSI C63.4-2001 and IEC CISPR 22 (EN 55022). The AC power source to the LISN was connected to inside the Shielded Room via an appropriate broadband EMI filter.

## **Test Procedure**

After the EUT was setup in the Shielded Room and connected to the LISN, the RF sampling port of the LISN was connected to a 10 dB Attenuator-Limiter, and then to the EMI Receiver. The LISN used has the ability to terminate the unused port with a  $50\Omega$  load, when switched to either L1 (line) or L2 (neutral). The appropriate frequency range and bandwidths were entered into the EMI Receiver, and measurements were recorded. The bandwidth used for these measurements is 9 kHz, as specified in CISPR 16-1 (2001), Section 1, Table 1 for Quasi-Peak and Average detectors in the frequency range of 150 kHz to 30 MHz. Readings were then taken and recorded.

The limits for Conducted Emissions can be found in Title 47 CFR, FCC Part 15.207, and have been listed in this test report.

## **Test Equipment Utilized**

A complete list of test equipment can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals provided by the manufacturers. Calibrations of the LISN and Limiter are traceable to a N.I.S.T. site. All cables are calibrated and checked periodically for conformance. The emissions are measured on the EMI Receiver, which has automatic correction for all factors stored in memory, and allows direct readings to be taken.

#### Test Results

The EUT was found to **MEET** the Conducted Emissions AC Mains requirements of FCC Part 15.207 for an intentional radiator. Tests of the highest emitting sample were repeated with a resistor substituted for the loop antenna, in order to show compliance to the limits at the fundamental frequency. Detailed test results can be found in the data charts and graphs of this report.

## **CALCULATION OF CONDUCTED EMISSIONS LIMITS**

The following table depicts the general emission limits for an intentional radiator. These limits are obtained from Title 47 CFR, FCC Part 15.207, for radiated emissions measurements.

| Frequency<br>(MHz) | Quasi-Peak Limit<br>(dBµV) | Average Limit<br>(dBµV) |
|--------------------|----------------------------|-------------------------|
| 0.15 – 0.5         | 66 to 56 *                 | 56 to 46 *              |
| 0.5 - 5.0          | 56                         | 46                      |
| 5.0 - 30           | 60                         | 50                      |

<sup>\*</sup> Decreases with logarithm of the frequency.

## Sample conversion in the 0.15 MHz to 0.5 MHz range:

$$Limit|_{F} = \left[ -19.12 \left( \frac{dB}{Hz} \right) x \left( \log \frac{freq(MHz)}{0.15} \right) \right] + 66$$

For 200 kHz for example (F=0.20 MHz):

$$Limit|_{F=200kHz} = \left[ -19.12 \left( \frac{dB}{Hz} \right) x \left( \log \frac{0.20}{0.15} \right) \right] + 66$$

$$Limit\big|_{F=200kHz}=63.61(dB\mu V)$$

Note: Limits are rounded to the nearest whole number.

Close-up view of the test sample with resistor load substitution.



## Measurement of Electromagnetic Conducted Emission

Frequency Range Inspected: 0.15 MHz – 30.0 MHz
Test Requirements: CISPR 22 (EN 55022) Title 47CFR FCC Part 15.107

| Manufacturer:    | Honeywell Access Systems                                        |                                      |              |  |  |  |  |
|------------------|-----------------------------------------------------------------|--------------------------------------|--------------|--|--|--|--|
| Date(s) of Test: | June 7 <sup>th</sup> , 8 <sup>th,</sup> 9 <sup>th</sup> and Jul | ly 28, 2004                          |              |  |  |  |  |
| Test Engineer:   | Tom Smith                                                       | Abtin Spantman √                     | Ken Boston   |  |  |  |  |
| Model #:         | OS10, OS20, OS30, O                                             | S40 and OS45                         | ·            |  |  |  |  |
| Serial #:        | Engineering Units                                               | Engineering Units                    |              |  |  |  |  |
| Voltage:         | 5 VDC, from a wall sup                                          | 5 VDC, from a wall supply at 115 VAC |              |  |  |  |  |
| Operation Mode:  | Active Card-Read                                                |                                      |              |  |  |  |  |
| Test Location:   | √ Shielded Room                                                 |                                      | Chamber      |  |  |  |  |
| EUT Placed On:   | √ 40cm from Vertica                                             | ll Ground Plane                      | 10cm Spacers |  |  |  |  |
| EOT Flaced Off.  | √ 80cm above Grou                                               | 80cm above Ground Plane              |              |  |  |  |  |
| Measurements:    | Pre-Compliance                                                  | Preliminary                          | Final        |  |  |  |  |
| Detectors Used:  | Peak                                                            | √ Quasi-Peak                         | √ Average    |  |  |  |  |

Environmental Conditions in the Lab:

Temperature: 20 – 25° C

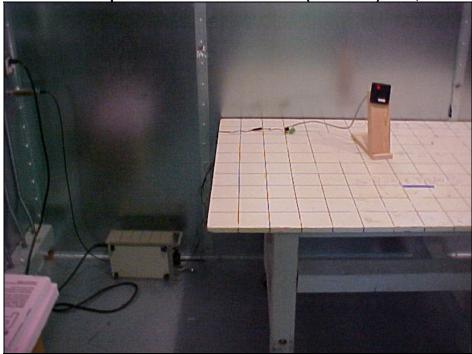
Atmospheric Pressure: 86 kPa – 106 kPa

Relative Humidity: 30 – 60%

**Test Equipment Utilized**:

EMI Receiver: HP 8546A LISN: EMCO 3816/2NM Transient Limiter: HP 119474A

|                    |       |      |                               | QUASI-PEA                 | <u>K</u>                     | <u> </u>                       | <u>AVERAGE</u>                |                           |
|--------------------|-------|------|-------------------------------|---------------------------|------------------------------|--------------------------------|-------------------------------|---------------------------|
| Frequency<br>(MHz) | Model | Line | Q-Peak<br>Reading<br>(dBµV/m) | Q-Peak Limit<br>(dBμ V/m) | Quasi-Peak<br>Margin<br>(dB) | Average<br>Reading<br>(dBµV/m) | Average<br>Limit<br>(dBμ V/m) | Average<br>Margin<br>(dB) |
| 13.56              | OS10  | L2   | 50.5                          | 60                        | 9.5                          | 50.4                           | 50                            | 0.4 *                     |
| 13.56              | OS30  | L1   | 59.8                          | 60                        | 1.2                          | 59.6                           | 50                            | 9.6 *                     |
| 13.56              | OS40  | L1   | 60.1                          | 60                        | .1 *                         | 60.0                           | 50                            | 10.0 *                    |
| 13.56              | OS45  | L1   | 57.9                          | 60                        | 2.1                          | 57.8                           | 50                            | 7.8 *                     |
| 27.12              | OS20  | L1   | 89.8                          | 60                        | 20.2                         | 39.7                           | 50                            | 10.3                      |
| 27.12              | OS40  | L1   | 36.8                          | 60                        | 23.2                         | 36.7                           | 50                            | 13.3                      |
| 13.56              | OS40  | L1   | 44.4                          | 60                        | 15.6 **                      | 44.0                           | 50                            | 6.0 **                    |


<sup>\*</sup> Note: Samples tested with Loop Antenna present.

<sup>\*\*</sup> Note: OS40 sample re-tested with resistive dummy load substituted for Loop Antenna.

Photo of Setup for Conducted Emissions (AC Mains)Test, OS20

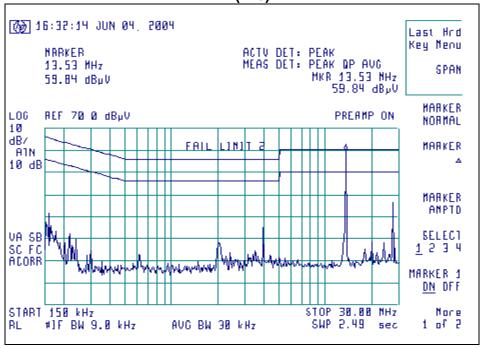
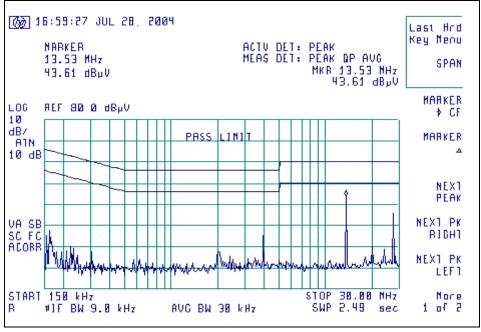



Photo of Setup for Conducted Emissions (AC Mains) Test, OS40




## **Graphs made during Conducted Emissions (AC Mains) Testing**

Signature Scan of Conducted Emissions (AC Mains), OS40 L1 (line)



## Signature Scan of Conducted Emissions (AC Mains), OS40 L1 (line); with resistive load



#### 13. Frequency Stability (Title 47 CFR, FCC Parts 15.225(e) and 15.31(e)

The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating frequency (1.356 kHz) over a temperature variation of -20 degrees to + 50 degrees C at normal supply voltage and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the tests shall be performed using a new battery. The DC supply voltage was varied over the widest range, as DC power can be supplied by a variety of suppliers.

The OS10 (smallest) and OS45 (largest) samples were tested, with the largest deviation seen on the OS10; for which the following results are presented. Maximum deviation seen was 0.3 kHz, which is within the specification of  $\pm 1.356$  kHz.

| Temperature        | Frequency | Frequency Delta |
|--------------------|-----------|-----------------|
| (°C)               | (MHz)     | (kHz)           |
| - 20               | 13.5612   | + 0.3           |
| + 20               | 13.5609   | (reference)     |
| + 50               | 13.5609   | 0.0             |
|                    |           |                 |
| <b>Voltage</b>     |           |                 |
| 4.25 (85% of 5 V)  | 13.5609   | 0.0             |
| 5.4                | 13.5609   | (reference)     |
| 18.4 (115% of 16V) | 13.5609   | 0.0             |

# **APPENDIX A**

Test Equipment List

| Asset #   | Manufacturer | Model #    | Serial #   | Description                             | Date     | Due      |
|-----------|--------------|------------|------------|-----------------------------------------|----------|----------|
| AA 960006 | EMCO         | 6502       | 9205 2753  | Loop Antenna                            | 9/03/03  | 9/04/05  |
| AA960008  | EMCO         | 3816/2NM   | 9701-1057  | Line Impedance Stabilization<br>Network | 9/03/03  | 9/03/04  |
| AA960031  | HP           | 119474A    | 3107A01708 | Transient Limiter                       | Note 1   | Note 1   |
| AA960077  | EMCO         | 93110B     | 9702-2918  | Biconical Antenna                       | 9/02/03  | 9/02/04  |
| AA960078  | EMCO         | 93146      | 9701-4855  | Log-Periodic Antenna                    | 9/02/03  | 9/02/04  |
| AA960081  | EMCO         | 3115       | 6907       | Double Ridge Horn Antenna               | 11/14/03 | 11/14/04 |
| CC00221C  | Agilent      | E4407B     | US39160256 | Spectrum Analyzer                       | 11/04/03 | 11/04/04 |
| EE960004  | EMCO         | 2090       | 9607-1164  | Device Controller                       | N/A      | N/A      |
| EE960013  | HP           | 8546A      | 3617A00320 | Receiver RF Section                     | 9/04/03  | 9/04/04  |
| EE960014  | HP           | 85460A     | 3448A00296 | Receiver Pre-Selector                   | 9/04/03  | 9/04/04  |
| N/A       | LSC          | Cable      | 0011       | 3 Meter 1/2" Armored Cable              | 6/29/04  | 6/29/05  |
| N/A       | LSC          | Cable      | 0038       | 1 Meter RG 214 Cable                    | 6/29/04  | 6/29/05  |
| N/A       | LSC          | Cable      | 0067       | 10 Meter Semflex                        | 6/29/04  | 6/29/05  |
| N/A       | Pasternack   | Attenuator | N/A        | 10 dB Attenuator                        | Note 1   | Note 1   |

Note 1 - Equipment calibrated within a traceable system.

# Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

| Measurement Type    | Particular Configuration              | Uncertainty Values |  |
|---------------------|---------------------------------------|--------------------|--|
| Radiated Emissions  | 3 – Meter chamber, Biconical Antenna  | 4.24 dB            |  |
| Radiated Emissions  | 3-Meter Chamber, Log Periodic Antenna | 4.8 dB             |  |
| Radiated Emissions  | 10-Meter OATS, Biconical Antenna      | 4.18 dB            |  |
| Radiated Emissions  | 10-Meter OATS, Log Periodic Antenna   | 3.92 dB            |  |
| Conducted Emissions | Shielded Room/EMCO LISN               | 1.60 dB            |  |
| Radiated Immunity   | 3 Volts/Meter in 3-Meter Chamber      | 1.128 Volts/Meter  |  |
| Conducted Immunity  | 3 Volts level                         | 1.0 V              |  |